8. Locally Compact Hausdorff Spaces

In this section X will always be a topological space with topology τ . We are now interested in restrictions on τ in order to insure there are "plenty" of continuous functions. One such restriction is to assume $\tau = \tau_d$ – is the topology induced from a metric on X. The following two results shows that (X, τ_d) has lots of continuous functions. Recall for $A \subset X$, $d_A(x) = \inf\{d(x,y) : y \in A\}$.

Lemma 8.1 (Urysohn's Lemma for Metric Spaces). Let (X,d) be a metric space, $V \subset_{o} X$ and $F \subset X$ such that $F \subset V$. Then

(8.1)
$$f(x) = \frac{d_{V^c}(x)}{d_F(x) + d_{V^c}(x)} \text{ for } x \in X$$

defines a continuous function, $f: X \to [0,1]$, such that f(x) = 1 for $x \in F$ and f(x) = 0 if $x \notin V$. (This may also be stated as follows. Let A (A = F) and B $(B = V^c)$ be two disjoint closed subsets of X, then there exists $f \in C(X, [0,1])$ such that f = 1 on A and f = 0 on B.)

Proof. By Lemma 3.5, d_F and d_{V^c} are continuous functions on X. Since F and V^c are closed, $d_F(x) > 0$ if $x \notin F$ and $d_{V^c}(x) > 0$ if $x \in V$. Since $F \cap V^c = \emptyset$, $d_F(x) + d_{V^c}(x) > 0$ for all x and $(d_F + d_{V^c})^{-1}$ is continuous as well. The remaining assertions about f are all easy to verify.

Theorem 8.2 (Metric Space Tietze Extension Theorem). Let (X,d) be a metric space, D be a closed subset of X, $-\infty < a < b < \infty$ and $f \in C(D,[a,b])$. (Here we are viewing D as a topological space with the relative topology, τ_D , see Definition 3.17.) Then there exists $F \in C(X,[a,b])$ such that $F|_D = f$.

Proof.

- 1. By scaling and translation (i.e. by replacing f by $\frac{f-a}{b-a}$), it suffices to prove Theorem 8.2 with a=0 and b=1.
- 2. Suppose $\alpha \in (0,1]$ and $f:D \to [0,\alpha]$ is continuous function. Let $A:=f^{-1}([0,\frac{1}{3}\alpha])$ and $B:=f^{-1}([\frac{2}{3}\alpha,1])$. By Lemma 8.1 there exists a function $\tilde{g}\in C(X,[0,\alpha/3])$ such that $\tilde{g}=0$ on A and $\tilde{g}=1$ on B. Letting $g:=\frac{\alpha}{3}\tilde{g}$, we have $g\in C(X,[0,\alpha/3])$ such that g=0 on A and $g=\alpha/3$ on B. Further notice that

$$0 \le f(x) - g(x) \le \frac{2}{3}\alpha$$
 for all $x \in D$.

3. Now suppose $f: D \to [0,1]$ is a continuous function as in step 1. Let $g_1 \in C(X,[0,1/3])$ be as in step 2. with $\alpha=1$ and let $f_1:=f-g_1|_D \in C(D,[0,2/3])$. Apply step 2. with $\alpha=2/3$ and $f=f_1$ to find $g_2 \in C(X,[0,\frac{1}{3}\frac{2}{3}])$ such that $f_2:=f-(g_1+g_2)|_D \in C(D,[0,\left(\frac{2}{3}\right)^2])$. Continue this way inductively to find $g_n \in C(X,[0,\frac{1}{3}\left(\frac{2}{3}\right)^{n-1}])$ such that

(8.2)
$$f - \sum_{n=1}^{N} g_n|_D =: f_N \in C(D, [0, \left(\frac{2}{3}\right)^N]).$$

4. Define $F := \sum_{n=1}^{\infty} g_n$. Since

$$\sum_{n=1}^{\infty} \|g_n\|_u \le \sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = 1,$$

the series defining F is uniformly convergent so $F \in C(X, [0, 1])$. Passing to the limit in Eq. (8.2) shows $f = F|_D$.

The main thrust of this section is to study locally compact (and σ – compact) Hausdorff spaces as defined below. We will see again that this class of topological spaces have an ample supply of continuous functions. We will start out with the notion of a Hausdorff topology. The following example shows a pathology which occurs when there are not enough open sets in a topology.

Example 8.3. Let $X = \{1, 2, 3\}$ and $\tau = \{X, \emptyset, \{1, 2\}, \{2, 3\}, \{2\}\}$ and $x_n = 2$ for all n. Then $x_n \to x$ for every $x \in X$!

Definition 8.4 (Hausdorff Topology). A topological space, (X, τ) , is **Hausdorff** if for each pair of distinct points, $x, y \in X$, there exists disjoint open neighborhoods, U and V of x and y respectively. (Metric spaces are typical examples of Hausdorff spaces.)

Remark 8.5. When τ is Hausdorff the "pathologies" appearing in Example 8.3 do not occur. Indeed if $x_n \to x \in X$ and $y \in X \setminus \{x\}$ we may choose $V \in \tau_x$ and $W \in \tau_y$ such that $V \cap W = \emptyset$. Then $x_n \in V$ a.a. implies $x_n \notin W$ for all but a finite number of n and hence $x_n \nrightarrow y$, so limits are unique.

Proposition 8.6. Suppose that (X, τ) is a Hausdorff space, $K \sqsubseteq X$ and $x \in K^c$. Then there exists $U, V \in \tau$ such that $U \cap V = \emptyset$, $x \in U$ and $K \subseteq V$. In particular K is closed. (So compact subsets of Hausdorff topological spaces are closed.) More generally if K and F are two disjoint compact subsets of X, there exist disjoint open sets $U, V \in \tau$ such that $K \subseteq V$ and $F \subseteq U$.

Proof. Because X is Hausdorff, for all $y \in K$ there exists $V_y \in \tau_y$ and $U_y \in \tau_x$ such that $V_y \cap U_y = \emptyset$. The cover $\{V_y\}_{y \in K}$ of K has a finite subcover, $\{V_y\}_{y \in \Lambda}$ for some $\Lambda \subset \subset K$. Let $V = \bigcup_{y \in \Lambda} V_y$ and $U = \bigcap_{y \in \Lambda} U_y$, then $U, V \in \tau$ satisfy $x \in U$, $K \subset V$ and $U \cap V = \emptyset$. This shows that K^c is open and hence that K is closed.

Suppose that K and F are two disjoint compact subsets of X. For each $x \in F$ there exists disjoint open sets U_x and V_x such that $K \subset V_x$ and $x \in U_x$. Since $\{U_x\}_{x \in F}$ is an open cover of F, there exists a finite subset Λ of F such that $F \subset U := \bigcup_{x \in \Lambda} U_x$. The proof is completed by defining $V := \bigcap_{x \in \Lambda} V_x$.

Exercise 8.1. Show any finite set X admits exactly one Hausdorff topology τ .

Exercise 8.2. Given an example of a topological space which has a non-closed compact subset.

Proposition 8.7. Suppose that X is a compact topological space, Y is a Hausdorff topological space, and $f: X \to Y$ is a continuous bijection then f is a homeomorphism, i.e. $f^{-1}: Y \to X$ is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous images of compact subsets are compact and compact subsets of Hausdorff spaces are closed, it follows that $(f^{-1})^{-1}(C) = f(C)$ is closed in X for all closed subsets C of X. Thus f^{-1} is continuous.

Definition 8.8 (Local and σ – compactness). Let (X, τ) be a topological space.

- 1. (X, τ) is **locally compact** if for all $x \in X$ there exists an open neighborhood $V \subset X$ of x such that \bar{V} is compact. (Alternatively, in light of Definition 3.19, this is equivalent to requiring that to each $x \in X$ there exists a compact neighborhood N_x of x.)
- 2. (X, τ) is σ **compact** if there exists compact sets $K_n \subset X$ such that $X = \bigcup_{n=1}^{\infty} K_n$. (Notice that we may assume, by replacing K_n by $K_1 \cup K_2 \cup \cdots \cup K_n$ if necessary, that $K_n \uparrow X$.)

Example 8.9. Any open subset of $X \subset \mathbb{R}^n$ is a locally compact and σ – compact metric space (and hence Hausdorff). The proof of local compactness is easy and is left to the reader. To see that X is σ – compact, for $k \in \mathbb{N}$, let

$$K_k := \{x \in X : |x| \le k \text{ and } d_{X^c}(x) \ge 1/k\}.$$

Then K_k is a closed and bounded subset of \mathbb{R}^n and hence compact. Moreover $K_k^o \uparrow X$ as $k \to \infty$ since $k \to \infty$ since k

$$K_k^o \supset \{x \in X : |x| < k \text{ and } d_{X^c}(x) > 1/k\} \uparrow X \text{ as } k \to \infty.$$

Exercise 8.3. Suppose that (X, d) is a metric space and $U \subset X$ is an open subset.

- 1. If X is locally compact then (U, d) is locally compact.
- 2. If X is σ compact then (U, d) is σ compact.

Exercise 8.4. Every separable locally compact metric space is σ – compact. **Hint:** Let $\{x_n\}_{n=1}^{\infty} \subset X$ be a countable dense subset of X and define

$$\epsilon_n = \frac{1}{2} \sup \{ \epsilon > 0 : C_{x_n}(\epsilon) \text{ is compact} \} \wedge 1.$$

Exercise 8.5. Every σ – compact metric space is separable. Therefore a locally compact metric space is separable iff it is σ – compact.

Lemma 8.10. Let (X, τ) be a locally compact and σ – compact topological space. Then there exists compact sets $K_n \uparrow X$ such that $K_n \subset K_{n+1}^o \subset K_{n+1}$ for all n.

Proof. Suppose that $C \subset X$ is a compact set. For each $x \in C$ let $V_x \subset_o X$ be an open neighborhood of x such that \bar{V}_x is compact. Then $C \subset \bigcup_{x \in C} V_x$ so there exists $\Lambda \subset\subset C$ such that

$$C \subset \bigcup_{x \in \Lambda} V_x \subset \bigcup_{x \in \Lambda} \bar{V}_x =: K.$$

Then K is a compact set, being a finite union of compact subsets of X, and $C \subset \bigcup_{x \in \Lambda} V_x \subset K^o$.

Now let $C_n \subset X$ be compact sets such that $C_n \uparrow X$ as $n \to \infty$. Let $K_1 = C_1$ and then choose a compact set K_2 such that $C_2 \subset K_2^o$. Similarly, choose a compact set K_3 such that $K_2 \cup C_3 \subset K_3^o$ and continue inductively to find compact sets K_n such that $K_n \cup C_{n+1} \subset K_{n+1}^o$ for all n. Then $\{K_n\}_{n=1}^\infty$ is the desired sequence.

Remark 8.11. Lemma 8.10 may also be stated as saying there exists precompact open sets $\{G_n\}_{n=1}^{\infty}$ such that $G_n \subset \bar{G}_n \subset G_{n+1}$ for all n and $G_n \uparrow X$ as $n \to \infty$. Indeed if $\{G_n\}_{n=1}^{\infty}$ are as above, let $K_n := \bar{G}_n$ and if $\{K_n\}_{n=1}^{\infty}$ are as in Lemma 8.10, let $G_n := K_n^o$.

The following result is a Corollary of Lemma 8.10 and Theorem 3.59.

 $^{^{16}}$ In fact this is an equality, but we will not need this here.

Corollary 8.12 (Locally compact form of Ascoli-Arzela Theorem). Let (X, τ) be a locally compact and σ – compact topological space and $\{f_m\} \subset C(X)$ be a pointwise bounded sequence of functions such that $\{f_m|_K\}$ is equicontinuous for any compact subset $K \subset X$. Then there exists a subsequence $\{m_n\} \subset \{m\}$ such that $\{g_n := f_{m_n}\}_{n=1}^{\infty} \subset C(X)$ is a sequence which is uniformly convergent on compact subsets of X.

Proof. Let $\{K_n\}_{n=1}^{\infty}$ be the compact subsets of X constructed in Lemma 8.10. We may now apply Theorem 3.59 repeatedly to find a nested family of subsequences

$$\{f_m\}\supset \{g_m^1\}\supset \{g_m^2\}\supset \{g_m^3\}\supset \dots$$

such that the sequence $\{g_m^n\}_{m=1}^{\infty}\subset C(X)$ is uniformly convergent on K_n . Using Cantor's trick, define the subsequence $\{h_n\}$ of $\{f_m\}$ by $h_n\equiv g_n^n$. Then $\{h_n\}$ is uniformly convergent on K_l for each $l\in\mathbb{N}$. Now if $K\subset X$ is an arbitrary compact set, there exists $l<\infty$ such that $K\subset K_l^o\subset K_l$ and therefore $\{h_n\}$ is uniformly convergent on K as well. \blacksquare

The next two results shows that locally compact Hausdorff spaces have plenty of open sets and plenty of continuous functions.

Proposition 8.13. Suppose X is a locally compact Hausdorff space and $U \subset_o X$ and $K \sqsubset U$. Then there exists $V \subset_o X$ such that $K \subset V \subset \overline{V} \subset U \subset X$ and \overline{V} is compact.

Proof. By local compactness, for all $x \in K$, there exists $U_x \in \tau_x$ such that \bar{U}_x is compact. Since K is compact, there exists $\Lambda \subset\subset K$ such that $\{U_x\}_{x\in\Lambda}$ is a cover of K. The set $O=U\cap (\cup_{x\in\Lambda} U_x)$ is an open set such that $K\subset O\subset U$ and O is precompact since \bar{O} is a closed subset of the compact set $\cup_{x\in\Lambda} \bar{U}_x$. $(\cup_{x\in\Lambda} \bar{U}_x)$ is compact because it is a finite union of compact sets.) So by replacing U by O if necessary, we may assume that \bar{U} is compact.

Since \bar{U} is compact and $\partial U = \bar{U} \cap U^c$ is a closed subset of \bar{U} , ∂U is compact. Because $\partial U \subset U^c$, it follows that $\partial U \cap K = \emptyset$, so by Proposition 8.6, there exists disjoint open sets V and W such that $K \subset V$ and $\partial U \subset W$. By replacing V by $V \cap U$ if necessary we may further assume that $K \subset V \subset U$, see Figure 17.

FIGURE 17. The construction of V.

Because $\bar{U} \cap W^c$ is a closed set containing V and $U^c \cap \bar{U} \cap W^c = \partial U \cap W^c = \emptyset$, $\bar{V} \subset \bar{U} \cap W^c = U \cap W^c \subset U \subset \bar{U}$.

Since \bar{U} is compact it follows that \bar{V} is compact and the proof is complete. \blacksquare

Exercise 8.6. Give a "simpler" proof of Proposition 8.13 under the additional assumption that X is a metric space. Hint: show for each $x \in K$ there exists $V_x := B_x(\epsilon_x)$ with $\epsilon_x > 0$ such that $\overline{B_x(\epsilon_x)} \subset C_x(\epsilon_x) \subset U$ with $C_x(\epsilon_x)$ being compact. Recall that $C_x(\epsilon)$ is the closed ball of radius ϵ about x.

Definition 8.14. Let U be an open subset of a topological space (X, τ) . We will write $f \prec U$ to mean a function $f \in C_c(X, [0, 1])$ such that $\operatorname{supp}(f) := \overline{\{f \neq 0\}} \subset U$.

Lemma 8.15 (Locally Compact Version of Urysohn's Lemma). Let X be a locally compact Hausdorff space and $K \sqsubseteq U \subseteq_o X$. Then there exists $f \prec U$ such that f = 1 on K. In particular, if K is compact and C is closed in X such that $K \cap C = \emptyset$, there exists $f \in C_c(X, [0, 1])$ such that f = 1 on K and f = 0 on C.

Proof. For notational ease later it is more convenient to construct g:=1-f rather than f. To motivate the proof, suppose $g \in C(X,[0,1])$ such that g=0 on K and g=1 on U^c . For r>0, let $U_r=\{g< r\}$. Then for $0< r< s\leq 1$, $U_r\subset \{g\leq r\}\subset U_s$ and since $\{g\leq r\}$ is closed this implies

$$K \subset U_r \subset \bar{U}_r \subset \{g \leq r\} \subset U_s \subset U.$$

Therefore associated to the function g is the collection open sets $\{U_r\}_{r>0} \subset \tau$ with the property that $K \subset U_r \subset \bar{U}_r \subset U_s \subset U$ for all $0 < r < s \le 1$ and $U_r = X$ if r > 1. Finally let us notice that we may recover the function g from the sequence $\{U_r\}_{r>0}$ by the formula

$$(8.3) q(x) = \inf\{r > 0 : x \in U_r\}.$$

The idea of the proof to follow is to turn these remarks around and define g by Eq. (8.3).

Step 1. (Construction of the U_r .) Let

$$\mathbb{D} \equiv \left\{ k2^{-n} : k = 1, 2, \dots, 2^{-1}, n = 1, 2, \dots \right\}$$

be the dyadic rationales in (0,1]. Use Proposition 8.13 to find a precompact open set U_1 such that $K \subset U_1 \subset \bar{U}_1 \subset U$. Apply Proposition 8.13 again to construct an open set $U_{1/2}$ such that

$$K \subset U_{1/2} \subset \bar{U}_{1/2} \subset U_1$$

and similarly use Proposition 8.13 to find open sets $U_{1/2}, U_{3/4} \subset_o X$ such that

$$K \subset U_{1/4} \subset \bar{U}_{1/4} \subset U_{1/2} \subset \bar{U}_{1/2} \subset U_{3/4} \subset \bar{U}_{3/4} \subset U_1.$$

Likewise there exists open set $U_{1/8}, U_{3/8}, U_{5/8}, U_{7/8}$ such that

$$\begin{split} K \subset U_{1/8} \subset \bar{U}_{1/8} \subset U_{1/4} \subset \bar{U}_{1/4} \subset U_{3/8} \subset \bar{U}_{3/8} \subset U_{1/2} \\ \subset \bar{U}_{1/2} \subset U_{5/8} \subset \bar{U}_{5/8} \subset U_{3/4} \subset \bar{U}_{3/4} \subset U_{7/8} \subset \bar{U}_{7/8} \subset U_{1}. \end{split}$$

Continuing this way inductively, one shows there exists precompact open sets $\{U_r\}_{r\in\mathbb{D}}\subset \tau$ such that

$$K \subset U_r \subset \overline{U}_r \subset U_s \subset U_1 \subset \overline{U}_1 \subset U$$

for all $r, s \in \mathbb{D}$ with $0 < r < s \le 1$.

Step 2. Let $U_r \equiv X$ if r > 1 and define

$$q(x) = \inf\{r \in \mathbb{D} \cup (1, \infty) : x \in U_r\},\$$

FIGURE 18. Determining g from $\{U_r\}$.

see Figure 18. Then $g(x) \in [0,1]$ for all $x \in X$, g(x) = 0 for $x \in K$ since $x \in K \subset U_r$ for all $r \in \mathbb{D}$. If $x \in U_1^c$, then $x \notin U_r$ for all $r \in \mathbb{D}$ and hence g(x) = 1. Therefore f := 1-g is a function such that f = 1 on K and $\{f \neq 0\} = \{g \neq 1\} \subset U_1 \subset \bar{U}_1 \subset U$ so that $\sup(f) = \overline{\{f \neq 0\}} \subset \bar{U}_1 \subset U$ is a compact subset of U. Thus it only remains to show f, or equivalently g, is continuous.

Since $\mathcal{E} = \{(\alpha, \infty), (-\infty, \alpha) : \alpha \in \mathbb{R}\}$ generates the standard topology on \mathbb{R} , to prove g is continuous it suffices to show $\{g < \alpha\}$ and $\{g > \alpha\}$ are open sets for all $\alpha \in \mathbb{R}$. But $g(x) < \alpha$ iff there exists $r \in \mathbb{D} \cup (1, \infty)$ with $r < \alpha$ such that $x \in U_r$. Therefore

$$\{g < \alpha\} = \bigcup \{U_r : r \in \mathbb{D} \cup (1, \infty) \ni r < \alpha\}$$

which is open in X. If $\alpha \geq 1$, $\{g > \alpha\} = \emptyset$ and if $\alpha < 0$, $\{g > \alpha\} = X$. If $\alpha \in (0,1)$, then $g(x) > \alpha$ iff there exists $r \in \mathbb{D}$ such that $r > \alpha$ and $x \notin U_r$. Now if $r > \alpha$ and $x \notin U_r$ then for $s \in \mathbb{D} \cap (\alpha, r)$, $x \notin \overline{U}_s \subset U_r$. Thus we have shown that

$$\{g>\alpha\}=\bigcup\left\{\left(\overline{U}_{s}\right)^{c}:s\in\mathbb{D}\,\ni\,s>\alpha\right\}$$

which is again an open subset of X.

Exercise 8.7. Give a simpler proof of Lemma 8.15 under the additional assumption that X is a metric space.

Theorem 8.16 (Locally Compact Tietz Extension Theorem). Let (X, τ) be a locally compact Hausdorff space, $K \sqsubseteq U \subset_o X$, $f \in C(K, \mathbb{R})$, $a = \min f(K)$ and $b = \max f(K)$. Then there exists $F \in C(X, [a, b])$ such that $F|_K = f$. Moreover given $c \in [a, b]$, F can be chosen so that $\sup(F - c) = \overline{\{F \neq c\}} \subset U$.

The proof of this theorem is similar to Theorem 8.2 and will be left to the reader, see Exercise 8.10.

Lemma 8.17. Suppose that (X, τ) is a locally compact second countable Hausdorff space. (For example any separable locally compact metric space and in particular any open subsets of \mathbb{R}^n .) Then:

- 1. every open subset $U \subset X$ is σ compact.
- 2. If $F \subset X$ is a closed set, there exist open sets $V_n \subset X$ such that $V_n \downarrow F$ as $n \to \infty$.
- 3. To each open set $U \subset X$ there exists $f_n \prec U$ such that $\lim_{n\to\infty} f_n = 1_U$.
- 4. The σ algebra generated by $C_c(X)$ is the Borel σ algebra, \mathcal{B}_X .

Proof.

1. Let U be an open subset of X, V be a countable base for τ and

$$\mathcal{V}^U := \{ W \in \mathcal{V} : \bar{W} \subset U \text{ and } \bar{W} \text{ is compact} \}.$$

For each $x \in U$, by Proposition 8.13, there exists an open neighborhood V of x such that $\bar{V} \subset U$ and \bar{V} is compact. Since \mathcal{V} is a base for the topology τ , there exists $W \in \mathcal{V}$ such that $x \in W \subset V$. Because $\bar{W} \subset \bar{V}$, it follows that \bar{W} is compact and hence $W \in \mathcal{V}^U$. As $x \in U$ was arbitrary, $U = \cup \mathcal{V}^U$.

Let $\{W_n\}_{n=1}^{\infty}$ be an enumeration of \mathcal{V}^U and set $K_n := \bigcup_{k=1}^n \overline{W}_k$. Then $K_n \uparrow U$ as $n \to \infty$ and K_n is compact for each n.

- 2. Let $\{K_n\}_{n=1}^{\infty}$ be compact subsets of F^c such that $K_n \uparrow F^c$ as $n \to \infty$ and set $V_n := K_n^c = X \setminus K_n$. Then $V_n \downarrow F$ and by Proposition 8.6, V_n is open for each n.
- 3. Let $U \subset X$ be an open set and $\{K_n\}_{n=1}^{\infty}$ be compact subsets of U such that $K_n \uparrow U$. By Lemma 8.15, there exist $f_n \prec U$ such that $f_n = 1$ on K_n . These functions satisfy, $1_U = \lim_{n \to \infty} f_n$.
- 4. By Item 3., 1_U is $\sigma(C_c(X,\mathbb{R}))$ measurable for all $U \in \tau$. Hence $\tau \subset \sigma(C_c(X,\mathbb{R}))$ and therefore $\mathcal{B}_X = \sigma(\tau) \subset \sigma(C_c(X,\mathbb{R}))$. The converse inclusion always holds since continuous functions are always Borel measurable.

Corollary 8.18. Suppose that (X,τ) is a second countable locally compact Hausdorff space, $\mathcal{B}_X = \sigma(\tau)$ is the Borel σ – algebra on X and \mathcal{H} is a subspace of $B(X,\mathbb{R})$ which is closed under bounded convergence and contains $C_c(X,\mathbb{R})$. Then \mathcal{H} contains all bounded \mathcal{B}_X – measurable real valued functions on X.

Proof. Since \mathcal{H} is closed under bounded convergence and $C_c(X,\mathbb{R}) \subset \mathcal{H}$, it follows by Item 3. of Lemma 8.17 that $1_U \in \mathcal{H}$ for all $U \in \tau$. Since τ is a π – class the corollary follows by an application of Theorem 6.12.

8.1. Partitions of Unity.

Definition 8.19. Let (X, τ) be a topological space and $X_0 \subset X$ be a set. A collection of sets $\{B_\alpha\}_{\alpha \in A} \subset 2^X$ is **locally finite** on X_0 if for all $x \in X_0$, there is an open neighborhood $N_x \in \tau$ of x such that $\#\{\alpha \in A : B_\alpha \cap N_x \neq \emptyset\} < \infty$.

Lemma 8.20. Let (X, τ) be a locally compact Hausdorff space.

- 1. A subset $E \subset X$ is closed iff $E \cap K$ is closed for all $K \sqsubset \sqsubset X$.
- 2. Let $\{C_{\alpha}\}_{{\alpha}\in A}$ be a locally finite collection of closed subsets of X, then $C=\bigcup_{{\alpha}\in A}C_{\alpha}$ is closed in X. (Recall that in general closed sets are only closed under finite unions.)

Proof. Item 1. Since compact subsets of Hausdorff spaces are closed, $E \cap K$ is closed if E is closed and K is compact. Now suppose that $E \cap K$ is closed for all compact subsets $K \subset X$ and let $x \in E^c$. Since X is locally compact, there

exists a precompact open neighborhood, V, of x.¹⁷ By assumption $E \cap \overline{V}$ is closed so $x \in (E \cap \overline{V})^c$ – an open subset of X. By Proposition 8.13 there exists an open set U such that $x \in U \subset \overline{U} \subset (E \cap \overline{V})^c$, see Figure 19. Let $W := U \cap V$. Since

FIGURE 19. Showing E^c is open.

$$W \cap E = U \cap V \cap E \subset U \cap \overline{V} \cap E = \emptyset$$
,

and W is an open neighborhood of x and $x \in E^c$ was arbitrary, we have shown E^c is open hence E is closed.

Item 2. Let K be a compact subset of X and for each $x \in K$ let N_x be an open neighborhood of x such that $\#\{\alpha \in A : C_\alpha \cap N_x \neq \emptyset\} < \infty$. Since K is compact, there exists a finite subset $\Lambda \subset K$ such that $K \subset \cup_{x \in \Lambda} N_x$. Letting $\Lambda_0 := \{\alpha \in A : C_\alpha \cap K \neq \emptyset\}$, then

$$\#(\Lambda_0) \le \sum_{x \in \Lambda} \#\{\alpha \in A : C_\alpha \cap N_x \ne \emptyset\} < \infty$$

and hence $K \cap (\cup_{\alpha \in A} C_{\alpha}) = K \cap (\cup_{\alpha \in \Lambda_0} C_{\alpha})$. The set $(\cup_{\alpha \in \Lambda_0} C_{\alpha})$ is a finite union of closed sets and hence closed. Therefore, $K \cap (\cup_{\alpha \in A} C_{\alpha})$ is closed and by Item (1) it follows that $\cup_{\alpha \in A} C_{\alpha}$ is closed as well. \blacksquare

Definition 8.21. Suppose that \mathcal{U} is an open cover of $X_0 \subset X$. A collection $\{\phi_i\}_{i=1}^N \subset C(X,[0,1])$ $(N=\infty)$ is allowed here) is a **partition of unity** on X_0 subordinate to the cover \mathcal{U} if:

- 1. for all i there is a $U \in \mathcal{U}$ such that $supp(\phi_i) \subset U$,
- 2. the collection of sets, $\{\operatorname{supp}(\phi_i)\}_{i=1}^N$, is locally finite on X_0 , and
- 3. $\sum_{i=1}^{N} \phi_i = 1$ on X_0 . (Notice by (2), that for each $x \in X_0$ there is a neighborhood N_x such that $\phi_i|_{N_x}$ is not identically zero for only a finite number of terms. So the sum is well defined and we say the sum is **locally finite**.)

Proposition 8.22 (Partitions of Unity: The Compact Case). Suppose that X is a locally compact Hausdorff space, $K \subset X$ is a compact set and $\mathcal{U} = \{U_j\}_{j=1}^n$ is an open cover of K. Then there exists a partition of unity $\{h_j\}_{j=1}^n$ of K such that $h_j \prec U_j$ for all $j = 1, 2, \ldots, n$.

¹⁷If X were a metric space we could finish the proof as follows. If there does not exist an open neighborhood of x which is disjoint from E, then there would exists $x_n \in E$ such that $x_n \to x$. Since $E \cap \bar{V}$ is closed and $x_n \in E \cap \bar{V}$ for all large n, it follows (see Exercise 3.4) that $x \in E \cap \bar{V}$ and in particular that $x \in E$. But we chose $x \in E^c$.

Proof. For all $x \in K$ choose a precompact open neighborhood, V_x , of x such that $\overline{V}_x \subset U_j$. Since K is compact, there exists a finite subset, Λ , of K such that $K \subset \bigcup_{x \in \Lambda} V_x$. Let

$$F_j = \bigcup \{ \overline{V}_x : x \in \Lambda \text{ and } \overline{V}_x \subset U_j \}.$$

Then F_j is compact, $F_j \subset U_j$ for all j, and $K \subset \bigcup_{j=1}^n F_j$. By Urysohn's Lemma 8.15 there exists $f_j \prec U_j$ such that $f_j = 1$ on F_j . We will now give two methods to finish the proof.

Method 1. Let
$$h_1 = f_1$$
, $h_2 = f_2(1 - h_1) = f_2(1 - f_1)$,

$$h_3 = f_3(1 - h_1 - h_2) = f_3(1 - f_1 - (1 - f_1)f_2) = f_3(1 - f_1)(1 - f_2)$$

and continue on inductively to define

(8.4)
$$h_k = (1 - h_1 - \dots - h_{k-1}) f_k = f_k \cdot \prod_{j=1}^{k-1} (1 - f_j) \,\forall \, k = 2, 3, \dots, n$$

and to show

(8.5)
$$(1 - h_1 - \dots - h_n) = \prod_{j=1}^{n} (1 - f_j).$$

From these equations it clearly follows that $h_j \in C_c(X, [0, 1])$ and that $\operatorname{supp}(h_j) \subset \operatorname{supp}(f_j) \subset U_j$, i.e. $h_j \prec U_j$. Since $\prod_{j=1}^n (1 - f_j) = 0$ on K, $\sum_{j=1}^n h_j = 1$ on K and $\{h_j\}_{j=1}^n$ is the desired partition of unity.

Method 2. Let $g := \sum_{j=1}^n f_j \in C_c(X)$. Then $g \ge 1$ on K and hence $K \subset \{g > \frac{1}{2}\}$.

Choose $\phi \in C_c(X, [0, 1])$ such that $\phi = 1$ on K and $\operatorname{supp}(\phi) \subset \{g > \frac{1}{2}\}$ and define $f_0 \equiv 1 - \phi$. Then $f_0 = 0$ on K, $f_0 = 1$ if $g \leq \frac{1}{2}$ and therefore,

$$f_0 + f_1 + \dots + f_n = f_0 + g > 0$$

on X. The desired partition of unity may be constructed as

$$h_j(x) = \frac{f_j(x)}{f_0(x) + \dots + f_n(x)}.$$

Indeed supp $(h_j) = \text{supp}(f_j) \subset U_j, h_j \in C_c(X, [0, 1])$ and on K,

$$h_1 + \dots + h_n = \frac{f_1 + \dots + f_n}{f_0 + f_1 + \dots + f_n} = \frac{f_1 + \dots + f_n}{f_1 + \dots + f_n} = 1.$$

Proposition 8.23. Let (X, τ) be a locally compact and σ – compact Hausdorff space. Suppose that $\mathcal{U} \subset \tau$ is an open cover of X. Then we may construct two locally finite open covers $\mathcal{V} = \{V_i\}_{i=1}^N$ and $\mathcal{W} = \{W_i\}_{i=1}^N$ of X $(N = \infty)$ is allowed here) such that:

- 1. $W_i \subset \overline{W}_i \subset V_i \subset \overline{V}_i$ and \overline{V}_i is compact for all i.
- 2. For each i there exist $U \in \mathcal{U}$ such that $\bar{V}_i \subset U$.

Proof. By Remark 8.11, there exists an open cover of $\mathcal{G} = \{G_n\}_{n=1}^{\infty}$ of X such that $G_n \subset \bar{G}_n \subset G_{n+1}$. Then $X = \bigcup_{k=1}^{\infty} (\bar{G}_k \setminus \bar{G}_{k-1})$, where by convention $G_{-1} = G_0 = \emptyset$. For the moment fix $k \geq 1$. For each $x \in \bar{G}_k \setminus G_{k-1}$, let $U_x \in \mathcal{U}$ be chosen so that $x \in U_x$ and by Proposition 8.13 choose an open neighborhood N_x of x such that $\bar{N}_x \subset U_x \cap (G_{k+1} \setminus \bar{G}_{k-2})$, see Figure 20 below. Since $\{N_x\}_{x \in \bar{G}_k \setminus G_{k-1}}$ is an open

FIGURE 20. Constructing the $\{W_i\}_{i=1}^N$.

cover of the compact set $\bar{G}_k \setminus G_{k-1}$, there exist a finite subset $\Gamma_k \subset \{N_x\}_{x \in \bar{G}_k \setminus G_{k-1}}$ which also covers $\bar{G}_k \setminus G_{k-1}$. By construction, for each $W \in \Gamma_k$, there is a $U \in \mathcal{U}$ such that $\bar{W} \subset U \cap (G_{k+1} \setminus \bar{G}_{k-2})$. Apply Proposition 8.13 one more time to find, for each $W \in \Gamma_k$, an open set V_W such that $\bar{W} \subset V_W \subset \bar{V}_W \subset U \cap (G_{k+1} \setminus \bar{G}_{k-2})$.

We now choose and enumeration $\{W_i\}_{i=1}^N$ of the countable open cover $\bigcup_{k=1}^\infty \Gamma_k$ of X and define $V_i = V_{W_i}$. Then the collection $\{W_i\}_{i=1}^N$ and $\{V_i\}_{i=1}^N$ are easily checked to satisfy all the conclusions of the proposition. In particular notice that for each k that the set of i's such that $V_i \cap G_k \neq \emptyset$ is finite.

Theorem 8.24 (Locally Compact Partitions of Unity). Let (X, τ) be a locally compact and σ – compact Hausdorff space and $\mathcal{U} \subset \tau$ be an open cover of X. Then there exists a partition of unity of $\{h_i\}_{i=1}^N$ $(N = \infty \text{ is allowed here})$ subordinate to the cover \mathcal{U} such that $\operatorname{supp}(h_i)$ is compact for all i.

Proof. Let $\mathcal{V} = \{V_i\}_{i=1}^N$ and $\mathcal{W} = \{W_i\}_{i=1}^N$ be open covers of X with the properties described in Proposition 8.23. By Urysohn's Lemma 8.15, there exists $f_i \prec V_i$ such that $f_i = 1$ on \bar{W}_i for each i.

As in the proof of Proposition 8.22 there are two methods to finish the proof. **Method 1.** Define $h_1 = f_1$, h_j by Eq. (8.4) for all other j. Then as in Eq. (8.5)

$$1 - \sum_{j=1}^{N} h_j = \prod_{j=1}^{N} (1 - f_j) = 0$$

since for $x \in X$, $f_j(x) = 1$ for some j. As in the proof of Proposition 8.22, it is easily checked that $\{h_i\}_{i=1}^N$ is the desired partition of unity.

Method 2. Let $f \equiv \sum_{i=1}^{N} f_i$, a locally finite sum, so that $f \in C(X)$. Since $\{W_i\}_{i=1}^{\infty}$ is a cover of $X, f \geq 1$ on X so that $1/f \in C(X)$) as well. The functions $h_i \equiv f_i/f$ for $i = 1, 2, \ldots, N$ give the desired partition of unity.

Corollary 8.25. Let (X, τ) be a locally compact and σ – compact Hausdorff space and $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A} \subset \tau$ be an open cover of X. Then there exists a partition of unity of $\{h_{\alpha}\}_{{\alpha} \in A}$ subordinate to the cover \mathcal{U} such that $\sup (h_{\alpha}) \subset U_{\alpha}$ for all

 $\alpha \in A$. (Notice that we do not assert that h_{α} has compact support. However if \bar{U}_{α} is compact then $\mathrm{supp}(h_{\alpha})$ will be compact.)

Proof. By the σ – compactness of X, we may choose a countable subset, $\{\alpha_i\}_{i < N}$ $(N = \infty \text{ allowed here})$, of A such that $\{U_i \equiv U_{\alpha_i}\}_{i < N}$ is still an open cover of X. Let $\{g_j\}_{j < N}$ be a partition of unity subordinate to the cover $\{U_i\}_{i < N}$ as in Theorem 8.24. Define $\tilde{\Gamma}_k \equiv \{j : \text{supp}(g_j) \subset U_k\}$ and $\Gamma_k := \tilde{\Gamma}_k \setminus \left(\bigcup_{j=1}^{k-1} \tilde{\Gamma}_k\right)$, where by convention $\tilde{\Gamma}_0 = \emptyset$. Then

$$\{i \in \mathbb{N} : i < N\} = \bigcup_{k=1}^{\infty} \tilde{\Gamma}_k = \prod_{k=1}^{\infty} \Gamma_k.$$

If $\Gamma_k = \emptyset$ let $h_k \equiv 0$ otherwise let $h_k := \sum_{j \in \Gamma_k} g_j$, a locally finite sum. Then $\sum_{k=1}^{\infty} h_k = \sum_{j=1}^{N} g_j = 1$ and the sum $\sum_{k=1}^{\infty} h_k$ is still locally finite. (Why?) Now for $\alpha = \alpha_k \in \{\alpha_i\}_{i=1}^{N}$, let $h_\alpha := h_k$ and for $\alpha \notin \{\alpha_i\}_{i=1}^{N}$ let $h_\alpha \equiv 0$. Since

$$\{h_k \neq 0\} = \bigcup_{j \in \Gamma_k} \{g_j \neq 0\} \subset \bigcup_{j \in \Gamma_k} \operatorname{supp}(g_j) \subset U_k$$

and, by Item 2. of Lemma 8.20, $\bigcup_{j \in \Gamma_k} \operatorname{supp}(g_j)$ is closed, we see that

$$\operatorname{supp}(h_k) = \overline{\{h_k \neq 0\}} \subset \bigcup_{i \in \Gamma_k} \operatorname{supp}(g_i) \subset U_k.$$

Therefore $\{h_{\alpha}\}_{\alpha\in A}$ is the desired partition of unity.

Corollary 8.26. Let (X, τ) be a locally compact and σ – compact Hausdorff space and A, B be disjoint closed subsets of X. Then there exists $f \in C(X, [0, 1])$ such that f = 1 on A and f = 0 on B. In fact f can be chosen so that $\operatorname{supp}(f) \subset B^c$.

Proof. Let $U_1 = A^c$ and $U_2 = B^c$, then $\{U_1, U_2\}$ is an open cover of X. By Corollary 8.25 there exists $h_1, h_2 \in C(X, [0, 1])$ such that $\operatorname{supp}(h_i) \subset U_i$ for i = 1, 2 and $h_1 + h_2 = 1$ on X. The function $f = h_2$ satisfies the desired properties. \blacksquare

8.2. $C_0(X)$ and the Alexanderov Compactification.

Definition 8.27. Let (X, τ) be a topological space. A continuous function $f: X \to \mathbb{C}$ is said to **vanish at infinity** if $\{|f| \ge \epsilon\}$ is compact in X for all $\epsilon > 0$. The functions, $f \in C(X)$, vanishing at infinity will be denoted by $C_0(X)$.

Proposition 8.28. Let X be a topological space, BC(X) be the space of bounded continuous functions on X with the supremum norm topology. Then

- 1. $C_0(X)$ is a closed subspace of BC(X).
- 2. If we further assume that X is a locally compact Hausdorff space, then $C_0(X) = \overline{C_c(X)}$.

Proof.

1. If $f \in C_0(X)$, $K_1 := \{|f| \ge 1\}$ is a compact subset of X and therefore $f(K_1)$ is a compact and hence bounded subset of $\mathbb C$ and so $M := \sup_{x \in K_1} |f(x)| < \infty$. Therefore $\|f\|_u \le M \vee 1 < \infty$ showing $f \in BC(X)$.

Now suppose $f_n \in C_0(X)$ and $f_n \to f$ in BC(X). Let $\epsilon > 0$ be given and choose n sufficiently large so that $||f - f_n||_u \le \epsilon/2$. Since

$$|f| \le |f_n| + |f - f_n| \le |f_n| + ||f - f_n||_u \le |f_n| + \epsilon/2,$$

$$\{|f| \geq \epsilon\} \subset \{|f_n| + \epsilon/2 \geq \epsilon\} = \{|f_n| \geq \epsilon/2\} \ .$$

Because $\{|f| \ge \epsilon\}$ is a closed subset of the compact set $\{|f_n| \ge \epsilon/2\}$, $\{|f| \ge \epsilon\}$ is compact and we have shown $f \in C_0(X)$.

2. Since $C_0(X)$ is a closed subspace of BC(X) and $C_c(X) \subset C_0(X)$, we always have $\overline{C_c(X)} \subset C_0(X)$. Now suppose that $f \in C_0(X)$ and let $K_n \equiv \{|f| \geq \frac{1}{n}\} \sqsubseteq X$. By Lemma 8.15 we may choose $\phi_n \in C_c(X, [0, 1])$ such that $\phi_n \equiv 1$ on K_n . Define $f_n \equiv \phi_n f \in C_c(X)$. Then

$$||f - f_n||_u = ||(1 - \phi_n)f||_u \le \frac{1}{n} \to 0 \text{ as } n \to \infty.$$

This shows that $f \in \overline{C_c(X)}$.

Proposition 8.29 (Alexanderov Compactification). Suppose that (X, τ) is a non-compact locally compact Hausdorff space. Let $X^* = X \cup \{\infty\}$, where $\{\infty\}$ is a new symbol not in X. The collection of sets,

$$\tau^* = \tau \cup \{X^* \setminus K : K \sqsubset \sqsubset X\} \subset \mathcal{P}(X^*),$$

is a topology on X^* and (X^*, τ^*) is a compact Hausdorff space. Moreover $f \in C(X)$ extends continuously to X^* iff f = g + c with $g \in C_0(X)$ and $c \in \mathbb{C}$ in which case the extension is given by $f(\infty) = c$.

Proof. Let $\mathcal{F} := \{F \subset X^* : X^* \setminus F \in \tau^*\}$, i.e. $F \in \mathcal{F}$ iff F is a compact subset of X or $F = F_0 \cup \{\infty\}$ with F_0 being a closed subset of X. Since the finite union of compact (closed) subsets is compact (closed), it is easily seen that \mathcal{F} is closed under finite unions. Because arbitrary intersections of closed subsets of X are closed and closed subsets of compact subsets of X are compact, it is also easily checked that \mathcal{F} is closed under arbitrary intersections. Therefore \mathcal{F} satisfies the axioms of the closed subsets associated to a topology and hence τ^* is a topology.

Let $i: X \to X^*$ be the inclusion map. Then i is continuous and open, i.e. i(V) is open in X^* for all V open in X. If $f \in C(X^*)$, then $g = f|_X - f(\infty) = f \circ i - f(\infty)$ is continuous on X. Moreover, for all $\epsilon > 0$ there exists an open neighborhood $V \in \tau^*$ of ∞ such that

$$|g(x)| = |f(x) - f(\infty)| < \epsilon \text{ for all } x \in V.$$

Since V is an open neighborhood of ∞ , there exists a compact subset, $K \subset X$, such that $V = X^* \setminus K$. By the previous equation we see that $\{x \in X : |g(x)| \ge \epsilon\} \subset K$, so $\{|g| \ge \epsilon\}$ is compact and we have shown g vanishes at ∞ .

Conversely if $g \in C_0(X)$, extend g to X^* by setting $g(\infty) = 0$. Given $\epsilon > 0$, the set $K = \{|g| \ge \epsilon\}$ is compact, hence $X^* \setminus K$ is open in X^* . Since $g(X^* \setminus K) \subset (-\epsilon, \epsilon)$ we have shown that g is continuous at ∞ . Since g is also continuous at all points in X it follows that g is continuous on X^* . Now it f = g + c with $c \in \mathbb{C}$ and $g \in C_0(X)$, it follows by what we just proved that defining $f(\infty) = c$ extends f to a continuous function on X^* .

8.3. More on Separation Axioms: Normal Spaces. (The reader may skip to Definition 8.32 if he/she wishes. The following material will not be used in the rest of the book.)

Definition 8.30 ($T_0 - T_2$ Separation Axioms). Let (X, τ) be a topological space. The topology τ is said to be:

1. T_0 if for $x \neq y$ in X there exists $V \in \tau$ such that $x \in V$ and $y \notin V$ or V such that $y \in V$ but $x \notin V$.

- 2. T_1 if for every $x, y \in X$ with $x \neq y$ there exists $V \in \tau$ such that $x \in V$ and $y \notin V$. Equivalently, τ is T_1 iff all one point subsets of X are closed. 18
- 3. T_2 if it is Hausdorff.

Note T_2 implies T_1 which implies T_0 . The topology in Example 8.3 is T_0 but not T_1 . If X is a finite set and τ is a T_1 - topology on X then $\tau = 2^X$. To prove this let $x \in X$ be fixed. Then for every $y \neq x$ in X there exists $V_y \in \tau$ such that $x \in V_y$ while $y \notin V_y$. Thus $\{x\} = \bigcap_{y \neq x} V_y \in \tau$ showing τ contains all one point subsets of X and therefore all subsets of X. So we have to look to infinite sets for an example of T_1 topology which is not T_2 .

Example 8.31. Let X be any infinite set and let $\tau = \{A \subset X : \#(A^c) < \infty\} \cup \{\emptyset\}$ – the so called **cofinite** topology. This topology is T_1 because if $x \neq y$ in X, then $V = \{x\}^c \in \tau$ with $x \notin V$ while $y \in V$. This topology however is not T_2 . Indeed if $U, V \in \tau$ are open sets such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$ then $U \subset V^c$. But this implies $\#(U) < \infty$ which is impossible unless $U = \emptyset$ which is impossible since $x \in U$.

The uniqueness of limits of sequences which occurs for Hausdorff topologies (see Remark 8.5) need not occur for T_1 – spaces. For example, let $X = \mathbb{N}$ and τ be the cofinite topology on X as in Example 8.31. Then $x_n = n$ is a sequence in X such that $x_n \to x$ as $n \to \infty$ for all $x \in \mathbb{N}$. For the most part we will avoid these pathologies in the future by only considering Hausdorff topologies.

Definition 8.32 (Normal Spaces: T_4 – Separation Axiom). A topological space (X, τ) is said to be **normal** or T_4 if:

- 1. X is Hausdorff and
- 2. if for any two closed disjoint subsets $A, B \subset X$ there exists disjoint open sets $V, W \subset X$ such that $A \subset V$ and $B \subset W$.

Example 8.33. By Lemma 8.1 and Corollary 8.26 it follows that metric space and locally compact and σ – compact Hausdorff space (in particular compact Hausdorff spaces) are normal. Indeed, in each case if A, B are disjoint closed subsets of X, there exists $f \in C(X, [0, 1])$ such that f = 1 on A and f = 0 on B. Now let $U = \{f > \frac{1}{2}\}$ and $V = \{f < \frac{1}{2}\}$.

Remark 8.34. A topological space, (X, τ) , is normal iff for any $C \subset W \subset X$ with C being closed and W being open there exists an open set $U \subset_{\rho} X$ such that

$$C \subset U \subset \bar{U} \subset W$$
.

To prove this first suppose X is normal. Since W^c is closed and $C \cap W^c = \emptyset$, there exists disjoint open sets U and V such that $C \subset U$ and $W^c \subset V$. Therefore $C \subset U \subset V^c \subset W$ and since V^c is closed, $C \subset U \subset \bar{U} \subset V^c \subset W$.

For the converse direction suppose A and B are disjoint closed subsets of X. Then $A \subset B^c$ and B^c is open, and so by assumption there exists $U \subset_o X$ such that $A \subset U \subset \bar{U} \subset B^c$ and by the same token there exists $W \subset_o X$ such that $\bar{U} \subset W \subset \bar{W} \subset B^c$. Taking complements of the last expression implies

$$B \subset \bar{W}^c \subset W^c \subset \bar{U}^c$$
.

Let $V = \overline{W}^c$. Then $A \subset U \subset_o X$, $B \subset V \subset_o X$ and $U \cap V \subset U \cap W^c = \emptyset$.

¹⁸If one point subsets are closed and $x \neq y$ in X then $V := \{x\}^c$ is an open set containing y but not x. Conversely if τ is T_1 and $x \in X$ there exists $V_y \in \tau$ such that $y \in V_y$ and $x \notin V_y$ for all $y \neq x$. Therefore, $\{x\}^c = \bigcup_{y \neq x} V_y \in \tau$.

Theorem 8.35 (Urysohn's Lemma for Normal Spaces). Let X be a normal space. Assume A, B are disjoint closed subsets of X. Then there exists $f \in C(X, [0, 1])$ such that f = 0 on A and f = 1 on B.

Proof. To make the notation match Lemma 8.15, let $U = A^c$ and K = B. Then $K \subset U$ and it suffices to produce a function $f \in C(X, [0, 1])$ such that f = 1 on K and $\operatorname{supp}(f) \subset U$. The proof is now identical to that for Lemma 8.15 except we now use Remark 8.34 in place of Proposition 8.13. \blacksquare

Theorem 8.36 (Tietze Extension Theorem). Let (X, τ) be a normal space, D be a closed subset of X, $-\infty < a < b < \infty$ and $f \in C(D, [a, b])$. Then there exists $F \in C(X, [a, b])$ such that $F|_D = f$.

Proof. The proof is identical to that of Theorem 8.2 except we now use Theorem 8.35 in place of Lemma 8.1. ■

Corollary 8.37. Suppose that X is a normal topological space, $D \subset X$ is closed, $F \in C(D, \mathbb{R})$. Then there exists $F \in C(X)$ such that $F|_D = f$.

Proof. Let $g = \arctan(f) \in C(D, (-\frac{\pi}{2}, \frac{\pi}{2}))$. Then by the Tietze extension theorem, there exists $G \in C(X, [-\frac{\pi}{2}, \frac{\pi}{2}])$ such that $G|_D = g$. Let $B \equiv G^{-1}(\{-\frac{\pi}{2}, \frac{\pi}{2}\}) \sqsubset X$, then $B \cap D = \emptyset$. By Urysohn's lemma (Theorem 8.35) there exists $h \in C(X, [0, 1])$ such that $h \equiv 1$ on D and h = 0 on B and in particular $hG \in C(D, (-\frac{\pi}{2}, \frac{\pi}{2}))$ and $(hG)|_D = g$. The function $F \equiv \tan(hG) \in C(X)$ is an extension of f.

Notation 8.38. Let $Q := [0,1]^{\mathbb{N}}$ denote the (infinite dimensional) unit cube in $\mathbb{R}^{\mathbb{N}}$. For $a, b \in Q$ let

$$d(a,b) := \sum_{n=1}^{\infty} \frac{1}{2^n} |a_n - b_n|.$$

The metric introduced in Exercise 3.27 would be defined, in this context, as $\tilde{d}(a,b) := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|a_n - b_n|}{1 + |a_n - b_n|}$. Since $1 \le 1 + |a_n - b_n| \le 2$, it follows that $\tilde{d} \le d \le 2d$. So the metrics d and \tilde{d} are equivalent and in particular the topologies induced by d and \tilde{d} are the same. By Exercises 4.15, the d – topology on Q is the same as the product topology and by Exercise 3.27, (Q,d) is a compact metric space.

Theorem 8.39 (Urysohn Metrization Theorem). Every second countable normal space, (X, τ) , is metrizable, i.e. there is a metric ρ on X such that $\tau = \tau_{\rho}$. Moreover, ρ may be chosen so that X is isometric to a subset $Q_0 \subset Q$. In this metric X is totally bounded and hence the completion of X (which is isometric to $\bar{Q}_0 \subset Q$) is compact.

Proof. Let \mathcal{B} be a countable base for τ and set

$$\Gamma \equiv \{(U, V) \in \mathcal{B} \times \mathcal{B} \mid \bar{U} \subset V\}.$$

To each $O \in \tau$ and $x \in O$ there exist $(U,V) \in \Gamma$ such that $x \in U \subset V \subset O$. Indeed, since \mathcal{B} is a basis for τ , there exists $V \in \mathcal{B}$ such that $x \in V \subset O$. Because $\{x\} \cap V^c = \emptyset$, there exists disjoint open sets \widetilde{U} and W such that $x \in \widetilde{U}$, $V^c \subset W$ and $\widetilde{U} \cap W = \emptyset$. Choose $U \in \mathcal{B}$ such that $x \in U \subset \widetilde{U}$. Since $U \subset \widetilde{U} \subset W^c$, $\overline{U} \subset W^c \subset V$ and hence $(U,V) \in \Gamma$. See Figure 21 below. In particular this shows that $\{U \in \mathcal{B} : (U,V) \in \Gamma \text{ for some } V \in \mathcal{B}\}$ is still a base for τ .

If Γ is a finite set, the previous comment shows that τ only has a finite number of elements as well. Since (X, τ) is Hausdorff, it follows that X is a finite set.

FIGURE 21. Constructing $(U, V) \in \Gamma$.

Letting $\{x_n\}_{n=1}^N$ be an enumeration of X, define $T:X\to Q$ by $T(x_n)=e_n$ for $n=1,2,\ldots,N$ where $e_n=(0,0,\ldots,0,1,0,\ldots)$, with the 1 occurring in the n^{th} spot. Then $\rho(x,y):=d(T(x),T(y))$ for $x,y\in X$ is the desired metric. So we will for now on assume that Γ is an infinite set and let $\{(U_n,V_n)\}_{n=1}^\infty$ be an enumeration of Γ .

By Urysohn's Lemma (Theorem 8.35) there exists $f_{U,V} \in C(X,[0,1])$ such that $f_{U,V} = 0$ on \bar{U} and $f_{U,V} = 1$ on V^c . Let $\mathcal{F} \equiv \{f_{U,V} \mid (U,V) \in \Gamma\}$ and set $f_n := f_{U_n,V_n}$ – an enumeration of \mathcal{F} . We will now show that

$$\rho(x,y) := \sum_{n=1}^{\infty} \frac{1}{2^n} |f_n(x) - f_n(y)|$$

is the desired metric on X. The proof will involve a number of steps.

- 1. (ρ is a metric on X.) It is routine to show ρ satisfies the triangle inequality and ρ is symmetric. If $x, y \in X$ are distinct points then there exists $(U_{n_0}, V_{n_0}) \in \Gamma$ such that $x \in U_{n_0}$ and $V_{n_0} \subset O := \{y\}^c$. Since $f_{n_0}(x) = 0$ and $f_{n_0}(y) = 1$, it follows that $\rho(x, y) \geq 2^{-n_0} > 0$.
- 2. (Let $\tau_0 = \tau (f_n : n \in \mathbb{N})$, then $\tau = \tau_0 = \tau_\rho$.) As usual we have $\tau_0 \subset \tau$. Since, for each $x \in X$, $y \to \rho(x,y)$ is τ_0 continuous (being the uniformly convergent sum of continuous functions), it follows that $B_x(\epsilon) := \{y \in X : \rho(x,y) < \epsilon\} \in \tau_0$ for all $x \in X$ and $\epsilon > 0$. Thus $\tau_\rho \subset \tau_0 \subset \tau$.

Suppose that $O \in \tau$ and $x \in O$. Let $(U_{n_0}, V_{n_0}) \in \Gamma$ be such that $x \in U_{n_0}$ and $V_{n_0} \subset O$. Then $f_{n_0}(x) = 0$ and $f_{n_0} = 1$ on O^c . Therefore if $y \in X$ and $f_{n_0}(y) < 1$, then $y \in O$ so $x \in \{f_{n_0} < 1\} \subset O$. This shows that O may be written as a union of elements from τ_0 and therefore $O \in \tau_0$. So $\tau \subset \tau_0$ and hence $\tau = \tau_0$. Moreover, if $y \in B_x(2^{-n_0})$ then $2^{-n_0} > \rho(x,y) \ge 2^{-n_0} f_{n_0}(y)$ and therefore $x \in B_x(2^{-n_0}) \subset \{f_{n_0} < 1\} \subset O$. This shows O is ρ – open and hence $\tau_\rho \subset \tau_0 \subset \tau \subset \tau_\rho$.

3. (X is isometric to some $Q_0 \subset Q$.) Let $T: X \to Q$ be defined by $T(x) = (f_1(x), f_2(x), \ldots, f_n(x), \ldots)$. Then T is an isometry by the very definitions of d and ρ and therefore X is isometric to $Q_0 := T(X)$. Since Q_0 is a subset of the compact metric space (Q, d), Q_0 is totally bounded and therefore X is totally bounded.

8.4. Exercises.

Exercise 8.8. Let (X, τ) be a topological space, $A \subset X$, $i_A : A \to X$ be the inclusion map and $\tau_A := i_A^{-1}(\tau)$ be the relative topology on A. Verify $\tau_A = \{A \cap V : V \in \tau\}$ and show $C \subset A$ is closed in (A, τ_A) iff there exists a closed set $F \subset X$ such that $C = A \cap F$. (If you get stuck, see the remarks after Definition 3.17 where this has already been proved.)

Exercise 8.9. Let (X, τ) and (Y, τ') be a topological spaces, $f: X \to Y$ be a function, \mathcal{U} be an open cover of X and $\{F_j\}_{j=1}^n$ be a finite cover of X by closed sets.

- 1. If $A \subset X$ is any set and $f: X \to Y$ is (τ, τ') continuous then $f|_A: A \to Y$ is (τ_A, τ') continuous.
- 2. Show $f: X \to Y$ is (τ, τ') continuous iff $f|_U: U \to Y$ is (τ_U, τ') continuous for all $U \in \mathcal{U}$.
- 3. Show $f: X \to Y$ is (τ, τ') continuous iff $f|_{F_j}: F_j \to Y$ is (τ_{F_j}, τ') continuous for all $j = 1, 2, \ldots, n$.
- 4. (A baby form of the Tietze extension Theorem.) Suppose $V \in \tau$ and $f: V \to \mathbb{C}$ is a continuous function such $\mathrm{supp}(f) \subset V$, then $F: X \to \mathbb{C}$ defined by

$$F(x) = \begin{cases} f(x) & \text{if} & x \in V \\ 0 & \text{otherwise} \end{cases}$$

is continuous.

Exercise 8.10. Prove Theorem 8.16. Hints:

- 1. By Proposition 8.13, there exists a precompact open set V such that $K \subset V \subset \overline{V} \subset U$. Now suppose that $f: K \to [0, \alpha]$ is continuous with $\alpha \in (0, 1]$ and let $A := f^{-1}([0, \frac{1}{3}\alpha])$ and $B := f^{-1}([\frac{2}{3}\alpha, 1])$. Appeal to Lemma 8.15 to find a function $g \in C(X, [0, \alpha/3])$ such that $g = \alpha/3$ on B and $\sup(g) \subset V \setminus A$.
- 2. Now follow the argument in the proof of Theorem 8.2 to construct $F \in C(X, [a, b])$ such that $F|_K = f$.
- 3. For $c \in [a, b]$, choose $\phi \prec U$ such that $\phi = 1$ on K and replace F by $F_c := \phi F + (1 \phi)c$.

Exercise 8.11 (Sterographic Projection). Let $X = \mathbb{R}^n$, $X^* := X \cup \{\infty\}$ be the one point compactification of X, $S^n := \{y \in \mathbb{R}^{n+1} : |y| = 1\}$ be the unit sphere in \mathbb{R}^{n+1} and $N = (0, \dots, 0, 1) \in \mathbb{R}^{n+1}$. Define $f : S^n \to X^*$ by $f(N) = \infty$, and for $y \in S^n \setminus \{N\}$ let $f(y) = b \in \mathbb{R}^n$ be the unique point such that (b, 0) is on the line containing N and y, see Figure 22 below. Find a formula for f and show $f : S^n \to X^*$ is a homeomorphism. (So the one point compactification of \mathbb{R}^n is homeomorphic to the n sphere.)

FIGURE 22. Sterographic projection and the one point compactification of \mathbb{R}^n .