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3. METRIC, BANACH AND TOPOLOGICAL SPACES

3.1. Basic metric space notions.

Definition 3.1. A function d : X x X — [0,00) is called a metric if

1. (Symmetry) d(z,y) = d(y,z) for all z,y € X

2. (Non-degenerate) d(z,y) =0 if and only if x =y € X

3. (Triangle inequality) d(x, z) < d(z,y) + d(y, z) for all z,y,z € X.

As primary examples, any normed space (X, ||-||) is & metric space with d(z,y) :=
||z — y|| . Thus the space £P(u) is a metric space for all p € [1, 00]. Also any subset

of a metric space is a metric space. For example a surface ¥ in R? is a metric space
with the distance between two points on ¥ being the usual distance in R3.

Definition 3.2. Let (X,d) be a metric space. The open ball B(z,§) C X cen-
tered at x € X with radius 6 > 0 is the set

B(z,6) :={y € X : d(z,y) < 6}.

We will often also write B(x,6) as B, (). We also define the closed ball centered
at € X with radius 6§ > 0 as the set C,(6) := {y € X : d(z,y) < 6}.

Definition 3.3. A sequence {z,},. | in a metric space (X, d) is said to be conver-
gent if there exists a point € X such that lim,,_, o, d(z, z,) = 0. In this case we
write lim,,_, oo £, = x of 2,, — x as n — oo.

Exercise 3.1. Show that = in Definition 3.3 is necessarily unique.

Definition 3.4. A set F C X is closed iff every convergent sequence {z,}. .
which is contained in F' has its limit back in F. A set V C X is open iff V¢ is
closed. We will write F' X to indicate the F is a closed subset of X and V C, X
to indicate the V is an open subset of X. We also let 74 denote the collection of
open subsets of X relative to the metric d.

Exercise 3.2. Let F be a collection of closed subsets of X, show NF := NpcrF
is closed. Also show that finite unions of closed sets are closed, i.e. if {Fy}}_, are
closed sets then U?_, Fy is closed. (By taking complements, this shows that the
collection of open sets, 74, is closed under finite intersections and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in the
remainder of this book.

Lemma 3.5. For any non empty subset A C X, let da(x) = inf{d(x,a)|a € A},
then

(3.1) |da(@) —da(y)| < d(z,y) Va,y € X.
Moreover the set F, = {x € X|da(x) > €} is closed in X.
Proof. Let a € A and z,y € X, then
d(z,a) < d(z,y) +d(y,a).
Take the inf over a in the above equation shows that

da(z) <d(z,y) +daly) Veo,ye X.
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Therefore, d4(x) —da(y) < d(z,y) and by interchanging = and y we also have that
da(y) —da(z) < d(z,y) which implies Eq. (3.1). Now suppose that {z,},., C F.
is a convergent sequence and z = lim,,_,, z, € X. By Eq. (3.1),

€—da(x) <da(zy) —da(z) < d(z,z,) — 0 asn— oo,
so that € < da(z). This shows that « € F, and hence F, is closed. m
Corollary 3.6. The function d satisfies,
|d(z,y) —d(2’,y")| < d(y,y’) + d(z,2")
and in particular d : X x X — [0,00) is continuous.

Proof. By Lemma 3.5 for single point sets and the triangle inequality for the
absolute value of real numbers,

ld(z,y) —d(@,y')| < |d(z,y) — d(z,y)| + |d(z,y') — d(=",y/)]
<d(y,y') +d(z,2).
L]

Exercise 3.3. Show that V' C X is open iff for every x € V there is a § > 0 such
that B;(6) C V. In particular show B, (6) is open for all z € X and ¢ > 0.

Lemma 3.7. Let A be a closed subset of X and F, C X be as defined as in Lemma
3.5. Then F. T A¢ ase | 0.

Proof. It is clear that d4(x) =0 for € A so that F. C A° for each € > 0 and
hence UesoF. C A°. Now suppose that z € A¢ C, X. By Exercise 3.3 there exists
an € > 0 such that B,(e) C A° ie. d(z,y) > € for all y € A. Hence x € F, and we
have shown that A¢ C UesoFe. Finally it is clear that F, C F. whenever ¢ <e. m

Definition 3.8. Given a set A contained a metric space X, let A C X be the
closure of A defined by

A={reX:I{z,}CA> x:nli_{goazn}.
That is to say A contains all limit points of A.
Exercise 3.4. Given A C X, show A is a closed set and in fact
(3.2) A=nN{F:ACFC X with F closed}.
That is to say A is the smallest closed set containing A.

3.2. Continuity. Suppose that (X,d) and (Y, p) are two metric spaces and f :
X — Y is a function.

Definition 3.9. A function f: X — Y is continuous at « € X if for all € > 0 there
is a 6 > 0 such that

d(f(z), f(2")) < € provided that p(z,z") < 6.
The function f is said to be continuous if f is continuous at all points x € X.
The following lemma gives three other ways to characterize continuous functions.

Lemma 3.10 (Continuity Lemma). Suppose that (X, p) and (Y, d) are two metric
spaces and f: X — 'Y is a function. Then the following are equivalent:

1. f is continuous.
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2. fFXV) e, for allV € 14, ice. (V) is open in X if V is open in Y.
3. f7YC) is closed in X if C is closed in'Y.
4.

For all convergent sequences {x,} C X, {f(x,)} is convergent in' Y and
lim f(z,)=1f ( lim xn) )

Proof. 1. = 2. For all + € X and € > 0 there exists 6 > 0 such that
d(f(z), f(a") < eif p(z,z") < 6. ie.

By (8) € fTH(Bry(e))
Soif V C, Y and x € f~!(V) we may choose € > 0 such that Bj(,(¢) C V then

By (8) € fH(Byay(e)) € fH(V)

showing that f~1(V) is open.

2. = 1. Let e > 0 and x € X, then, since f~!(By(,)(€)) Co X, there exists § > 0
such that B, (6) C f~ (B (€)) ie. if p(z,z') < & then d(f(z'), f(z)) <.

2. <= 3. If C is closed in Y, then C° C, Y and hence f~'(C¢) C, X. Since
7o) = (f_l(C))c, this shows that f=!(C) is the complement of an open set
and hence closed. Similarly one shows that 3. = 2.

1. = 4. If f is continuous and z,, — x in X, let ¢ > 0 and choose § > 0
such that d(f(z), f(2')) < € when p(x,2’) < §. There exists an N > 0 such that
p(z,z,) < & for all n > N and therefore d(f(x), f(z,)) < € for all n > N. That is
to say lim, o f(z,) = f(x) as n — oo.

4. = 1. We will show that not 1. = not 4. Not 1 implies there exists € > 0,
a point € X and a sequence {x,} —, C X such that d(f(z), f(z,)) > € while
p(z,x,) < . Clearly this sequence {z,,} violates 4. m

There is of course a local version of this lemma. To state this lemma, we will
use the following terminology.

Definition 3.11. Let X be metric space and = € X. A subset A C X is a neigh-
borhood of z if there exists an open set V' C, X such that x € V C A. We will
say that A C X is an open neighborhood of z if A is open and = € A.

Lemma 3.12 (Local Continuity Lemma). Suppose that (X, p) and (Y,d) are two
metric spaces and f: X — 'Y is a function. Then following are equivalent:

1. f is continuous as x € X.

2. For all neighborhoods A C'Y of f(x), f~*(A) is a neighborhood of x € X.

3. For all sequences {x,} C X such that x = lim, o &p, {f(xn)} s convergent
mY and

lim f(xz,)=f ( lim xn) .

The proof of this lemma is similar to Lemma 3.10 and so will be omitted.
Example 3.13. The function d4 defined in Lemma 3.5 is continuous for each

A C X. In particular, if A = {x}, it follows that y € X — d(y,«) is continuous for
each r € X.

Exercise 3.5. Show the closed ball C,(6) := {y € X : d(z,y) < 6} is a closed
subset of X.
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FIGURE 5. A topology

3.3. Basic Topological Notions. Using the metric space results above as moti-
vation we will axiomatize the notion of being an open set to more general settings.

Definition 3.14. A collection of subsets 7 of X is a topology if

1.0, Xer

2. 7 is closed under arbitrary unions, i.e. if V,, € 7, for « € I then |J V, € 7.
acl
3. T is closed under finite intersections, i.e. if Vq,...,V,, € 7 then V1N---NV,, € 7.

A pair (X, 1) where 7 is a topology on X will be called a topological space.

Notation 3.15. The subsets V' C X which are in 7 are called open sets and we
will abbreviate this by writing V' C, X and the those sets F' C X such that F° € 7
are called closed sets. We will write F' C X if F is a closed subset of X.

Example 3.16. 1. Let (X,d) be a metric space, we write 74 for the collection
of d — open sets in X. We have already seen that 74 is a topology, see Exercise
3.2.

2. Let X be any set, then 7= P(X) is a topology. In this topology all subsets
of X are both open and closed. At the opposite extreme we have the trivial
topology, 7 = {#, X} . In this topology only the empty set and X are open
(closed).

3. Let X ={1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which does not
come from a metric.

4. Again let X = {1,2,3}. Then 7 = {{1},{2,3},0, X}. is a topology, and the
sets X, {1}, {2,3},¢ are open and closed. The sets {1,2} and {1,3} are
neither open nor closed.

Definition 3.17. Let (X, 7) be a topological space, A C X and i4q : A — X be
the inclusion map, i.e. i4(a) = a for all a € A. Define

Ta=1i3'(1)={ANV:Ver},
the so called relative topology on A.

Notice that the closed sets in Y relative to 7y are precisely those sets of the form
CNY where C is close in X. Indeed, B C Y is closed iff Y\ B =Y NV for some
V € 7 which is equivalent to B=Y \ (Y NV) =Y N V¢ for some V € 7.
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Exercise 3.6. Show the relative topology is a topology on A. Also show if (X, d)
is a metric space and 7 = 74 is the topology coming from d, then (74), is the
topology induced by making A into a metric space using the metric d|sx 4.

Notation 3.18 (Neighborhoods of ). An open neighborhood of a point z € X
is an open set V' C X such that x € V. Let 7, = {V € 7 : € V} denote the
collection of open neighborhoods of x. A collection  C 7, is called a neighborhood
base at x € X if for all V' € 7, there exists W € n such that W C V.

The notation 7, should not be confused with
T(a} = z{;l}(T) ={{z}nV:Ver}={0{z}}.
When (X, d) is a metric space, a typical example of a neighborhood base for z is
n = {By(€) : € € D} where D is any dense subset of (0, 1].
Definition 3.19. Let (X, 7) be a topological space and A be a subset of X.
1. The closure of A is the smallest closed set A containing A, i.e.

A=n{F:ACFC X}.
(Because of Exercise 3.4 this is consistent with Definition 3.8 for the closure
of a set in a metric space.)
2. The interior of A is the largest open set A° contained in A, i.e.
A°=uU{Ver:VCA}.
3. The accumulation points of A is the set
acc(A) ={z e X: VNnA\{z} #Dforall V e r,}.

4. The boundary of A is the set A := A\ A°.
5. A is a neighborhood of a point x € X if x € A°. This is equivalent to
requiring there to be an open neighborhood of V' of x € X such that V' C A.

Remark 3.20. The relationships between the interior and the closure of a set are:

(Ao)c:ﬂ{Vc:VGTandVCA}:ﬂ{C:CisclosedCDAc}:ﬁ

and similarly, (A)¢ = (A°)°. Hence the boundary of A may be written as
(3.3) DA = A\ A° = AN (A°) = AN,
which is to say 0A consists of the points in both the closure of A and A°.

Proposition 3.21. Let A C X and x € X.

1. IfVCo X and ANV =0 then ANV = ).

2. s cAiffVNA#£D forallV € 7,.

3 2€dA W VNAAD and VNA“ D for all V € 7.
4. A= AUacc(A).

Proof. 1. Since ANV =, A C V¢ and since V¢ is closed, A C V¢. That is to
say ANV = 0.

2. By Remark 3.203, A = ((4°)°)° so x € A iff z ¢ (A°)° which happens iff
\%4 QAC forall Ver, ie if VNA#£Pforal Ve r,.

3. This assertion easily follows from the Item 2. and Eq. (3.3).

3Here is another direct proof of item 2. which goes by showing = ¢ A iff there exists V € 7,
such that VN A=0. Ifx ¢ Athen V=A€7 and VNACVNA=0. Conversely if there
cxists V' € 7, such that VN A = @ then by Item 1. ANV = (.
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4. Ttem 4. is an easy consequence of the definition of acc(A) and item 2. m

Lemma 3.22. Let_A CY c X, AY denote the closure of A in'Y with its relative
topology and A = AX be the closure of A in X, then AY = AXNY.

Proof. Using the comments after Definition 3.17,
AY =n{BCY:ACB}=n{CnY:AcCCLC X}
=YN(N{C:AcCCrC X})=YnA¥X.

Alternative proof. Let € Y then z € AY iffforall V €7}, VNA # (). This
happens iff for all U € X, UNYNA=UNA # () which happens iff v € AX. That
istosay AY =AXNY. =

Definition 3.23. Let (X, 7) be a topological space and A C X. We say a subset
U C 7 is an open cover of A if A C UU. The set A is said to be compact if every
open cover of A has finite a sub-cover, i.e. if U is an open cover of A there exists
Uy CC U such that Uy is a cover of A. (We will write A CC X to denote that
A C X and A is compact.) A subset A C X is precompact if A is compact.

Proposition 3.24. Suppose that K C X is a compact set and F' C K is a closed
subset. Then F is compact. If {Ki}?zl 18 a finite collections of compact subsets of
X then K = U} K; is also a compact subset of X.

Proof. Let U C 7 is an open cover of F, then YU {F*°} is an open cover of K.
The cover UU{F*°} of K has a finite subcover which we denote by UpU { F°} where
Uy CC U. Since F N F¢ = (), it follows that Uy is the desired subcover of F.

For the second assertion suppose U C 7 is an open cover of K. Then U covers
each compact set K; and therefore there exists a finite subset U; CC U for each i
such that K; C Ul;. Then Uy := U_,U; is a finite cover of K. m

Definition 3.25. We say a collection F of closed subsets of a topological space
(X, 7) has the finite intersection property if NFy # () for all Fy CC F.

The notion of compactness may be expressed in terms of closed sets as follows.

Proposition 3.26. A topological space X is compact iff every family of closed sets
F C P(X) with the finite intersection property satisfies (| F # 0.

Proof. (=) Suppose that X is compact and F C P(X) is a collection of closed
sets such that (| F = 0. Let

U=r={C°:CeF}Cr,
then U is a cover of X and hence has a finite subcover, Uy. Let Fy = U5 CC F,
then NFy = ) so that F does not have the finite intersection property.
(<) If X is not compact, there exists an open cover I of X with no finite sub-

cover. Let F = U¢, then F is a collection of closed sets with the finite intersection
property while (F =0. =

Exercise 3.7. Let (X, 7) be a topological space. Show that A C X is compact iff
(A, T4) is a compact topological space.

Definition 3.27. Let (X,7) be a topological space. A sequence {z,}.., C X
converges to a point « € X if for all V € 7, z,, € V almost always (abbreviated
a.a.),le. #({n:x, ¢ V}) < co. We will write x,, — zasn — oo or limy,_,e0 Tn =
when z,, converges to x.
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Example 3.28. Let Y = {1,2,3} and 7 = {Y,0,{1,2},{2,3},{2}} and y,, = 2 for
all n. Then y,, — y for every y € Y. So limits need not be unique!

Definition 3.29. Let (X, 7x) and (Y, 7y) be topological spaces. A function f :
X — Y is continuous if f~1(ry) C 7x. We will also say that f is 7x /7y —
continuous or (7x,Ty) — continuous. We also say that f is continuous at a point
x € X if for every open neighborhood V of f(x) there is an open neighborhood U
of z such that U C f~(V). See Figure 6.

57V

FIGURE 6. Checking that a function is continuous at x € X.

Definition 3.30. A map f: X — Y between topological spaces is called a home-
omorphism provided that f is bijective, f is continuous and f~' : ¥ — X is
continuous. If there exists f : X — Y which is a homeomorphism, we say that
X and Y are homeomorphic. (As topological spaces X and Y are essentially the
same.)

Exercise 3.8. Show f : X — Y is continuous iff f is continuous at all points
reX.

Exercise 3.9. Show f : X — Y is continuous iff f=1(C) is closed in X for all
closed subsets C of Y.

Exercise 3.10. Suppose f : X — Y is continuous and K C X is compact, then
f(K) is a compact subset of Y.

Exercise 3.11 (Dini’s Theorem). Let X be a compact topological space and f,, :
X — [0,00) be a sequence of continuous functions such that f,(z) | 0 as n — oo
for each x € X. Show that in fact f,, | 0 uniformly in x, i.e. sup,cx fn(z) | 0 as
n — oo. Hint: Given € > 0, consider the open sets V,, := {z € X : f.(x) < €}.

Definition 3.31 (First Countable). A topological space, (X,7), is first count-
able iff every point x € X has a countable neighborhood base. (All metric space
are first countable.)

When 7 is first countable, we may formulate many topological notions in terms
of sequences.

Proposition 3.32. If f: X — Y is continuous at x € X andlim,_ x, = € X,
then lim, o f(z,) = f(x) € Y. Moreover, if there exists a countable neighborhood
base n of x € X, then f is continuous at x iff lim f(z,) = f(x) for all sequences

{zn }zo:l C X such that x,, — x as n — oo.
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Proof. If f: X — Y is continuous and W € 7y is a neighborhood of f(x) € Y,
then there exists a neighborhood V of € X such that f(V) Cc W. Since z,, — z,
x, € V a.a. and therefore f(z,) € f(V) C W a.a., ie. f(z,) — f(z) as n — .

Conversely suppose that n = {W,,}°%, is a countable neighborhood base at « and
nh_)rgo f(zn) = f(z) for all sequences {z,} -, C X such that z,, — z. By replacing

W,, by Wi N --- N W, if necessary, we may assume that {W,,} ° | is a decreasing
sequence of sets. If f were not continuous at = then there exists V' € 77, such
that z ¢ f~1(V)°. Therefore, W,, is not a subset of f~(V) for all n. Hence for
each n, we may choose x, € W,, \ f (V). This sequence then has the property
that x,, — x as n — oo while f(z,) ¢ V for all n and hence lim,,—. f(z,) # f(z).
[

Lemma 3.33. Suppose there exists {x,},., C A such that z,, — x, then x € f_l_.
Conversely if (X, T) is a first countable space (like a metric space) then if v € A
there exists {xn}zozl C A such that x,, — .

Proof. Suppose {z,},., C A and z,, — = € X. Since A¢ is an open set, if
x € A° then z,, € A° C A° a.a. contradicting the assumption that {z,} =, C A.
Hence z € A.

For the converse we now assume that (X, 7) is first countable and that {V,} - | is
a countable neighborhood base at x such that V; D V5 D V3 O .... By Proposition
321,z € Aiff VNA # () for all V € 7,.. Hence z € A implies there exists z,, € V,,NA
for all n. It is now easily seen that z,, — x asn — oco. ®

Definition 3.34 (Support). Let f: X — Y be a function from a topological space
(X, 7x) to a vector space Y. Then we define the support of f by

supp(f) :={z € X : f(z) # 0},

a closed subset of X.

Example 3.35. For example, let f(z) = sin(x)1j 4x)(z) € R, then
{f # 0} = (0,4m) \ {m, 2, 3}

and therefore supp(f) = [0, 4x].

Notation 3.36. If X and Y are two topological spaces, let C(X,Y") denote the
continuous functions from X to Y. If Y is a Banach space, let

BO(X.Y) = {f € C(X.Y) : sup @)y < oo}

and

Co(X,Y):={f € C(X,Y) : supp(f) is compact}.
If Y = R or C we will simply write C(X), BC(X) and C.(X) for C(X,Y),
BC(X,Y) and C.(X,Y) respectively.

The next result is included for completeness but will not be used in the sequel
so may be omitted.

Lemma 3.37. Suppose that f: X — Y is a map between topological spaces. Then
the following are equivalent:

1. f is continuous.

2. f(A) C f(A) forall AC X
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3. f~1(B) c f~YB) for all BC X.
Proof. If f is continuous, then f—! (f(A)) is closed and since A C f=1 (f(4)) C

f! (f(A)) it follows that A c f~! (f(A)) . From this equation we learn that

f(A) € f(A) so that (1) implies (2) Now assume (2), then for B C Y (taking
A = f~1(B)) we have

F(F=1(B) C f(f=1(B)) C f(f~1(B)) C B

and therefore
(3.4) f~1(B) c f~H(B).

This shows that (2) implies (3) Finally if Eq. (3.4) holds for all B, then when B is
closed this shows that

f7UB) c f71(B) = f7Y(B) ¢ f~1(B)

which shows that
f~(B) = f-1(B).

Therefore f~!(B) is closed whenever B is closed which implies that f is continuous.
[

3.4. Completeness.

Definition 3.38 (Cauchy sequences). A sequence {z,},., in a metric space
(X,d) is Cauchy provided that
lim d(zp,zm)=0.

m,n— 00
Exercise 3.12. Show that convergent sequences are always Cauchy sequences.
The converse is not always true. For example, let X = Q be the set of rational
numbers and d(z,y) = |z — y|. Choose a sequence {z,} —; C Q which converges
to v2 € R, then {z,}>~, is (Q,d) — Cauchy but not (Q,d) — convergent. The
sequence does converge in R however.

Definition 3.39. A metric space (X,d) is complete if all Cauchy sequences are
convergent sequences.

Exercise 3.13. Let (X, d) be a complete metric space. Let A C X be a subset of
X viewed as a metric space using d| 4x 4. Show that (A,d|sx 4) is complete iff A is
a closed subset of X.

Definition 3.40. If (X,|-||) is a normed vector space, then we say {z,} -, C X
is a Cauchy sequence if lim,, ,—oo ||Zm — @5|| = 0. The normed vector space is a
Banach space if it is complete, i.e. if every {z,} ., C X which is Cauchy is
convergent where {z,} ~, C X is convergent iff there exists z € X such that
limy, 00 ||zn, — || = 0. As usual we will abbreviate this last statement by writing
lim,, oo T, = T.

Lemma 3.41. Suppose that X is a set then the bounded functions £>°(X) on X is
a Banach space with the norm

If]l = Iflloe = sup [f(2)].
zeX
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Moreover if X is a topological space the set BC(X) C £°(X) = B(X) is closed
subspace of £>°(X) and hence is also a Banach space.

Proof. Let {f,} -, C (°*°(X) be a Cauchy sequence. Since for any z € X, we
have

(3-5) [fn(@) = fm(@)] < [fn = finlloo

which shows that {f,(z)} -, C F is a Cauchy sequence of numbers. Because F
(F =R or C) is complete, f(x) := lim,_ o frn(z) exists for all x € X. Passing to
the limit n — oo in Eq. (3.5) implies

[f(@) = fm(2)] <Tim sup |[fn = finlloo
n—oo
and taking the supremum over x € X of this inequality implies

1f = finlloe < lim sup [ fr = finllo — 0 as m — oo
n—o0

showing f,, — f in £°°(X).

For the second assertion, suppose that {f,} -, C BC(X) C (*°(X) and f,, —
f € °°(X). We must show that f € BC(X), i.e. that f is continuous. To this end
let x,y € X, then

|f(@) = f)| < [f(2) = fal@)] + [ful@) = Fa@)] + | fa(y) — F(y)]
<2|[f = falloo + [ fa(2) = fu(y)]-
Thus if € > 0, we may choose n large so that 2|/ f — f,||., < €/2 and then for this
n there exists an open neighborhood V,, of x € X such that |f,(z) — fn(y)| < €/2

for y € V. Thus |f(z) — f(y)| < € for y € V, showing the limiting function f is
continuous. m

Remark 3.42. Let X be a set, Y be a Banach space and ¢*>°(X,Y) denote the
bounded functions f : X — Y equipped with the norm ||f|| = ||f|l., =
sup,ex || f(x)|ly - If X is a topological space, let BC(X,Y) denote those f €
¢>*°(X,Y) which are continuous. The same proof used in Lemma 3.41 shows that
(>*(X,Y) is a Banach space and that BC(X,Y) is a closed subspace of {*°(X,Y).

Theorem 3.43 (Completeness of (P(u)). Let X be a set and p: X — (0,00] be a
given function. Then for any p € [1,00], (€P(u), ||||p) is a Banach space.
Proof. We have already proved this for p = co in Lemma 3.41 so we now assume
that p € [1,00). Let {f,,},—, C P(u) be a Cauchy sequence. Since for any z € X,
1

fnxff;nx S_ fnffnz HO&STTL,TLHOO

| fu() (=) ) | p
it follows that {f,(z)} -, is a Cauchy sequence of numbers and f(z) :=
limy, oo fn(x) exists for all € X. By Fatou’s Lemma,

X X
= lim inf | f, — fm|/5 — 0 as n — oo.

This then shows that f = (f— fn)+ fn € €7(u) (being the sum of two (P — functions)
o
and that f,, — f. =

Example 3.44. Here are a couple of examples of complete metric spaces.
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X =R and d(z,y) = |z —y|.

X =R" and d(z,y) = ||z —yll, = X0, (w2 — y:)*.

X = (P(p) for p € [1,00] and any weight function .

X = C([0,1],R) — the space of continuous functions from [0,1] to R and
d(f,g) := maxco,1) |f(t) — g(t)|. This is a special case of Lemma 3.41.

5. Here is a typical example of a non-complete metric space. Let X = C([0,1],R)
and

e

d(f.g) = /0 (1) — g(t)] dt.

3.5. Compactness in Metric Spaces. Let (X, p) be a metric space and let
Bi(€) = Bx(e) \ {z}.

Definition 3.45. A point z € X is an accumulation point of a subset £ C X if
0 #ENV\{z} for all V C, X containing z.

Let us start with the following elementary lemma which is left as an exercise to
the reader.

Lemma 3.46. Let E C X be a subset of a metric space (X, p). Then the following
are equivalent:

1. z € X s an accumulation point of E.

2. Bl(e)NE # for all e > 0.

3. Bi(e) N E is an infinite set for all € > 0.

4. There exists {xy},- , C E\{z} with lim,_ o z,, = .

Definition 3.47. A metric space (X, p) is said to be € — bounded (¢ > 0) provided
there exists a finite cover of X by balls of radius €. The metric space is totally
bounded if it is € — bounded for all € > 0.

Theorem 3.48. Let X be a metric space. The following are equivalent.
(a) X is compact.
(b) Every infinite subset of X has an accumulation point.
(c) X is totally bounded and complete.

Proof. The proof will consist of showing that a = b = ¢ = a.

(a = b) We will show that not b = not a. Suppose there exists E C X, such
that #(F) = oo and E has no accumulation points. Then for all x € X there exists
6z > 0 such that V, := B,(6,) satisfies (V, \ {z}) N E = 0. Clearly V = {V,.} . is
a cover of X, yet V has no finite sub cover. Indeed, for each x € X, V,, N E consists
of at most one point, therefore if A CC X, Upep V., can only contain a finite number
of points from E, in particular X # Uyea V. (See Figure 7.)

(b = ¢) To show X is complete, let {z,} -, C X be a sequence and
E :={z,,:neN}. If #(E) < oo, then {z,},- ; has a subsequence {z,, } which
is constant and hence convergent. If E is an infinite set it has an accumulation
point by assumption and hence Lemma 3.46 implies that {x, } has a convergence
subsequence.

We now show that X is totally bounded. Let € > 0 be given and choose x; € X. If
possible choose o € X such that d(z2,21) > €, then if possible choose 23 € X such
that d(zs,{z1,22}) > € and continue inductively choosing points {xj}?zl c X
such that d(x,,{z1,...,2n—1}) > €. This process must terminate, for otherwise
we could choose E = {z; }]Oil and infinite number of distinct points such that
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FIGURE 7. The construction of an open cover with no finite sub-cover.

d(zj,{z1,...,zj_1}) > eforall j =2,3,4,.... Since for all € X the B,(¢/3)NE
can contain at most one point, no point x € X is an accumulation point of E. (See
Figure 8.)

F1GURE 8. Constructing a set with out an accumulation point.

(¢ = a) For sake of contradiction, assume there exists a cover an open cover
V = {Vataca of X with no finite subcover. Since X is totally bounded for each
n € N there exists A,, CC X such that

X=J B.(1/n)C |J Cull/n).

xEA,, zEA,,
Choose x1 € Aj such that no finite subset of V covers K := Cy, (1). Since K; =
Uzea, K1 NCy(1/2), there exists zo € Ay such that Ky := K73 NCy,,(1/2) can not be
covered by a finite subset of V. Continuing this way inductively, we construct sets
K, =K, 1NCy, (1/n) with x,, € A, such no K, can be covered by a finite subset
of V. Now choose y,, € K,, for each n. Since {Kn}zoz1 is a decreasing sequence of
closed sets such that diam(kX,,) < 2/n, it follows that {y,} is a Cauchy and hence
convergent with

y= lim y, € N5 _1 K.
n—oo
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Since V is a cover of X, there exists V € V such that z € V. Since K,, | {y} and
diam(K,,) — 0, it now follows that K,, C V for some n large. But this violates the

assertion that K,, can not be covered by a finite subset of V.(See Figure 9.) m

A

K,

~

A
v

FI1cURE 9. Nested Sequence of cubes.

Remark 3.49. Let X be a topological space and Y be a Banach space. By combining
Exercise 3.10 and Theorem 3.48 it follows that C.(X,Y) ¢ BC(X,Y).

Corollary 3.50. Let X be a metric space then X is compact iff all sequences
{xn} C X have convergent subsequences.

Proof. Suppose X is compact and {z,,} C X.

1. ¥ # ({xn:n=1,2,...}) < oo then choose z € X such that z,, = x i.0. and
let {ny} C {n} such that z,, = « for all k. Then z,, — =«

2 If #({zn:n=1,2,...}) = co. We know E = {z,,} has an accumulation
point {x}, hence there exists z,, — .

Conversely if E is an infinite set let {z,}02; C E be a sequence of distinct
elements of E. We may, by passing to a subsequence, assume z, — = € X as
n — 00. Now = € X is an accumulation point of E by Theorem 3.48 and hence X
is compact. m

Corollary 3.51. Compact subsets of R™ are the closed and bounded sets.

Proof. If K is closed and bounded then K is complete (being the closed subset
of a complete space) and K is contained in [—M, M]™ for some positive integer M.
For ¢ > 0, let

As =6Z" N [-M,M]" :={bx:x € Z" and §|z;| < M for i =1,2,...,n}.
We will show, by choosing § > 0 sufficiently small, that
(3.6) K C[-M,M]" C Ugen,B(z,€)
which shows that K is totally bounded. Hence by Theorem 3.48, K is compact.
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Suppose that y € [—M, M]™, then there exists x € As such that |y; — z;| < § for
i =1,2,...,n. Hence
P(z,y) =D (g — 2:)° < nb’
i=1
which shows that d(z,y) < /né. Hence if choose § < €//n we have shows that
d(z,y) <€, ie. Eq. (3.6) holds. m

Example 3.52. Let X = (P(N) with p € [1,00) and p € X such that p(k) > 0 for
all k € N. The set

K:={zeX:|zk)| <p(k) for all k € N}

is compact. To prove this, let {:1:”}70;1 C K be a sequence. By compactness of
closed bounded sets in C, for each k € N there is a subsequence of {z,(k)} -, C C
which is convergent. By Cantor’s diagonalization trick, we may choose a subse-
quence {yy }oo, of {z,}.-, such that y(k) := lim,— o yn(k) exists for all k € N.4
Since |y, (k)| < p(k) for all n it follows that |y(k)| < p(k), i.e. y € K. Finally

dim ly =yl = lim Y ly(k) —ya(B) =D lim [y(k) —ya(k)[" =0
k=1 k=1

where we have used the Dominated convergence theorem. (Note |y(k) — y, (k)P <

2PpP(k) and pP is summable.) Therefore y, — y and we are done.

Alternatively, we can prove K is compact by showing that K is closed and totally
bounded. It is simple to show K is closed, for if {z,} -, C K is a convergent
sequence in X, x := lim,_,o Ty, then |z(k)| < lim, o |2, (k)| < p(k) for all k € N.
This shows that € K and hence K is closed. To see that K is totally bounded, let
e > 0 and choose N such that (322 4 \p(k)|p)1/p < e. Since Hszl Cory(0) c CN
is closed and bounded, it is compact. Therefore there exists a finite subset A C
1, Cy(r)(0) such that

N
H Op(k)(O) C UZEABéV(e)
k=1

where BY (€) is the open ball centered at z € CV relative to the (7({1,2,3,...,
—norm. For each z € A, let Z € X be defined by 2(k) = z(k) if £ < N and Z(k)
for k > N + 1. I now claim that

(3.7) K C U.cpBs(2€)

which, when verified, shows K is totally bounced. To verify Eq. (3.7), let z € K
and write © = u + v where u(k) = z(k) for k < N and u(k) = 0 for £ < N. Then

N})
=0

oo P o < . - — oo
521 be a subscquence of N ={n}>

limj_ oo Tyl (1) exists. Now choose a subsequence {n?};il of {njl};il such that limj_ oo Tp2 (2)

4The argument is as follows. Let {njl 1 such that

ists z qmils 3100
exists and similalry {n7}S

, of {n?};‘;l such that lim;_, o 2,,3(3) cxists. Continuc on this way
J
inductively to get
1 2 3
{n}n D {nj}52, D {nj}52, D {nj}52,: D ...

such that limj_, o Tk (k) exists for all k& € N. Let my = n; so that eventually {m;}52, is a

subsequnce of {nj };";1 for all k. Thercfore, we may take y; = &m,.
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by construction u € Bz(¢) for some Z € A and

00 1/p
Hﬂp§< E:IMWP> <e

k=N-+1

So we have

[l = 2|, = [Ju+v— 2|, <[lu— 2], + ], <2e
Exercise 3.14 (Extreme value theorem). Let (X,7) be a compact topological
space and f : X — R be a continuous function. Show —oco < inf f < sup f < oo

and there exists a,b € X such that f(a) = inf f and f(b) = sup f. ®> Hint: use
Exercise 3.10 and Corollary 3.51.

Exercise 3.15 (Uniform Continuity). Let (X,d) be a compact metric space, f :
X — R be a continuous function. Show that f is uniformly continuous, i.e. if ¢ > 0
there exists ¢ > 0 such that |f(y) — f(z)| < e if z,y € X with d(z,y) < é. Hint: I
think the easiest proof is by using a sequence argument.

Definition 3.53. Let L be a vector space. We say that two norms, |-| and [|-||, on
L are equivalent if there exists constants o, 3 € (0, 00) such that

I£] < alf and |f| < B|fI| for all f € L.

Lemma 3.54. Let L be a finite dimensional vector space. Then any two norms
|| and ||-|| on L are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let {f;}" | be a basis for L and define a new norm on L by

n n
Zaifi EZ‘U,A for a; cF.
i=1 1 i=1

By the triangle inequality of the norm |-|, we find

Z a; fi
i=1
where M = max; | f;| . Thus we have

[fl < MJ|flly

for all f € L. This inequality shows that |-| is continuous relative to |[-||; . Now
let S:={feL:|f]l, =1}, a compact subset of L relative to [-||, . Therefore by
Exercise 3.14 there exists fy € S such that

m=inf {|f]: f € S} = |fol > 0.

Hence given 0 # f € L, then ﬁ € S so that

<M lail 1fil < MY o] = M
=1 1

1=

n
Zaifi
i1

1

Flo1
: '|f|1 =V,

5Here is a proof if X is a metric space. Let {zn}22; C X be a sequence such that f(zy) T sup f.

By compactness of X we may assume, by passing to a subsequence if necessary that z, — b€ X
as n — oo. By continuity of f, f(b) = sup f.
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or equivalently

1
£l < — 171

This shows that |-| and ||-||; are equivalent norms. Similarly one shows that ||-|| and
||-||; are equivalent and hence so are |-| and ||-||. =

Definition 3.55. A subset D of a topological space X is dense if D = X. A
topological space is said to be separable if it contains a countable dense subset,
D.

Example 3.56. The following are examples of countable dense sets.

1. The rational number QQ are dense in R equipped with the usual topology.

2. More generally, Q% is a countable dense subset of R? for any d € N.

3. Even more generally, for any function p : N — (0, 00), ¢P(u) is separable for
all 1 < p < oco. For example, let I' C F be a countable dense set, then

D:={zxelP(u):az; €T forall i and #{j : z; # 0} < oo}.

The set I' can be taken to be Qif F=R or Q+:Q if F = C.
4. Tf (X, p) is a metric space which is separable then every subset Y C X is also
separable in the induced topology.

To prove 4. above, let A = {z,}52; C X be a countable dense subset of X.
Let p(z,Y) = inf{p(z,y) : y € Y} be the distance from x to Y. Recall that
p(-,Y) : X — [0,00) is continuous. Let €, = p(z,,Y) > 0 and for each n let
Yn € By, (2)NY if €, = 0 otherwise choose y,, € By, (2¢,) Y. Then if y € Y and
€ > 0 we may choose n € N such that p(y, z,) < €, < €/3 and % <€/3. If ¢, > 0,
P(Yn, ) < 26, <2¢/3 and if €, =0, p(yn,x,) < €/3 and therefore

Py yn) < p(Y,Tn) + p(wn, yn) <€
This shows that B = {y,, }S°; is a countable dense subset of Y.

Lemma 3.57. Any compact metric space (X,d) is separable.

Proof. To each integer n, there exists A,, CC X such that X = Ugen, B(z,1/n).
Let D := Up2 A, — a countable subset of X. Moreover, it is clear by construction
that D=X. m

3.6. Compactness in Function Spaces. In this section, let (X, 7) be a topolog-
ical space.

Definition 3.58. Let F C C(X).

1. F is equicontinuous at x € X iff for all € > 0 there exists U € 7, such that
lf(y) — f(z)| <eforally € U and f € F.

2. F is equicontinuous if F is equicontinuous at all points z € X.

3. F is pointwise bounded if sup{|f(z)|: |f € F} < oo for all z € X.

Theorem 3.59 (Ascoli-Arzela Theorem). Let (X, T) be a compact topological space
and F C C(X). Then F is precompact in C(X) iff F is equicontinuous and point-
wise bounded.
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Proof. (<) Since B(X) is a complete metric space, we must show F is totally
bounded. Let ¢ > 0 be given. By equicontinuity there exists V, € 7, for all
x € X such that |f(y) — f(z)] < €¢/2ify € V, and f € F. Since X is compact
we may choose A CC X such that X = UgcpV,. We have now decomposed X
into “blocks” {V,} . such that each f € F is constant to within € on V. Since
sup {|f(z)|:x € A and f € F} < o0, it is now evident that

M =sup{|f(z)|:z € X and f € F} <sup{|f(z)]:x € Aand f e F} +e < c0.

Let D= {ke/2:k€Z}N[-M,M].If f € Fand ¢ € D (ie. p: A — Disa
function) is chosen so that |p(z) — f(z)| < €/2 for all x € A, then

|f(y) = o(@)| < [f(y) = f(@)| + [f(z) —¢(z)| <eVzeAand y € V,.
From this it follows that F = (J{F, : ¢ € D} where, for ¢ € DA,

Fo={feF:|fly) —p(z)] <efory eV, and x € A}.

Let T := {¢ € D* : F, # 0} and for each ¢ € T choose f, € FyNF. For f € Fy,
x € A and y € V,, we have

1F(y) = Fo (W)l < 1F(y) = ¢(2))] + [d(z) = fo(y)] < 2e.
So ||f — fsll < 2¢ for all f € Fy showing that Fy C By, (2¢). Therefore,

F = U(/)er‘f(/) C U(/)EFBfQ (26)

and because € > 0 was arbitrary we have shown that F is totally bounded.

(=) Since ||| : C(X) — [0, 00) is a continuous function on C'(X) it is bounded
on any compact subset F C C'(X). This shows that sup {||f| : f € F} < co which
clearly implies that F is pointwise bounded.® Suppose F were not equicontinuous
at some point x € X that is to say there exists € > 0 such that for all V € 7,

sup sup |f(y) — f(x)| > e.” Equivalently said, to each V € 7, we may choose
yeV feF

(3.8) fv € F and zy € V such that |fy(z) — fv(zv)| > e

Set Cy ={fw : W emr, and W C V}”'”oo C F and notice for any V CC 7, that

NvevCy 2 Cay # 0,

60ne could also prove that F is pointwise bounded by considering the continuous evaluation
maps ez : C(X) — R given by ez (f) = f(z) for all z € X.

7If X is first countable we could finish the proof with the following argument. Let {V4, Yoo,
be a neighborhood base at  such that V3 D Vo D V3 D .... By the assumption that F is not
equicontinuous at x, there exist fn, € F and &, € Vj, such that |fn(z) — fn(zn)| > € ¥V n. Since
F is a compact metric space by passing to a subsequence if necessary we may assume that fp
converges uniformly to some f € F. Because x, — = as n — oo we learn that

€ < [fn(@) = fal@n)] < [ful@) = F@)] + @) = F(@n)| + [ (@n) = falan)l
L 2| fn = fll +1f(z) — f(zn) = 0as n — co

which is a contradiction.
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so that {Cy },, € 7, C F has the finite intersection property.® Since F is compact,
it follows that there exists some

fe () cv#0.
Vet

Since f is continuous, there exists V' € 7, such that |f(z) — f(y)| < €¢/3 for all

y € V. Because f € Cy, there exists W C V such that ||f — fi|| < €/3. We now

arrive at a contradiction;

e <[fw(x) = fw(aw)| < [fw(z) = (@) + [ f(x) = flaw)] + [ fzw) = fw(zw)]
<€/3+¢€/3+¢€¢/3=c¢.

3.7. Bounded Linear Operators Basics.

Definition 3.60. Let X and Y be normed spaces and T : X — Y be a linear
map. Then T is said to be bounded provided there exists C' < oo such that
IT(z)|| < C||z||x for all z € X. We denote the best constant by ||T°||, i.e.

T(x
|T|| = sup IT@I _ sup {[|T(z)| : [|=|| = 1}.
e#0 ||zl 20

The number ||T|| is called the operator norm of T

Proposition 3.61. Suppose that X and Y are normed spaces and T : X — 'Y s
a linear map. The the following are equivalent:

(a) T is continuous.
(b) T is continuous at 0.

(¢) T is bounded.

Proof. (a) = (b) trivial. (b) = (c) If T continuous at 0 then there exist § > 0
such that || T'(x)|| < 1if ||z|| < 8. Therefore for any x € X, ||T" (6z/||x||) || < 1 which
implies that ||T'(z)| < %||lz|| and hence ||T|| < } < oo. (¢) = (a) Let € X and
€ > 0 be given. Then

IT(y) = T(@)|| = 1T(y = ) < T ly — =[] <€
provided |ly — || < €¢/[|T]| =6. =

Example 3.62. Suppose that K : [0,1] x [0,1] — C is a continuous function. For
feC(o,1]), let

Tf(z) = / K (2, 9)f (v)dy.

8If we are willing to use Net’s described in Appendix D below we could finish the proof as
follows. Since F is compact, the net {fy }ver, C F has a cluster point f € F C C(X). Choosc a
subnet {gataca of {fv}very such that go — f uniformly. Then, since zy — x implies zv,, — z,
we may conclude from Eq. (3.8) that

€ <lga(z) = ga(zv,)| — l9(z) — g()| =0

which is a contradiction.
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Since

1
1) ~THE) < [ 1K) = Kzl )l dy
0
(39) < g max | K (2, ) ~ K (z,)
and the latter expression tends to 0 as * — z by uniform continuity of K. Therefore

Tf € C([0,1]) and by the linearity of the Riemann integral, 7' : C([0,1]) — C([0,1])

is a linear map. Moreover,

ITf(z)] < / K (2, 9)| £ ()] dy < / K@)y [ flo < Alfll

where
(3.10) A:= sup / | K (z,y)|dy < .
z€[0,1]

This shows ||T|| < A < oo and therefore T' is bounded. We may in fact show
IIT|| = A. To do this let zg € [0,1] be such that

- / |ny\dy—/ K (20,9)] dy.
z€(0,1]

Such an xg can be found since, using a similar argument to that in Eq. (3.9),
x — fol |K (z,y)| dy is continuous. Given € > 0, let

K(xo,y
fe(y) == E0.1) -
€+ [K(zo0,y)|
and notice that lime g || fe||.. = 1 and
K(xo,y
TSl > ITf.(a0)| = Tf.(x0) = / [z '
v/ e+ |K(xo,y
Therefore,
K(
|| = tim / |K (o,
||f€|| /€+ ‘K 0,y
: ! |K Zo,Y
= lim
<o \ e+ |K(xo,y
since
K(zo, 2 K (xog,
0 < |K(ao,y)| - — 2ol _1K(oy) [ 1K (a0, 9) = K )|

VerlK@onP et K (aoy)P

€+ |K($0ay)|2 - |K(£E0,y)‘

and the latter expression tends to zero uniformly in y as € | 0.
We may also consider other norms on C([0,1]). Let (for now) L' ([0,1]) denote

C([0,1]) with the norm
1
£, = / (@) de,
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then T : L' ([0,1],dm) — C([0,1]) is bounded as well. Indeed, let M =
sup {|K(x,y)| : 2,y € [0,1]}, then

(Tf)(=) < /0 K (z,y)f(y)| dy < M|},

which shows || Tf]|., < M ||f||, and hence,
1Tl o < max{|K(z,y)| : z,y € [0,1]} < oc.

We can in fact show that |T|| = M as follows. Let (xg,y0) € [0,1]? satisfying
|K (x0,y0)| = M. Then given € > 0, there exists a neighborhood U = I x J of
(®0,y0) such that |K(x,y) — K(xo,y0)| < € for all (x,y) € U. Let f € C.(I,]0,00))
such that fo xz)dx = 1. Choose o € C such that |a| = 1 and oK (zg,y0) = M,
then

(Taf)(z0)] = ' / 1K(wo,y)af(y)dy‘ - \ [ Kovarway

> Re / oK (20,9) F(y)dy > / (M — &) fy)dy = (M — &) [laf]

I
and hence

[Taflle = (M =€) llefllL:
showing that ||T|| > M — e. Since € > 0 is arbitrary, we learn that ||T|| > M and
hence ||T)| =
One may also view T as a map from T : C([0,1]) — L*([0,1]) in which case one
may show

1
Tl < [ max| K)o < o

For the next three exercises, let X = R" andY = R™ and T : X — Y be a linear
transformation so that 7" is given by matrix multiplication by an m x n matrix. Let
us identify the linear transformation 7" with this matrix.

Exercise 3.16. Assume the norms on X and Y are the ¢! — norms, i.e. for x € R”,
|«]| = >=7_; |;] . Then the operator norm of T is given by

m
IT| = max > |Ty|.
1<j<n &=

Exercise 3.17. Assume the norms on X and Y are the ¢°° — norms, i.e. for x € R™,
||z|| = maxi<;<y, |z;| . Then the operator norm of T is given by

1T = max Z\Tw\

1<i<m

Exercise 3. 18 Assume the norms on X and Y are the ¢? — norms, i.e. for z € R?,

|| = Doy a5 2 Show || T||? is the largest eigenvalue of the matrix T"T R” — R™.

Exercise 3.19. If X is finite dimensional normed space then all linear maps are
bounded.

Notation 3.63. Let L(X,Y") denote the bounded linear operators from X to Y. If
Y =F we write X* for L(X,F) and call X* the (continuous) dual space to X.
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Lemma 3.64. Let X,Y be normed spaces, then the operator norm ||-|| on L(X,Y)
is a norm. Moreover if Z is another normed space andT : X —Y and S:Y — Z
are linear maps, then ||ST|| < ||S|||T||, where ST :=SoT.

Proof. As usual, the main point in checking the operator norm is a norm is
to verify the triangle inequality, the other axioms being easy to check. If A, B €
L(X,Y) then the triangle inequality is verified as follows:

| Az + Ba|| __|As| + |Be]

||A+ BJ|| = sup <
z£0 ||| #£0 ll|l
Ax Bz
< sup 147 IBZL 1y
240 ||zl z#0 ||z

For the second assertion, we have for x € X, that
[ST|| < [ISI[IT=| < [ISIIT}|=[]-
From this inequality and the definition of ||ST||, it follows that ||.ST|| < ||S||||T]]. =

Proposition 3.65. Suppose that X is a normed vector space and Y is a Banach
space. Then (L(X,Y), || - |lop) is a Banach space. In particular the dual space X*
is always a Banach space.

We will use the following characterization of a Banach space in the proof of this
proposition.

Theorem 3.66. A normed space (X, |-||) is a Banach space iff for every sequence

00 N
{@p}ory such that 3 ||z,|| < oo then imy_oo > @, = S exists in X (that is to

n=1 n=1
say every absolutely com}ergent series 18 a convergent sertes in X) As usual we

will denote S by > xy,.

n=1

o) N
Proof. (=)If X is complete and } ||z,|| < co then sequence Sy = > =z, for
= n=1

n=1 =

N € N is Cauchy because (for N > M)

N
ISy — Smll < Z |zn]] — 0 as M, N — oo.

n=M+1

[eS) N
Therefore S = > @, :=limy oo Y. X, exists in X.

n=1 n=1

(<=) Suppose that {z,,} -, is a Cauchy sequence and let {y; = ,, }7>, be a
o0
subsequence of {x,} -, such that > |[ynt1 — yn|| < 0o. By assumption
n=1

N o]
YN+1 — Y1 = Z(ynﬂ —yn) — S = Z(yn+1 —yn) € X as N — oc.
n=1

n=1 =

This shows that limy_.~ yn exists and is equal to x := y; + S. Since {xn}zo:l is
Cauchy,

[ = 2|l <l = yill + lyx — 2zal — 0 as k;n — o0

showing that lim,,_., x,, exists and is equal to . m
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Proof. (Proof of Proposition 3.65.) We must show (L(X,Y),||-||op) is complete.
Suppose that T,, € L(X,Y) is a sequence of operators such that Y [|T,,]] < oc.

n=1

Then

D Tzl < YTl 2] < o0

n=1 n=1
and therefore by the completeness of Y, Sz := > T,z = limy_.oc Sy exists in

n=1
N

Y, where Sy := > T,,. The reader should check that S : X — Y so defined in

n=1
linear. Since,

N o'}
8] = jim S| < Jim 2Tl < 3 1.
n=

n=1

S is bounded and

(3.11) IS <> Tl
n=1
Similarly,
N oo
ISz~ Sazl = Jim [[Syz— Saral| < Tim  S° [Tallal = S (Tl
n=M+1 n=M+1

and therefore,

IS = Sarl < Y 1Tl = 0 as M — oo,
n=M
L]
Of course we did not actually need to use Theorem 3.66 in the proof. Here is
another proof. Let {T},},-_, be a Cauchy sequence in L(X,Y"). Then for each z € X,

[Tz~ Tal) < |IT — Toall ]| — 0 s m,n — oo

showing {T,,z},-, is Cauchy in Y. Using the completeness of Y, there exists an
element Tx € Y such that

nh_)Ir;O | T2 — Tzl = 0.
It is a simple matter to show T': X — Y is a linear map. Moreover,
[Tz = Tozl| < [Tz = Tna|| + | Tne — Toz|| < [Tz — Tzl + [T — Tall |||
and therefore
[T~ Tyal) <lim sup (1T = T+ T~ Tl lal) = ] - i sup [T, ~ T,
Hence

|7 —T,| <lim sup ||T —Tn| — 0 as n — .
m—0o0

Thus we have shown that T), — T in L(X,Y") as desired.
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3.8. Inverting Elements in L(X) and Linear ODE.

Definition 3.67. A linear map 7' : X — Y is an isometry if |Tz||y = ||z||x for
all x € X. T is said to be invertible if T is a bijection and T~! is bounded.

Notation 3.68. We will write L*(X,Y) for those T € L(X,Y’) which are invert-
ible. If X =Y we simply write L(X) and L*(X) for L(X,X) and L*(X,X)
respectively.

Proposition 3.69. Suppose X is a Banach space and A € L(X) = L(X,X) sat-
isfies > ||A™]] < co. Then I — A is invertible and
n=0

1 oo oo
(I= M) === Aand [[(T-N)7H[ <Y [A").
n=0 n=0

In particular if ||A|| < 1 then the above formula holds and
1

L

Proof. Since L(X) is a Banach space and Z IA”|| < oo, it follows from Theo-
n=0
rem 3.66 that

N

exists in L(X). Moreover, by Exercise 3.38 below,
(I-AN)S=(I-A) lim Sy = lim (I-A)Sy

= lim (I —A) A”: Jim (I-ANTY =T

N—>oo

and similarly S (I — A) = I. This shows that (I — A)~! exists and is equal to S.
Moreover, (I — A)~! is bounded because

1T =27 =S < Y A

If we further assume ||A[| < 1, then ||[A"|| < HA||" and

Z A" < Z 1AL IAII

Corollary 3.70. Let X and Y be Banach spaces. Then L*(X,Y) is an open
(possibly empty) subset of L(X,Y). More specifically, if A € L*(X,Y) and B €
L(X,Y) satisfies

(3.12) 1B — Al <[lA Y™

then B € L*(X,Y)

(3.13) BT =) "[Ix—A7'B]" A7 e L(Y, X)

n=0
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and
1

— A=A =Bl
Proof. Let A and B be as above, then
B=A-(A-B) :A[IX fA_l(AfB))] =A(Ix — A)
where A : X — X is given by
A:=A1YA-B)=Ix - A'B.

-1 -1
1B <A

Now
Al = [|A="(A=B))|| <[ A 1A= B|| < [[ATH|A7HI7! = 1.

Therefore I — A is invertible and hence so is B (being the product of invertible
elements) with

Bl=(I-A)'A'=[Ix-A ' A-B)] 4L
For the last assertion we have,
1
1—[JA]|

1
— A=A = Bl

1B~ < [l(x = M) Y[ IIA < A <1475

3.8.1. An Application to Linear Ordinary Differential Equations. Consider the lin-
ear differential equation

(3.14) #(t) = A(t)z(t) where z(0) = z9 € R™.
Here A € C(R — L(R")) and z € CY(R — R"). As usual this equation may be

written in its equivalent integral form, i.e. we are looking for z € C(R,R™) such
that

t
(3.15) 2(t) = 20 + / A(F)a(r)dr.

0
In what follows, we will let ||-|| denote some norm on R™ — for example the sup-
norm. By abuse of notation, also let ||-|| denote the corresponding operator norm

on L(R™). We will also fix T € (0,00) and let [[¢||, := maxo<i<7 [|p(t)| for
¢ € C([0,T],R™) or C([0,T], L (R™)).

Theorem 3.71. Let ¢ € C([0,T],R"™), then the integral equation

(3.16) x(t) = P(t) —l—/o A(r)z(T)dr

where
Moreover,

lz(t)]| < [|g]l o elo 1ADIar,
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Proof. Define A : C([0,T],R™) — C([0,T],R™) by

(Az)(t) = /0 A(F)a(r)dr.

Then z solves Eq. (3.15) iff x = ¢ + Ax or equivalently iff (I — A)z = ¢. The

theorem will be proved by showing (I — A)~! exists via Proposition 3.69. To

apply this proposition it suffices to show » [|A"[|o, < oo, where ||-||,, denotes the
=0

operator norm on L (C([0,T],R™)).
An induction argument shows

(A")(t) = / a7, A(7) (A" 6)()

_ / Cdr / " 1 A(r) A1) (A" (1)

= / A(ry) ... A(m)p(m)dry ... dTy

0<m < STt

- / A() ... A(m)p(m)dr .. dr.
An(t)

Hence
(A" ) ()| < { LA - [ A(7)ldry . ..dTn} 9]]so-

< < <7, <t

Therefore
[A™[|op < / AT - WA(T)||dry .. . dry,
0<7 <= <7 <T
1
=2 [ 1l A ln .
[O’T]”

n

(3.17) = (/0 ||A(T)||d7'>

Alternatively, one can prove this last equality by induction on n. Namely let

F(t) = / |A(r)[dr

then by induction one shows that

1 7
In(t) = / ||A(7'n)||...||A(7‘1)||d7'1...d7'n:EF (t)
0<m <5< <T
Indeed,
L = [ Lr@ = [ — Ly - L prig
L AT S ey A gy T T )
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proving Eq. (3.17) again. Using this estimate we then have

oo
S A7y < e 140G < o,
n=0

Therefore (I — A)~! exists and (I — A)~! = > A™ and

n=0
||(] — A)*1|| < elo IIA(T)lldr
op —
[
3.9. Appendix: Sums in Banach Spaces.

Definition 3.72. Suppose that X is a normed space and {v, € X : @ € A} is a
given collection of vectors in X. We say that s = Y ., v, € X if for all € > 0
there exists a finite set I'« C A such that Hs — ZaeA va“ < eforall A CcCc A
such that T'c C A. (Unlike the case of real valued sums, this does not imply that
Y aca llvall < 0o. See Proposition 13.20 below, from which one may manufacture
counter-examples to this false premise.)

Lemma 3.73. (1) When X is a Banach space, ) . 4 Vo exists in X iff for all
€ > 0 there exists I'. CC A such that HZaeAva“ < € forall A cC A\ T..
Also if 3 c 4 Va exists in X then {a € A:v, # 0} is at most countable. (2) If
5= qeaVa € X exists and T : X —'Y is a bounded linear map between normed
spaces, then Y ., Tva evists in Y and

Ts:TZva = ZTUQ.
acA acA

Proof. (1) Suppose that s =}~ , v, exists and € > 0. Let ' CC A be as in
Definition 3.72. Then for A cC A\ T,

S [Tt Do ¢ | T s
acA acA ael’. a€el’.
= Z Vo — S|| + € < 2e.
acl' (UA
Conversely, suppose for all € > 0 there exists I'. CC A such that ”Zae A va“ <€

for all A cC A\T.. Let v, := Up_ T/, C A and set s, := >
m > n,

acy, Va- Then for

IS — sn|| = Z V|| <1/n— 0 as m,n — .
AEYm \Vn

Therefore {s,}, , is Cauchy and hence convergent in X. Let s := lim,, o Sy, then
for A CC A such that v, C A, we have

sfgva

1
<lls=sall +]| D va <lls = sl + .
a€cA

OAEA\’Yn

Since the right member of this equation goes to zero as n — oo, it follows that
> acA Vo exists and is equal to s.
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Let v := U2 ;,, — a countable subset of A. Then for o ¢ v, {a} C A\ 7, for all
n and hence

||vall = Z vgl| <1/n— 0asn — oo.
pe{a}

Therefore v, =0 for all « € A\ 7.
(2) Let I'c be as in Definition 3.72 and A CC A such that I'. C A. Then

TS—ZTUQ S—Zva

aEA acA

<7 <|Tlle

which shows that >\
3.10. Aside: Word of Caution.

Tv, exists and is equal to T's. m

Example 3.74. Let (X, d) be a metric space. It is always true that B, (e) C Cy(¢)
since Cy(e) is a closed set containing B,(e). However, it is not always true that
B,(e) = Cy(€). For example let X = {1,2} and d(1,2) = 1, then By(1) = {1},
Bq(1) = {1} while Ci(1) = X. For another counter example, take
X:{(x,y)eRzzx:Oorle}

with the usually Euclidean metric coming from the plane. Then

B(O,O)(l) = {(an) € RQ : ‘y| < 1}7

Boo(1) ={(0.y) e R*: [y| <1}, while

Ci0,0)(1) = Bo,0)(1) U{(0,1)}.
In spite of the above examples, Lemmas 3.75 and 3.76 below shows that for
certain metric spaces of interest it is true that B, (¢) = Cy(e).

Lemma 3.75. Suppose that (X, |-|) is a normed vector space and d is the metric
on X defined by d(z,y) = |x —y|. Then

B, (e) = Cy(e) and
0B, (e) ={y € X : d(x,y) = €}.

Proof. We must show that C' := Cy(e) C By(e) =: B. For y € C, let v =y — z,
then
v =y — 2] =d(z,y) <e

Let o, =1 —1/n so that a,, T 1 as n — oo. Let y, = & + a,v, then d(z,y,) =
and(z,y) <€, so that y,, € By (¢) and d(y,yn) =1 —a,, — 0 as n — oo. This shows

that y,, — y as n — oo and hence that y € B. m

3.10.1. Riemannian Metrics. This subsection is not completely self contained and
may safely be skipped.

Lemma 3.76. Suppose that X is a Riemannian (or sub-Riemannian) manifold
and d is the metric on X defined by

d(z,y) = inf {{(0) : 0(0) = z and (1) = y}

where ((c) is the length of the curve 0. We define £(c) = oo if 0 is not piecewise
smooth.
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FIGURE 10. An almost length minimizing curve joining = to y.

Then

B, (e) = Cy(e) and
0By (e) ={y € X : d(z,y) = €}.

~ Proof. Let C := Cy(€) C By(e) =: B. We will show that C' C B by showing
B¢ C C°. Suppose that y € B¢ and choose § > 0 such that B,(6) N B = . In
particular this implies that

B,(8) N Ba(e) = 0.

We will finish the proof by showing that d(x,y) > e+ 6 > € and hence that y € C°.
This will be accomplished by showing: if d(x,y) < € + § then B,(6) N B,(e) # 0.

If d(z,y) < max(e, 6) then either « € By(6) or y € By (). In either case By(6) N
B, (€) # (). Hence we may assume that max(e, §) < d(x,y) < e+ 6. Let « > 0 be a
number such that

max(e,§) < d(z,y) <a<e+6

and choose a curve o from z to y such that (o) < a. Also choose 0 < §' < § such
that 0 < a — 8’ < € which can be done since oo — § < €. Let k(t) = d(y,o(t)) a
continuous function on [0, 1] and therefore k£([0,1]) C R is a connected set which
contains 0 and d(x,y). Therefore there exists ty € [0,1] such that d(y,o(tg)) =
E(to) = ¢'. Let z = o(tg) € By(6) then
d(x,z) < Uoljo,0]) = (o) = L(0|g,1) < @ —d(z,y) =a— 8 <e
and therefore z € B, () N B,(6) # 0. m
Remark 3.77. Suppose again that X is a Riemannian (or sub-Riemannian) mani-
fold and
d(z,y) =inf {{(c) : 0(0) = z and o(1) = y}.
Let ¢ be a curve from = to y and let € = {(0) —d(z,y). Then for all 0 < u < v < 1,
d(o(u),0(v)) <0 |ju0) + €

So if o is within € of a length minimizing curve from x to y that o}, ) is within
€ of a length minimizing curve from o(u) to o(v). In particular if d(z,y) = (o)
then d(o(u),0(v)) = £(0|[u,v)) for all 0 <u < v < 1, ie. if 0 is a length minimizing
curve from x to y that ol . is a length minimizing curve from o(u) to o(v).
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To prove these assertions notice that
d(:l?, y) +e= E(U) = K(U|[0,u]) + K(Uhu,v]) + K(Uhv,l])
> Cl(l‘, U(U)) + E(Uhu,v]) + d(O’(U), y)
and therefore

U0jun)) < d(z,y) + € = d(z,0(u)) = d(o(v),y)

<d(z
<d(o(u),o(v)) + €.
3.11. Exercises.

Exercise 3.20. Prove Lemma 3.46.

Exercise 3.21. Let X = C([0,1],R) and for f € X, let

I £1ly ::/0 |f(t)| dt.

Show that (X, ||-||;) is normed space and show by example that this space is not
complete.

Exercise 3.22. Let (X, d) be a metric space. Suppose that {z,}02; C X is a
sequence and set €, := d(Zy, Tn11). Show that for m > n that

m—1 00
AT, 2m) <Y e <D e
k=n k=n

Conclude from this that if

oo oo
Zek = Zd(xn,xn_H) < 00
k=1 n=1

then {x,}72; is Cauchy. Moreover, show that if {z, }22, is a convergent sequence
and x = lim,,_, o, x,, then

d(z,x,) < Z €L.
k=n

Exercise 3.23. Show that (X,d) is a complete metric space iff every sequence
{2,}22, C X such that Y > | d(zpn,Tnt1) < 00 is a convergent sequence in X. You
may find it useful to prove the following statements in the course of the proof.
L. If {x,,} is Cauchy sequence, then there is a subsequence y; = x,; such that
oo
Zj:l d(yj+1,y;) < oo
2. If {w, }52, is Cauchy and there exists a subsequence y; = x,; of {x,} such
that x = lim;_,o y; exists, then lim, . 2, also exists and is equal to =.

Exercise 3.24. Suppose that f : [0,00) — [0,00) is a C? — function such that
f(0) =0, f/ >0 and f” <0 and (X, p) is a metric space. Show that d(z,y) =
f(p(z,y)) is a metric on X. In particular show that

plz,y)
d(z,y) = ————
) = T )
is a metric on X. (Hint: use calculus to verify that f(a 4+ b) < f(a) + f(b) for all
a,b € ]0,00).)
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Exercise 3.25. Let d : C(R) x C(R) — [0,00) be defined by

n If—glln
9=
Z L+[[f =glln’

where || f[ln = sup{[f(2)| : [z] <n} = maX{lf(ﬂﬁ)\ el <.
1. Show that d is a metric on C(R).
2. Show that a sequence {f,,}52; C C(R) converges to f € C(R) as n — oo iff
fr converges to f uniformly on compact subsets of R.
3. Show that (C(R),d) is a complete metric space.

Exercise 3.26. Let {(X,,d,)} -, be a sequence of metric spaces, X :=[[~; Xy,
and for z = (z(n)),—, and y = (y(n)),—, in X let

= —n dp(x(n),y(n
)= S et
= +dn(z(n), y(n))
Show: 1) (X,d) is a metric space, 2) a sequence {zy},., C X converges to z € X

iff zx(n) — z(n) € X,, as k — oo for every n = 1,2,..., and 3) X is complete if
X, is complete for all n.

Exercise 3.27 (Tychonoff’s Theorem). Let us continue the notation of the pre-
vious problem. Further assume that the spaces X,, are compact for all n. Show
(X,d) is compact. Hint: Either use Cantor’s method to show every sequence
{x,}o_; C X has a convergent subsequence or alternatively show (X,d) is com-
plete and totally bounded.

Exercise 3.28. Let (X;,d;) for i =1,...,n be a finite collection of metric spaces
and for 1 <p < oo and z = (21,22, ...,%,) and y = (y1,...,y,) in X := ], X,
let

_ (Z?: [d; (24, i)]p)l/p if # 00
prly) = { mlaxi di(ﬂfi i) if gz 00

1. Show (X, p,) is a metric space for p € [1, cc]. Hint: Minkowski’s inequality.
2. Show that all of the metric {p,:1 <p < oo} are equivalent, i.e. for any
p,q € [1,00] there exists constants ¢, C' < oo such that

pp(@,y) < Cpg(,y) and py(z,y) < cpp(z,y) for all z,y € X.

Hint: This can be done with explicit estimates or more simply using Lemma
3.54.

3. Show that the topologies associated to the metrics p, are the same for all
p € [1,00].

Exercise 3.29. Let C be a closed proper subset of R” and x € R™\ C. Show there
exists a y € C such that d(z,y) = dc(z).

Exercise 3.30. Let F =R in this problem and A C ¢?(N) be defined by
A ={x € ?(N): x(n) > 1+ 1/n for some n € N}
=0 {z € A(N):x(n) > 1+1/n}.

Show A is a closed subset of 2(N) with the property that d4(0) = 1 while there
is no y € A such that d4(y) = 1. (Remember that in general an infinite union of
closed sets need not be closed.)



REAL ANALYSIS LECTURE NOTES 49

3.11.1. Banach Space Problems.

Exercise 3.31. Show that all finite dimensional normed vector spaces (L, ||-||) are
necessarily complete. Also show that closed and bounded sets (relative to the given
norm) are compact.

Exercise 3.32. Let (X, ||-||) be a normed space over F (R or C). Show the map
Nz,y) eFx X xX —-ax+AdyeX
is continuous relative to the topology on F x X x X defined by the norm

1 2, 9) e xewx 2= AL+ el + [yl
(See Exercise 3.28 for more on the metric associated to this norm.) Also show that
II|| : X — [0, 00) is continuous.
Exercise 3.33. Let p € [1,00] and X be an infinite set. Show the closed unit ball
in (7(X) is not compact.

Exercise 3.34. Let X = N and for p,g € [1,00) let [-||,, denote the ¢7(N) — norm.
Show |[-||,, and [|-[|, are inequivalent norms for p # ¢ by showing

L
0 [ fllq
Exercise 3.35. Folland Problem 5.5. Closure of subspaces are subspaces.

Exercise 3.36. Folland Problem 5.9. Showing C*([0,1]) is a Banach space.

=0 if p<yq.

Exercise 3.37. Folland Problem 5.11. Showing Holder spaces are Banach spaces.
Exercise 3.38. Let X, Y and Z be normed spaces. Prove the maps
(S,z) e LX,)Y)x X — Sz €Y
and
(8,7T)e L(X,Y)x L(Y,Z) — ST € L(X, Z)
are continuous relative to the norms
1689 xryx = STy + llzllx and

1S, Dl Lix,vyx v, z) = IS Lex,yy T 1T Ly, 2
on L(X,Y) x X and L(X,Y) x L(Y, Z) respectively.
3.11.2. Ascoli-Arzela Theorem Problems.

Exercise 3.39. Let T € (0,00) and F C C([0,T]) be a family of functions such
that:

1. f(t) exists for all t € (0,T) and f € F.
2. supse £ [f(0)] < oo and

3. M :=SupjeF SUPse(o,1) )f(t)) < 00.

Show F is precompact in the Banach space C([0,T]) equipped with the norm
[flloe = suPieio,ry £ ()]
Exercise 3.40. Folland Problem 4.63.
Exercise 3.41. Folland Problem 4.64.
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3.11.3. General Topological Space Problems.

Exercise 3.42. Give an example of continuous map, f : X — Y, and a compact
subset K of Y such that f~1(K) is not compact.



