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9. APPROXIMATION THEOREMS AND CONVOLUTIONS
Let (X, M, 1) be a measure space, A C M an algebra.

Notation 9.1. Let S¢(A, ) denote those simple functions ¢ : X — C such that
“L({A\}) € Afor all A € C and u(¢p #0) < .

For ¢ € S(A, p) and p € [1,00), |p|" = > .z012[P1{p=-} and hence

[ 10 =Y elrto =)

2#0
so that Sy (A, u) C LP ().

Lemma 9.2 (Simple Functions are Dense). The simple functions, Sy(M, u), form
a dense subspace of LP(u) for all 1 < p < 0.

Proof. Let {¢,},., be the simple functions in the approximation Theorem
5.12. Since |¢p| < |f] for all n, ¢, € Sy(M, ) (verify!) and

|f = ¢nl? < (If] + 16u)” <27 |f" € L.

Therefore, by the dominated convergence theorem,

lim |f—g/>n|pd,u:/ lim [f — ¢, [Pdp = 0.
L]

Theorem 9.3 (Separable Algebras implies Separability of LP — Spaces). Suppose 1 <
p < oo and A C M is an algebra such that o(A) = M and p is o-finite on A. Then
Sf(A, p) is dense in LP(p). Moreover, if A is countable, then LP(u) is separable and

D= {Zale aj € Q+1iQ, A; € A with u(A;) < oo}
is a countable dense subset.

Proof. First Proof. Let X}, € A be sets such that u(Xj) < oo and Xj T X as
k — oo. For k € N let H;, denote those bounded M — measurable functions, f, on

X such that 1x, f € Sf(A, u)Ll (M). It is easily seen that Hj, is a vector space closed

under bounded convergence and this subspace contains 14 for all A € A. Therefore

by Theorem 6.12, Hy, is the set of all bounded M — measurable functions on X.
For f € LP(u ) the dominated convergence theorem implies 1 Xm{\ f‘<k} f—=17

in LP(p) as k — oco. We have just proved Lx,nqifi<iyf € St(A, p) ,u) ) for all k

and hence it follows that f € Sy St(A, p) e . The last assertion of the theorem is
a consequence of the easily verified fact that I is dense in S;(A, i) relative to the
LP(u) — norm.

Second Proof. Given € > 0, by Corollary 6.42, for all F € M such that
1(E) < oo, there exists A € A such that p(EAA) < e. Therefore

9.1) / Ly — LalPdu = p(EAA) <

This equation shows that any simple function in S¢(M, 1) may be approximated
arbitrary well by an element from D and hence I is also dense in LP(y). m
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Corollary 9.4 (Riemann Lebesgue Lemma). Suppose that f € L*(R,m), then
lim /f(x)ei)‘mdm(x) =0.
R

A—too
Proof. Let A denote the algebra on R generated by the half open intervals, i.e.

A consists of sets of the form
n

H(ak,bk] NR

k=1
where ay, b, € R. By Theorem 9.3, given € > 0 there exists ¢ = Sy k1 (ay,bp)
with ag, b € R such that

/ |f — dldm < e.
R
Notice that
/ () dm(z) = / Zckl(ak:bk](x)ei)‘zdm(x)
R R k=1

n br n
= ch/ ei)‘“"dm(x) = ch)flei’\m\g’;
k=1 ak k=1
n
=1 ch (e“‘bk — e“‘a"') — 0as |A| = oo.
k=1
Combining these two equations with

‘/Rf(a:)ei)\zdm(;p) /R(f(a;) — ¢(x)) ei)\zdm(x)

< +

/R o) dm ()

< [[1f - olam + ' [ e anta)
/R b))

<e+

we learn that

<e+Ilim sup =e.

|A|— o0

lim sup
|A|— o0

[ 1@< [ o)

Since € > 0 is arbitrary, we have proven the lemma. m

Theorem 9.5 (Continuous Functions are Dense). Let (X,d) be a metric space, Tq
be the topology on X generated by d and Bx = o(74) be the Borel o — algebra.
Suppose p : Bx — [0,00] is a measure which is o — finite on 74 and let BCy(X)
denote the bounded continuous functions on X such that p(f # 0) < oco. Then
BC¢(X) is a dense subspace of LP () for any p € [1,00).

Proof. First Proof. Let X}, € 74 be open sets such that X, T X and pu(Xy) <
0. Let k£ and n be positive integers and set

Ynk(2) = min(1,n - dxe (7)) = Pn(dxe(z)),
and notice that ¥, p — 1g,.>0 = 1x, as n — oo, see Figure 22 below.
e
Then ¢, € BC¢(X) and {¢nr # 0} C Xi. Let H denote those bounded

M — measurable functions, f : X — R, such that ¢ f € BO;(X)~ . It is
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FIGURE 22. The plot of ¢, for n =1, 2, and 4. Notice that ¢, — 1(g,00)-

easily seen that H is a vector space closed under bounded convergence and this
subspace contains BC'(X,R). By Corollary 6.13, H is the set of all bounded real

valued M — measurable functions on X, i.e. ¢, 1 f € BCy(X )L * for all bounded
measurable f and n,k € N. Let f be a bounded measurable function, by the

dominated convergence theorem, ¢, 1 f — lx,f in LP(u) as n — oo, therefore
I
Ix, [ € Bcf(X) ("

_ P
BC;(x) " = ().

Second Proof. Since Sy(M, p) is dense in LP(u) it suffices to show any ¢ €
Sf(M, ) may be well approximated by f € BCy(X). Moreover, to prove this it
suffices to show for A € M with pu(A) < oo that 14 may be well approximated
by an f € BCy(X). By Exercises 6.4 and 6.5, for any € > 0 there exists a closed
set F' and an open set V such that F C A C V and u(V \ F) < e. (Notice that
w(V) < u(A) + € < 00.) Let f be as in Eq. (8.1), then f € BCf(X) and since

14— f] < g,

(9.2 [ sPaus [1rdu=pv\F <

or equivalently

. It now follows as in the first proof of Theorem 9.3 that

14— fII < €2,

Since € > 0 is arbitrary, we have shown that 14 can be approximated in L ()
arbitrarily well by functions from BCf(X)). m

Proposition 9.6. Let (X,7) be a second countable locally compact Hausdorff
space, Bx = o(7) be the Borel o — algebra and p : Bx — [0,00] be a measure
such that p(K) < oo when K is a compact subset of X. Then C.(X) (the space of
continuous functions with compact support) is dense in LP(u) for all p € [1, 00).

Proof. First Proof. Let {K}},-; be a sequence of compact sets as in Lemma
8.10 and set X; = Kp. Using Item 3. of Lemma 8.17, there exists {¢, 1}, C
C.(X) such that supp(¢n k) C Xi and limp, 00 ¥n k = 1x, . As in the first proof of

Theorem 9.5, let H denote those bounded Bx — measurable functions, f: X — R,
P— Y
such that ¢, pf € Co(X )L (“). It is easily seen that H is a vector space closed

under bounded convergence and this subspace contains BC(X,R). By Corollary
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8.18, 'H is the set of all bounded real valued Bx — measurable functions on X i.e.

Ynif € Co(X )Ll ) for all bounded measurable f and n, k € N. Let f be a bounded
measurable function, by the dominated convergence theorem, v, rf — 1lx,f in
LP(u) as k — oo, therefore 1x, f € CC(X)LI v
of Theorem 9.3 that C’C(X)Lp(#) = LP(p).

Second Proof. Following the second proof of Theorem 9.5, let A € M with
p(A) < oo. Since limg oo HlAkaq — 14]||p = 0, it suffices to assume A C KJ for
some k. Given € > 0, by Item 2. of Lemma 8.17 and Exercises 6.4 there exists a
closed set F' and an open set V such that F C A C V and p(V \ F) < e. Replacing
V by V N K{ we may assume that V C K7 C Kj. The function f defined in Eq.
(8.1) is now in C.(X). The remainder of the proof now follows as in the second
proof of Theorem 9.5. =

. It now follows as in the first proof

Lemma 9.7. Let (X,7) be a second countable locally compact Hausdorff space,
Bx = o(T) be the Borel o — algebra and p : Bx — [0,00] be a measure such that
pu(K) < 0o when K is a compact subset of X. If h € L}, (1) is a function such that

loc
(9.3) /X fhdp =0 for all f € C.(X)

then h(z) =0 for p — a.e. .

Proof. First Proof. Let dv(x) = |h(x)|dx, then v is a measure on X such
that v(K) < oo for all compact subsets K C X and hence C.(X) is dense in L' (v)
by Proposition 9.6. Notice that

(9.4) /X f-sgn(h)dv = /X fhdp =0 for all f € C.(X).

Let {K}},-, be a sequence of compact sets such that Kj | X as in Lemma 8.10.
Then 1g,sgn(h) € L'(v) and therefore there exists f,, € C.(X) such that f,, —
1k, sen(h) in LY(v). So by Eq. (9.4),

v(Ky) = / 1k, dv = lim fmsgn(h)dv = 0.
X m—eo Jx

Since Kj, T X as k — 00, 0 = v(X) = [y |h|dp, i.e. h(z) =0 for p - a.e. x.

Second Proof. Let K}, be as above and use Lemma 8.15 to find x € C.(X, [0, 1])
such that x =1 on K. Let ‘H denote the set of bounded measurable real valued
functions on X such that |  Xfhdp = 0. Then it is easily checked that H is linear
subspace closed under bounded convergence which contains C.(X). Therefore by
Corollary 8.18, 0 = | x Xfhdp for all bounded measurable functions f : X — R
and then by linearity for all bounded measurable functions f : X — C. Taking

f =sgn(h) then implies
0= [ xlbldp= [ nldn
X Ky

and hence by the monotone convergence theorem,

0= lim |h\du:/ 1B d.
k K X

— 00




REAL ANALYSIS LECTURE NOTES 167

Corollary 9.8. Suppose X C R"™ is an open set, Bx is the Borel o — algebra on
X and p is a measure on (X, Bx) which is finite on compact sets. Then C.(X) is
dense in LP(u) for all p € [1,00).

9.1. Convolution and Young’s Inequalities.

Definition 9.9. Let f,g: R™ — C be measurable functions. We define

frgl@)= | fle=y)oly)dy
whenever the integral is defined, i.e. either f(z—-)g(-) € L*(R™,m) or f(z—-)g(-) >
0. Notice that the condition that f(xz —-)g(-) € L*(R™,m) is equivalent to writing
I+ gl (z) < oo.

Notation 9.10. Given a multi-index o € Z7}, let |a] = ag + - +

x ::ijj, and 3’”_<8_x> —H<8—%> .
Jj=1 j=1
Remark 9.11 (The Significance of Convolution). Suppose that L =37, <} aa0® is

a constant coefficient differential operator and suppose that we can solve (uniquely)
the equation Lu = ¢ in the form

u(z) = Kg(x) ¢:/ k(x,y)g(y)dy

n

where k(x,y) is an “integral kernel.” (This is a natural sort of assumption since, in
view of the fundamental theorem of calculus, integration is the inverse operation to
differentiation.) Since 7,L = L7, for all z € R™, (this is another way to characterize
constant coefficient differential operators) and L=! = K we should have 7, K = KT,.
Writing out this equation then says

[ Ha = z)aw)dy = (Kg) (@ = 2) = 7.Kg(o) = (K7.9) (2)

= / k(z,y)9(y — 2)dy = / k(z,y + 2)g(y)dy.
Since g is arbitrary we conclude that k(z — z,y) = k(z,y + z). Taking y = 0 then
gives
k(z,z) = k(z — 2,0) =: p(z — 2).

We thus find that Kg = p % g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equations.
More about this point later.

The following proposition is an easy consequence of the Minkowski’s inequality
for integrals, Theorem 7.27.

Proposition 9.12. Suppose q € [1,00], f € L' and g € L4, then f* g(x) exists for
almost every x, fxg € LY and

1 * gll, < 1f 1l Mlgll, -
For z € R™ and f:R" — C, let 7. f : R" — C be defined by 7, f(z) = f(z — 2).

Proposition 9.13. Suppose that p € [1,00), then 7, : LP — LP is an isometric
isomorphism and for f € LP, z € R" — 71, f € LP is continuous.
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Proof. The assertion that 7, : LP — LP is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that 7_, o 7, = id.
For the continuity assertion, observe that

I f =7 fll, = 7=y (o f =7 D), = [Ime=o f = 1l

from which it follows that it is enough to show 7, f — f in LP as z — 0 € R™.

When f € C.(R"), 7.f — f uniformly and since the K := Uj.j<isupp(7.f) is
compact, it follows by the dominated convergence theorem that 7. f — f in LP as
z — 0 € R™. For general g € LP and f € C.(R"),

729 — ng < |29 — TZpr + 7 f - pr +1f - ng =|[r.f - pr +2(|f - ng
and thus
limsu% 729 — gll, < limsu% |7 f = fll, + 201 f = gll, =2 f—gll,-

Because C(R") is dense in L?, the term ||f — g[[, may be made as small as we
please. m

Lemma 9.14. Suppose f,g,h: R™ — C are measurable functions and assume that
x s a point in R™ such that |f| x |g| (x) < oo and |f| * (|g| * |h]) (z) < oo, then

1. fxg(z)=gx* f(x)
2. fx(gxh)(x) = (f*g)*h(z)
3. If z € R™ and 7,(|f] * |g])(x) = |f] % |g] (x — 2) < 00, then

T(fxg9)(x) = T x g(x) = f * T29()
4. Let A = supp(f) + supp(g), then for x ¢ A we have f * g(xz) =0.

Proof. For item 1.,

|f] *1g] (x) :/R |f] (x —y) \g\(y)dy:/w |1 (W) gl (y — 2)dy = |g] * | f| (z)

where in the second equality we made use of the fact that Lebesgue measure in-
variant under the transformation y — x — y. Similar computations prove all of the
remaining assertions of the first three items of the lemma.

For item 4., if « ¢ supp(f) +supp(g), then for all y € R™, either z —y ¢ supp(f)
or y ¢ supp(g) and hence f(z —y)g(y) = 0 for all y. Thus f*g(x) =0. m

Proposition 9.15. Suppose that p,q € [1,00] and p and q are conjugate exponents,
f€LPandge L, then fxg e BOR"), [|fxgll, <Ifl,lgll, and if p,q € (1,00)
then fx g € Co(R™).

Proof. The existence of f * g(z) and the estimate |f * g| (z) < || f[|,, [lg][, for all
x € R™ is a simple consequence of Holders inequality and the translation invariance
of Lebesgue measure. In particular this shows || f = g[[,, <|/f|l, ll9[l, - By relabeling
p and ¢ if necessary we may assume that p € [1,00). Since

7= (fx9) = Frglly =llm=f g = Frgl, <llm=f = fl, lglly = 0as z—0

it follows that f % g is uniformly continuous. Finally if p,q € (1,00), we learn
from Lemma 9.14 and what we have just proved that fp, % g, € C.(R™) where
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Im = f1fj<m and gim = gl}4)<m. Moreover,

Hf*g_ fm *gmHu S Hf*g_ fm *gHu+ H.fm *g — fm *gmHu
< = Fmllp lglly + 1l [lg = gmll,
< If = fmllp lglly + 171, lg = gmlly — 0 as m — oo

showing, with the aid of Proposition 8.28, f x g € Co(R™). m

Theorem 9.16. Let p,q,r € [1,00] satisfy

1 1 1
(9.5) - +-=1+-.

p q r
If f € LP and g € L9 then |f|x|g| (z) < oo for m — a.e. x and
(9-6) 1 *gll, <[ £1l, llglly -

In particular L' is closed under convolution. (The space (L', ) is an example of a
“Banach algebra” without unit.)

Proof. Let o, 3 € [0,1] and pq,p2 € [0, 0] satisfy p7! +p5* + 7~ = 1. Then
by Holder’s inequality, Corollary 7.3,

1 *a(2)] = ‘ / f(x— w)l)dy| < / £ = )] g £ — )| o)) dy

< ([ == a) " (fise - a) ™ ([ a) "

—(/ = )| () dy> TN

Taking the " power of this equation and integrating on x gives

1f gl < (/If T —y I(1 g(y) mrd:u) dz - || fllap, 913,

(9-7) = [Ifll

(

(
Let us now suppose, (1 — a)r = ap; and (1 — 8)r = Bps, in which case Eq. (9.7)
becomes,

1—
e gl =g 17115, g,

1 glly < [1£ 16, 19115,
which is Eq. (9.6) with
(9.8) p:=(1—a)r=ap; and ¢ := (1 — B)r = [pa.

So to finish the proof, it suffices to show p and ¢ are arbitrary indices in [1, o0]
satisfying p~ ! +¢ 1 =1 +r1
If o, B, p1, p2 satisfy the relations above, then

o= " and 8 = "
T+Dp T+ D2
and
1 1 1r+ 1r+ 1 1 2 1
_+_:_—l)1+_—1)2:_+—+—:1+—.
p q p1 T p2 T b1 p2 T r
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Conversely, if p,q,r satisfy Eq. (9.5), then let o and § satisfy p = (1 — a)r and
g=(1-0)r, ie.
a:zripzl—gglandﬂ:
r r
From Eq. (9.5), a = p(1 — %) >0and B =q(l - %) >0, so that a, 5 € [0,1]. We
then define p; := p/a and py := ¢/, then
1 1 1 1 1 1 1
—+—+-=f-ta-+- ==
pr p2 T q p 7 q
as desired. m

r—q

—1-1<1.

RIS

+o=1
.

1 1 1
T T

1
p

Theorem 9.17 (Approximate § — functions). Let p € [1,00], ¢ € L}(R"), a =
Jgn f(x)dz, and fort > 0 let ¢¢(x) =t "¢(x/t). Then
1. If fe LP then oy x f — f in LP ast | 0.
2. If f € Cp(R™) and f is uniformly continuous then ||¢, * f — f||., — 0 ast | 0.
3. If f € L*® and f is continuous on U C, R™ then ¢ x f — af uniformly on
compact subsets of U ast | 0.

Proof. Making the change of variables y = tz implies
pexflx)= | fle—y)py)dy = | [flx—tz)p(z)dz
RTL

RTL
so that

bux F(x) — af (x) = / [F(o — t2) — f(2)] f(2)dz

n

(9.9) = /n [Teof(z) — f(x)] p(2)dz.

Hence by Minkowski’s inequality for integrals (Theorem 7.27), Proposition 9.12 and
the dominated convergence theorem,

6051 =afl, < [ et = fl, o(2) dz = 0ast Lo

Ttem 2. is proved similarly. Indeed, form Eq. (9.9)

l0ef =afl < [ et = fll o)) dz

which again tends to zero by the dominated convergence theorem because
limy o || 72 f — fl|o. = 0 uniformly in z by the uniform continuity of f.
Item 3. Let Br = B(0, R) be a large ball in R” and K CC U, then

+ /B F(x —t2) — £(2)] d(2)d>

c
R

sup |¢r * f(x) —af(x)] <
xeEK

/B F(x —t2) — £(2)] d(2)d>

R

< /B 6(@)dz- sup  |f(x—te) — F@)]+2 ]l /B 16(2)] d

z€K,2€BRr
<lél_sw |fe—t) = @I+ 20fl [ (o]
zc€K,z€BRr |z|>
so that using the uniform continuity of f on compact subsets of U,

imsup sup 6 + £(2) — af ()] <2l [ o d 0 R oo
z|>

t10 zeK
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L]
See Theorem 8.15 if Folland for a statement about almost everywhere conver-
gence.

Exercise 9.1. Let

f(t)_{el/t if t>0

0 if t<O0.
Show f € C*(R, [0, 1]).

Lemma 9.18. There exists ¢ € C°(R™,[0,00)) such that ¢(0) > 0, supp(¢) C
B(0,1) and [y, ¢(x)dx = 1.

Proof. Define h(t) = f(1 —t)f(t + 1) where f is as in Exercise 9.1. Then
h € C(R,[0,1]), supp(h) C [—1,1] and h(0) = e=2 > 0. Define ¢ = [, h(|z[*)dz.
Then ¢(z) = ¢ Lh(|z|?) is the desired function. m

Definition 9.19. Let X C R" be an open set. A Radon measure on Bx is a
measure p which is finite on compact subsets of X. For a Radon measure p, we let
L}, (1) consists of those measurable functions f : X — C such that [, |f|du < oo

for all compact subsets K C X.
The reader asked to prove the following proposition in Exercise 9.4 below.

Proposition 9.20. Suppose that f € L} (R™,m) and ¢ € CL(R™), then f* ¢ €

loc

CHR™) and 0;(f * ¢) = f * Dip. Moreover if ¢ € C°(R"™) then f * ¢ € C°(R").

Corollary 9.21 (C*° — Uryhson’s Lemma). Given K CC U C, R, there exists
f e Ce(R™,[0,1]) such that supp(f) CU and f =1 on K.

Proof. Let ¢ be as in Lemma 9.18, ¢ (z) = t~"¢(x/t) be as in Theorem 9.17,
d be the standard metric on R" and € = d(K,U¢). Since K is compact and U* is
closed, € > 0. Let Vs = {z € R" : d(z, K) < ¢} and f = ¢¢/3 * 1y, ,, then

supp(f) C supp(ce/3) + Veyz C Vaesz C U.
Since Va3 is closed and bounded, f € C2°(U) and for z € K,

f(:l?) = / 1d(y,[()<e/3 : ¢€/3($ - y)dy = / ¢€/3($ - y)dy =1
Rn Rn
The proof will be finished after the reader (easily) verifies 0 < f < 1. m

Here is an application of this corollary whose proof is left to the reader, Exercise
9.5.

Lemma 9.22 (Integration by Parts). Suppose f and g are measurable functions

on R™ such thatt — f(z1,...,@i—1,t, Tit1,...,Tn) andt — g(z1, ..., Ti—1,t, Tit1,. .
are continuously differentiable functions on R for each fixred x = (x1,...,2,) € R™.
Moreover assume f - g, % -gand f - % are in L' (R™, m). Then
0 7]
f-gdm:— f- 9 dm.
Rn 8@ R axz

With this result we may give another proof of the Riemann Lebesgue Lemma.

)
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Lemma 9.23. For f € L'(R",m) let
F(€) := (2m)~ /2 / f(x)e ®%dm(z)

be the Fourier transform of f. Then f € Co(R™) and

7|, < @M 2 fl - (The

n/2 ip f is for later convenience.)

choice of the normalization factor, (2m)~

Proof. The fact that f is continuous is a simple application of the dominated
convergence theorem. Moreover,

0] < [ @) dm(@) < @211,
so it only remains to see that f(&) — 0 as |¢] — oc.

First suppose that f € Co°(R") and let A =57 =1 8 27 be the Laplacian on R".

Notice that 52-e~%® = —i;e™%® and Ae™"'® = \§|2 e~ Using Lemma 9.22
J
repeatedly,

/Akf( —z{zdm /f Ak —z{zdm Qk/f —z&mdm( )
—(2m)"? 1€ F¢)
for any £ € N. Hence (271')"/2‘]3(5)‘ < |§\_2k’|Aka1 — 0 as |[¢§| — oo and
f € Co(R™). Suppose that f € L*(m) and f € C°(R™) is a sequence such that

limg—oo || — fill; = 0, then limj_o Hfffk = 0. Hence f € Cy(R") by an
application of Proposition 8.28. m b

Corollary 9.24. Let X C R" be an open set and pu be a Radon measure on Bx.
Then C(X) is dense in LP(u) for all 1 < p < oo.

Proof. By Corollary 9.8 it suffices to show any f € C.(X) may be approximated
in LP(u) by ¢ € C°(X). To prove this let ¢ be as in Lemma 9.18, ¢; be as in
Theorem 9.17 and set ¢, := ¢y * (f1x) . Then by Proposition 9.20 ¢, € C*°(X) and
by Lemma 9.14 there exists a compact set K C X such that supp(y;) C K for all
t sufficiently small. By Theorem 9.17, ¢, — f uniformly on X as ¢ | 0 and hence
by the dominated convergence theorem (the dominating function being ||f|| 1x),
Yy — fin LP(p) ast | 0. m

Lemma 9.25. Let X C R" be an open set, p be a Radon measure on Bx and
h € Lige(p)- If

(9.10) /X fhdp =0 for all f € C°(X)

then h(z) =0 for u — a.e. .

Proof. First Proof. Let dv(z) = |h(x)|dz, then v is a Radon measure on X
and hence C°(X) is dense in L!(v) by Corollary 9.24. Notice that

(9.11) /X f-sgn(h)dv = /X fhdp =0 for all f € C°(X).
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Let {Ky},-, be a sequence of compact sets such that K; | X as in Lemma 8.10.
Then 1g,sgn(h) € L'(v) and therefore there exists f,, € C>°(X) such that f,, —
1k, sgn(h) in L*(v). So by Eq. (9.11),

v(Ky,) :/ 1k, dv = lim fmsgn(h)dv = 0.
p's

m—0Q X

Since Kj, T X as k — o0, 0 = v(X) = [y |h|dp, i.e. h(z) =0 for p - a.e. x.

Second Proof. Approximating f € C.(X) by ¢ € C*(X) as in the proof
of Corollary 9.24. The dominated convergence theorem (with dominating function
being | f||., 1x |h| ) shows,

0 = lim / behdp = / Fhdp.
t]0 X X

That is to say Eq. (9.10) holds for all f € C.(X). Let K} be as above and use
Corollary 9.21 to find x € C¢°(X, [0, 1]) such that x =1 on K. Then

0:/ xfhdy for all f € BC(X)
X

and a routine application of Corollary 6.13 gives 0 = [ x XSfhdp for all bounded

measurable functions f : X — C. Taking f = sgn(h) then implies

Oz/xlh\dMZ/ b ds
X K

and hence by the monotone convergence theorem,

0= lim/ |h\d,u:/ |h| ds.
k—oo K X

9.1.1. Smooth Partitions of Unity. We have the following smooth variants of Propo-
sition 8.22, Theorem 8.24 and Corollary 8.25. The proofs of these results are the
same as their continuous counterparts. Omne simply uses the smooth version of
Urysohn’s Lemma of Corollary 9.21 in place of Lemma 8.15.

Proposition 9.26 (Smooth Partitions of Unity for Compacts). Suppose that X is
an open subset of R™, K C X is a compact set and U = {U; }?:1 is an open cover of
K. Then there exists a smooth (i.e. h; € C*(X,[0,1])) partition of unity {hj};lzl
of K such that h; < U; forall j =1,2,...,n.

Theorem 9.27 (Locally Compact Partitions of Unity). Suppose that X is an open
subset of R™ and U is an open cover of X. Then there exists a smooth partition of
unity of {h;}X.; (N = oo is allowed here) subordinate to the cover U such that
supp(h;) is compact for all i.

Corollary 9.28. Suppose that X is an open subset of R™ and U = {Us}ocq C T
is an open cover of X. Then there exists a smooth partition of unity of {ha}aca
subordinate to the cover U such that supp(ha) C U, for all a« € A. Moreover if U,
is compact for each a € A we may choose hy, so that hy < U,.
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9.2. Classical Weierstrass Approximation Theorem. Let Z := NU {0}.
Notation 9.29. For z € R? and « € Z¢ let 2 = [T, 2% and |a| = Z?:l ;. A

=11
polynomial on R? is a function p : RY — C of the form
p(z) = Z Pax® with p, € Cand N € Z;..
a:|la| <N
If p, # 0 for some « such that || = N, then we define deg(p) := N to be the

degree of p. The function p has a natural extension to z € C¢, namely p(z) =
d a;

Za:\a|§NpaZa where 2% = [;_; 2.

Remark 9.30. The mapping (z,y) € RIxR? — 2 = z+iy € C¢is an isomorphism of
vector spaces. Letting z = x — iy as usual, we have © = Z'QFZ and y = %%, Therefore
under this identification any polynomial p(x,y) on R? x R? may be written as a
polynomial ¢ in (z, Z), namely

_ z+z z—2
4(2,2) = p(—5— —5)-

Conversely a polynomial ¢ in (z,z) may be thought of as a polynomial p in (z,y),
namely p(z,y) = q(z + iy, — iy).

Theorem 9.31 (Weierstrass Approximation Theorem). Let a,b € R? with a < b
(i.e. a; <b; fori=1,2,...,d ) and set [a,b] := [a1,b1] X -+ X [aq,bq]. Then for
f € C([a,b],C) there exists polynomials p, on R? such that p, — f uniformly on
[a,b].

We will give two proofs of this theorem below. The first proof is based on the
“weak law of large numbers,” while the second is base on using a certain sequence
of approximate ¢ — functions.

Corollary 9.32. Suppose that K C R is a compact set and f € C(K,C). Then
there exists polynomials p, on R? such that p,, — f uniformly on K.

Proof. Choose a,b € R such that @ < band K C (a,b) := (ay,by)x---x(aq,ba).
Let f : KU (a,b)¢ — C be the continuous function defined by f\ xk = f and
f |(a,)c = 0. Then by the Tietze extension Theorem (either of Theorems 8.2 or 8.16
will do) there exists F' € C(R?, C) such that f=F | KU(a,b)e- ApPply the Weierstrass
Approximation Theorem 9.31 to F|j, 4 to find polynomials p, on R? such that
pn, — F uniformly on [a,b]. Clearly we also have p, — f uniformly on K. m

Corollary 9.33 (Complex Weierstrass Approximation Theorem). Suppose that K C
C4 is a compact set and f € C(K,C). Then there exists polynomials p,(z,z) for
z € C% such that sup,¢ j [pn(z,2) — f(2)| — 0 as n — oo.

Proof. This is an immediate consequence of Remark 9.30 and Corollary 9.32.
L]

Example 9.34. Let K = S! = {2 € C: |z| = 1} and A be the set of polynomials
in (2,%) restricted to S*. Then A is dense in C(S!).1? Since z = 2! on S, we
have shown polynomials in z and z~! are dense in C'(S'). This example generalizes
in an obvious way to K = (Sl)d c C

19Note that it is easy to extend f € C(S1) to a function F € C(C) by setting F(z) = zf(ﬁ)

for z # 0 and F(0) = 0. So this special case does not require the Tietze extension theorem.
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9.2.1. First proof of the Weierstrass Approzimation Theorem 9.31. Proof. Let
0: = (0,0,...,0) and 1: = (1,1,...,1). By considering the real and imaginary
parts of f separately, it suffices to assume f is real valued. By replacing f by
g9(z) = flar + z1(b1 — a1),...,aq + x4(bg — aq)) for x € [0,1], it suffices to prove
the theorem for f € C([0,1]).

For z € [0,1], let v, be the measure on {0,1} such that v, ({0}) =1 — 2z and
vz ({1}) = . Then

(9.12) / ydvy(y) =0-(1—2)+1-z =2 and
0.1}
9.13) / (y— 2 2dva(y) = 22(1— ) + (1 - 2)? -2 = 2(1 - 2).
0.1}

For z € [0,1] let p1p = vy, ®- - - ® vy, be the product of vy, , ..., vy, on Q:= {0, 134
Alternatively the measure i, may be described by

d

(9.14) o (feh) = [T (0= 2) ™t

i=1
for e € Q. Notice that p, ({€}) is a degree d polynomial in x for each € € Q. For

n € N and z € [0,1], let p denote the n — fold product of u, with itself on Q"
Xi(w) =w; € QC R for w € Q" and let

Sn=(Sh,...,80) = (X1 + Xo+ -+ X,,)/n,
s0 Sy : 2" — R?. The reader is asked to verify (Exercise 9.2) that

(9.15) snduz—( St ..., s:iduﬁ)—(xl,...,xd)—x
QH, Qn QH,
and
1< d
1 W — P du = = (1 —x) < =
(9.16) 180 =af iy = 2> w1 = < 3

From these equations it follows that S,, is concentrating near = as n — oo, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

(9.17) pa(@) = [ f(Sn)dug
QTL
should approach f(x) as n — occ.
Let € > 0 be given, M = sup{|f(z)| : z € [0,1]} and
be =sup{|f(y) — f(x)] : 2,y € [0,1] and |y — x| < €}.

By uniform continuity of f on [0,1], lim, o 6. = 0. Using these definitions and the
fact that p2(2") =1,

|f(z) — pu(z)| = / (f(x) — f(Sn)) dusy g/” F(2) — F(S0)| dp?
©) = F(Sn)l dpiz x) = f(Sn)| dpil
<[ @ g [ ) gl

(9.18) <2Mpy (|Sn — x| > €) + be.
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By Chebyshev’s inequality,

and therefore, Eq. (9.18) yields the estimate

2dM
Hffanu S 2 +6e
ne

and hence

limsup || f — pnll, <6 —0ase 0.

n—oo

This completes the proof since, using Eq. (9.14),

pal@) = Y F(Sa@)ri(fw}) = Y f(Su(@) [T relwid),

weNn weNn =1
is an nd — degree polynomial in x € RY). m
Exercise 9.2. Verify Egs. (9.15) and (9.16). This is most easily done using Egs.
(9.12) and (9.13) and Fubini’s theorem repeatedly. (Of course Fubini’s theorem here

is over kill since these are only finite sums after all. Nevertheless it is convenient
to use this formulation.)

9.2.2. Second proof of the Weierstrass Approximation Theorem 9.31. For the sec-
ond proof we will first need two lemmas.

Lemma 9.35 (Approximate § — sequences). Suppose that {Qn}.. | is a sequence
of positive functions on R% such that

(9.19) Qn(z) dz =1 and
R
(9.20) lim / Qn(z)dx =0 for all € > 0.
|z[>e

For f € BO(RY), Q,, * f converges to f uniformly on compact subsets of R%.
Proof. Let € R%, then because of Eq. (9.19),

Qe £0) - 160 = | [ @) (e =) = s t| < [ Qw156 = 9) = sl
Let M =sup {|f()| : 2 € R} and € > 0, then by and Eq. (9.19)

|Qn * f(2) = f(2)] < Qn) |f(z —y) — f(2)ldy

ly|<e

+ Qn(y) [f(x —y) — f(z)|dy

ly|>e

< sup |f(z+2z) — f(z)|+2M Qn(y)dy.
|z|<e ly|>e

Let K be a compact subset of R?, then

sup |Qn * f(z) — f(z)| < sup |f(z+2) = fz)|+2M Qn(y)dy
zeK |z|<e,zeK ly|>e
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and hence by Eq. (9.20),

lim sup sup |Qn * f(x) — f(z)| < sup |f(x+2) — f(x)].
n—oo x€K |z|<e,zeK

This finishes the proof since the right member of this equation tends to 0 as € | 0
by uniform continuity of f on compact subsets of R”. m
Let g, : R —[0, 00) be defined by

1
(9.21) gn(z) = i(1 — :1:2)"1|$‘§1 where ¢, := / (1 — 2?)"dx.

Cn -1

Figure 23 displays the key features of the functions g,.

FIGURE 23. A plot of ¢1, g50, and g19o. The most peaked curve is
q100 and the least is ¢;. The total area under each of these curves
is one.

Define
(9.22) Qn : R = [0,00) by Qn(x) = gn(1) - .. qn(z4q)-

Lemma 9.36. The sequence {Qn}::;l is an approximate 6 — sequence, i.e. they
satisfy Egs. (9.19) and (9.20).

Proof. The fact that @Q,, integrates to one is an easy consequence of Tonelli’s
theorem and the definition of ¢,. Since all norms on R? are equivalent, we may
assume that |z| = max {|z;| : 4 =1,2,...,d} when proving Eq. (9.20). With this
norm

{xERd:|x\ Ze}zu‘le{a}ERd:\a}i\ > €}

and therefore by Tonelli’s theorem and the definition of ¢,,

Qn(x)dxsi / Qu(x)dz = d / gn(7)dz.

{Jzi>e} e >e} {zeR|z|>¢}
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Since

2 1(1 — 22)"dx
/ Gn(@)de = € Qf; )1 2\n
|| >e Qfo(l—:zz)deerE(lfx)dx

fel < %) dw (1 —a?) ! (1)t 0 — 00
= = —
o E(1—a?)nde (1—a?)mHlg 11— (1—e2)nt! asn ’

the proof is complete. m

We will now prove Corollary 9.32 which clearly implies Theorem 9.31.

Proof. Proof of Corollary 9.32. As in the beginning of the proof already given
for Corollary 9.32, we may assume that K = [a,b] for some a < b and f = F|g
where F' € C(R%,C) is a function such that F|x. = 0. Moreover, by replacing F(z)
by G(z) = F(a1 + x1(by — a1),...,aq + z4(bg — aq)) for x € R™ we may further
assume K = [0, 1].

Let Q. (x) be defined as in Eq. (9.22). Then by Lemma 9.36 and 9.35, p,(x) :=
(Qn * F)(z) — F(z) uniformly for z € [0,1] as n — oco. So to finish the proof it
only remains to show p,(x) is a polynomial when z € [0,1]. For z € [0, 1],

pn(T) = Qn(z —y)f(y)dy

Rd
1 —

== [Ol]f(y)II [en (1= (2 — 4)2) Vo, —yi<1] dy
" ’ =1

Since the product in the above integrand is a polynomial if (z,y) € R” x R”, it
follows easily that p, (z) is polynomial in . =

9.3. Stone-Weierstrass Theorem. We now wish to generalize Theorem 9.31 to
more general topological spaces. We will first need some definitions.

Definition 9.37. Let X be a topological space and A ¢ C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

1. A is said to separate points if for all distinct points x,y € X there exists
f € A such that f(x) # f(y).

2. A is an algebra if A is a vector subspace of C'(X) which is closed under
pointwise multiplication.

3. A is called a lattice if fV g := max(f,g) and f A g = min(f,g) € A for all
f,ge A

4. A C C(X) is closed under conjugation if f € A whenever f € A.2°

Remark 9.38. If X is a topological space such that C(X,R) separates points then
X is Hausdorff. Indeed if z,y € X and f € C(X,R) such that f(x) # f(y), then
f~Y(J) and f~Y(I) are disjoint open sets containing x and y respectively when [
and J are disjoint intervals containing f(z) and f(y) respectively.

Lemma 9.39. If A C C(X,R) is a closed algebra then |f| € A for all f € A and
A is a lattice.

20This is of course no restriction when C(X) = C(X,R).
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Proof. Let f € A and let M = sup |f(z)|. Using Theorem 9.31 or Exercise 9.6,
zeX
there are polynomials p,(t) such that

lim sup [|t| —pn(t)| = 0.
n—00 |11 <\

By replacing p, by p, — pn(0) if necessary we may assume that p,(0) = 0. Since
A is an algebra, it follows that f,, = p,(f) € A and |f| € A, because |f] is the
uniform limit of the f,,’s. Since

fVvg== (f+g+|f—g|) and

fhg=5(f+g—1f—4gl),

we have shown A is a lattice. m

NI = N =

Lemma 9.40. Let A C C(X,R) be an algebra which separates points and x,y € X
be distinct points such that

(9.23) 3 f,ge A > f(x)#0 and g(y) #0.
Then
(9.24) V= {(f(2),f(v) : f € A}=R%.

Proof. It is clear that V is a non-zero subspace of R? If dim(V) = 1, then
V = span(a, b) with a # 0 and b # 0 by the assumption in Eq. (9.23). Since (a, b) =
(f(x), f(y)) for some f € Aand f? € A, it follows that (a?,b?) = (f?(2), f2(y)) € V
as well. Since dimV =1, (a,b) and (a?,b?) are linearly dependent and therefore

b

which implies that a = b. But this the implies that f(z) = f(y) for all f € A,
violating the assumption that A separates points. Therefore we conclude that
dim(V) =2,ie. V=R2 =

2
0—det< “ ‘bLQ >—ab2—ba2—ab(b—a)

Theorem 9.41 (Stone-Weierstrass Theorem). Suppose X is a compact Hausdorff
space and A C C(X,R) is a closed subalgebra which separates points. For v € X
let

A, ={f(z): f € A} and

I, ={f € C(X,R) : f(z) =0}.
Then either one of the following two cases hold.

1. Ap = R for all x € X, i.e. for all x € X there exists f € A such that

F(z) # 0.2
2. There exists a unique point xg € X such that A,, ={0}.

Moreover in case (1) A = C(X,R) and in case (2) A=1,, ={f € C(X,R):
f(zg) = 0}.
Proof. If there exists xo such that A,, = {0} (x¢ is unique since A separates

points) then A C Z,,. If such an z¢ exists let C = I, and if A, = R for all z, set
C = C(X,R). Let f € C, then by Lemma 9.40, for all z,y € X such that z # y

211f A contains the constant function 1, then this hypothesis holds.
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there exists g,y € A such that f = g, on {z,y}.?? The basic idea of the proof is
contained in the following identity,
(9.25) f(z) = inf sup g,y(2) for all z € X.
zeX yeXx

To prove this identity, let g, := sup,¢ x gzy and notice that g, > f since g, (y) =
f(y) for all y € X. Moreover, g,(x) = f(x) for all € X since g,,(x) = f(x) for all
x. Therefore,

inf = inf g, = f.

inf sup gy = inf g, = f
The rest of the proof is devoted to replacing the inf and the sup above by min and
max over finite sets at the expense of Eq. (9.25) becoming only an approximate
identity.

Claim 1. Given € >0 and x € X there exists g, € A such that g,(x) = f(x) and
f<gs+eonX.

To prove the claim, let V, be an open neighborhood of y such that |f — g | < €
on Vj, so in particular f < € + gz, on V,. By compactness, there exists A CC X

such that X = |J V. Set
yeEA

9:(2) = max{g,,(2) : y € A},

then for any y € A, f < €+ gzy < € + g, on V,, and therefore f < €+ g, on X.
Moreover, by construction f(z) = g, (), see Figure 24 below.

F1GURE 24. Constructing the funtions g,.

We now will finish the proof of the theorem. For each x € X, let U, be a
neighborhood of = such that |f — g»] < € on U,. Choose I' CC X such that

221f Az, = {0} and = = zg or y = xo, then gy exists merely by the fact that A separates
points.
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X = | U, and define
zel
g=min{g,:x €T} € A

Then f < g+eon X and for z €T, g, < f 4+ € on U, and hence g < f 4 € on U,.

Since X = |J U, we conclude
zel

f<g+eandg< f+eon X,
i.e. |f —g| < eon X. Since € > 0 is arbitrary it follows that f € A= A. =

Theorem 9.42 (Complex Stone-Weierstrass Theorem). Let X be a compact Haus-
dorff space. Suppose A C C(X,C) is closed in the uniform topology, sepa-
rates points, and is closed under conjugation. Then either A = C(X,C) or

A=TI5 ={f € C(X,C): f(xo) =0} for some xg € X.

Proof. Since

|
|

f+
2

Re f and Im f are both in A. Therefore
Ar ={Re f,Im f : f € A}

is a real sub-algebra of C'(X,R) which separates points. Therefore either Agx =
C(X,R) or Az = I, N C(X,R) for some 2 and hence A = C(X,C) or IS,
respectively. m

As an easy application, Theorems 9.41 and 9.42 imply Corollaries 9.32 and 9.33
respectively.

f‘_

Re f = %

and Im f =

Corollary 9.43. Suppose that X is a compact subset of R™ and p is a finite mea-
sure on (X, Bx), then polynomials are dense in LP(X, ) for all 1 < p < 0.

Proof. Consider X to be a metric space with usual metric induced from R™.
Then X is a locally compact separable metric space and therefore C.(X,C) =
C(X,C) is dense in LP(p) for all p € [1,00). Since, by the dominated convergence
theorem, uniform convergence implies LP(u) — convergence, it follows from the
Stone - Weierstrass theorem that polynomials are also dense in LP(p). m

Here are a couple of more applications.

Example 9.44. Let f € C([a,b]) be a positive function which is injective. Then
functions of the form Zszl ap f* with a, € C and N € N are dense in C([a,b)]).
For example if @ = 1 and b = 2, then one may take f(x) = z® for any a # 0, or
f(x) = e*, etc.

Exercise 9.3. Let (X,d) be a separable compact metric space. Show that C(X)
is also separable. Hint: Let 2 C X be a countable dense set and then consider the

algebra, A C C(X), generated by {d(z,-)},cp -

9.4. Locally Compact Version of Stone-Weierstrass Theorem.
Theorem 9.45. Let X be non-compact locally compact Hausdorff space. If A is a

closed subalgebra of Co(X,R) which separates points. Then either A = Co(X,R)
or there exists xo € X such that A ={f € Co(X,R) : f(x0) = 0}.
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Proof. There are two cases to consider.

Case 1. There is no point zp € X such that A C {f € Co(X,R) : f(xo) = 0}.
In this case let X* = X U{oo} be the one point compactification of X. Because of
Proposition 8.29 to each f € A there exists a unique extension f € C(X*R)
such that f = f|lx and moreover this extension is given by f(co) = 0. Let
A:={f € O(X*,R) : f € A}. Then A is a closed (you check) sub-algebra
of C(X*,R) which separates points. An application of Theorem 9.41 implies
A= {F e C(X*,R) 3F(x) =0} and therefore by Proposition 8.29 A = {F|x :
F e A} = Co(X,R).

Case 2. There exists zp € X such A C {f € Co(X,R) : f(zo) = 0}. In this
case let YV := X \ {zo} and Ay := {f|y : f € A}. Since X is locally compact,
one easily checks Ay C Cy(Y,R) is a closed subalgebra which separates points.
By Case 1. it follows that Ay = Co(Y,R). So if f € Co(X,R) and f(zg) = 0,
fly € Co(Y,R) =Ay, i.e. there exists g € A such that gy = f|y. Since g(zg) =
f(zo) =0, it follows that f = g € A and therefore A = {f € Cp(X,R) : f(xp) =0}.
]

Example 9.46. Let X = [0,00), A > 0 be fixed, A be the algebra generated by
t — e . So the general element f € A is of the form f(t) = p(e™*), where p(z)
is a polynomial. Since A C Cy(X,R) separates points and e~ € A is pointwise

positive, A = Co(X,R).

As an application of this example, we will show that the Laplace transform is
injective.

Theorem 9.47. For f € L'(]0,00),dx), the Laplace transform of f is defined by
L) = / e~ f(x)dx for all X > 0.
0

If Lf(A) =0 then f(z) =0 for m -a.e. x.

Proof. Suppose that f € L'([0,00),dz) such that £Lf(A\) = 0. Let g €
Co([0,00),R) and € > 0 be given. Choose {ax } x>0 such that # ({A > 0:ay #0}) <

oo and
lg(x) — Za)\e_)‘ﬂ < eforall z > 0.
A>0
Then

/ " (@) fla)da

/000 (g(:z:) — Zayﬁ”) f(x)dx

A>0
= /('

g(x) — ZaAe_)‘m
A>0

Since € > 0 is arbitrary, it follows that fooo g(x)f(z)dz =0 for all g € Cy([0, o), R).

The proof is finished by an application of Lemma 9.7. m

|f (@) dx < €| fl1-

9.5. Dynkin’s Multiplicative System Theorem. This section is devoted to an
extension of Theorem 6.12 based on the Weierstrass approximation theorem. In
this section X is a set.
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Definition 9.48 (Multiplicative System). A collection of real valued functions @
on a set X is a multiplicative system provided f - g € (Q whenever f,g € Q.

Theorem 9.49 (Dynkin’s Multiplicative System Theorem). Let H be a linear sub-
space of B(X,R) which contains the constant functions and is closed under bounded
convergence. If Q C H is multiplicative system, then H contains all bounded real
valued o(Q)-measurable functions.

Theorem 9.50 (Complex Multiplicative System Theorem). Let H be a complex
linear subspace of B(X,C) such that: 1 € H, H is closed under complex conju-
gation, and H is closed under bounded convergence. If Q C H is multiplicative
system which is closed under conjugation, then H contains all bounded complex
valued o(Q)-measurable functions.

Proof. Let F be R or C. Let C be the family of all sets of the form:
(9.26) B:={recX: fi(zr)€R,...,[m(z) € Rn}

where m = 1,2,... , and for k =1,2,...,m, fr € Q and Ry is an open interval if
F =R or Ry is an open rectangle in C if F = C. The family C is easily seen to be
a 7 — system such that o(Q) = o(C). So By Theorem 6.12, to finish the proof it
suffices to show 1g € H for all B € C.

It is easy to construct, for each k, a uniformly bounded sequence of continuous
functions{qﬁﬁ}zozl on F converging to the characteristic function 1g,. By Weier-
strass’ theorem, there exists polynomials pf, (z) such that |pk(z) — ¢k (z)| < 1/n
for |z| < ||¢k|le in the real case and polynomials p% (z,%) in z and z such that
|pE(z,2) — ¢k (2)| < 1/n for |2| < [|¢]leo in the complex case. The functions

F, :p,ll(fl)p%(fz) c pzl(fnz) (real Case)
Fo mph (P2 (fo o) P (fons fin)  (comples case)

on X are uniformly bounded, belong to H and converge pointwise to 15 as n — oo,
where B is the set in Eq. (9.26). Thus 15 € H and the proof is complete. ®

Remark 9.51. Given any collection of bounded real valued functions F on X, let
H(F) be the subspace of B(X,R) generated by F,i.e. H(F) is the smallest subspace
of B(X,R) which is closed under bounded convergence and contains F. With this
notation, Theorem 9.49 may be stated as follows. If F is a multiplicative system
then H(F) = B,(7)(X,R) — the space of bounded o (F) — measurable real valued
functions on X.

9.6. Exercises.
Exercise 9.4. Prove Proposition 9.20 by appealing to Corollary 5.43.

Exercise 9.5 (Integration by Parts). Suppose that (z,y) € R x R"™! — f(z,y) €
Cand (z,y) € R x R"* — g(z,y) € C are measurable functions such that for each
fixed y € R" ! 2 — f(x,y) and x — g(x,y) are continuously differentiable. Also
assume f - g, 0,.f - g and f - 0,g are integrable relative to Lebesgue measure on
R x R™™", where 0, f(z,y) :== % f(z +t,9)|¢=0. Show

021 [ ouf@)-sededy == [ f(w.9)-Ouglan)dady,

(Note: this result and Fubini’s theorem proves Lemma 9.22.)
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Hints: Let ¢ € C°(R) be a function which is 1 in a neighborhood of 0 € R and
set Ye(x) = Y(ex). First verify Eq. (9.27) with f(z,y) replaced by ¢.(x)f(x,y) by
doing the x — integral first. Then use the dominated convergence theorem to prove
Eq. (9.27) by passing to the limit, € | 0.

Exercise 9.6. Let M < oo, show there are polynomials p,(t) such that

lim sup ||t| —pn(t)] =0
n—00 |1 <\

as follows. Let f(t) = +/1—t for |t| < 1. By Taylor’s theorem with integral re-
mainder (see Eq. A.15 of Appendix A) or by analytic function theory, there are
constants®3 a,, > 0 for n € N such that

\/l—le—Zanx” for all |z| < 1.

n=1

Use this to prove Y~ | a,, = 1 and therefore ¢, (z) :==1— 3" | a,z™

lim sup |[vV1—2 — gn(x)] =0.

Let 1 —x =t2/M? ie. o =1—t2/M? then

4

A 42 2 _
i gm(1—t°/M7)| =0

lim sup
m— o0 [t|<M

so that p,,(t) := Mgq,,(1 —t?/M?) are the desired polynomials.

Exercise 9.7. Given a continuous function f : R — C which is 27 -periodic and

n .
€ > 0. Show there exists a trigonometric polynomial, p(8) = 3 «,e™?, such that
n=—N

|f(6) — P(6)] < € for all § € R. Hint: show that there exists a unique function
F € C(S') such that f(0) = F(e®) for all § € R.

Remark 9.52. Exercise 9.7 generalizes to 2 — periodic functions on R?, i.e. func-
tions such that f(6+2me;) = f(0) foralli =1,2,...,d where {ei}le is the standard
basis for R?. A trigonometric polynomial p(#) is a function of § € R? of the form

p(9) = Z ane™?
nel’

where T is a finite subset of Z?. The assertion is again that these trigonometric
polynomials are dense in the 2w — periodic functions relative to the supremum
norm.

Exercise 9.8. Let i be a finite measure on Bga, then I := span{e?*® : A\ € R?} is
a dense subspace of LP(u) for all 1 < p < co. Hints: By Corollary 9.8, C.(R9) is
a dense subspace of LP(u). For f € C.(RY) and N € N, let

fn(x) = Z f(z+27Nn).
nez
Show fy € BC(R?) and, by Exercise 9.7, fy(z/N) can be approximated uniformly
by trigonometric polynomials. Use this fact to conclude that fy € D" for all N
sufficiently large. After this show fny — f in LP(u).

—_ n -
231 fact Qp = M, but this is not needed.

21 n!
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Exercise 9.9. Suppose that x and v are two finite measures on R? such that
(9.28) / eNdu(x) = / e dy(x)
Rd Rd

for all A € R%. Show pu = v.

Hint: Perhaps the easiest way to do this is to use Exercise 9.8 with the measure
1 being replaced by p+ v. Alternatively, use the method of proof of Exercise 9.7 to
show Eq. (9.28) implies [5, fdu(z) = [pa fdv(z) for all f € Ce(RY).
Exercise 9.10. Again let y be a finite measure on Bra. Further assume there exists

an € > 0 such that C := [, e¢®ldp(z) < co. Show the space P(R?) of polynomials

on R? are dense in LP(p) for all 1 < p < oo. Here is a possible outline.
Outline: For A € RY and n € Nlet f,(z) = (A-2)" /n!

1. Use calculus to verify sup;>ot*e™" = (a/€)" e~ for all @ > 0 where (0/e)° :=
1. Use this estimate along with the identity

Azl < A fa " = (Jaf?" el ) (A el
to find an estimate on [|f,[[, .
2. Use this estimate to show there exists § > 0 such that > 7 || f||,, < 0o when
|A| < 6 and conclude for || < § that e*® = LP(u)-> o7 o fn(z). From this it
follows that [5, e"*du(z) = 0 when || < 6.

3. Let A € R? (|A| not necessarily small) and set g(t) := [5q €**dpu(z) for t € R.
Show g € C*°(R) and

g™ (t) = / (i) - ) e 2 du(x) for all n € N.
R4

4. Let T'=sup{7 > 0: gljo,,; = 0}. By Step 2., T'> 6. If T" < oo, use Step 3. to
conclude

/ (G- 2)"e T ®du(x) = 0 for all n € N.
Rd
Then use Step 2. again to conclude
/ IHONT (1) = 0 for all £ < 6/ |A|
Rd

which violates the definition of T" and therefore T' = cc.
5. Now finish by appealing to Exercise 9.8.



