Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set $\mathbb{R}:=\mathbb{R} \cup\{ \pm \infty\}$, i.e. it is \mathbb{R} with two new points called ∞ and $-\infty$. We use the following conventions, $\pm \infty \cdot 0=0, \pm \infty \cdot a= \pm \infty$ if $a \in \mathbb{R}$ with $a>0, \pm \infty \cdot a=\mp \infty$ if $a \in \mathbb{R}$ with $a<0, \pm \infty+a= \pm \infty$ for any $a \in \mathbb{R}, \infty+\infty=\infty$ and $-\infty-\infty=-\infty$ while $\infty-\infty$ is not defined. A sequence $a_{n} \in \overline{\mathbb{R}}$ is said to converge to $\infty(-\infty)$ if for all $M \in \mathbb{R}$ there exists $m \in \mathbb{N}$ such that $a_{n} \geq M\left(a_{n} \leq M\right)$ for all $n \geq m$.

Lemma 1.2. Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are convergent sequences in $\overline{\mathbb{R}}$, then:

1. If $a_{n} \leq b_{n}$ for a.a. n then $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$.
2. If $c \in \mathbb{R}, \lim _{n \rightarrow \infty}\left(c a_{n}\right)=c \lim _{n \rightarrow \infty} a_{n}$.
3. If $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$ is convergent and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \tag{1.1}
\end{equation*}
$$

provided the right side is not of the form $\infty-\infty$.
4. $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ is convergent and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} \tag{1.2}
\end{equation*}
$$

provided the right hand side is not of the for $\pm \infty \cdot 0$ of $0 \cdot(\pm \infty)$.
Before going to the proof consider the simple example where $a_{n}=n$ and $b_{n}=-\alpha n$ with $\alpha>0$. Then

$$
\lim \left(a_{n}+b_{n}\right)=\left\{\begin{array}{cc}
\infty & \text { if } \alpha<1 \\
0 & \text { if } \alpha=1 \\
-\infty & \text { if } \alpha>1
\end{array}\right.
$$

while

$$
\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} "=" \infty-\infty
$$

This shows that the requirement that the right side of Eq. 1.1 is not of form $\infty-\infty$ is necessary in Lemma 1.2. Similarly by considering the examples $a_{n}=n$

[^0]and $b_{n}=n^{-\alpha}$ with $\alpha>0$ shows the necessity for assuming right hand side of Eq. 1.2 is not of the form $\infty \cdot 0$.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. 1.1. Let $a:=\lim _{n \rightarrow \infty} a_{n}$ and $b=\lim _{n \rightarrow \infty} b_{n}$. Case 1., suppose $b=\infty$ in which case we must assume $a>-\infty$. In this case, for every $M>0$, there exists N such that $b_{n} \geq M$ and $a_{n} \geq a-1$ for all $n \geq N$ and this implies

$$
a_{n}+b_{n} \geq M+a-1 \text { for all } n \geq N
$$

Since M is arbitrary it follows that $a_{n}+b_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The cases where $b=-\infty$ or $a= \pm \infty$ are handled similarly. Case 2 . If $a, b \in \mathbb{R}$, then for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left|a-a_{n}\right| \leq \varepsilon \text { and }\left|b-b_{n}\right| \leq \varepsilon \text { for all } n \geq N
$$

Therefore,

$$
\left|a+b-\left(a_{n}+b_{n}\right)\right|=\left|a-a_{n}+b-b_{n}\right| \leq\left|a-a_{n}\right|+\left|b-b_{n}\right| \leq 2 \varepsilon
$$

for all $n \geq N$. Since n is arbitrary, it follows that $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b$.
Proof of Eq. 1.2 . It will be left to the reader to prove the case where $\lim a_{n}$ and $\lim b_{n}$ exist in \mathbb{R}. I will only consider the case where $a=\lim _{n \rightarrow \infty} a_{n} \neq 0$ and $\lim _{n \rightarrow \infty} b_{n}=\infty$ here. Let us also suppose that $a>0$ (the case $a<0$ is handled similarly) and let $\alpha:=\min \left(\frac{a}{2}, 1\right)$. Given any $M<\infty$, there exists $N \in \mathbb{N}$ such that $a_{n} \geq \alpha$ and $b_{n} \geq M$ for all $n \geq N$ and for this choice of N, $a_{n} b_{n} \geq M \alpha$ for all $n \geq N$. Since $\alpha>0$ is fixed and M is arbitrary it follows that $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\infty$ as desired.

For any subset $\Lambda \subset \overline{\mathbb{R}}$, let $\sup \Lambda$ and $\inf \Lambda$ denote the least upper bound and greatest lower bound of Λ respectively. The convention being that $\sup \Lambda=\infty$ if $\infty \in \Lambda$ or Λ is not bounded from above and $\inf \Lambda=-\infty$ if $-\infty \in \Lambda$ or Λ is not bounded from below. We will also use the conventions that $\sup \emptyset=-\infty$ and $\inf \emptyset=+\infty$.
Notation 1.3 Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \overline{\mathbb{R}}$ is a sequence of numbers. Then

$$
\begin{align*}
\liminf _{n \rightarrow \infty} x_{n} & =\lim _{n \rightarrow \infty} \inf \left\{x_{k}: k \geq n\right\} \text { and } \tag{1.3}\\
\limsup _{n \rightarrow \infty} x_{n} & =\lim _{n \rightarrow \infty} \sup \left\{x_{k}: k \geq n\right\} . \tag{1.4}
\end{align*}
$$

We will also write \varliminf for $\lim _{\inf }{ }_{n \rightarrow \infty}$ and $\overline{\lim }$ for $\lim \sup _{n \rightarrow \infty}$.

Remark 1.4. Notice that if $a_{k}:=\inf \left\{x_{k}: k \geq n\right\}$ and $b_{k}:=\sup \left\{x_{k}: k \geq\right.$ $n\}$, then $\left\{a_{k}\right\}$ is an increasing sequence while $\left\{b_{k}\right\}$ is a decreasing sequence. Therefore the limits in Eq. 1.3 and Eq. 1.4 always exist in $\overline{\mathbb{R}}$ and

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} x_{n}=\sup _{n} \inf \left\{x_{k}: k \geq n\right\} \text { and } \\
& \limsup _{n \rightarrow \infty} x_{n}=\inf _{n} \sup \left\{x_{k}: k \geq n\right\}
\end{aligned}
$$

The following proposition contains some basic properties of liminfs and limsups.

Proposition 1.5. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of real numbers. Then

1. $\lim \inf _{n \rightarrow \infty} a_{n} \leq \limsup \sup _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} a_{n}$ exists in $\overline{\mathbb{R}}$ iff

$$
\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n} \in \overline{\mathbb{R}}
$$

2. There is a subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{k \rightarrow \infty} a_{n_{k}}=$ $\lim \sup _{n \rightarrow \infty} a_{n}$. Similarly, there is a subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{k \rightarrow \infty} a_{n_{k}}=\liminf _{n \rightarrow \infty} a_{n}$.
3.

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n} \tag{1.5}
\end{equation*}
$$

whenever the right side of this equation is not of the form $\infty-\infty$.
4. If $a_{n} \geq 0$ and $b_{n} \geq 0$ for all $n \in \mathbb{N}$, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(a_{n} b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n} \cdot \limsup _{n \rightarrow \infty} b_{n} \tag{1.6}
\end{equation*}
$$

provided the right hand side of (1.6) is not of the form $0 \cdot \infty$ or $\infty \cdot 0$.
Proof. Item 1. will be proved here leaving the remaining items as an exercise to the reader. Since

$$
\begin{gathered}
\inf \left\{a_{k}: k \geq n\right\} \leq \sup \left\{a_{k}: k \geq n\right\} \forall n, \\
\liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n}
\end{gathered}
$$

Now suppose that ${\lim \inf _{n \rightarrow \infty}} a_{n}=\lim \sup _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Then for all $\varepsilon>0$, there is an integer N such that

$$
a-\varepsilon \leq \inf \left\{a_{k}: k \geq N\right\} \leq \sup \left\{a_{k}: k \geq N\right\} \leq a+\varepsilon
$$

i.e.

$$
a-\varepsilon \leq a_{k} \leq a+\varepsilon \text { for all } k \geq N
$$

Hence by the definition of the limit, $\lim _{k \rightarrow \infty} a_{k}=a$. If $\liminf _{n \rightarrow \infty} a_{n}=\infty$, then we know for all $M \in(0, \infty)$ there is an integer N such that

$$
M \leq \inf \left\{a_{k}: k \geq N\right\}
$$

and hence $\lim _{n \rightarrow \infty} a_{n}=\infty$. The case where $\lim \sup _{n \rightarrow \infty} a_{n}=-\infty$ is handled similarly.

Conversely, suppose that $\lim _{n \rightarrow \infty} a_{n}=A \in \overline{\mathbb{R}}$ exists. If $A \in \mathbb{R}$, then for every $\varepsilon>0$ there exists $N(\varepsilon) \in \mathbb{N}$ such that $\left|A-a_{n}\right| \leq \varepsilon$ for all $n \geq N(\varepsilon)$, i.e.

$$
A-\varepsilon \leq a_{n} \leq A+\varepsilon \text { for all } n \geq N(\varepsilon)
$$

From this we learn that

$$
A-\varepsilon \leq \liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n} \leq A+\varepsilon
$$

Since $\varepsilon>0$ is arbitrary, it follows that

$$
A \leq \liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n} \leq A
$$

i.e. that $A=\liminf _{n \rightarrow \infty} a_{n}=\lim \sup _{n \rightarrow \infty} a_{n}$. If $A=\infty$, then for all $M>0$ there exists $N=N(M)$ such that $a_{n} \geq M$ for all $n \geq N$. This show that $\lim \inf _{n \rightarrow \infty} a_{n} \geq M$ and since M is arbitrary it follows that

$$
\infty \leq \liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n}
$$

The proof for the case $A=-\infty$ is analogous to the $A=\infty$ case.
Proposition 1.6 (Tonelli's theorem for sums). If $\left\{a_{k n}\right\}_{k, n=1}^{\infty}$ is any sequence of non-negative numbers, then

$$
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{k n}=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{k n}
$$

Here we allow for one and hence both sides to be infinite.

Proof. Let

$$
M:=\sup \left\{\sum_{k=1}^{K} \sum_{n=1}^{N} a_{k n}: K, N \in \mathbb{N}\right\}=\sup \left\{\sum_{n=1}^{N} \sum_{k=1}^{K} a_{k n}: K, N \in \mathbb{N}\right\}
$$

and

$$
L:=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{k n}
$$

Since

$$
L=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{k n}=\lim _{K \rightarrow \infty} \sum_{k=1}^{K} \sum_{n=1}^{\infty} a_{k n}=\lim _{K \rightarrow \infty} \lim _{N \rightarrow \infty} \sum_{k=1}^{K} \sum_{n=1}^{N} a_{k n}
$$

and $\sum_{k=1}^{K} \sum_{n=1}^{N} a_{k n} \leq M$ for all K and N, it follows that $L \leq M$. Conversely,

$$
\sum_{k=1}^{K} \sum_{n=1}^{N} a_{k n} \leq \sum_{k=1}^{K} \sum_{n=1}^{\infty} a_{k n} \leq \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{k n}=L
$$

and therefore taking the supremum of the left side of this inequality over K and N shows that $M \leq L$. Thus we have shown

$$
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{k n}=M
$$

By symmetry (or by a similar argument), we also have that $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{k n}=$ M and hence the proof is complete.

Basic Probabilistic Notions

Definition 2.1. A sample space Ω is a set which is to represents all possible outcomes of an "experiment."

Example 2.2. 1. The sample space for flipping a coin one time could be taken to be, $\Omega=\{0,1\}$.
2. The sample space for flipping a coin N-times could be taken to be, $\Omega=$ $\{0,1\}^{N}$ and for flipping an infinite number of times,

$$
\Omega=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots\right): \omega_{i} \in\{0,1\}\right\}=\{0,1\}^{\mathbb{N}}
$$

3. If we have a roulette wheel with 40 entries, then we might take

$$
\Omega=\{00,0,1,2, \ldots, 36\}
$$

for one spin,

$$
\Omega=\{00,0,1,2, \ldots, 36\}^{N}
$$

for N spins, and

$$
\Omega=\{00,0,1,2, \ldots, 36\}^{\mathbb{N}}
$$

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

$$
\Omega=D_{R}:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq R\right\}
$$

for one throw,

$$
\Omega=D_{R}^{N}
$$

for N throws, and

$$
\Omega=D_{R}^{\mathbb{N}}
$$

for an infinite number of throws.
5. Suppose we release a perfume particle at location $x \in \mathbb{R}^{3}$ and follow its motion for all time, $0 \leq t<\infty$. In this case, we might take,

$$
\Omega=\left\{\omega \in C\left([0, \infty), \mathbb{R}^{3}\right): \omega(0)=x\right\}
$$

Definition 2.3. An event is a subset of Ω.
Example 2.4. Suppose that $\Omega=\{0,1\}^{\mathbb{N}}$ is the sample space for flipping a coin an infinite number of times. Here $\omega_{n}=1$ represents the fact that a head was thrown on the $n^{\text {th }}-$ toss, while $\omega_{n}=0$ represents a tail on the $n^{\text {th }}-$ toss.

1. $A=\left\{\omega \in \Omega: \omega_{3}=1\right\}$ represents the event that the third toss was a head.
2. $A=\cup_{i=1}^{\infty}\left\{\omega \in \Omega: \omega_{i}=\omega_{i+1}=1\right\}$ represents the event that (at least) two heads are tossed twice in a row at some time.
3. $A=\cap_{N=1}^{\infty} \cup_{n \geq N}\left\{\omega \in \Omega: \omega_{n}=1\right\}$ is the event where there are infinitely many heads tossed in the sequence.
4. $A=\cup_{N=1}^{\infty} \cap_{n \geq N}\left\{\omega \in \Omega: \omega_{n}=1\right\}$ is the event where heads occurs from some time onwards, i.e. $\omega \in A$ iff there exists, $N=N(\omega)$ such that $\omega_{n}=1$ for all $n \geq N$.
Ideally we would like to assign a probability, $P(A)$, to all events $A \subset \Omega$. Given a physical experiment, we think of assigning this probability as follows. Run the experiment many times to get sample points, $\omega(n) \in \Omega$ for each $n \in \mathbb{N}$, then try to "define" $P(A)$ by

$$
\begin{equation*}
P(A)=\lim _{N \rightarrow \infty} \frac{1}{N} \#\{1 \leq k \leq N: \omega(k) \in A\} \tag{2.1}
\end{equation*}
$$

That is we think of $P(A)$ as being the long term relative frequency that the event A occurred for the sequence of experiments, $\{\omega(k)\}_{k=1}^{\infty}$.

Similarly supposed that A and B are two events and we wish to know how likely the event A is given that we now that B has occurred. Thus we would like to compute:

$$
P(A \mid B)=\lim _{n \rightarrow \infty} \frac{\#\left\{k: 1 \leq k \leq n \text { and } \omega_{k} \in A \cap B\right\}}{\#\left\{k: 1 \leq k \leq n \text { and } \omega_{k} \in B\right\}}
$$

which represents the frequency that A occurs given that we know that B has occurred. This may be rewritten as

$$
\begin{aligned}
P(A \mid B) & =\lim _{n \rightarrow \infty} \frac{\frac{1}{n} \#\left\{k: 1 \leq k \leq n \text { and } \omega_{k} \in A \cap B\right\}}{\frac{1}{n} \#\left\{k: 1 \leq k \leq n \text { and } \omega_{k} \in B\right\}} \\
& =\frac{P(A \cap B)}{P(B)}
\end{aligned}
$$

Definition 2.5. If B is a non-null event, i.e. $P(B)>0$, define the conditional probability of A given B by,

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

There are of course a number of problems with this definition of P in Eq. (2.1) including the fact that it is not mathematical nor necessarily well defined. For example the limit may not exist. But ignoring these technicalities for the moment, let us point out three key properties that P should have.

1. $P(A) \in[0,1]$ for all $A \subset \Omega$.
2. $P(\emptyset)=1$ and $P(\Omega)=1$.
3. Additivity. If A and B are disjoint event, i.e. $A \cap B=A B=\emptyset$, then

$$
\begin{aligned}
P(A \cup B) & =\lim _{N \rightarrow \infty} \frac{1}{N} \#\{1 \leq k \leq N: \omega(k) \in A \cup B\} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N}[\#\{1 \leq k \leq N: \omega(k) \in A\}+\#\{1 \leq k \leq N: \omega(k) \in B\}] \\
& =P(A)+P(B)
\end{aligned}
$$

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In this case we would expect that every $\omega \in \Omega$ is equally likely, i.e. $P(\{\omega\})=\frac{1}{2^{N}}$. Assuming this we are then forced to define

$$
P(A)=\frac{1}{2^{N}} \#(A)
$$

Observe that this probability has the following property. Suppose that $\sigma \in$ $\{0,1\}^{k}$ is a given sequence, then

$$
P\left(\left\{\omega:\left(\omega_{1}, \ldots, \omega_{k}\right)=\sigma\right\}\right)=\frac{1}{2^{N}} \cdot 2^{N-k}=\frac{1}{2^{k}}
$$

That is if we ignore the flips after time k, the resulting probabilities are the same as if we only flipped the coin k times.

Example 2.7. The previous example suggests that if we flip a fair coin an infinite number of times, so that now $\Omega=\{0,1\}^{\mathbb{N}}$, then we should define

$$
\begin{equation*}
P\left(\left\{\omega \in \Omega:\left(\omega_{1}, \ldots, \omega_{k}\right)=\sigma\right\}\right)=\frac{1}{2^{k}} \tag{2.2}
\end{equation*}
$$

for any $k \geq 1$ and $\sigma \in\{0,1\}^{k}$. Assuming there exists a probability, $P: 2^{\Omega} \rightarrow$ $[0,1]$ such that Eq. 2.2 holds, we would like to compute, for example, the probability of the event B where an infinite number of heads are tossed. To try to compute this, let

$$
\begin{aligned}
& A_{n}=\left\{\omega \in \Omega: \omega_{n}=1\right\}=\{\text { heads at time } n\} \\
& B_{N}:=\cup_{n \geq N} A_{n}=\{\text { at least one heads at time } N \text { or later }\}
\end{aligned}
$$

and

$$
B=\cap_{N=1}^{\infty} B_{N}=\left\{A_{n} \text { i.o. }\right\}=\cap_{N=1}^{\infty} \cup_{n \geq N} A_{n}
$$

Since

$$
B_{N}^{c}=\cap_{n \geq N} A_{n}^{c} \subset \cap_{M \geq n \geq N} A_{n}^{c}=\left\{\omega \in \Omega: \omega_{N}=\cdots=\omega_{M}=1\right\}
$$

we see that

$$
P\left(B_{N}^{c}\right) \leq \frac{1}{2^{M-N}} \rightarrow 0 \text { as } M \rightarrow \infty
$$

Therefore, $P\left(B_{N}\right)=1$ for all N. If we assume that P is continuous under taking decreasing limits we may conclude, using $B_{N} \downarrow B$, that

$$
P(B)=\lim _{N \rightarrow \infty} P\left(B_{N}\right)=1
$$

Without this continuity assumption we would not be able to compute $P(B)$.
The unfortunate fact is that we can not always assign a desired probability function, $P(A)$, for all $A \subset \Omega$. For example we have the following negative theorem.
Theorem 2.8 (No-Go Theorem). Let $S=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle. Then there is no probability function, $P: 2^{S} \rightarrow[0,1]$ such that $P(S)=1$, P is invariant under rotations, and P is continuous under taking decreasing limits.

Proof. We are going to use the fact proved below in Lemma, that the continuity condition on P is equivalent to the σ - additivity of P. For $z \in S$ and $N \subset S$ let

$$
\begin{equation*}
z N:=\{z n \in S: n \in N\} \tag{2.3}
\end{equation*}
$$

that is to say $e^{i \theta} N$ is the set N rotated counter clockwise by angle θ. By assumption, we are supposing that

$$
\begin{equation*}
P(z N)=P(N) \tag{2.4}
\end{equation*}
$$

for all $z \in S$ and $N \subset S$.
Let

$$
R:=\left\{z=e^{i 2 \pi t}: t \in \mathbb{Q}\right\}=\left\{z=e^{i 2 \pi t}: t \in[0,1) \cap \mathbb{Q}\right\}
$$

- a countable subgroup of S. As above R acts on S by rotations and divides S up into equivalence classes, where $z, w \in S$ are equivalent if $z=r w$ for some $r \in R$. Choose (using the axiom of choice) one representative point n from each of these equivalence classes and let $N \subset S$ be the set of these representative points. Then every point $z \in S$ may be uniquely written as $z=n r$ with $n \in N$ and $r \in R$. That is to say

$$
\begin{equation*}
S=\coprod_{r \in R}(r N) \tag{2.5}
\end{equation*}
$$

where $\coprod_{\alpha} A_{\alpha}$ is used to denote the union of pair-wise disjoint sets $\left\{A_{\alpha}\right\}$. By Eqs. 2.4) and (2.5),

$$
\begin{equation*}
1=P(S)=\sum_{r \in R} P(r N)=\sum_{r \in R} P(N) \tag{2.6}
\end{equation*}
$$

We have thus arrived at a contradiction, since the right side of Eq. 2.6 is either equal to 0 or to ∞ depending on whether $P(N)=0$ or $P(N)>0$.

To avoid this problem, we are going to have to relinquish the idea that P should necessarily be defined on all of 2^{Ω}. So we are going to only define P on particular subsets, $\mathcal{B} \subset 2^{\Omega}$. We will developed this below.

Preliminaries

3.1 Set Operations

Let \mathbb{N} denote the positive integers, $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ be the non-negative integers and $\mathbb{Z}=\mathbb{N}_{0} \cup(-\mathbb{N})$ - the positive and negative integers including $0, \mathbb{Q}$ the rational numbers, \mathbb{R} the real numbers, and \mathbb{C} the complex numbers. We will also use \mathbb{F} to stand for either of the fields \mathbb{R} or \mathbb{C}.

Notation 3.1 Given two sets X and Y, let Y^{X} denote the collection of all functions $f: X \rightarrow Y$. If $X=\mathbb{N}$, we will say that $f \in Y^{\mathbb{N}}$ is a sequence with values in Y and often write f_{n} for $f(n)$ and express f as $\left\{f_{n}\right\}_{n=1}^{\infty}$. If $X=\{1,2, \ldots, N\}$, we will write Y^{N} in place of $Y^{\{1,2, \ldots, N\}}$ and denote $f \in Y^{N}$ by $f=\left(f_{1}, f_{2}, \ldots, f_{N}\right)$ where $f_{n}=f(n)$.
Notation 3.2 More generally if $\left\{X_{\alpha}: \alpha \in A\right\}$ is a collection of non-empty sets, let $X_{A}=\prod_{\alpha \in A} X_{\alpha}$ and $\pi_{\alpha}: X_{A} \rightarrow X_{\alpha}$ be the canonical projection map defined by $\pi_{\alpha}(x)=x_{\alpha}$. If If $X_{\alpha}=X$ for some fixed space X, then we will write $\prod_{\alpha \in A} X_{\alpha}$ as X^{A} rather than X_{A}.

Recall that an element $x \in X_{A}$ is a "choice function," i.e. an assignment $x_{\alpha}:=x(\alpha) \in X_{\alpha}$ for each $\alpha \in A$. The axiom of choice states that $X_{A} \neq \emptyset$ provided that $X_{\alpha} \neq \emptyset$ for each $\alpha \in A$.
Notation 3.3 Given a set X, let 2^{X} denote the power set of X - the collection of all subsets of X including the empty set.

The reason for writing the power set of X as 2^{X} is that if we think of 2 meaning $\{0,1\}$, then an element of $a \in 2^{X}=\{0,1\}^{X}$ is completely determined by the set

$$
A:=\{x \in X: a(x)=1\} \subset X
$$

In this way elements in $\{0,1\}^{X}$ are in one to one correspondence with subsets of X.

For $A \in 2^{X}$ let

$$
A^{c}:=X \backslash A=\{x \in X: x \notin A\}
$$

and more generally if $A, B \subset X$ let

$$
B \backslash A:=\{x \in B: x \notin A\}=A \cap B^{c}
$$

We also define the symmetric difference of A and B by

$$
A \triangle B:=(B \backslash A) \cup(A \backslash B)
$$

As usual if $\left\{A_{\alpha}\right\}_{\alpha \in I}$ is an indexed collection of subsets of X we define the union and the intersection of this collection by

$$
\begin{aligned}
\cup_{\alpha \in I} A_{\alpha} & :=\left\{x \in X: \exists \alpha \in I \ni x \in A_{\alpha}\right\} \text { and } \\
\cap_{\alpha \in I} A_{\alpha} & :=\left\{x \in X: x \in A_{\alpha} \forall \alpha \in I\right\} .
\end{aligned}
$$

Notation 3.4 We will also write $\coprod_{\alpha \in I} A_{\alpha}$ for $\cup_{\alpha \in I} A_{\alpha}$ in the case that $\left\{A_{\alpha}\right\}_{\alpha \in I}$ are pairwise disjoint, i.e. $A_{\alpha} \cap A_{\beta}=\emptyset$ if $\alpha \neq \beta$.

Notice that \cup is closely related to \exists and \cap is closely related to \forall. For example let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a sequence of subsets from X and define

$$
\begin{aligned}
& \inf _{k \geq n} A_{n}:=\cap_{k \geq n} A_{k} \\
& \sup _{k \geq n} A_{n}:=\cup_{k \geq n} A_{k}, \\
& \limsup _{n \rightarrow \infty} A_{n}:=\left\{A_{n} \text { i.o. }\right\}:=\left\{x \in X: \#\left\{n: x \in A_{n}\right\}=\infty\right\} \\
& \text { and } \\
& \liminf _{n \rightarrow \infty} A_{n}:=\left\{A_{n} \text { a.a. }\right\}:=\left\{x \in X: x \in A_{n} \text { for all } n \text { sufficiently large }\right\} .
\end{aligned}
$$

(One should read $\left\{A_{n}\right.$ i.o. $\}$ as A_{n} infinitely often and $\left\{A_{n}\right.$ a.a. $\}$ as A_{n} almost always.) Then $x \in\left\{A_{n}\right.$ i.o. $\}$ iff

$$
\forall N \in \mathbb{N} \exists n \geq N \ni x \in A_{n}
$$

and this may be expressed as

$$
\left\{A_{n} \text { i..o. }\right\}=\cap_{N=1}^{\infty} \cup_{n \geq N} A_{n}
$$

Similarly, $x \in\left\{A_{n}\right.$ a.a. $\}$ iff

$$
\exists N \in \mathbb{N} \ni \forall n \geq N, \quad x \in A_{n}
$$

which may be written as

$$
\left\{A_{n} \text { a.a. }\right\}=\cup_{N=1}^{\infty} \cap_{n \geq N} A_{n}
$$

Definition 3.5. Given a set $A \subset X$, let

$$
1_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

be the characteristic function of A.
Lemma 3.6. We have:

1. $\left\{A_{n} \text { i..o. }\right\}^{c}=\left\{A_{n}^{c}\right.$ a.а. $\}$,
2. $\lim \sup _{n \rightarrow \infty} A_{n}=\left\{x \in X: \sum_{n=1}^{\infty} 1_{A_{n}}(x)=\infty\right\}$,
3. $\liminf _{n \rightarrow \infty} A_{n}=\left\{x \in X: \sum_{n=1}^{\infty} 1_{A_{n}^{c}}(x)<\infty\right\}$,
4. $\sup _{k \geq n} 1_{A_{k}}(x)=1_{\cup_{k \geq n} A_{k}}=1_{\sup _{k \geq n} A_{n}}$,
5. inf $1_{A_{k}}(x)=1_{\cap_{k \geq n} A_{k}}=1_{\inf _{k \geq n} A_{k}}$,
6. $1_{\operatorname{lim~sup}_{n \rightarrow \infty} A_{n}}=\limsup _{n \rightarrow \infty} 1_{A_{n}}$, and
7. $1_{\liminf _{n \rightarrow \infty} A_{n}}=\liminf \inf _{n \rightarrow \infty} 1_{A_{n}}$.

Definition 3.7. A set X is said to be countable if is empty or there is an injective function $f: X \rightarrow \mathbb{N}$, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

1. If $A \subset X$ is a subset of a countable set X then A is countable.
2. Any infinite subset $\Lambda \subset \mathbb{N}$ is in one to one correspondence with \mathbb{N}.
3. A non-empty set X is countable iff there exists a surjective map, $g: \mathbb{N} \rightarrow X$.
4. If X and Y are countable then $X \times Y$ is countable.
5. Suppose for each $m \in \mathbb{N}$ that A_{m} is a countable subset of a set X, then $A=\cup_{m=1}^{\infty} A_{m}$ is countable. In short, the countable union of countable sets is still countable.
6. If X is an infinite set and Y is a set with at least two elements, then Y^{X} is uncountable. In particular 2^{X} is uncountable for any infinite set X.
Proof. 1. If $f: X \rightarrow \mathbb{N}$ is an injective map then so is the restriction, $\left.f\right|_{A}$, of f to the subset A. 2. Let $f(1)=\min \Lambda$ and define f inductively by

$$
f(n+1)=\min (\Lambda \backslash\{f(1), \ldots, f(n)\})
$$

Since Λ is infinite the process continues indefinitely. The function $f: \mathbb{N} \rightarrow \Lambda$ defined this way is a bijection.
3. If $g: \mathbb{N} \rightarrow X$ is a surjective map, let

$$
f(x)=\min g^{-1}(\{x\})=\min \{n \in \mathbb{N}: f(n)=x\}
$$

Then $f: X \rightarrow \mathbb{N}$ is injective which combined with item
2. (taking $\Lambda=f(X)$) shows X is countable. Conversely if $f: X \rightarrow \mathbb{N}$ is injective let $x_{0} \in X$ be a fixed point and define $g: \mathbb{N} \rightarrow X$ by $g(n)=f^{-1}(n)$ for $n \in f(X)$ and $g(n)=x_{0}$ otherwise.
4. Let us first construct a bijection, h, from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$. To do this put the elements of $\mathbb{N} \times \mathbb{N}$ into an array of the form

$$
\left(\begin{array}{cccc}
(1,1) & (1,2) & (1,3) & \ldots \\
(2,1) & (2,2) & (2,3) & \ldots \\
(3,1) & (3,2) & (3,3) & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and then "count" these elements by counting the sets $\{(i, j): i+j=k\}$ one at a time. For example let $h(1)=(1,1), h(2)=(2,1), h(3)=(1,2), h(4)=$ $(3,1), h(5)=(2,2), h(6)=(1,3)$ and so on. If $f: \mathbb{N} \rightarrow X$ and $g: \mathbb{N} \rightarrow Y$ are surjective functions, then the function $(f \times g) \circ h: \mathbb{N} \rightarrow X \times Y$ is surjective where $(f \times g)(m, n):=(f(m), g(n))$ for all $(m, n) \in \mathbb{N} \times \mathbb{N}$.
5. If $A=\emptyset$ then A is countable by definition so we may assume $A \neq \emptyset$. With out loss of generality we may assume $A_{1} \neq \emptyset$ and by replacing A_{m} by A_{1} if necessary we may also assume $A_{m} \neq \emptyset$ for all m. For each $m \in \mathbb{N}$ let $a_{m}: \mathbb{N} \rightarrow A_{m}$ be a surjective function and then define $f: \mathbb{N} \times \mathbb{N} \rightarrow \cup_{m=1}^{\infty} A_{m}$ by $f(m, n):=a_{m}(n)$. The function f is surjective and hence so is the composition, $f \circ h: \mathbb{N} \rightarrow \cup_{m=1}^{\infty} A_{m}$, where $h: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ is the bijection defined above.
6. Let us begin by showing $2^{\mathbb{N}}=\{0,1\}^{\mathbb{N}}$ is uncountable. For sake of contradiction suppose $f: \mathbb{N} \rightarrow\{0,1\}^{\mathbb{N}}$ is a surjection and write $f(n)$ as $\left(f_{1}(n), f_{2}(n), f_{3}(n), \ldots\right)$. Now define $a \in\{0,1\}^{\mathbb{N}}$ by $a_{n}:=1-f_{n}(n)$. By construction $f_{n}(n) \neq a_{n}$ for all n and so $a \notin f(\mathbb{N})$. This contradicts the assumption that f is surjective and shows $2^{\mathbb{N}}$ is uncountable. For the general case, since $Y_{0}^{X} \subset Y^{X}$ for any subset $Y_{0} \subset Y$, if Y_{0}^{X} is uncountable then so is Y^{X}. In this way we may assume Y_{0} is a two point set which may as well be $Y_{0}=\{0,1\}$. Moreover, since X is an infinite set we may find an injective $\operatorname{map} x: \mathbb{N} \rightarrow X$ and use this to set up an injection, $i: 2^{\mathbb{N}} \rightarrow 2^{X}$ by setting $i(A):=\left\{x_{n}: n \in \mathbb{N}\right\} \subset X$ for all $A \subset \mathbb{N}$. If 2^{X} were countable we could find a surjective map $f: 2^{X} \rightarrow \mathbb{N}$ in which case $f \circ i: 2^{\mathbb{N}} \rightarrow \mathbb{N}$ would be surjective as well. However this is impossible since we have already seed that $2^{\mathbb{N}}$ is uncountable.

We end this section with some notation which will be used frequently in the sequel.
Notation 3.9 If $f: X \rightarrow Y$ is a function and $\mathcal{E} \subset 2^{Y}$ let

$$
f^{-1} \mathcal{E}:=f^{-1}(\mathcal{E}):=\left\{f^{-1}(E) \mid E \in \mathcal{E}\right\}
$$

If $\mathcal{G} \subset 2^{X}$, let

$$
f_{*} \mathcal{G}:=\left\{A \in 2^{Y} \mid f^{-1}(A) \in \mathcal{G}\right\}
$$

Definition 3.10. Let $\mathcal{E} \subset 2^{X}$ be a collection of sets, $A \subset X, i_{A}: A \rightarrow X$ be the inclusion $\operatorname{map}\left(i_{A}(x)=x\right.$ for all $\left.x \in A\right)$ and

$$
\mathcal{E}_{A}=i_{A}^{-1}(\mathcal{E})=\{A \cap E: E \in \mathcal{E}\}
$$

3.2 Exercises

Let $f: X \rightarrow Y$ be a function and $\left\{A_{i}\right\}_{i \in I}$ be an indexed family of subsets of Y, verify the following assertions.

Exercise 3.1. $\left(\cap_{i \in I} A_{i}\right)^{c}=\cup_{i \in I} A_{i}^{c}$.
Exercise 3.2. Suppose that $B \subset Y$, show that $B \backslash\left(\cup_{i \in I} A_{i}\right)=\cap_{i \in I}\left(B \backslash A_{i}\right)$.
Exercise 3.3. $f^{-1}\left(\cup_{i \in I} A_{i}\right)=\cup_{i \in I} f^{-1}\left(A_{i}\right)$.
Exercise 3.4. $f^{-1}\left(\cap_{i \in I} A_{i}\right)=\cap_{i \in I} f^{-1}\left(A_{i}\right)$.
Exercise 3.5. Find a counterexample which shows that $f(C \cap D)=f(C) \cap$ $f(D)$ need not hold.

Example 3.11. Let $X=\{a, b, c\}$ and $Y=\{1,2\}$ and define $f(a)=f(b)=1$ and $f(c)=2$. Then $\emptyset=f(\{a\} \cap\{b\}) \neq f(\{a\}) \cap f(\{b\})=\{1\}$ and $\{1,2\}=$ $f\left(\{a\}^{c}\right) \neq f(\{a\})^{c}=\{2\}$.

3.3 Algebraic sub-structures of sets

Definition 3.12. A collection of subsets \mathcal{A} of a set X is $a \pi$ - system or multiplicative system if \mathcal{A} is closed under taking finite intersections.

Definition 3.13. A collection of subsets \mathcal{A} of a set X is an algebra (Field) if

1. $\emptyset, X \in \mathcal{A}$
2. $A \in \mathcal{A}$ implies that $A^{c} \in \mathcal{A}$
3. \mathcal{A} is closed under finite unions, i.e. if $A_{1}, \ldots, A_{n} \in \mathcal{A}$ then $A_{1} \cup \cdots \cup A_{n} \in \mathcal{A}$.

In view of conditions 1. and 2., 3. is equivalent to
$3^{\prime} . \mathcal{A}$ is closed under finite intersections.
Definition 3.14. A collection of subsets \mathcal{B} of X is a σ - algebra (or sometimes called $a \sigma-$ field) if \mathcal{B} is an algebra which also closed under countable unions, i.e. if $\left\{A_{i}\right\}_{i=1}^{\infty} \subset \mathcal{B}$, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{B}$. (Notice that since \mathcal{B} is also closed under taking complements, \mathcal{B} is also closed under taking countable intersections.)

Example 3.15. Here are some examples of algebras.

1. $\mathcal{M}=2^{X}$, then \mathcal{M} is a $\sigma-$ algebra.
2. $\mathcal{M}=\{\emptyset, X\}$ is a σ - algebra called the trivial σ - field.
3. Let $X=\{1,2,3\}$, then $\mathcal{A}=\{\emptyset, X,\{1\},\{2,3\}\}$ is an algebra while, $\mathcal{S}:=$ $\{\emptyset, X,\{2,3\}\}$ is a not an algebra but is a $\pi-$ system.
Proposition 3.16. Let \mathcal{E} be any collection of subsets of X. Then there exists a unique smallest algebra $\mathcal{A}(\mathcal{E})$ and $\sigma-$ algebra $\sigma(\mathcal{E})$ which contains \mathcal{E}.

Proof. Simply take

$$
\mathcal{A}(\mathcal{E}):=\bigcap\{\mathcal{A}: \mathcal{A} \text { is an algebra such that } \mathcal{E} \subset \mathcal{A}\}
$$

and

$$
\sigma(\mathcal{E}):=\bigcap\{\mathcal{M}: \mathcal{M} \text { is a } \sigma-\text { algebra such that } \mathcal{E} \subset \mathcal{M}\}
$$

Example 3.17. Suppose $X=\{1,2,3\}$ and $\mathcal{E}=\{\emptyset, X,\{1,2\},\{1,3\}\}$, see FigureThen

Fig. 3.1. A collection of subsets.

$$
\mathcal{A}(\mathcal{E})=\sigma(\mathcal{E})=2^{X}
$$

On the other hand if $\mathcal{E}=\{\{1,2\}\}$, then $\mathcal{A}(\mathcal{E})=\{\emptyset, X,\{1,2\},\{3\}\}$.
Definition 3.18. Let X be a set. We say that a family of sets $\mathcal{F} \subset 2^{X}$ is a partition of X if distinct members of \mathcal{F} are disjoint and if X is the union of the sets in \mathcal{F}.

Example 3.19. Let X be a set and $\mathcal{E}=\left\{A_{1}, \ldots, A_{n}\right\}$ where A_{1}, \ldots, A_{n} is a partition of X. In this case

$$
\mathcal{A}(\mathcal{E})=\sigma(\mathcal{E})=\left\{\cup_{i \in \Lambda} A_{i}: \Lambda \subset\{1,2, \ldots, n\}\right\}
$$

where $\cup_{i \in \Lambda} A_{i}:=\emptyset$ when $\Lambda=\emptyset$. Notice that

$$
\#(\mathcal{A}(\mathcal{E}))=\#\left(2^{\{1,2, \ldots, n\}}\right)=2^{n}
$$

Example 3.20. Suppose that X is a finite set and that $\mathcal{A} \subset 2^{X}$ is an algebra. For each $x \in X$ let

$$
A_{x}=\cap\{A \in \mathcal{A}: x \in A\} \in \mathcal{A}
$$

wherein we have used \mathcal{A} is finite to insure $A_{x} \in \mathcal{A}$. Hence A_{x} is the smallest set in \mathcal{A} which contains x. Let $C=A_{x} \cap A_{y} \in \mathcal{A}$. I claim that if $C \neq \emptyset$, then $A_{x}=A_{y}$. To see this, let us first consider the case where $\{x, y\} \subset C$. In this case we must have $A_{x} \subset C$ and $A_{y} \subset C$ and therefore $A_{x}=A_{y}$. Now suppose either x or y is not in C. For definiteness, say $x \notin C$, i.e. $x \notin y$. Then $x \in A_{x} \backslash A_{y} \in \mathcal{A}$ from which it follows that $A_{x}=A_{x} \backslash A_{y}$, i.e. $A_{x} \cap A_{y}=\emptyset$.

Let us now define $\left\{B_{i}\right\}_{i=1}^{k}$ to be an enumeration of $\left\{A_{x}\right\}_{x \in X}$. It is now a straightforward exercise to show

$$
\mathcal{A}=\left\{\cup_{i \in \Lambda} B_{i}: \Lambda \subset\{1,2, \ldots, k\}\right\}
$$

Proposition 3.21. Suppose that $\mathcal{M} \subset 2^{X}$ is a σ-algebra and \mathcal{M} is at most a countable set. Then there exists a unique finite partition \mathcal{F} of X such that $\mathcal{F} \subset \mathcal{M}$ and every element $B \in \mathcal{M}$ is of the form

$$
\begin{equation*}
B=\cup\{A \in \mathcal{F}: A \subset B\} \tag{3.1}
\end{equation*}
$$

In particular \mathcal{M} is actually a finite set and $\#(\mathcal{M})=2^{n}$ for some $n \in \mathbb{N}$.
Proof. We proceed as in Example 3.20. For each $x \in X$ let

$$
A_{x}=\cap\{A \in \mathcal{M}: x \in A\} \in \mathcal{M}
$$

wherein we have used \mathcal{M} is a countable σ - algebra to insure $A_{x} \in \mathcal{M}$. Just as above either $A_{x} \cap A_{y}=\emptyset$ or $A_{x}=A_{y}$ and therefore $\mathcal{F}=\left\{A_{x}: x \in X\right\} \subset \mathcal{M}$ is a (necessarily countable) partition of X for which Eq. (3.1) holds for all $B \in \mathcal{M}$.

Enumerate the elements of \mathcal{F} as $\mathcal{F}=\left\{P_{n}\right\}_{n=1}^{N}$ where $N \in \mathbb{N}$ or $N=\infty$. If $N=\infty$, then the correspondence

$$
a \in\{0,1\}^{\mathbb{N}} \rightarrow A_{a}=\cup\left\{P_{n}: a_{n}=1\right\} \in \mathcal{M}
$$

is bijective and therefore, by Lemma $3.8, \mathcal{M}$ is uncountable. Thus any countable $\sigma-$ algebra is necessarily finite. This finishes the proof modulo the uniqueness assertion which is left as an exercise to the reader.

Example 3.22 (Countable/Co-countable σ - Field). Let $X=I=\mathbb{R}$ and $\mathcal{E}:=$ $\{\{x\}: x \in \mathbb{R}\}$. Then $\sigma(\mathcal{E})$ consists of those subsets, $A \subset \mathbb{R}$, such that A is countable or A^{c} is countable. Similarly, $\mathcal{A}(\mathcal{E})$ consists of those subsets, $A \subset \mathbb{R}$, such that A is finite or A^{c} is finite. More generally we have the following exercise.

Exercise 3.6. Let X be a set, I be an infinite index set, and $\mathcal{E}=\left\{A_{i}\right\}_{i \in I}$ be a partition of X. Prove the algebra, $\mathcal{A}(\mathcal{E})$, and that σ - algebra, $\sigma(\mathcal{E})$, generated by \mathcal{E} are given by

$$
\mathcal{A}(\mathcal{E})=\left\{\cup_{i \in \Lambda} A_{i}: \Lambda \subset I \text { with } \#(\Lambda)<\infty \text { or } \#\left(\Lambda^{c}\right)<\infty\right\}
$$

and

$$
\sigma(\mathcal{E})=\left\{\cup_{i \in \Lambda} A_{i}: \Lambda \subset I \text { with } \Lambda \text { countable or } \Lambda^{c} \text { countable }\right\}
$$

respectively. Here we are using the convention that $\cup_{i \in \Lambda} A_{i}:=\emptyset$ when $\Lambda=\emptyset$.
Definition 3.23. The Borel σ - field, \mathcal{B}, on \mathbb{R} is the smallest σ-field containing all of the open subsets of \mathbb{R}.
Exercise 3.7. Verify the σ - algebra, $\mathcal{B}_{\mathbb{R}}$, is generated by any of the following collection of sets:

$$
\text { 1. }\{(a, \infty): a \in \mathbb{R}\}, \text { 2. }\{(a, \infty): a \in \mathbb{Q}\} \text { or 3. }\{[a, \infty): a \in \mathbb{Q}\}
$$

Exercise 3.8. Suppose $f: X \rightarrow Y$ is a function, $\mathcal{F} \subset 2^{Y}$ and $\mathcal{M} \subset 2^{X}$. Show $f^{-1} \mathcal{F}$ and $f_{*} \mathcal{M}$ (see Notation 3.9) are algebras ($\sigma-$ algebras) provided \mathcal{F} and \mathcal{M} are algebras (σ - algebras).

Lemma 3.24. Suppose that $f: X \rightarrow Y$ is a function and $\mathcal{E} \subset 2^{Y}$ and $A \subset Y$ then

$$
\begin{align*}
\sigma\left(f^{-1}(\mathcal{E})\right) & =f^{-1}(\sigma(\mathcal{E})) \text { and } \tag{3.2}\\
(\sigma(\mathcal{E}))_{A} & =\sigma\left(\mathcal{E}_{A}\right) \tag{3.3}
\end{align*}
$$

where $\mathcal{M}_{A}:=\{B \cap A: B \in \mathcal{M}\}$. (Similar assertion hold with $\sigma(\cdot)$ being replaced by $\mathcal{A}(\cdot)$.

Proof. By Exercise 3.8, $f^{-1}(\sigma(\mathcal{E}))$ is a $\sigma-$ algebra and since $\mathcal{E} \subset \mathcal{F}$, $f^{-1}(\mathcal{E}) \subset f^{-1}(\sigma(\mathcal{E}))$. It now follows that

$$
\sigma\left(f^{-1}(\mathcal{E})\right) \subset f^{-1}(\sigma(\mathcal{E}))
$$

For the reverse inclusion, notice that

$$
f_{*} \sigma\left(f^{-1}(\mathcal{E})\right):=\left\{B \subset Y: f^{-1}(B) \in \sigma\left(f^{-1}(\mathcal{E})\right)\right\}
$$

is a σ - algebra which contains \mathcal{E} and thus $\sigma(\mathcal{E}) \subset f_{*} \sigma\left(f^{-1}(\mathcal{E})\right)$. Hence for every $B \in \sigma(\mathcal{E})$ we know that $f^{-1}(B) \in \sigma\left(f^{-1}(\mathcal{E})\right)$, i.e.

$$
f^{-1}(\sigma(\mathcal{E})) \subset \sigma\left(f^{-1}(\mathcal{E})\right)
$$

Applying Eq. 3.2 with $X=A$ and $f=i_{A}$ being the inclusion map implies

$$
(\sigma(\mathcal{E}))_{A}=i_{A}^{-1}(\sigma(\mathcal{E}))=\sigma\left(i_{A}^{-1}(\mathcal{E})\right)=\sigma\left(\mathcal{E}_{A}\right)
$$

Example 3.25. Let $\mathcal{E}=\{(a, b]:-\infty<a<b<\infty\}$ and $\mathcal{B}=\sigma(\mathcal{E})$ be the Borel σ - field on \mathbb{R}. Then

$$
\mathcal{E}_{(0,1]}=\{(a, b]: 0 \leq a<b \leq 1\}
$$

and we have

$$
\mathcal{B}_{(0,1]}=\sigma\left(\mathcal{E}_{(0,1]}\right) .
$$

In particular, if $A \in \mathcal{B}$ such that $A \subset(0,1]$, then $A \in \sigma\left(\mathcal{E}_{(0,1]}\right)$.

[^0]: ${ }^{1}$ Here we use "a.a. n " as an abreviation for almost all n. So $a_{n} \leq b_{n}$ a.a. n iff there exists $N<\infty$ such that $a_{n} \leq b_{n}$ for all $n \geq N$.

