8. Locally Compact Hausdorff Spaces In this section X will always be a topological space with topology τ . We are now interested in restrictions on τ in order to insure there are "plenty" of continuous functions. One such restriction is to assume $\tau = \tau_d$ – is the topology induced from a metric on X. The following two results shows that (X, τ_d) has lots of continuous functions. Recall for $A \subset X$, $d_A(x) = \inf\{d(x,y) : y \in A\}$. **Lemma 8.1** (Urysohn's Lemma for Metric Spaces). Let (X,d) be a metric space, $V \subset_{o} X$ and $F \subset X$ such that $F \subset V$. Then (8.1) $$f(x) = \frac{d_{V^c}(x)}{d_F(x) + d_{V^c}(x)} \text{ for } x \in X$$ defines a continuous function, $f: X \to [0,1]$, such that f(x) = 1 for $x \in F$ and f(x) = 0 if $x \notin V$. (This may also be stated as follows. Let A (A = F) and B $(B = V^c)$ be two disjoint closed subsets of X, then there exists $f \in C(X, [0,1])$ such that f = 1 on A and f = 0 on B.) **Proof.** By Lemma 3.5, d_F and d_{V^c} are continuous functions on X. Since F and V^c are closed, $d_F(x) > 0$ if $x \notin F$ and $d_{V^c}(x) > 0$ if $x \in V$. Since $F \cap V^c = \emptyset$, $d_F(x) + d_{V^c}(x) > 0$ for all x and $(d_F + d_{V^c})^{-1}$ is continuous as well. The remaining assertions about f are all easy to verify. **Theorem 8.2** (Metric Space Tietze Extension Theorem). Let (X,d) be a metric space, D be a closed subset of X, $-\infty < a < b < \infty$ and $f \in C(D,[a,b])$. (Here we are viewing D as a topological space with the relative topology, τ_D , see Definition 3.17.) Then there exists $F \in C(X,[a,b])$ such that $F|_D = f$. # Proof. - 1. By scaling and translation (i.e. by replacing f by $\frac{f-a}{b-a}$), it suffices to prove Theorem 8.2 with a=0 and b=1. - 2. Suppose $\alpha \in (0,1]$ and $f:D \to [0,\alpha]$ is continuous function. Let $A:=f^{-1}([0,\frac{1}{3}\alpha])$ and $B:=f^{-1}([\frac{2}{3}\alpha,1])$. By Lemma 8.1 there exists a function $\tilde{g}\in C(X,[0,\alpha/3])$ such that $\tilde{g}=0$ on A and $\tilde{g}=1$ on B. Letting $g:=\frac{\alpha}{3}\tilde{g}$, we have $g\in C(X,[0,\alpha/3])$ such that g=0 on A and $g=\alpha/3$ on B. Further notice that $$0 \le f(x) - g(x) \le \frac{2}{3}\alpha$$ for all $x \in D$. 3. Now suppose $f: D \to [0,1]$ is a continuous function as in step 1. Let $g_1 \in C(X,[0,1/3])$ be as in step 2. with $\alpha=1$ and let $f_1:=f-g_1|_D \in C(D,[0,2/3])$. Apply step 2. with $\alpha=2/3$ and $f=f_1$ to find $g_2 \in C(X,[0,\frac{1}{3}\frac{2}{3}])$ such that $f_2:=f-(g_1+g_2)|_D \in C(D,[0,\left(\frac{2}{3}\right)^2])$. Continue this way inductively to find $g_n \in C(X,[0,\frac{1}{3}\left(\frac{2}{3}\right)^{n-1}])$ such that (8.2) $$f - \sum_{n=1}^{N} g_n|_D =: f_N \in C(D, [0, \left(\frac{2}{3}\right)^N]).$$ 4. Define $F := \sum_{n=1}^{\infty} g_n$. Since $$\sum_{n=1}^{\infty} \|g_n\|_u \le \sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = 1,$$ the series defining F is uniformly convergent so $F \in C(X, [0, 1])$. Passing to the limit in Eq. (8.2) shows $f = F|_D$. The main thrust of this section is to study locally compact (and σ – compact) Hausdorff spaces as defined below. We will see again that this class of topological spaces have an ample supply of continuous functions. We will start out with the notion of a Hausdorff topology. The following example shows a pathology which occurs when there are not enough open sets in a topology. **Example 8.3.** Let $X = \{1, 2, 3\}$ and $\tau = \{X, \emptyset, \{1, 2\}, \{2, 3\}, \{2\}\}$ and $x_n = 2$ for all n. Then $x_n \to x$ for every $x \in X$! **Definition 8.4** (Hausdorff Topology). A topological space, (X, τ) , is **Hausdorff** if for each pair of distinct points, $x, y \in X$, there exists disjoint open neighborhoods, U and V of x and y respectively. (Metric spaces are typical examples of Hausdorff spaces.) Remark 8.5. When τ is Hausdorff the "pathologies" appearing in Example 8.3 do not occur. Indeed if $x_n \to x \in X$ and $y \in X \setminus \{x\}$ we may choose $V \in \tau_x$ and $W \in \tau_y$ such that $V \cap W = \emptyset$. Then $x_n \in V$ a.a. implies $x_n \notin W$ for all but a finite number of n and hence $x_n \nrightarrow y$, so limits are unique. **Proposition 8.6.** Suppose that (X, τ) is a Hausdorff space, $K \sqsubseteq X$ and $x \in K^c$. Then there exists $U, V \in \tau$ such that $U \cap V = \emptyset$, $x \in U$ and $K \subseteq V$. In particular K is closed. (So compact subsets of Hausdorff topological spaces are closed.) More generally if K and F are two disjoint compact subsets of X, there exist disjoint open sets $U, V \in \tau$ such that $K \subseteq V$ and $F \subseteq U$. **Proof.** Because X is Hausdorff, for all $y \in K$ there exists $V_y \in \tau_y$ and $U_y \in \tau_x$ such that $V_y \cap U_y = \emptyset$. The cover $\{V_y\}_{y \in K}$ of K has a finite subcover, $\{V_y\}_{y \in \Lambda}$ for some $\Lambda \subset \subset K$. Let $V = \bigcup_{y \in \Lambda} V_y$ and $U = \bigcap_{y \in \Lambda} U_y$, then $U, V \in \tau$ satisfy $x \in U$, $K \subset V$ and $U \cap V = \emptyset$. This shows that K^c is open and hence that K is closed. Suppose that K and F are two disjoint compact subsets of X. For each $x \in F$ there exists disjoint open sets U_x and V_x such that $K \subset V_x$ and $x \in U_x$. Since $\{U_x\}_{x \in F}$ is an open cover of F, there exists a finite subset Λ of F such that $F \subset U := \bigcup_{x \in \Lambda} U_x$. The proof is completed by defining $V := \bigcap_{x \in \Lambda} V_x$. **Exercise 8.1.** Show any finite set X admits exactly one Hausdorff topology τ . Exercise 8.2. Given an example of a topological space which has a non-closed compact subset. **Proposition 8.7.** Suppose that X is a compact topological space, Y is a Hausdorff topological space, and $f: X \to Y$ is a continuous bijection then f is a homeomorphism, i.e. $f^{-1}: Y \to X$ is continuous as well. **Proof.** Since closed subsets of compact sets are compact, continuous images of compact subsets are compact and compact subsets of Hausdorff spaces are closed, it follows that $(f^{-1})^{-1}(C) = f(C)$ is closed in X for all closed subsets C of X. Thus f^{-1} is continuous. **Definition 8.8** (Local and σ – compactness). Let (X, τ) be a topological space. - 1. (X, τ) is **locally compact** if for all $x \in X$ there exists an open neighborhood $V \subset X$ of x such that \bar{V} is compact. (Alternatively, in light of Definition 3.19, this is equivalent to requiring that to each $x \in X$ there exists a compact neighborhood N_x of x.) - 2. (X, τ) is σ **compact** if there exists compact sets $K_n \subset X$ such that $X = \bigcup_{n=1}^{\infty} K_n$. (Notice that we may assume, by replacing K_n by $K_1 \cup K_2 \cup \cdots \cup K_n$ if necessary, that $K_n \uparrow X$.) **Example 8.9.** Any open subset of $X \subset \mathbb{R}^n$ is a locally compact and σ – compact metric space (and hence Hausdorff). The proof of local compactness is easy and is left to the reader. To see that X is σ – compact, for $k \in \mathbb{N}$, let $$K_k := \{x \in X : |x| \le k \text{ and } d_{X^c}(x) \ge 1/k\}.$$ Then K_k is a closed and bounded subset of \mathbb{R}^n and hence compact. Moreover $K_k^o \uparrow X$ as $k \to \infty$ since k $$K_k^o \supset \{x \in X : |x| < k \text{ and } d_{X^c}(x) > 1/k\} \uparrow X \text{ as } k \to \infty.$$ **Exercise 8.3.** Suppose that (X, d) is a metric space and $U \subset X$ is an open subset. - 1. If X is locally compact then (U, d) is locally compact. - 2. If X is σ compact then (U, d) is σ compact. **Exercise 8.4.** Every separable locally compact metric space is σ – compact. **Hint:** Let $\{x_n\}_{n=1}^{\infty} \subset X$ be a countable dense subset of X and define $$\epsilon_n = \frac{1}{2} \sup \{ \epsilon > 0 : C_{x_n}(\epsilon) \text{ is compact} \} \wedge 1.$$ **Exercise 8.5.** Every σ – compact metric space is separable. Therefore a locally compact metric space is separable iff it is σ – compact. **Lemma 8.10.** Let (X, τ) be a locally compact and σ – compact topological space. Then there exists compact sets $K_n \uparrow X$ such that $K_n \subset K_{n+1}^o \subset K_{n+1}$ for all n. **Proof.** Suppose that $C \subset X$ is a compact set. For each $x \in C$ let $V_x \subset_o X$ be an open neighborhood of x such that \bar{V}_x is compact. Then $C \subset \bigcup_{x \in C} V_x$ so there exists $\Lambda \subset\subset C$ such that $$C \subset \bigcup_{x \in \Lambda} V_x \subset \bigcup_{x \in \Lambda} \bar{V}_x =: K.$$ Then K is a compact set, being a finite union of compact subsets of X, and $C \subset \bigcup_{x \in \Lambda} V_x \subset K^o$. Now let $C_n \subset X$ be compact sets such that $C_n \uparrow X$ as $n \to \infty$. Let $K_1 = C_1$ and then choose a compact set K_2 such that $C_2 \subset K_2^o$. Similarly, choose a compact set K_3 such that $K_2 \cup C_3 \subset K_3^o$ and continue inductively to find compact sets K_n such that $K_n \cup C_{n+1} \subset K_{n+1}^o$ for all n. Then $\{K_n\}_{n=1}^\infty$ is the desired sequence. Remark 8.11. Lemma 8.10 may also be stated as saying there exists precompact open sets $\{G_n\}_{n=1}^{\infty}$ such that $G_n \subset \bar{G}_n \subset G_{n+1}$ for all n and $G_n \uparrow X$ as $n \to \infty$. Indeed if $\{G_n\}_{n=1}^{\infty}$ are as above, let $K_n := \bar{G}_n$ and if $\{K_n\}_{n=1}^{\infty}$ are as in Lemma 8.10, let $G_n := K_n^o$. The following result is a Corollary of Lemma 8.10 and Theorem 3.59. $^{^{16}}$ In fact this is an equality, but we will not need this here. Corollary 8.12 (Locally compact form of Ascoli-Arzela Theorem). Let (X, τ) be a locally compact and σ – compact topological space and $\{f_m\} \subset C(X)$ be a
pointwise bounded sequence of functions such that $\{f_m|_K\}$ is equicontinuous for any compact subset $K \subset X$. Then there exists a subsequence $\{m_n\} \subset \{m\}$ such that $\{g_n := f_{m_n}\}_{n=1}^{\infty} \subset C(X)$ is a sequence which is uniformly convergent on compact subsets of X. **Proof.** Let $\{K_n\}_{n=1}^{\infty}$ be the compact subsets of X constructed in Lemma 8.10. We may now apply Theorem 3.59 repeatedly to find a nested family of subsequences $$\{f_m\}\supset \{g_m^1\}\supset \{g_m^2\}\supset \{g_m^3\}\supset \dots$$ such that the sequence $\{g_m^n\}_{m=1}^{\infty}\subset C(X)$ is uniformly convergent on K_n . Using Cantor's trick, define the subsequence $\{h_n\}$ of $\{f_m\}$ by $h_n\equiv g_n^n$. Then $\{h_n\}$ is uniformly convergent on K_l for each $l\in\mathbb{N}$. Now if $K\subset X$ is an arbitrary compact set, there exists $l<\infty$ such that $K\subset K_l^o\subset K_l$ and therefore $\{h_n\}$ is uniformly convergent on K as well. \blacksquare The next two results shows that locally compact Hausdorff spaces have plenty of open sets and plenty of continuous functions. **Proposition 8.13.** Suppose X is a locally compact Hausdorff space and $U \subset_o X$ and $K \sqsubset U$. Then there exists $V \subset_o X$ such that $K \subset V \subset \overline{V} \subset U \subset X$ and \overline{V} is compact. **Proof.** By local compactness, for all $x \in K$, there exists $U_x \in \tau_x$ such that \bar{U}_x is compact. Since K is compact, there exists $\Lambda \subset\subset K$ such that $\{U_x\}_{x\in\Lambda}$ is a cover of K. The set $O=U\cap (\cup_{x\in\Lambda} U_x)$ is an open set such that $K\subset O\subset U$ and O is precompact since \bar{O} is a closed subset of the compact set $\cup_{x\in\Lambda} \bar{U}_x$. $(\cup_{x\in\Lambda} \bar{U}_x)$ is compact because it is a finite union of compact sets.) So by replacing U by O if necessary, we may assume that \bar{U} is compact. Since \bar{U} is compact and $\partial U = \bar{U} \cap U^c$ is a closed subset of \bar{U} , ∂U is compact. Because $\partial U \subset U^c$, it follows that $\partial U \cap K = \emptyset$, so by Proposition 8.6, there exists disjoint open sets V and W such that $K \subset V$ and $\partial U \subset W$. By replacing V by $V \cap U$ if necessary we may further assume that $K \subset V \subset U$, see Figure 17. FIGURE 17. The construction of V. Because $\bar{U} \cap W^c$ is a closed set containing V and $U^c \cap \bar{U} \cap W^c = \partial U \cap W^c = \emptyset$, $\bar{V} \subset \bar{U} \cap W^c = U \cap W^c \subset U \subset \bar{U}$. Since \bar{U} is compact it follows that \bar{V} is compact and the proof is complete. \blacksquare **Exercise 8.6.** Give a "simpler" proof of Proposition 8.13 under the additional assumption that X is a metric space. Hint: show for each $x \in K$ there exists $V_x := B_x(\epsilon_x)$ with $\epsilon_x > 0$ such that $\overline{B_x(\epsilon_x)} \subset C_x(\epsilon_x) \subset U$ with $C_x(\epsilon_x)$ being compact. Recall that $C_x(\epsilon)$ is the closed ball of radius ϵ about x. **Definition 8.14.** Let U be an open subset of a topological space (X, τ) . We will write $f \prec U$ to mean a function $f \in C_c(X, [0, 1])$ such that $\operatorname{supp}(f) := \overline{\{f \neq 0\}} \subset U$. **Lemma 8.15** (Locally Compact Version of Urysohn's Lemma). Let X be a locally compact Hausdorff space and $K \sqsubseteq U \subseteq_o X$. Then there exists $f \prec U$ such that f = 1 on K. In particular, if K is compact and C is closed in X such that $K \cap C = \emptyset$, there exists $f \in C_c(X, [0, 1])$ such that f = 1 on K and f = 0 on C. **Proof.** For notational ease later it is more convenient to construct g:=1-f rather than f. To motivate the proof, suppose $g \in C(X,[0,1])$ such that g=0 on K and g=1 on U^c . For r>0, let $U_r=\{g< r\}$. Then for $0< r< s\leq 1$, $U_r\subset \{g\leq r\}\subset U_s$ and since $\{g\leq r\}$ is closed this implies $$K \subset U_r \subset \bar{U}_r \subset \{g \leq r\} \subset U_s \subset U.$$ Therefore associated to the function g is the collection open sets $\{U_r\}_{r>0} \subset \tau$ with the property that $K \subset U_r \subset \bar{U}_r \subset U_s \subset U$ for all $0 < r < s \le 1$ and $U_r = X$ if r > 1. Finally let us notice that we may recover the function g from the sequence $\{U_r\}_{r>0}$ by the formula $$(8.3) q(x) = \inf\{r > 0 : x \in U_r\}.$$ The idea of the proof to follow is to turn these remarks around and define g by Eq. (8.3). **Step 1.** (Construction of the U_r .) Let $$\mathbb{D} \equiv \left\{ k2^{-n} : k = 1, 2, \dots, 2^{-1}, n = 1, 2, \dots \right\}$$ be the dyadic rationales in (0,1]. Use Proposition 8.13 to find a precompact open set U_1 such that $K \subset U_1 \subset \bar{U}_1 \subset U$. Apply Proposition 8.13 again to construct an open set $U_{1/2}$ such that $$K \subset U_{1/2} \subset \bar{U}_{1/2} \subset U_1$$ and similarly use Proposition 8.13 to find open sets $U_{1/2}, U_{3/4} \subset_o X$ such that $$K \subset U_{1/4} \subset \bar{U}_{1/4} \subset U_{1/2} \subset \bar{U}_{1/2} \subset U_{3/4} \subset \bar{U}_{3/4} \subset U_1.$$ Likewise there exists open set $U_{1/8}, U_{3/8}, U_{5/8}, U_{7/8}$ such that $$\begin{split} K \subset U_{1/8} \subset \bar{U}_{1/8} \subset U_{1/4} \subset \bar{U}_{1/4} \subset U_{3/8} \subset \bar{U}_{3/8} \subset U_{1/2} \\ \subset \bar{U}_{1/2} \subset U_{5/8} \subset \bar{U}_{5/8} \subset U_{3/4} \subset \bar{U}_{3/4} \subset U_{7/8} \subset \bar{U}_{7/8} \subset U_{1}. \end{split}$$ Continuing this way inductively, one shows there exists precompact open sets $\{U_r\}_{r\in\mathbb{D}}\subset \tau$ such that $$K \subset U_r \subset \overline{U}_r \subset U_s \subset U_1 \subset \overline{U}_1 \subset U$$ for all $r, s \in \mathbb{D}$ with $0 < r < s \le 1$. Step 2. Let $U_r \equiv X$ if r > 1 and define $$q(x) = \inf\{r \in \mathbb{D} \cup (1, \infty) : x \in U_r\},\$$ FIGURE 18. Determining g from $\{U_r\}$. see Figure 18. Then $g(x) \in [0,1]$ for all $x \in X$, g(x) = 0 for $x \in K$ since $x \in K \subset U_r$ for all $r \in \mathbb{D}$. If $x \in U_1^c$, then $x \notin U_r$ for all $r \in \mathbb{D}$ and hence g(x) = 1. Therefore f := 1-g is a function such that f = 1 on K and $\{f \neq 0\} = \{g \neq 1\} \subset U_1 \subset \bar{U}_1 \subset U$ so that $\sup(f) = \overline{\{f \neq 0\}} \subset \bar{U}_1 \subset U$ is a compact subset of U. Thus it only remains to show f, or equivalently g, is continuous. Since $\mathcal{E} = \{(\alpha, \infty), (-\infty, \alpha) : \alpha \in \mathbb{R}\}$ generates the standard topology on \mathbb{R} , to prove g is continuous it suffices to show $\{g < \alpha\}$ and $\{g > \alpha\}$ are open sets for all $\alpha \in \mathbb{R}$. But $g(x) < \alpha$ iff there exists $r \in \mathbb{D} \cup (1, \infty)$ with $r < \alpha$ such that $x \in U_r$. Therefore $$\{g < \alpha\} = \bigcup \{U_r : r \in \mathbb{D} \cup (1, \infty) \ni r < \alpha\}$$ which is open in X. If $\alpha \geq 1$, $\{g > \alpha\} = \emptyset$ and if $\alpha < 0$, $\{g > \alpha\} = X$. If $\alpha \in (0,1)$, then $g(x) > \alpha$ iff there exists $r \in \mathbb{D}$ such that $r > \alpha$ and $x \notin U_r$. Now if $r > \alpha$ and $x \notin U_r$ then for $s \in \mathbb{D} \cap (\alpha, r)$, $x \notin \overline{U}_s \subset U_r$. Thus we have shown that $$\{g>\alpha\}=\bigcup\left\{\left(\overline{U}_{s}\right)^{c}:s\in\mathbb{D}\,\ni\,s>\alpha\right\}$$ which is again an open subset of X. **Exercise 8.7.** Give a simpler proof of Lemma 8.15 under the additional assumption that X is a metric space. **Theorem 8.16** (Locally Compact Tietz Extension Theorem). Let (X, τ) be a locally compact Hausdorff space, $K \sqsubseteq U \subset_o X$, $f \in C(K, \mathbb{R})$, $a = \min f(K)$ and $b = \max f(K)$. Then there exists $F \in C(X, [a, b])$ such that $F|_K = f$. Moreover given $c \in [a, b]$, F can be chosen so that $\sup(F - c) = \overline{\{F \neq c\}} \subset U$. The proof of this theorem is similar to Theorem 8.2 and will be left to the reader, see Exercise 8.10. **Lemma 8.17.** Suppose that (X, τ) is a locally compact second countable Hausdorff space. (For example any separable locally compact metric space and in particular any open subsets of \mathbb{R}^n .) Then: - 1. every open subset $U \subset X$ is σ compact. - 2. If $F \subset X$ is a closed set, there exist open sets $V_n \subset X$ such that $V_n \downarrow F$ as $n \to \infty$. - 3. To each open set $U \subset X$ there exists $f_n \prec U$ such that $\lim_{n\to\infty} f_n = 1_U$. - 4. The σ algebra generated by $C_c(X)$ is the Borel σ algebra, \mathcal{B}_X . ## Proof. 1. Let U be an open subset of X, V be a countable base for τ and $$\mathcal{V}^U := \{ W \in \mathcal{V} : \bar{W} \subset U \text{ and } \bar{W} \text{ is compact} \}.$$ For each $x \in U$, by Proposition 8.13, there exists an open neighborhood V of x such that $\bar{V} \subset U$ and \bar{V} is compact. Since \mathcal{V} is a base for the topology τ , there exists $W \in \mathcal{V}$ such that $x \in W \subset V$. Because $\bar{W} \subset \bar{V}$, it follows that \bar{W} is compact and hence $W \in \mathcal{V}^U$. As $x \in U$ was arbitrary, $U = \cup \mathcal{V}^U$. Let $\{W_n\}_{n=1}^{\infty}$ be an enumeration of \mathcal{V}^U and set $K_n := \bigcup_{k=1}^n \overline{W}_k$. Then $K_n \uparrow U$ as $n \to \infty$ and K_n is compact for each n. - 2. Let $\{K_n\}_{n=1}^{\infty}$ be compact subsets of F^c such that $K_n \uparrow F^c$ as $n \to \infty$ and set $V_n := K_n^c = X \setminus K_n$. Then $V_n \downarrow F$ and by Proposition 8.6, V_n is open for each n. - 3. Let $U \subset X$ be an open set and $\{K_n\}_{n=1}^{\infty}$ be compact subsets of U such that $K_n \uparrow U$. By Lemma 8.15, there exist $f_n \prec U$ such that $f_n = 1$ on K_n . These
functions satisfy, $1_U = \lim_{n \to \infty} f_n$. - 4. By Item 3., 1_U is $\sigma(C_c(X,\mathbb{R}))$ measurable for all $U \in \tau$. Hence $\tau \subset \sigma(C_c(X,\mathbb{R}))$ and therefore $\mathcal{B}_X = \sigma(\tau) \subset \sigma(C_c(X,\mathbb{R}))$. The converse inclusion always holds since continuous functions are always Borel measurable. Corollary 8.18. Suppose that (X,τ) is a second countable locally compact Hausdorff space, $\mathcal{B}_X = \sigma(\tau)$ is the Borel σ – algebra on X and \mathcal{H} is a subspace of $B(X,\mathbb{R})$ which is closed under bounded convergence and contains $C_c(X,\mathbb{R})$. Then \mathcal{H} contains all bounded \mathcal{B}_X – measurable real valued functions on X. **Proof.** Since \mathcal{H} is closed under bounded convergence and $C_c(X,\mathbb{R}) \subset \mathcal{H}$, it follows by Item 3. of Lemma 8.17 that $1_U \in \mathcal{H}$ for all $U \in \tau$. Since τ is a π – class the corollary follows by an application of Theorem 6.12. ### 8.1. Partitions of Unity. **Definition 8.19.** Let (X, τ) be a topological space and $X_0 \subset X$ be a set. A collection of sets $\{B_\alpha\}_{\alpha \in A} \subset 2^X$ is **locally finite** on X_0 if for all $x \in X_0$, there is an open neighborhood $N_x \in \tau$ of x such that $\#\{\alpha \in A : B_\alpha \cap N_x \neq \emptyset\} < \infty$. **Lemma 8.20.** Let (X, τ) be a locally compact Hausdorff space. - 1. A subset $E \subset X$ is closed iff $E \cap K$ is closed for all $K \sqsubset \sqsubset X$. - 2. Let $\{C_{\alpha}\}_{{\alpha}\in A}$ be a locally finite collection of closed subsets of X, then $C=\bigcup_{{\alpha}\in A}C_{\alpha}$ is closed in X. (Recall that in general closed sets are only closed under finite unions.) **Proof.** Item 1. Since compact subsets of Hausdorff spaces are closed, $E \cap K$ is closed if E is closed and K is compact. Now suppose that $E \cap K$ is closed for all compact subsets $K \subset X$ and let $x \in E^c$. Since X is locally compact, there exists a precompact open neighborhood, V, of x.¹⁷ By assumption $E \cap \overline{V}$ is closed so $x \in (E \cap \overline{V})^c$ – an open subset of X. By Proposition 8.13 there exists an open set U such that $x \in U \subset \overline{U} \subset (E \cap \overline{V})^c$, see Figure 19. Let $W := U \cap V$. Since FIGURE 19. Showing E^c is open. $$W \cap E = U \cap V \cap E \subset U \cap \overline{V} \cap E = \emptyset$$, and W is an open neighborhood of x and $x \in E^c$ was arbitrary, we have shown E^c is open hence E is closed. Item 2. Let K be a compact subset of X and for each $x \in K$ let N_x be an open neighborhood of x such that $\#\{\alpha \in A : C_\alpha \cap N_x \neq \emptyset\} < \infty$. Since K is compact, there exists a finite subset $\Lambda \subset K$ such that $K \subset \cup_{x \in \Lambda} N_x$. Letting $\Lambda_0 := \{\alpha \in A : C_\alpha \cap K \neq \emptyset\}$, then $$\#(\Lambda_0) \le \sum_{x \in \Lambda} \#\{\alpha \in A : C_\alpha \cap N_x \ne \emptyset\} < \infty$$ and hence $K \cap (\cup_{\alpha \in A} C_{\alpha}) = K \cap (\cup_{\alpha \in \Lambda_0} C_{\alpha})$. The set $(\cup_{\alpha \in \Lambda_0} C_{\alpha})$ is a finite union of closed sets and hence closed. Therefore, $K \cap (\cup_{\alpha \in A} C_{\alpha})$ is closed and by Item (1) it follows that $\cup_{\alpha \in A} C_{\alpha}$ is closed as well. \blacksquare **Definition 8.21.** Suppose that \mathcal{U} is an open cover of $X_0 \subset X$. A collection $\{\phi_i\}_{i=1}^N \subset C(X,[0,1])$ $(N=\infty)$ is allowed here) is a **partition of unity** on X_0 subordinate to the cover \mathcal{U} if: - 1. for all i there is a $U \in \mathcal{U}$ such that $supp(\phi_i) \subset U$, - 2. the collection of sets, $\{\operatorname{supp}(\phi_i)\}_{i=1}^N$, is locally finite on X_0 , and - 3. $\sum_{i=1}^{N} \phi_i = 1$ on X_0 . (Notice by (2), that for each $x \in X_0$ there is a neighborhood N_x such that $\phi_i|_{N_x}$ is not identically zero for only a finite number of terms. So the sum is well defined and we say the sum is **locally finite**.) **Proposition 8.22** (Partitions of Unity: The Compact Case). Suppose that X is a locally compact Hausdorff space, $K \subset X$ is a compact set and $\mathcal{U} = \{U_j\}_{j=1}^n$ is an open cover of K. Then there exists a partition of unity $\{h_j\}_{j=1}^n$ of K such that $h_j \prec U_j$ for all $j = 1, 2, \ldots, n$. ¹⁷If X were a metric space we could finish the proof as follows. If there does not exist an open neighborhood of x which is disjoint from E, then there would exists $x_n \in E$ such that $x_n \to x$. Since $E \cap \bar{V}$ is closed and $x_n \in E \cap \bar{V}$ for all large n, it follows (see Exercise 3.4) that $x \in E \cap \bar{V}$ and in particular that $x \in E$. But we chose $x \in E^c$. **Proof.** For all $x \in K$ choose a precompact open neighborhood, V_x , of x such that $\overline{V}_x \subset U_j$. Since K is compact, there exists a finite subset, Λ , of K such that $K \subset \bigcup_{x \in \Lambda} V_x$. Let $$F_j = \bigcup \{ \overline{V}_x : x \in \Lambda \text{ and } \overline{V}_x \subset U_j \}.$$ Then F_j is compact, $F_j \subset U_j$ for all j, and $K \subset \bigcup_{j=1}^n F_j$. By Urysohn's Lemma 8.15 there exists $f_j \prec U_j$ such that $f_j = 1$ on F_j . We will now give two methods to finish the proof. **Method 1.** Let $$h_1 = f_1$$, $h_2 = f_2(1 - h_1) = f_2(1 - f_1)$, $$h_3 = f_3(1 - h_1 - h_2) = f_3(1 - f_1 - (1 - f_1)f_2) = f_3(1 - f_1)(1 - f_2)$$ and continue on inductively to define (8.4) $$h_k = (1 - h_1 - \dots - h_{k-1}) f_k = f_k \cdot \prod_{j=1}^{k-1} (1 - f_j) \,\forall \, k = 2, 3, \dots, n$$ and to show (8.5) $$(1 - h_1 - \dots - h_n) = \prod_{j=1}^{n} (1 - f_j).$$ From these equations it clearly follows that $h_j \in C_c(X, [0, 1])$ and that $\operatorname{supp}(h_j) \subset \operatorname{supp}(f_j) \subset U_j$, i.e. $h_j \prec U_j$. Since $\prod_{j=1}^n (1 - f_j) = 0$ on K, $\sum_{j=1}^n h_j = 1$ on K and $\{h_j\}_{j=1}^n$ is the desired partition of unity. **Method 2.** Let $g := \sum_{j=1}^n f_j \in C_c(X)$. Then $g \ge 1$ on K and hence $K \subset \{g > \frac{1}{2}\}$. Choose $\phi \in C_c(X, [0, 1])$ such that $\phi = 1$ on K and $\operatorname{supp}(\phi) \subset \{g > \frac{1}{2}\}$ and define $f_0 \equiv 1 - \phi$. Then $f_0 = 0$ on K, $f_0 = 1$ if $g \leq \frac{1}{2}$ and therefore, $$f_0 + f_1 + \dots + f_n = f_0 + g > 0$$ on X. The desired partition of unity may be constructed as $$h_j(x) = \frac{f_j(x)}{f_0(x) + \dots + f_n(x)}.$$ Indeed supp $(h_j) = \text{supp}(f_j) \subset U_j, h_j \in C_c(X, [0, 1])$ and on K, $$h_1 + \dots + h_n = \frac{f_1 + \dots + f_n}{f_0 + f_1 + \dots + f_n} = \frac{f_1 + \dots + f_n}{f_1 + \dots + f_n} = 1.$$ **Proposition 8.23.** Let (X, τ) be a locally compact and σ – compact Hausdorff space. Suppose that $\mathcal{U} \subset \tau$ is an open cover of X. Then we may construct two locally finite open covers $\mathcal{V} = \{V_i\}_{i=1}^N$ and $\mathcal{W} = \{W_i\}_{i=1}^N$ of X $(N = \infty)$ is allowed here) such that: - 1. $W_i \subset \overline{W}_i \subset V_i \subset \overline{V}_i$ and \overline{V}_i is compact for all i. - 2. For each i there exist $U \in \mathcal{U}$ such that $\bar{V}_i \subset U$. **Proof.** By Remark 8.11, there exists an open cover of $\mathcal{G} = \{G_n\}_{n=1}^{\infty}$ of X such that $G_n \subset \bar{G}_n \subset G_{n+1}$. Then $X = \bigcup_{k=1}^{\infty} (\bar{G}_k \setminus \bar{G}_{k-1})$, where by convention $G_{-1} = G_0 = \emptyset$. For the moment fix $k \geq 1$. For each $x \in \bar{G}_k \setminus G_{k-1}$, let $U_x \in \mathcal{U}$ be chosen so that $x \in U_x$ and by Proposition 8.13 choose an open neighborhood N_x of x such that $\bar{N}_x \subset U_x \cap (G_{k+1} \setminus \bar{G}_{k-2})$, see Figure 20 below. Since $\{N_x\}_{x \in \bar{G}_k \setminus G_{k-1}}$ is an open FIGURE 20. Constructing the $\{W_i\}_{i=1}^N$. cover of the compact set $\bar{G}_k \setminus G_{k-1}$, there exist a finite subset $\Gamma_k \subset \{N_x\}_{x \in \bar{G}_k \setminus G_{k-1}}$ which also covers $\bar{G}_k \setminus G_{k-1}$. By construction, for each $W \in \Gamma_k$, there is a $U \in \mathcal{U}$ such that $\bar{W} \subset U \cap (G_{k+1} \setminus \bar{G}_{k-2})$. Apply Proposition 8.13 one more time to find, for each $W \in \Gamma_k$, an open set V_W such that $\bar{W} \subset V_W \subset \bar{V}_W \subset U \cap (G_{k+1} \setminus \bar{G}_{k-2})$. We now choose and enumeration $\{W_i\}_{i=1}^N$ of the countable open cover $\bigcup_{k=1}^\infty \Gamma_k$ of X and define $V_i = V_{W_i}$. Then the collection $\{W_i\}_{i=1}^N$ and $\{V_i\}_{i=1}^N$ are easily checked to satisfy all the conclusions of the proposition. In particular notice that for each k that the set of i's such that $V_i \cap G_k \neq \emptyset$ is finite. **Theorem 8.24** (Locally Compact Partitions of Unity). Let (X, τ) be a locally compact and σ – compact Hausdorff space and $\mathcal{U} \subset \tau$ be an open cover of X. Then there exists a partition of unity of $\{h_i\}_{i=1}^N$ $(N = \infty \text{ is allowed here})$ subordinate to the cover \mathcal{U} such that $\operatorname{supp}(h_i)$ is compact for all i. **Proof.** Let $\mathcal{V} = \{V_i\}_{i=1}^N$ and $\mathcal{W} = \{W_i\}_{i=1}^N$ be open covers of X with the properties described in Proposition 8.23. By Urysohn's Lemma 8.15, there exists $f_i \prec V_i$ such that $f_i = 1$ on \bar{W}_i for each i. As in the proof of Proposition 8.22 there are two methods to finish the proof. **Method 1.** Define $h_1 = f_1$, h_j by Eq. (8.4) for all other j. Then as in Eq. (8.5) $$1 - \sum_{j=1}^{N} h_j = \prod_{j=1}^{N} (1 - f_j) = 0$$ since for $x \in X$, $f_j(x) = 1$ for some j. As in the proof of Proposition 8.22, it is easily checked that $\{h_i\}_{i=1}^N$ is the desired partition
of unity. **Method 2.** Let $f \equiv \sum_{i=1}^{N} f_i$, a locally finite sum, so that $f \in C(X)$. Since $\{W_i\}_{i=1}^{\infty}$ is a cover of $X, f \geq 1$ on X so that $1/f \in C(X)$) as well. The functions $h_i \equiv f_i/f$ for $i = 1, 2, \ldots, N$ give the desired partition of unity. Corollary 8.25. Let (X, τ) be a locally compact and σ – compact Hausdorff space and $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A} \subset \tau$ be an open cover of X. Then there exists a partition of unity of $\{h_{\alpha}\}_{{\alpha} \in A}$ subordinate to the cover \mathcal{U} such that $\sup (h_{\alpha}) \subset U_{\alpha}$ for all $\alpha \in A$. (Notice that we do not assert that h_{α} has compact support. However if \bar{U}_{α} is compact then $\mathrm{supp}(h_{\alpha})$ will be compact.) **Proof.** By the σ – compactness of X, we may choose a countable subset, $\{\alpha_i\}_{i < N}$ $(N = \infty \text{ allowed here})$, of A such that $\{U_i \equiv U_{\alpha_i}\}_{i < N}$ is still an open cover of X. Let $\{g_j\}_{j < N}$ be a partition of unity subordinate to the cover $\{U_i\}_{i < N}$ as in Theorem 8.24. Define $\tilde{\Gamma}_k \equiv \{j : \text{supp}(g_j) \subset U_k\}$ and $\Gamma_k := \tilde{\Gamma}_k \setminus \left(\bigcup_{j=1}^{k-1} \tilde{\Gamma}_k\right)$, where by convention $\tilde{\Gamma}_0 = \emptyset$. Then $$\{i \in \mathbb{N} : i < N\} = \bigcup_{k=1}^{\infty} \tilde{\Gamma}_k = \prod_{k=1}^{\infty} \Gamma_k.$$ If $\Gamma_k = \emptyset$ let $h_k \equiv 0$ otherwise let $h_k := \sum_{j \in \Gamma_k} g_j$, a locally finite sum. Then $\sum_{k=1}^{\infty} h_k = \sum_{j=1}^{N} g_j = 1$ and the sum $\sum_{k=1}^{\infty} h_k$ is still locally finite. (Why?) Now for $\alpha = \alpha_k \in \{\alpha_i\}_{i=1}^{N}$, let $h_\alpha := h_k$ and for $\alpha \notin \{\alpha_i\}_{i=1}^{N}$ let $h_\alpha \equiv 0$. Since $$\{h_k \neq 0\} = \bigcup_{j \in \Gamma_k} \{g_j \neq 0\} \subset \bigcup_{j \in \Gamma_k} \operatorname{supp}(g_j) \subset U_k$$ and, by Item 2. of Lemma 8.20, $\bigcup_{j \in \Gamma_k} \operatorname{supp}(g_j)$ is closed, we see that $$\operatorname{supp}(h_k) = \overline{\{h_k \neq 0\}} \subset \bigcup_{i \in \Gamma_k} \operatorname{supp}(g_i) \subset U_k.$$ Therefore $\{h_{\alpha}\}_{\alpha\in A}$ is the desired partition of unity. **Corollary 8.26.** Let (X, τ) be a locally compact and σ – compact Hausdorff space and A, B be disjoint closed subsets of X. Then there exists $f \in C(X, [0, 1])$ such that f = 1 on A and f = 0 on B. In fact f can be chosen so that $\operatorname{supp}(f) \subset B^c$. **Proof.** Let $U_1 = A^c$ and $U_2 = B^c$, then $\{U_1, U_2\}$ is an open cover of X. By Corollary 8.25 there exists $h_1, h_2 \in C(X, [0, 1])$ such that $\operatorname{supp}(h_i) \subset U_i$ for i = 1, 2 and $h_1 + h_2 = 1$ on X. The function $f = h_2$ satisfies the desired properties. \blacksquare 8.2. $C_0(X)$ and the Alexanderov Compactification. **Definition 8.27.** Let (X, τ) be a topological space. A continuous function $f: X \to \mathbb{C}$ is said to **vanish at infinity** if $\{|f| \ge \epsilon\}$ is compact in X for all $\epsilon > 0$. The functions, $f \in C(X)$, vanishing at infinity will be denoted by $C_0(X)$. **Proposition 8.28.** Let X be a topological space, BC(X) be the space of bounded continuous functions on X with the supremum norm topology. Then - 1. $C_0(X)$ is a closed subspace of BC(X). - 2. If we further assume that X is a locally compact Hausdorff space, then $C_0(X) = \overline{C_c(X)}$. ## Proof. 1. If $f \in C_0(X)$, $K_1 := \{|f| \ge 1\}$ is a compact subset of X and therefore $f(K_1)$ is a compact and hence bounded subset of $\mathbb C$ and so $M := \sup_{x \in K_1} |f(x)| < \infty$. Therefore $\|f\|_u \le M \vee 1 < \infty$ showing $f \in BC(X)$. Now suppose $f_n \in C_0(X)$ and $f_n \to f$ in BC(X). Let $\epsilon > 0$ be given and choose n sufficiently large so that $||f - f_n||_u \le \epsilon/2$. Since $$|f| \le |f_n| + |f - f_n| \le |f_n| + ||f - f_n||_u \le |f_n| + \epsilon/2,$$ $$\{|f| \geq \epsilon\} \subset \{|f_n| + \epsilon/2 \geq \epsilon\} = \{|f_n| \geq \epsilon/2\} \ .$$ Because $\{|f| \ge \epsilon\}$ is a closed subset of the compact set $\{|f_n| \ge \epsilon/2\}$, $\{|f| \ge \epsilon\}$ is compact and we have shown $f \in C_0(X)$. 2. Since $C_0(X)$ is a closed subspace of BC(X) and $C_c(X) \subset C_0(X)$, we always have $\overline{C_c(X)} \subset C_0(X)$. Now suppose that $f \in C_0(X)$ and let $K_n \equiv \{|f| \geq \frac{1}{n}\} \sqsubseteq X$. By Lemma 8.15 we may choose $\phi_n \in C_c(X, [0, 1])$ such that $\phi_n \equiv 1$ on K_n . Define $f_n \equiv \phi_n f \in C_c(X)$. Then $$||f - f_n||_u = ||(1 - \phi_n)f||_u \le \frac{1}{n} \to 0 \text{ as } n \to \infty.$$ This shows that $f \in \overline{C_c(X)}$. **Proposition 8.29** (Alexanderov Compactification). Suppose that (X, τ) is a non-compact locally compact Hausdorff space. Let $X^* = X \cup \{\infty\}$, where $\{\infty\}$ is a new symbol not in X. The collection of sets, $$\tau^* = \tau \cup \{X^* \setminus K : K \sqsubset \sqsubset X\} \subset \mathcal{P}(X^*),$$ is a topology on X^* and (X^*, τ^*) is a compact Hausdorff space. Moreover $f \in C(X)$ extends continuously to X^* iff f = g + c with $g \in C_0(X)$ and $c \in \mathbb{C}$ in which case the extension is given by $f(\infty) = c$. **Proof.** Let $\mathcal{F} := \{F \subset X^* : X^* \setminus F \in \tau^*\}$, i.e. $F \in \mathcal{F}$ iff F is a compact subset of X or $F = F_0 \cup \{\infty\}$ with F_0 being a closed subset of X. Since the finite union of compact (closed) subsets is compact (closed), it is easily seen that \mathcal{F} is closed under finite unions. Because arbitrary intersections of closed subsets of X are closed and closed subsets of compact subsets of X are compact, it is also easily checked that \mathcal{F} is closed under arbitrary intersections. Therefore \mathcal{F} satisfies the axioms of the closed subsets associated to a topology and hence τ^* is a topology. Let $i: X \to X^*$ be the inclusion map. Then i is continuous and open, i.e. i(V) is open in X^* for all V open in X. If $f \in C(X^*)$, then $g = f|_X - f(\infty) = f \circ i - f(\infty)$ is continuous on X. Moreover, for all $\epsilon > 0$ there exists an open neighborhood $V \in \tau^*$ of ∞ such that $$|g(x)| = |f(x) - f(\infty)| < \epsilon \text{ for all } x \in V.$$ Since V is an open neighborhood of ∞ , there exists a compact subset, $K \subset X$, such that $V = X^* \setminus K$. By the previous equation we see that $\{x \in X : |g(x)| \ge \epsilon\} \subset K$, so $\{|g| \ge \epsilon\}$ is compact and we have shown g vanishes at ∞ . Conversely if $g \in C_0(X)$, extend g to X^* by setting $g(\infty) = 0$. Given $\epsilon > 0$, the set $K = \{|g| \ge \epsilon\}$ is compact, hence $X^* \setminus K$ is open in X^* . Since $g(X^* \setminus K) \subset (-\epsilon, \epsilon)$ we have shown that g is continuous at ∞ . Since g is also continuous at all points in X it follows that g is continuous on X^* . Now it f = g + c with $c \in \mathbb{C}$ and $g \in C_0(X)$, it follows by what we just proved that defining $f(\infty) = c$ extends f to a continuous function on X^* . 8.3. More on Separation Axioms: Normal Spaces. (The reader may skip to Definition 8.32 if he/she wishes. The following material will not be used in the rest of the book.) **Definition 8.30** ($T_0 - T_2$ Separation Axioms). Let (X, τ) be a topological space. The topology τ is said to be: 1. T_0 if for $x \neq y$ in X there exists $V \in \tau$ such that $x \in V$ and $y \notin V$ or V such that $y \in V$ but $x \notin V$. - 2. T_1 if for every $x, y \in X$ with $x \neq y$ there exists $V \in \tau$ such that $x \in V$ and $y \notin V$. Equivalently, τ is T_1 iff all one point subsets of X are closed. 18 - 3. T_2 if it is Hausdorff. Note T_2 implies T_1 which implies T_0 . The topology in Example 8.3 is T_0 but not T_1 . If X is a finite set and τ is a T_1 - topology on X then $\tau = 2^X$. To prove this let $x \in X$ be fixed. Then for every $y \neq x$ in X there exists $V_y \in \tau$ such that $x \in V_y$ while $y \notin V_y$. Thus $\{x\} = \bigcap_{y \neq x} V_y \in \tau$ showing τ contains all one point subsets of X and therefore all subsets of X. So we have to look to infinite sets for an example of T_1 topology which is not T_2 . **Example 8.31.** Let X be any infinite set and let $\tau = \{A \subset X : \#(A^c) < \infty\} \cup \{\emptyset\}$ – the so called **cofinite** topology. This topology is T_1 because if $x \neq y$ in X, then $V = \{x\}^c \in \tau$ with $x \notin V$ while $y \in V$. This topology however is not T_2 . Indeed if $U, V \in \tau$ are open sets such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$ then $U \subset V^c$. But this implies $\#(U) < \infty$ which is impossible unless $U = \emptyset$ which is impossible since $x \in U$. The uniqueness of limits of sequences which occurs for Hausdorff topologies (see Remark 8.5) need not occur for T_1 – spaces. For example, let $X = \mathbb{N}$ and τ be the cofinite topology on X as in Example 8.31. Then $x_n = n$ is a sequence in X such that $x_n \to x$ as $n \to \infty$ for all $x \in \mathbb{N}$. For the most part we will avoid these pathologies in the future by only considering Hausdorff topologies. **Definition 8.32** (Normal Spaces: T_4 – Separation Axiom). A topological space (X, τ) is said to be **normal** or T_4 if: - 1. X is Hausdorff and - 2. if for any two closed disjoint subsets $A, B \subset X$ there exists disjoint open sets $V, W \subset X$ such that $A \subset V$ and $B \subset W$. **Example 8.33.** By Lemma 8.1 and Corollary 8.26 it follows that metric space and locally compact and σ – compact Hausdorff space (in particular compact Hausdorff spaces)
are normal. Indeed, in each case if A, B are disjoint closed subsets of X, there exists $f \in C(X, [0, 1])$ such that f = 1 on A and f = 0 on B. Now let $U = \{f > \frac{1}{2}\}$ and $V = \{f < \frac{1}{2}\}$. Remark 8.34. A topological space, (X, τ) , is normal iff for any $C \subset W \subset X$ with C being closed and W being open there exists an open set $U \subset_{\rho} X$ such that $$C \subset U \subset \bar{U} \subset W$$. To prove this first suppose X is normal. Since W^c is closed and $C \cap W^c = \emptyset$, there exists disjoint open sets U and V such that $C \subset U$ and $W^c \subset V$. Therefore $C \subset U \subset V^c \subset W$ and since V^c is closed, $C \subset U \subset \bar{U} \subset V^c \subset W$. For the converse direction suppose A and B are disjoint closed subsets of X. Then $A \subset B^c$ and B^c is open, and so by assumption there exists $U \subset_o X$ such that $A \subset U \subset \bar{U} \subset B^c$ and by the same token there exists $W \subset_o X$ such that $\bar{U} \subset W \subset \bar{W} \subset B^c$. Taking complements of the last expression implies $$B \subset \bar{W}^c \subset W^c \subset \bar{U}^c$$. Let $V = \overline{W}^c$. Then $A \subset U \subset_o X$, $B \subset V \subset_o X$ and $U \cap V \subset U \cap W^c = \emptyset$. ¹⁸If one point subsets are closed and $x \neq y$ in X then $V := \{x\}^c$ is an open set containing y but not x. Conversely if τ is T_1 and $x \in X$ there exists $V_y \in \tau$ such that $y \in V_y$ and $x \notin V_y$ for all $y \neq x$. Therefore, $\{x\}^c = \bigcup_{y \neq x} V_y \in \tau$. **Theorem 8.35** (Urysohn's Lemma for Normal Spaces). Let X be a normal space. Assume A, B are disjoint closed subsets of X. Then there exists $f \in C(X, [0, 1])$ such that f = 0 on A and f = 1 on B. **Proof.** To make the notation match Lemma 8.15, let $U = A^c$ and K = B. Then $K \subset U$ and it suffices to produce a function $f \in C(X, [0, 1])$ such that f = 1 on K and $\operatorname{supp}(f) \subset U$. The proof is now identical to that for Lemma 8.15 except we now use Remark 8.34 in place of Proposition 8.13. \blacksquare **Theorem 8.36** (Tietze Extension Theorem). Let (X, τ) be a normal space, D be a closed subset of X, $-\infty < a < b < \infty$ and $f \in C(D, [a, b])$. Then there exists $F \in C(X, [a, b])$ such that $F|_D = f$. **Proof.** The proof is identical to that of Theorem 8.2 except we now use Theorem 8.35 in place of Lemma 8.1. ■ **Corollary 8.37.** Suppose that X is a normal topological space, $D \subset X$ is closed, $F \in C(D, \mathbb{R})$. Then there exists $F \in C(X)$ such that $F|_D = f$. **Proof.** Let $g = \arctan(f) \in C(D, (-\frac{\pi}{2}, \frac{\pi}{2}))$. Then by the Tietze extension theorem, there exists $G \in C(X, [-\frac{\pi}{2}, \frac{\pi}{2}])$ such that $G|_D = g$. Let $B \equiv G^{-1}(\{-\frac{\pi}{2}, \frac{\pi}{2}\}) \sqsubset X$, then $B \cap D = \emptyset$. By Urysohn's lemma (Theorem 8.35) there exists $h \in C(X, [0, 1])$ such that $h \equiv 1$ on D and h = 0 on B and in particular $hG \in C(D, (-\frac{\pi}{2}, \frac{\pi}{2}))$ and $(hG)|_D = g$. The function $F \equiv \tan(hG) \in C(X)$ is an extension of f. **Notation 8.38.** Let $Q := [0,1]^{\mathbb{N}}$ denote the (infinite dimensional) unit cube in $\mathbb{R}^{\mathbb{N}}$. For $a, b \in Q$ let $$d(a,b) := \sum_{n=1}^{\infty} \frac{1}{2^n} |a_n - b_n|.$$ The metric introduced in Exercise 3.27 would be defined, in this context, as $\tilde{d}(a,b) := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|a_n - b_n|}{1 + |a_n - b_n|}$. Since $1 \le 1 + |a_n - b_n| \le 2$, it follows that $\tilde{d} \le d \le 2d$. So the metrics d and \tilde{d} are equivalent and in particular the topologies induced by d and \tilde{d} are the same. By Exercises 4.15, the d – topology on Q is the same as the product topology and by Exercise 3.27, (Q,d) is a compact metric space. **Theorem 8.39** (Urysohn Metrization Theorem). Every second countable normal space, (X, τ) , is metrizable, i.e. there is a metric ρ on X such that $\tau = \tau_{\rho}$. Moreover, ρ may be chosen so that X is isometric to a subset $Q_0 \subset Q$. In this metric X is totally bounded and hence the completion of X (which is isometric to $\bar{Q}_0 \subset Q$) is compact. **Proof.** Let \mathcal{B} be a countable base for τ and set $$\Gamma \equiv \{(U, V) \in \mathcal{B} \times \mathcal{B} \mid \bar{U} \subset V\}.$$ To each $O \in \tau$ and $x \in O$ there exist $(U,V) \in \Gamma$ such that $x \in U \subset V \subset O$. Indeed, since \mathcal{B} is a basis for τ , there exists $V \in \mathcal{B}$ such that $x \in V \subset O$. Because $\{x\} \cap V^c = \emptyset$, there exists disjoint open sets \widetilde{U} and W such that $x \in \widetilde{U}$, $V^c \subset W$ and $\widetilde{U} \cap W = \emptyset$. Choose $U \in \mathcal{B}$ such that $x \in U \subset \widetilde{U}$. Since $U \subset \widetilde{U} \subset W^c$, $\overline{U} \subset W^c \subset V$ and hence $(U,V) \in \Gamma$. See Figure 21 below. In particular this shows that $\{U \in \mathcal{B} : (U,V) \in \Gamma \text{ for some } V \in \mathcal{B}\}$ is still a base for τ . If Γ is a finite set, the previous comment shows that τ only has a finite number of elements as well. Since (X, τ) is Hausdorff, it follows that X is a finite set. FIGURE 21. Constructing $(U, V) \in \Gamma$. Letting $\{x_n\}_{n=1}^N$ be an enumeration of X, define $T:X\to Q$ by $T(x_n)=e_n$ for $n=1,2,\ldots,N$ where $e_n=(0,0,\ldots,0,1,0,\ldots)$, with the 1 occurring in the n^{th} spot. Then $\rho(x,y):=d(T(x),T(y))$ for $x,y\in X$ is the desired metric. So we will for now on assume that Γ is an infinite set and let $\{(U_n,V_n)\}_{n=1}^\infty$ be an enumeration of Γ . By Urysohn's Lemma (Theorem 8.35) there exists $f_{U,V} \in C(X,[0,1])$ such that $f_{U,V} = 0$ on \bar{U} and $f_{U,V} = 1$ on V^c . Let $\mathcal{F} \equiv \{f_{U,V} \mid (U,V) \in \Gamma\}$ and set $f_n := f_{U_n,V_n}$ – an enumeration of \mathcal{F} . We will now show that $$\rho(x,y) := \sum_{n=1}^{\infty} \frac{1}{2^n} |f_n(x) - f_n(y)|$$ is the desired metric on X. The proof will involve a number of steps. - 1. (ρ is a metric on X.) It is routine to show ρ satisfies the triangle inequality and ρ is symmetric. If $x, y \in X$ are distinct points then there exists $(U_{n_0}, V_{n_0}) \in \Gamma$ such that $x \in U_{n_0}$ and $V_{n_0} \subset O := \{y\}^c$. Since $f_{n_0}(x) = 0$ and $f_{n_0}(y) = 1$, it follows that $\rho(x, y) \geq 2^{-n_0} > 0$. - 2. (Let $\tau_0 = \tau (f_n : n \in \mathbb{N})$, then $\tau = \tau_0 = \tau_\rho$.) As usual we have $\tau_0 \subset \tau$. Since, for each $x \in X$, $y \to \rho(x,y)$ is τ_0 continuous (being the uniformly convergent sum of continuous functions), it follows that $B_x(\epsilon) := \{y \in X : \rho(x,y) < \epsilon\} \in \tau_0$ for all $x \in X$ and $\epsilon > 0$. Thus $\tau_\rho \subset \tau_0 \subset \tau$. Suppose that $O \in \tau$ and $x \in O$. Let $(U_{n_0}, V_{n_0}) \in \Gamma$ be such that $x \in U_{n_0}$ and $V_{n_0} \subset O$. Then $f_{n_0}(x) = 0$ and $f_{n_0} = 1$ on O^c . Therefore if $y \in X$ and $f_{n_0}(y) < 1$, then $y \in O$ so $x \in \{f_{n_0} < 1\} \subset O$. This shows that O may be written as a union of elements from τ_0 and therefore $O \in \tau_0$. So $\tau \subset \tau_0$ and hence $\tau = \tau_0$. Moreover, if $y \in B_x(2^{-n_0})$ then $2^{-n_0} > \rho(x,y) \ge 2^{-n_0} f_{n_0}(y)$ and therefore $x \in B_x(2^{-n_0}) \subset \{f_{n_0} < 1\} \subset O$. This shows O is ρ – open and hence $\tau_\rho \subset \tau_0 \subset \tau \subset \tau_\rho$. 3. (X is isometric to some $Q_0 \subset Q$.) Let $T: X \to Q$ be defined by $T(x) = (f_1(x), f_2(x), \ldots, f_n(x), \ldots)$. Then T is an isometry by the very definitions of d and ρ and therefore X is isometric to $Q_0 := T(X)$. Since Q_0 is a subset of the compact metric space (Q, d), Q_0 is totally bounded and therefore X is totally bounded. #### 8.4. Exercises. **Exercise 8.8.** Let (X, τ) be a topological space, $A \subset X$, $i_A : A \to X$ be the inclusion map and $\tau_A := i_A^{-1}(\tau)$ be the relative topology on A. Verify $\tau_A = \{A \cap V : V \in \tau\}$ and show $C \subset A$ is closed in (A, τ_A) iff there exists a closed set $F \subset X$ such that $C = A \cap F$. (If you get stuck, see the remarks after Definition 3.17 where this has already been proved.) **Exercise 8.9.** Let (X, τ) and (Y, τ') be a topological spaces, $f: X \to Y$ be a function, \mathcal{U} be an open cover of X and $\{F_j\}_{j=1}^n$ be a finite cover of X by closed sets. - 1. If $A \subset X$ is any set and $f: X \to Y$ is (τ, τ') continuous then $f|_A: A \to Y$ is (τ_A, τ') continuous. - 2. Show $f: X \to Y$ is (τ, τ') continuous iff $f|_U: U \to Y$ is (τ_U, τ') continuous for all $U \in \mathcal{U}$. - 3. Show $f: X \to Y$ is (τ, τ') continuous iff $f|_{F_j}: F_j \to Y$ is (τ_{F_j}, τ') continuous for all $j = 1, 2, \ldots, n$. - 4. (A baby form of the Tietze extension Theorem.) Suppose $V \in \tau$ and $f: V \to \mathbb{C}$ is a continuous function such $\mathrm{supp}(f) \subset V$, then $F: X \to \mathbb{C}$ defined by $$F(x) = \begin{cases} f(x) & \text{if} & x \in V \\ 0 & \text{otherwise} \end{cases}$$ is continuous. #### Exercise 8.10. Prove Theorem 8.16. Hints: - 1. By Proposition 8.13, there exists a precompact open set V such that $K \subset V \subset \overline{V} \subset U$. Now suppose that $f: K \to [0, \alpha]$ is continuous with $\alpha \in (0, 1]$ and let $A := f^{-1}([0, \frac{1}{3}\alpha])$ and $B := f^{-1}([\frac{2}{3}\alpha, 1])$. Appeal to Lemma 8.15 to find a function $g \in C(X, [0, \alpha/3])$ such that $g = \alpha/3$ on B and $\sup(g) \subset V \setminus A$. - 2. Now follow the
argument in the proof of Theorem 8.2 to construct $F \in C(X, [a, b])$ such that $F|_K = f$. - 3. For $c \in [a, b]$, choose $\phi \prec U$ such that $\phi = 1$ on K and replace F by $F_c := \phi F + (1 \phi)c$. **Exercise 8.11** (Sterographic Projection). Let $X = \mathbb{R}^n$, $X^* := X \cup \{\infty\}$ be the one point compactification of X, $S^n := \{y \in \mathbb{R}^{n+1} : |y| = 1\}$ be the unit sphere in \mathbb{R}^{n+1} and $N = (0, \dots, 0, 1) \in \mathbb{R}^{n+1}$. Define $f : S^n \to X^*$ by $f(N) = \infty$, and for $y \in S^n \setminus \{N\}$ let $f(y) = b \in \mathbb{R}^n$ be the unique point such that (b, 0) is on the line containing N and y, see Figure 22 below. Find a formula for f and show $f : S^n \to X^*$ is a homeomorphism. (So the one point compactification of \mathbb{R}^n is homeomorphic to the n sphere.) FIGURE 22. Sterographic projection and the one point compactification of \mathbb{R}^n .