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8. LocALLY COMPACT HAUSDORFF SPACES

In this section X will always be a topological space with topology 7. We are now
interested in restrictions on 7 in order to insure there are “plenty” of continuous
functions. One such restriction is to assume 7 = 74 — is the topology induced from
a metric on X. The following two results shows that (X, 74) has lots of continuous
functions. Recall for A C X, da(z) = inf{d(z,y) : y € A}.

Lemma 8.1 (Urysohn’s Lemma for Metric Spaces). Let (X,d) be a metric space,
V Co X and F C X such that F C V. Then

ch (l')
8.1 )= —v—t—
(s.1) 1) = g
defines a continuous function, f : X — [0,1], such that f(z) =1 for x € F and
f(x) =0 if x ¢ V. (This may also be stated as follows. Let A (A = F) and B
(B = V) be two disjoint closed subsets of X, then there exists f € C(X,[0,1]) such
that f =1 on A and f =0 on B.)

forxe X

Proof. By Lemma 3.5, dr and dy . are continuous functions on X. Since F' and
Ve are closed, dp(x) > 0if x ¢ F and dyc(z) > 0if z € V. Since FNV® = (),
dp(x)+dye(z) > 0 for all z and (dp + dy)"" is continuous as well. The remaining
assertions about f are all easy to verify. m

Theorem 8.2 (Metric Space Tietze Extension Theorem). Let (X,d) be a metric
space, D be a closed subset of X, —o0o < a <b< oo and f € C(D,]a,b]). (Here we
are viewing D as a topological space with the relative topology, Tp, see Definition
3.17.) Then there exists F € C(X,[a,b]) such that F|p = f

Proof.

1. By scaling and translation (i.e. by replacing f by
Theorem 8.2 with a =0 and b = 1.

2. Suppose a € (0,1] and f : D — [0,q] is continuous function. Let A :=
f71([0,30]) and B := f~'([2a,1]). By Lemma 8.1 there exists a function
g € C(X,[0,a/3]) such that § =0 on A and § = 1 on B. Letting g := §4,
we have g € C(X, [0,/3]) such that g =0 on A and g = /3 on B. Further
notice that

f—a
b—a

), it suffices to prove

0< f(z) —gz) < %a for all z € D.

3. Now suppose f : D — [0,1] is a continuous function as in step 1. Let
g1 € C(X,]0,1/3]) be as in step 2. with « = 1 and let f; := f — ¢1|p €
C(D,[0,2/3]). Apply step 2. with « = 2/3 and f = f; to find go €
C(X,[0,%2]) such that f, := f — (g1 +g2)|p € C(D,[0, (%)2]) Continue
this way inductively to find g,, € C(X, [0, 3 (%)n_l]) such that

N 9 N
) ;::19 D N [ <3> ]

4. Define F' := Y >° | g,. Since
-1
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the series defining F' is uniformly convergent so F' € C(X, [0, 1]). Passing to
the limit in Eq. (8.2) shows f = F|p.
L]

The main thrust of this section is to study locally compact (and o — compact)
Hausdorff spaces as defined below. We will see again that this class of topological
spaces have an ample supply of continuous functions. We will start out with the
notion of a Hausdorff topology. The following example shows a pathology which
occurs when there are not enough open sets in a topology.

Example 8.3. Let X = {1,2,3} and 7 = {X,(,{1,2},{2,3},{2}} and z,, = 2 for
all n. Then z,, — z for every z € X!

Definition 8.4 (Hausdorff Topology). A topological space, (X, 1), is Hausdorff
if for each pair of distinct points, z,y € X, there exists disjoint open neighborhoods,
U and V of z and y respectively. (Metric spaces are typical examples of Hausdorff
spaces.)

Remark 8.5. When 7 is Hausdorff the “pathologies” appearing in Example 8.3 do
not occur. Indeed if z, — = € X and y € X \ {z} we may choose V € 7, and
W € 1, such that VN W = (. Then z, € V a.a. implies z,, ¢ W for all but a finite
number of n and hence x,, - y, so limits are unique.

Proposition 8.6. Suppose that (X, 7) is a Hausdorff space, K CC X and x € K°.
Then there exists U,V € T such that UNV =0, x € U and K C V. In particular
K is closed. (So compact subsets of Hausdorff topological spaces are closed.) More
generally if K and F are two disjoint compact subsets of X, there exist disjoint
open sets U,V € 1 such that K CV and F C U.

Proof. Because X is Hausdorff, for all y € K there exists V,, € 7, and U, € 7,
such that V, NU, = (). The cover {V,} _, of K has a finite subcover, {V,} _, for
some A CC K. Let V = UyepV, and U = NyepU,, then U,V € 7 satisfy v € U,
K CcV and UNV = . This shows that K¢ is open and hence that K is closed.

Suppose that K and F' are two disjoint compact subsets of X. For each z € F
there exists disjoint open sets U, and V, such that K C V, and x € U,. Since
{Us},cp is an open cover of F, there exists a finite subset A of F' such that F' C
U := U,eaU,. The proof is completed by defining V := N,cAV,. =

Exercise 8.1. Show any finite set X admits exactly one Hausdorff topology 7.

Exercise 8.2. Given an example of a topological space which has a non-closed
compact subset.

Proposition 8.7. Suppose that X is a compact topological space, Y is a Hausdorff
topological space, and f : X — Y 1is a continuous bijection then f is a homeomor-
phism, i.e. f~1:Y — X is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous images of
compact subsets are compact and compact subsets of Hausdorff spaces are closed,

it follows that (f_l)_1 (C) = f(C) is closed in X for all closed subsets C' of X.
Thus f~! is continuous. m

Definition 8.8 (Local and o — compactness). Let (X, 7) be a topological space.
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1. (X, 7) is locally compact if for all 2 € X there exists an open neighborhood
V C X of x such that V is compact. (Alternatively, in light of Definition
3.19, this is equivalent to requiring that to each x € X there exists a compact
neighborhood N, of z.)

2. (X, 1) is ¢ — compact if there exists compact sets K,, C X such that X =
USe , K. (Notice that we may assume, by replacing K,, by K1 UKo U---UK,
if necessary, that K,, 1 X.)

Example 8.9. Any open subset of X C R™ is a locally compact and ¢ — compact
metric space (and hence Hausdorff). The proof of local compactness is easy and is
left to the reader. To see that X is ¢ — compact, for k € N, let

Kip:={rxeX:|z| <kanddx:(z) >1/k}.

Then K} is a closed and bounded subset of R™ and hence compact. Moreover
K¢ 1 X as k — oo sincel®

K D{zeX:|z|<kand dxe(z) >1/k} 1 X as k — oo.

Exercise 8.3. Suppose that (X, d) is a metric space and U C X is an open subset.

1. If X is locally compact then (U, d) is locally compact.
2. If X is 0 — compact then (U, d) is 0 — compact.

Exercise 8.4. Every separable locally compact metric space is ¢ —compact. Hint:
Let {x,} -, C X be a countable dense subset of X and define

1
€n = 5 SUP {e>0:Cy, (¢) is compact} A 1.

Exercise 8.5. Every o — compact metric space is separable. Therefore a locally
compact metric space is separable iff it is 0 — compact.

Lemma 8.10. Let (X, 7) be a locally compact and o — compact topological space.
Then there exists compact sets K, T X such that K, C K}, C Kyyq1 for all n.

Proof. Suppose that C' C X is a compact set. For each z € C'let V,, C, X be
an open neighborhood of z such that V,, is compact. Then C' C UgecV, so there
exists A CC C such that

C C UzeAVm C UzeAVm =: K

Then K is a compact set, being a finite union of compact subsets of X, and C' C
Uzea Ve C K°.

Now let C,, C X be compact sets such that C,, T X as n — oo. Let K1 = (4
and then choose a compact set Ks such that Co C K§. Similarly, choose a compact
set K3 such that Ky UC3 C K§ and continue inductively to find compact sets K,
such that K, UCypqq C K2, for all n. Then {K,},, is the desired sequence. m

Remark 8.11. Lemma 8.10 may also be stated as saying there exists precompact
open sets {Gn}zo=1 such that G,, € G, C Gpy1 for all n and G, T X as n — oo.
Indeed if {G,,}.—, are as above, let K,, := G,, and if {K,,} ., are as in Lemma
8.10, let G,, := K¢.

The following result is a Corollary of Lemma 8.10 and Theorem 3.59.

161y fact this is an equality, but we will not need this here.
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Corollary 8.12 (Locally compact form of Ascoli-Arzela Theorem ). Let (X, 1) be
a locally compact and o — compact topological space and { f,} C C(X) be a point-
wise bounded sequence of functions such that {fn|k} is equicontinuous for any
compact subset K C X. Then there exists a subsequence {m,} C {m} such that
{gn == fm, }Zozl C C(X) is a sequence which is uniformly convergent on compact
subsets of X.

Proof. Let {K,} -, be the compact subsets of X constructed in Lemma 8.10.
We may now apply Theorem 3.59 repeatedly to find a nested family of subsequences

{fm} 2 {am} 2 {gm} D {am} D

such that the sequence {g};}°_; C C(X) is uniformly convergent on K,. Using
Cantor’s trick, define the subsequence {h,} of {fi.} by h, = ¢?. Then {h,} is
uniformly convergent on K, for each [ € N. Now if K C X is an arbitrary compact
set, there exists [ < oo such that K C K C K; and therefore {h,} is uniformly
convergent on K as well. m

The next two results shows that locally compact Hausdorff spaces have plenty
of open sets and plenty of continuous functions.

Proposition 8.13. Suppose X is a locally compact Hausdorff space and U C, X
and K CC U. Then there exists V C, X suchthat K CV CV CUCX andV is

compact.

Proof. By local compactness, for all € K, there exists U, € 7, such that U,
is compact. Since K is compact, there exists A CC K such that {U,}, ., is a cover
of K. The set O = U N (UpyeaUy) is an open set such that K € O C U and O
is precompact since O is a closed subset of the compact set Uze AUy, (UZGAUm. is
compact because it is a finite union of compact sets.) So by replacing U by O if
necessary, we may assume that U is compact.

Since U is compact and 90U = U N U* is a closed subset of U, OU is compact.
Because 0U C U°¢, it follows that OU N K = (), so by Proposition 8.6, there exists
disjoint open sets V and W such that K C V and U C W. By replacing V by
V' N U if necessary we may further assume that K C V C U, see Figure 17.

FIGURE 17. The construction of V.

Because U N W€ is a closed set containing V and UcNU N W€ = oU NW*¢ = (),
Vcinwe=UnwecuUcU.
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Since U is compact it follows that V is compact and the proof is complete. m

Exercise 8.6. Give a “simpler” proof of Proposition 8.13 under the additional
assumption that X is a metric space. Hint: show for each x € K there exists
Ve := By(e;) with e, > 0 such that By(e;) C Cyi(ez) C U with Cy(e;) being
compact. Recall that C,(e€) is the closed ball of radius € about x.

Definition 8.14. Let U be an open subset of a topological space (X, 7). We will
write f < U to mean a function f € C.(X, [0, 1]) such that supp(f) := {f # 0} C U.

Lemma 8.15 (Locally Compact Version of Urysohn’s Lemma). Let X be a locally
compact Hausdorff space and K CC U C, X. Then there exists f < U such that
f=1onK. In particular, if K is compact and C is closed in X such that KNC = (),
there exists f € C.(X,[0,1]) such that f =1 on K and f =0 on C.

Proof. For notational ease later it is more convenient to construct g :=1— f
rather than f. To motivate the proof, suppose g € C(X,[0,1]) such that g = 0
on K and g =1 on U Forr > 0, let U, = {g <r}. Then for 0 < r < s < 1,
U, C {g <r} C U, and since {g < r} is closed this implies

KcU,cU.Cc{g<r}cUsCU.

Therefore associated to the function g is the collection open sets {U,.},., C T with
the property that K C U, C U, C U, C U forall 0 <r < s <1 and U, = X if
r > 1. Finally let us notice that we may recover the function g from the sequence
{Uy },50 by the formula

(8.3) g(z) =inf{r >0: 2 €U,}.
The idea of the proof to follow is to turn these remarks around and define g by Eq.
(8.3).

Step 1. (Construction of the U,.) Let
D={k2":k=12..,2"n=12...}

be the dyadic rationales in (Q, 1]. Use Proposition 8.13 to find a precompact open
set Uy such that K C Uy C Uy C U. Apply Proposition 8.13 again to construct an
open set Uy /o such that

K CUyppCUypClU
and similarly use Proposition 8.13 to find open sets Uj /5, Us/s C, X such that
K C Uiy CUyyy CUyjp CUryp CU3ps C Uspq C UYL
Likewise there exists open set Uy /g, Us/s, Us /s, U7 g such that
K CUys CUyyg CUyya CUyya CUsps C Usps CUvpo
C Uyyp CUsys CUsys CUspy C Usjpy C Upys C Uzys C Uy

Continuing this way inductively, one shows there exists precompact open sets
{Ur},cp C 7 such that

KcU,cU,cU,cU, cU, cU

forallr,seDwithO<r<s<1.
Step 2. Let U, = X if r > 1 and define

g(z) =inf{r e DU(1,00) : z € U, },
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FIGURE 18. Determining ¢ from {U,}.

see Figure 18. Then g(x) € [0,1] forallz € X, g(x) = 0for x € K sincex € K C U,
for all r € D. If € Uy, then x ¢ U, for all » € D and hence g(z) = 1. Therefore
f:=1—gisafunctionsuchthat f =lon K and {f #0} ={g #1} cU, c U, CU
so that supp(f) = {f # 0} C Uy C U is a compact subset of U. Thus it only remains
to show f, or equivalently g, is continuous.

Since £ = {(o, >0), (—00, @) : @ € R} generates the standard topology on R, to
prove g is continuous it suffices to show {g < a} and {g > «} are open sets for all
a € R. But g(z) < o iff there exists » € DU (1,00) with » < « such that z € U,.
Therefore

{g<a}:U{UT:r€]D)U(1,oo) >r<al

which isopenin X. Ifa>1,{g>a} =0andif a <0, {g > a} = X. If a« € (0, 1),
then g(z) > o iff there exists r € I such that r > a and x ¢ U,.. Now if r > o and
x ¢ U, then for s € DN (a,7), x ¢ Us C U,.. Thus we have shown that

{g>a}:U{(US)C:s€H)) > s>a}
which is again an open subset of X. m

Exercise 8.7. Give a simpler proof of Lemma 8.15 under the additional assump-
tion that X is a metric space.

Theorem 8.16 (Locally Compact Tietz Extension Theorem). Let (X, 7) be a lo-
cally compact Hausdorff space, K CC U Co, X, f € C(K,R), a = min f(K) and
b = max f(K). Then there exists F' € C(X,[a,b]) such that F|x = f. Moreover
given ¢ € [a,b], F' can be chosen so that supp(F —c¢) = {F # ¢} C U.

The proof of this theorem is similar to Theorem 8.2 and will be left to the reader,
see Exercise 8.10.

Lemma 8.17. Suppose that (X, T) is a locally compact second countable Hausdorff
space. (For example any separable locally compact metric space and in particular
any open subsets of R™.) Then:
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1. every open subset U C X is 0 — compact.

2. If F C X is a closed set, there exist open sets V,, C X such that V;, | F as
n — oo.

3. To each open set U C X there exists f,, < U such that lim,_,o f,, = 1y.

4. The o - algebra generated by C.(X) is the Borel 0 — algebra, Bx.

Proof.
1. Let U be an open subset of X, V be a countable base for 7 and

VW.={WeV:W CU and W is compact}.

For each = € U, by Proposition 8.13, there exists an open neighborhood V' of
x such that V C U and V is compact. Since V is a base for the topology 7,
there exists W € V such that x € W C V. Because W C V, it follows that W
is compact and hence W € VV. As z € U was arbitrary, U = UVV.

Let {W,}"2, be an enumeration of V¥ and set K,, := Uy_,Wj,. Then
K, TU asn — oo and K, is compact for each n.

2. Let {K,},-, be compact subsets of F¢ such that K,, T F° as n — oo and
set V, ;= K¢ = X \ K,,. Then V,, | F and by Proposition 8.6, V,, is open for
each n.

3. Let U C X be an open set and {K,} ., be compact subsets of U such that
K, T U. By Lemma 8.15, there exist f, < U such that f,, =1 on K,,. These
functions satisfy, 1y = lim,_.o fn.

4. By Item 3., 1y is 0(C.(X,R)) — measurable for all U € 7. Hence 7 C
0(C(X,R)) and therefore Bx = o(1) C 0(C.(X,R)). The converse inclu-

sion always holds since continuous functions are always Borel measurable.

Corollary 8.18. Suppose that (X, T) is a second countable locally compact Haus-
dorff space, Bx = o(7) is the Borel o — algebra on X and H is a subspace of
B(X,R) which is closed under bounded convergence and contains C.(X,R). Then
‘H contains all bounded Bx — measurable real valued functions on X.

Proof. Since H is closed under bounded convergence and C.(X,R) C H, it
follows by Item 3. of Lemma 8.17 that 1y € H for all U € 7. Since 7 is a m — class
the corollary follows by an application of Theorem 6.12. =

8.1. Partitions of Unity.

Definition 8.19. Let (X,7) be a topological space and Xog C X be a set. A
collection of sets {Ba}aeA C 2% is locally finite on Xj if for all € Xp, there is
an open neighborhood N, € 7 of x such that #{a € A: B, NN, # 0} < .

Lemma 8.20. Let (X, 7) be a locally compact Hausdorff space.

1. A subset E C X is closed iff EN K is closed for all K CC X.

2. Let {Ca}yeq be alocally finite collection of closed subsets of X, then C =
UacaCq is closed in X. (Recall that in general closed sets are only closed
under finite unions.)

Proof. Item 1. Since compact subsets of Hausdorff spaces are closed, £ N K
is closed if FE is closed and K is compact. Now suppose that £ N K is closed for
all compact subsets K C X and let x € E¢. Since X is locally compact, there
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exists a precompact open neighborhood, V, of 2.17 By assumption E NV is closed
SO T € (E N V)C — an open subset of X. By Proposition 8.13 there exists an open

set U such that z € U C U C (E N V)c, see Figure 19. Let W := U N V. Since

F1GURE 19. Showing E° is open.

WNE=UNVNECUNVNE =,

and W is an open neighborhood of z and x € E° was arbitrary, we have shown E°
is open hence FE is closed.

Item 2. Let K be a compact subset of X and for each z € K let N, be an
open neighborhood of z such that #{a € A : C, N N, # 0} < 0. Since K
is compact, there exists a finite subset A C K such that K C U,eaN,. Letting
Ap:={a€ A:CyNK # 0}, then

# (M) < Z#{QEA:CQQNZ £ 0} < o0
TzEA
and hence K N (UacaCq) = K N (Uaeca,Ca) - The set (Unper,Ca) is a finite union
of closed sets and hence closed. Therefore, K N (UnpeaCly) is closed and by Item (1)
it follows that U,c4C\, is closed as well. m

Definition 8.21. Suppose that U is an open cover of Xy C X. A collection
{pi}Y, C C(X,[0,1]) (N = oo is allowed here) is a partition of unity on X,
subordinate to the cover U if:
1. for all ¢ there is a U € U such that supp(¢;) C U,
2. the collection of sets, {supp(¢;)}¥,, is locally finite on Xo, and
3. Ziil ¢; =1 on Xy. (Notice by (2), that for each € X there is a neighbor-
hood N, such that ¢;|n, is not identically zero for only a finite number of
terms. So the sum is well defined and we say the sum is locally finite.)

Proposition 8.22 (Partitions of Unity: The Compact Case). Suppose that X is a
locally compact Hausdorff space, K C X is a compact set and U = {U; }?:1 s an
open cover of K. Then there exists a partition of unity {h; }?:1 of K such that
hy <Uj forallj =1,2,...,n.

17If X were a metric space we could finish the proof as follows. If there does not exist an open
neighborhood of & which is disjoint from F, then there would exists x, € F such that z, — x.
Since ENV is closed and z,, € ENV for all large n, it follows (see Exercise 3.4) that x € ENV
and in particular that € E. But we chosec x € E€.
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Proof. For all z € K choose a precompact open neighborhood, V., of z such
that V, c U ;. Since K is compact, there exists a finite subset, A, of K such that
K c U V,. Let

zEA
F; :U{Vm:xel\andvm CUj}.
Then Fj is compact, F; C Uj for all j, and K C Uj_; F;. By Urysohn’s Lemma
8.15 there exists f; < U; such that f; =1 on F}. We will now give two methods to
finish the proof.
Method 1. Let hy = f1, ha = fa(1 — hy) = fo(1 — f1),

h3 = f3(1 —h1 —ha) = f3(1 — f1 — (1 — f1)f2) = f3(1 — f1)(1 — f2)

and continue on inductively to define

k—1

(8.4) By =(1—hy ——hp_1) fr :fk-H(l—fj)Vk:Q,ii,...,n
j=1

and to show

(8.5) (1=hy = —hy) =[] = £).
j=1

From these equations it clearly follows that h; € C.(X, [0,1]) and that supp(h;) C
supp(f;) C Uj, i.e. h; < Uj. Since [[;_,(1 - f;) =0on K, 375 hj =1 on K and
{h; }?:1 is the desired partition of unity.
Method 2. Let g:= Y f; € C.(X). Then g > 1 on K and hence K C {g > }.
=1

J

Choose ¢ € C.(X,[0,1]) such that ¢ =1 on K and supp(¢) C {g > 3} and define
fo=1—¢. Then fy=0o0n K, fy =1if g < % and therefore,
fotfi++fu=fo+9g>0
on X. The desired partition of unity may be constructed as
fi(x)
hi(z) = .
A TC Ry A
Indeed supp (h;) = supp (f;) C Uj, hj € Co(X,[0,1]) and on K,
fit+fn fit+fn
hid -t By = - —1.
' fot fit- A fu Fitotfa

Proposition 8.23. Let (X,7) be a locally compact and o — compact Hausdorff
space. Suppose that U C T is an open cover of X. Then we may construct two
locally finite open covers V = {V;}N., and W = {W;}¥, of X (N = o is allowed
here) such that:

1. Wy ¢ W; C V; C Vi and V; is compact for all i.

2. For each i there exist U € U such that V; C U.

Proof. By Remark 8.11, there exists an open cover of G = {G,,}°2; of X such
that G,, C G,, C Gpq1. Then X = U2, (G \ Gi_1), where by convention G| =
Go = (). For the moment fix & > 1. For each x € G}, \ Gj_1, let U, € U be chosen
so that € U, and by Proposition 8.13 choose an open neighborhood N, of x such
that N, C UzN(Gry1\Gr_2), see Figure 20 below. Since { N, }xeék\Gk—l is an open
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G\m G G\u\ G‘\u—’l_

b N\ )

FIGURE 20. Constructing the {Wz}i\;1 .

cover of the compact set G, \ G_1, there exist a finite subset T, C {Netoe\Grs
which also covers Gy \ G}, 1. By construction, for each W € T'y, there is a U € U
such that W C U N (Gry1 \ Gi_2). Apply Proposition 8.13 one more time to find,
for each W € T', an open set Vyy such that W C Viy € Viy C U N (Grp1 \ Gr—2).

We now choose and enumeration {W;}¥; of the countable open cover U2, T of
X and define V; = Viy,. Then the collection {W;}¥ | and {V;}}¥ | are easily checked
to satisfy all the conclusions of the proposition. In particular notice that for each
k that the set of i’s such that V; N Gy, # () is finite. m

Theorem 8.24 (Locally Compact Partitions of Unity). Let (X, 7) be a locally com-
pact and o — compact Hausdorff space andU C T be an open cover of X. Then there
ezists a partition of unity of {h;}Y.; (N = oo is allowed here) subordinate to the
cover U such that supp(h;) is compact for all i.

Proof. Let V = {V;}¥, and W = {W;}}¥, be open covers of X with the
properties described in Proposition 8.23. By Urysohn’s Lemma 8.15, there exists
fi < V; such that f; =1 on W; for each i.

As in the proof of Proposition 8.22 there are two methods to finish the proof.

Method 1. Define hqy = f1, h;j by Eq. (8.4) for all other j. Then as in Eq. (8.5)

N N
1= m=][a-f)=0
j=1 j=1
since for z € X, f;(x) = 1 for some j. As in the proof of Proposition 8.22, it is
easily checked that {hz}i\;l is the desired partition of unity.

Method 2. Let f = Zfil fi, a locally finite sum, so that f € C(X). Since
{W;}:2, is a cover of X, f > 1 on X so that 1/f € C' (X)) as well. The functions
hi=fi/f fori=1,2,..., N give the desired partition of unity. m

Corollary 8.25. Let (X, ) be a locally compact and o — compact Hausdorff space
and U = {Ua}ocq C T be an open cover of X. Then there exists a partition of
unity of {hataca subordinate to the cover U such that supp(hs) C Uy for all
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a € A. (Notice that we do not assert that he has compact support. However if U,
is compact then supp(he,) will be compact.)

Proof. By the o — compactness of X, we may choose a countable subset, {a; }i<n
(N = oo allowed here), of A such that {U; = U, };_  is still an open cover of X. Let
{gj}j<n be a partition of unity subordinate to the cover {U;};<n as in Theorem
8.24. Define Ty = {j : supp(g;) C Up} and Ty := T \ (U?;llf‘k), where by

convention I'y = (). Then
k=1 k=1

If Ty, = 0 let hy = 0 otherwise let hy := Zjerk gj, a locally finite sum. Then
Seeihi = 01 g; = 1 and the sum Y37, fy is still locally finite. (Why?) Now
for a = oy, € {a;} ¥, let hy := hy and for a ¢ {a;}Y | let h, = 0. Since

{h # 0} = Ujer, {g; # 0} C Ujer,supp(g;) C Uy
and, by Item 2. of Lemma 8.20, Ujcr, supp(g;) is closed, we see that

supp(hi) = {hi. # 0} C Ujer,supp(g;) C Uk
Therefore {hq},c 4 is the desired partition of unity. m
Corollary 8.26. Let (X, ) be a locally compact and o — compact Hausdorff space

and A, B be disjoint closed subsets of X. Then there exists f € C(X,[0,1]) such
that f =1 on A and f =0 on B. In fact f can be chosen so that supp(f) C B°.

Proof. Let Uy = A° and Uy = B¢, then {U;,Us} is an open cover of X. By
Corollary 8.25 there exists hi, ha € C(X, [0, 1]) such that supp(h;) C U; for i = 1,2
and hy + hg =1 on X. The function f = hy satisfies the desired properties. m

8.2. Cy(X) and the Alexanderov Compactification.

Definition 8.27. Let (X, 7) be a topological space. A continuous function f :
X — C is said to vanish at infinity if {|f| > ¢} is compact in X for all € > 0.
The functions, f € C(X), vanishing at infinity will be denoted by Co(X).

Proposition 8.28. Let X be a topological space, BC(X) be the space of bounded

continuous functions on X with the supremum norm topology. Then
1. Co(X) is a closed subspace of BC(X).
2. If we further assume that X is a locally compact Hausdorff space, then
Co(X) = Ce(X).
Proof.

1. If f € Co(X), Ky := {|f| > 1} is a compact subset of X and therefore f(K) is
a compact and hence bounded subset of C and so M := sup,¢ g, |f(z)] < oo.
Therefore || f||, < M V1 < oo showing f € BC(X).

Now suppose f, € Co(X) and f, — f in BC(X). Let € > 0 be given and
choose n sufficiently large so that ||f — f,||,, < €/2. Since

{1 =€ C{lful +¢/2> €} = {[fn] > €/2}
Because {|f| > €} is a closed subset of the compact set {|f.| > €/2}, {|f] > €}
is compact and we have shown f € Cy(X).
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2. Since Cy(X) is a closed subspace of BC(X) and C.(X) C Co(X), we always
have C.(X) C Co(X). Now suppose that f € Co(X) and let K,, = {|f| >
1} £C X. By Lemma 8.15 we may choose ¢,, € Cc(X, [0, 1]) such that ¢, = 1
on K. Define f,, = ¢, f € Cc(X). Then

1
Hf* anU = H(l 7¢n)f“u < E — 0 asn — oo.

This shows that f € C.(X).
L]

Proposition 8.29 (Alexanderov Compactification). Suppose that (X, T) is a non-
compact locally compact Hausdorff space. Let X* = X U{oo}, where {oco} is a new
symbol not in X. The collection of sets,

Tr=7U{X"\K:KCC X} CP(X"),

is a topology on X* and (X*,7*) is a compact Hausdorff space. Moreover f € C(X)
extends continuously to X* iff f = g+ ¢ with g € Co(X) and c € C in which case
the extension is given by f(oco) = c.

Proof. Let F:={F C X*: X*\ F € 7}, ie. F € Fiff F is a compact subset
of X or F' = FyU{oo} with Fj being a closed subset of X. Since the finite union of
compact (closed) subsets is compact (closed), it is easily seen that F is closed under
finite unions. Because arbitrary intersections of closed subsets of X are closed and
closed subsets of compact subsets of X are compact, it is also easily checked that
F is closed under arbitrary intersections. Therefore F satisfies the axioms of the
closed subsets associated to a topology and hence 7* is a topology.

Let i : X — X* be the inclusion map. Then i is continuous and open, i.e. i(V) is
open in X* for all V open in X. If f € C(X™), then g = f|x — f(c0) = foi—f(o0) is
continuous on X. Moreover, for all € > 0 there exists an open neighborhood V' € 7*
of co such that

lg(@)] = |f(x) — f(o0)] < e for all x € V.

Since V' is an open neighborhood of co, there exists a compact subset, K C X, such
that V' = X*\ K. By the previous equation we see that {z € X : |g(z)| > ¢} C K,
so {|g| > €} is compact and we have shown g vanishes at co.

Conversely if g € Cy(X), extend g to X* by setting g(co) = 0. Given € > 0, the
set K = {|g| > €} is compact, hence X*\ K is open in X*. Since g(X*\ K) C (—¢,¢€)
we have shown that ¢ is continuous at co. Since g is also continuous at all points
in X it follows that ¢ is continuous on X™*. Now it f = g + ¢ with ¢ € C and
g € Co(X), it follows by what we just proved that defining f(o0) = ¢ extends f to
a continuous function on X*. m

8.3. More on Separation Axioms: Normal Spaces. (The reader may skip to
Definition 8.32 if he/she wishes. The following material will not be used in the rest
of the book.)

Definition 8.30 (T, — T, Separation Axioms). Let (X, 7) be a topological space.
The topology 7 is said to be:

1. Ty if for z # y in X there exists V' € 7 such that z € V and y ¢ V or V such
that y e V but z ¢ V.
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2. T if for every z,y € X with x # y there exists V' € 7 such that z € V and

y ¢ V. Equivalently, 7 is T} iff all one point subsets of X are closed.!®
3. Ty if it is Hausdorfl.

Note T5 implies 77 which implies Ty. The topology in Example 8.3 is Ty but not
T,. If X is a finite set and 7 is a T} — topology on X then 7 = 2X. To prove this
let € X be fixed. Then for every y # « in X there exists V}, € 7 such that x € V,
while y ¢ V,,. Thus {z} = N+, V, € 7 showing 7 contains all one point subsets of
X and therefore all subsets of X. So we have to look to infinite sets for an example
of T topology which is not T5.

Example 8.31. Let X be any infinite set and let 7 = {A C X : #(A°) < oo} U{0}
— the so called cofinite topology. This topology is T} because if z # y in X, then
V ={z}° € 7 with ¢ V while y € V. This topology however is not T,. Indeed if
U,V € 7 are open sets such that x € U,y € Vand UNV = then U C V°. But
this implies #(U) < oo which is impossible unless U = () which is impossible since
xeU.

The uniqueness of limits of sequences which occurs for Hausdorff topologies (see
Remark 8.5) need not occur for T — spaces. For example, let X = N and 7 be
the cofinite topology on X as in Example 8.31. Then z,, = n is a sequence in X
such that z,, — = as n — oo for all x € N. For the most part we will avoid these
pathologies in the future by only considering Hausdorff topologies.

Definition 8.32 (Normal Spaces: Ty — Separation Axiom). A topological space
(X, 1) is said to be normal or T} if:
1. X is Hausdorff and

2. if for any two closed disjoint subsets A, B C X there exists disjoint open sets
V,W C X such that ACV and BC W.

Example 8.33. By Lemma 8.1 and Corollary 8.26 it follows that metric space and
locally compact and o — compact Hausdorff space (in particular compact Hausdorff
spaces) are normal. Indeed, in each case if A, B are disjoint closed subsets of X,
there exists f € C(X,[0,1]) such that f = 1 on A and f = 0 on B. Now let
U:{f>%} andV:{f<%}.

Remark 8.34. A topological space, (X, 7), is normal iff for any C C W C X with
C being closed and W being open there exists an open set U C, X such that

CcUcCUcCW.

To prove this first suppose X is normal. Since W€ is closed and C N W€ = (),
there exists disjoint open sets U and V such that C' C U and W¢ C V. Therefore
CcUcVecW andsince V¢isclosed, C cU cU cVecCW.

For the converse direction suppose A and B are disjoint closed subsets of X.
Then A C B¢ and B¢ is open, and so by assumption there exists U C, X such
that A C U € U C B° and by the same token there exists W C, X such that
U C W c W C B¢ Taking complements of the last expression implies

BCcW¢cWecU"
Let V=W Then ACUC, X, BCV Co XandUNV CcUNW® = 0.

181f one point subsets are closed and z # y in X then V := {z}° is an open sct containing y
but not . Conversely if 7 is T1 and z € X there exists V, € 7 such that y € V} and = ¢ V}, for
all y # x. Therefore, {z}¢ = Uy2,Vy € 7.
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Theorem 8.35 (Urysohn’s Lemma for Normal Spaces). Let X be a normal space.
Assume A, B are disjoint closed subsets of X. Then there exists f € C(X,]0,1])
such that f =0 on A and f =1 on B.

Proof. To make the notation match Lemma 8.15, let U = A¢ and K = B. Then
K C U and it suffices to produce a function f € C(X,]0,1]) such that f =1 on
K and supp(f) C U. The proof is now identical to that for Lemma 8.15 except we
now use Remark 8.34 in place of Proposition 8.13. m

Theorem 8.36 (Tietze Extension Theorem). Let (X,7) be a normal space, D be
a closed subset of X, —0o < a < b < 0o and f € C(D,|a,b]). Then there exists
F e C(X,]a,b)) such that F|p = f

Proof. The proof is identical to that of Theorem 8.2 except we now use Theorem
8.35 in place of Lemma 8.1. m

Corollary 8.37. Suppose that X is a normal topological space, D C X is closed,
F € C(D,R). Then there exists F' € C(X) such that F|p =

Proof. Let g = arctan(f) € C’( ,(—%,%)). Then by the Tietze extension theo
rem, there exists G € C(X, [-%, 5]) such that G|p = g. Let B= G~ ({3, %})
X, then BND = (). By Urysohn’s lemma (Theorem 8.35) there exists h € C(X
such that h =1 on D and h = 0 on B and in particular hG € C(D, (3,5
(hG) |p = g. The function F' = tan(hG) € C(X) is an extension of f. m

Notation 8.38. Let @ := [0,1]" denote the (infinite dimensional) unit cube in
RN. For a,b € Q let

D

3

0,
)) an

:Z%\anfbny
n=1

The metric introduced in Exercise 3.27 would be defined, in this context, as

d(a,b) :== 3% 21”14%‘7 Since 1 < 1+|a, — by| < 2, it follows that d < d < 2d.

So the metrics d and d are equivalent and in particular the topologies induced by
d and d are the same. By Exercises 4.15, the d — topology on ( is the same as the
product topology and by Exercise 3.27, (Q, d) is a compact metric space.

Theorem 8.39 (Urysohn Metrization Theorem). Every second countable normal
space, (X, T), is metrizable, i.e. there is a metric p on X such that T = 7,. More-
over, p may be chosen so that X is isometric to a subset Qo C Q. In this metric X
is totally bounded and hence the completion of X (which is isometric to Qp C Q)
s compact.

Proof. Let B be a countable base for 7 and set
r={{UV)eBxB|UCcCV}.

To each O € 7 and x € O there exist (U,V) € T such that x €¢ U C V C O.
Indeed, since B is a basis for 7, there exists V_€ B such that € V' C O. Because
{z} NV = (), there exists disjoint open sets U and W such that z € U, V¢ ¢ W
and UNW = . Choose U € B such that € U C U. Since U ¢ U C W¢,
U c We¢ C V and hence (U, V) € T. See Figure 21 below. In particular this shows
that {U € B: (U,V) €T for some V € B} is still a base for 7.

If T is a finite set, the previous comment shows that 7 only has a finite number
of elements as well. Since (X, 7) is Hausdorff, it follows that X is a finite set.
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F1GURE 21. Constructing (U, V) €T

Letting {xn}fj:l be an enumeration of X, define T': X — @ by T(x,) = e, for
n = 1,2,...,N where e, = (0,0,...,0,1,0,...), with the 1 ocurring in the n'"
spot. Then p(x,y) := d(T(x),T(y)) for z,y € X is the desired metric. So we will
for now on assume that I is an infinite set and let {(U,, Vi) }, -, be an enumeration
of I.

By Urysohn’s Lemma (Theorem 8.35) there exists fyy € C(X,[0,1]) such that
fuv =0on U and fyy = 1 on Ve Let F = {fyv | (U V) € T} and set
fn = fu, v, — an enumeration of . We will now show that

o) = o Fule) = 1)

is the desired metric on X. The proof will involve a number of steps.

1. (pis ametric on X.) It is routine to show p satisfies the triangle inequality and
p is symmetric. If z,y € X are distinct points then there exists (Uy,, Vi, ) € T
such that z € Uy, and V,,, C O :={y}°. Since f,,(x) =0 and f,(y) =1, it
follows that p(z,y) > 27 > 0.

2. (Let 7o = 7 (fn : m € N), then 7 = 79 = 7,.) As usual we have 75 C 7. Since,
for each x € X,y — p(z,y) is 170 — continuous (being the uniformly convergent
sum of continuous functions), it follows that B,(¢) :={y € X : p(z,y) < €} €
7o for all z € X and € > 0. Thus 7, C 79 C 7.

Suppose that O € 7 and x € O. Let (U,,, Vp,) € T be such that z € Uy,
and V,,, C O. Then f,,(z) =0 and f,, = 1 on O°. Therefore if y € X and
fruo(y) < 1, then y € O so z € {f,, <1} C O. This shows that O may be
written as a union of elements from 7¢ and therefore O € 9. So 7 C 19 and
hence 7 = 75. Moreover, if y € B,(27"°) then 27 > p(x,y) > 27" f,,, (v)
and therefore x € B,(27"°) C { fn, <1} C O. This shows O is p — open and
hence 7, C 79 C 7 C 7,.

3. (X is isometric to some Qo C Q.) Let T': X — @ be defined by T'(z) =
(f1(z), fo(x),..., fu(x),...). Then T is an isometry by the very definitions of
d and p and therefore X is isometric to Qg := T'(X). Since Qo is a subset
of the compact metric space (@, d), Qo is totally bounded and therefore X is
totally bounded.
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8.4. Exercises.

Exercise 8.8. Let (X, 7) be a topological space, A C X, ig : A — X be the
inclusion map and 74 := i;'(7) be the relative topology on A. Verify 74 = {ANV :
V € 7} and show C' C A is closed in (A, 74) iff there exists a closed set ' C X
such that C = AN F. (If you get stuck, see the remarks after Definition 3.17 where
this has already been proved.)

Exercise 8.9. Let (X, 7) and (Y,7’) be a topological spaces, f : X — Y be a
function, U be an open cover of X and {F} }?:1 be a finite cover of X by closed
sets.
1. If AC X isany set and f: X — Y is (7,7') — continuous then f|4: A =Y
is (74, 7’) — continuous.
2. Show f: X — Y is (,7’) — continuous iff f|y : U — Y is (7y, ") — continuous

forallU e U.
3. Show f : X — Y is (7,7') — continuous iff f|r, : F; — Y is (7g,,7') -
continuous for all j =1,2,...,n.

4. (A baby form of the Tietze extension Theorem.) Suppose V € Tand f: V —
C is a continuous function such supp(f) C V, then F : X — C defined by
F(x)—{ f(z) if zeV

0 otherwise

i1s continuous.

Exercise 8.10. Prove Theorem 8.16. Hints:

1. By Proposition 8.13, there exists a precompact open set V such that K C V C
V C U. Now suppose that f : K — [0,a] is continuous with a € (0,1] and
let A:= f1([0,2a]) and B := f~([3c,1]). Appeal to Lemma 8.15 to find a
function g € C'(X, [0, «/3]) such that g = a/3 on B and supp(g) C V' \ A.

2. Now follow the argument in the proof of Theorem 8.2 to construct F &
C(X,a,b]) such that F|g = f.

3. For ¢ € [a,b], choose ¢ < U such that ¢ = 1 on K and replace F by F, :=
OF + (1 — o).

Exercise 8.11 (Sterographic Projection). Let X = R", X* := X U {oo} be the
one point compactification of X, S™ := {y € R™*! : |y| = 1} be the unit sphere
in R"*! and N = (0,...,0,1) € R**!. Define f : S — X* by f(N) = oo, and
for y € S™\ {N} let f(y) = b € R™ be the unique point such that (b,0) is on
the line containing N and y, see Figure 22 below. Find a formula for f and show
f: 8" — X* is a homeomorphism. (So the one point compactification of R™ is
homeomorphic to the n sphere.)
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FIGURE 22. Sterographic projection and the one point compacti-
fication of R™.



