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Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R̄ := R∪{±∞} , i.e. it
is R with two new points called ∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞ · a = ±∞ if a ∈ R with a > 0, ±∞ · a = ∓∞ if a ∈ R with
a < 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ = ∞ and −∞−∞ = −∞ while
∞−∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞ (−∞) if for
all M ∈ R there exists m ∈ N such that an ≥ M (an ≤ M) for all n ≥ m.

Lemma 1.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,
then:

1. If an ≤ bn for1 a.a. n then limn→∞ an ≤ limn→∞ bn.
2. If c ∈ R, limn→∞ (can) = c limn→∞ an.
3. If {an + bn}∞n=1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (1.1)

provided the right side is not of the form ∞−∞.
4. {anbn}∞n=1 is convergent and

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn (1.2)

provided the right hand side is not of the for ±∞ · 0 of 0 · (±∞) .

Before going to the proof consider the simple example where an = n and
bn = −αn with α > 0. Then

lim (an + bn) =

 ∞ if α < 1
0 if α = 1
−∞ if α > 1

while
lim

n→∞
an + lim

n→∞
bn“ = ”∞−∞.

This shows that the requirement that the right side of Eq. (1.1) is not of form
∞−∞ is necessary in Lemma 1.2. Similarly by considering the examples an = n

1 Here we use “a.a. n” as an abreviation for almost all n. So an ≤ bn a.a. n iff there
exists N <∞ such that an ≤ bn for all n ≥ N.

and bn = n−α with α > 0 shows the necessity for assuming right hand side of
Eq. (1.2) is not of the form ∞ · 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (1.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1., suppose
b = ∞ in which case we must assume a > −∞. In this case, for every M > 0,
there exists N such that bn ≥ M and an ≥ a− 1 for all n ≥ N and this implies

an + bn ≥ M + a− 1 for all n ≥ N.

Since M is arbitrary it follows that an + bn → ∞ as n → ∞. The cases where
b = −∞ or a = ±∞ are handled similarly. Case 2. If a, b ∈ R, then for every
ε > 0 there exists N ∈ N such that

|a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

Therefore,

|a + b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

for all n ≥ N. Since n is arbitrary, it follows that limn→∞ (an + bn) = a + b.
Proof of Eq. (1.2). It will be left to the reader to prove the case where lim an

and lim bn exist in R. I will only consider the case where a = limn→∞ an 6= 0
and limn→∞ bn = ∞ here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let α := min

(
a
2 , 1

)
. Given any M < ∞, there exists

N ∈ N such that an ≥ α and bn ≥ M for all n ≥ N and for this choice of N,
anbn ≥ Mα for all n ≥ N. Since α > 0 is fixed and M is arbitrary it follows
that limn→∞ (anbn) = ∞ as desired.

For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound and
greatest lower bound of Λ respectively. The convention being that supΛ = ∞
if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ is
not bounded from below. We will also use the conventions that sup ∅ = −∞
and inf ∅ = +∞.

Notation 1.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

lim inf
n→∞

xn = lim
n→∞

inf{xk : k ≥ n} and (1.3)

lim sup
n→∞

xn = lim
n→∞

sup{xk : k ≥ n}. (1.4)

We will also write lim for lim infn→∞ and lim for lim supn→∞ .
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Remark 1.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥
n}, then {ak} is an increasing sequence while {bk} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R̄ and

lim inf
n→∞

xn = sup
n

inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n

sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim supn→∞ an and limn→∞ an exists in R̄ iff

lim inf
n→∞

an = lim sup
n→∞

an ∈ R̄.

2. There is a subsequence {ank
}∞k=1 of {an}∞n=1 such that limk→∞ ank

=
lim supn→∞ an. Similarly, there is a subsequence {ank

}∞k=1 of {an}∞n=1 such
that limk→∞ ank

= lim infn→∞ an.
3.

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (1.5)

whenever the right side of this equation is not of the form ∞−∞.
4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (1.6)

provided the right hand side of (1.6) is not of the form 0 · ∞ or ∞ · 0.

Proof. Item 1. will be proved here leaving the remaining items as an exercise
to the reader. Since

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Now suppose that lim infn→∞ an = lim supn→∞ an = a ∈ R. Then for all ε > 0,
there is an integer N such that

a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a + ε,

i.e.
a− ε ≤ ak ≤ a + ε for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a. If lim infn→∞ an = ∞,
then we know for all M ∈ (0,∞) there is an integer N such that

M ≤ inf{ak : k ≥ N}

and hence limn→∞ an = ∞. The case where lim supn→∞ an = −∞ is handled
similarly.

Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for
every ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε), i.e.

A− ε ≤ an ≤ A + ε for all n ≥ N(ε).

From this we learn that

A− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A + ε.

Since ε > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A,

i.e. that A = lim infn→∞ an = lim supn→∞ an. If A = ∞, then for all M > 0
there exists N = N(M) such that an ≥ M for all n ≥ N. This show that
lim infn→∞ an ≥ M and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an.

The proof for the case A = −∞ is analogous to the A = ∞ case.

Proposition 1.6 (Tonelli’s theorem for sums). If {akn}∞k,n=1 is any se-
quence of non-negative numbers, then

∞∑
k=1

∞∑
n=1

akn =
∞∑

n=1

∞∑
k=1

akn.

Here we allow for one and hence both sides to be infinite.

Proof. Let

M := sup

{
K∑

k=1

N∑
n=1

akn : K, N ∈ N

}
= sup

{
N∑

n=1

K∑
k=1

akn : K, N ∈ N

}

and

L :=
∞∑

k=1

∞∑
n=1

akn.
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Since

L =
∞∑

k=1

∞∑
n=1

akn = lim
K→∞

K∑
k=1

∞∑
n=1

akn = lim
K→∞

lim
N→∞

K∑
k=1

N∑
n=1

akn

and
∑K

k=1

∑N
n=1 akn ≤ M for all K and N, it follows that L ≤ M. Conversely,

K∑
k=1

N∑
n=1

akn ≤
K∑

k=1

∞∑
n=1

akn ≤
∞∑

k=1

∞∑
n=1

akn = L

and therefore taking the supremum of the left side of this inequality over K
and N shows that M ≤ L. Thus we have shown

∞∑
k=1

∞∑
n=1

akn = M.

By symmetry (or by a similar argument), we also have that
∑∞

n=1

∑∞
k=1 akn =

M and hence the proof is complete.
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Basic Probabilistic Notions

Definition 2.1. A sample space Ω is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, Ω = {0, 1} .

2. The sample space for flipping a coin N -times could be taken to be, Ω =
{0, 1}N and for flipping an infinite number of times,

Ω = {ω = (ω1, ω2, . . . ) : ωi ∈ {0, 1}} = {0, 1}N
.

3. If we have a roulette wheel with 40 entries, then we might take

Ω = {00, 0, 1, 2, . . . , 36}

for one spin,
Ω = {00, 0, 1, 2, . . . , 36}N

for N spins, and
Ω = {00, 0, 1, 2, . . . , 36}N

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

Ω = DR :=
{
(x, y) ∈ R2 : x2 + y2 ≤ R

}
for one throw,

Ω = DN
R

for N throws, and
Ω = DN

R

for an infinite number of throws.
5. Suppose we release a perfume particle at location x ∈ R3 and follow its

motion for all time, 0 ≤ t < ∞. In this case, we might take,

Ω =
{
ω ∈ C ([0,∞) , R3) : ω (0) = x

}
.

Definition 2.3. An event is a subset of Ω.

Example 2.4. Suppose that Ω = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here ωn = 1 represents the fact that a head was
thrown on the nth – toss, while ωn = 0 represents a tail on the nth – toss.

1. A = {ω ∈ Ω : ω3 = 1} represents the event that the third toss was a head.
2. A = ∪∞i=1 {ω ∈ Ω : ωi = ωi+1 = 1} represents the event that (at least) two

heads are tossed twice in a row at some time.
3. A = ∩∞N=1 ∪n≥N {ω ∈ Ω : ωn = 1} is the event where there are infinitely

many heads tossed in the sequence.
4. A = ∪∞N=1 ∩n≥N {ω ∈ Ω : ωn = 1} is the event where heads occurs from

some time onwards, i.e. ω ∈ A iff there exists, N = N (ω) such that ωn = 1
for all n ≥ N.

Ideally we would like to assign a probability, P (A) , to all events A ⊂ Ω.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, ω (n) ∈ Ω for each n ∈ N,
then try to “define” P (A) by

P (A) = lim
N→∞

1
N

# {1 ≤ k ≤ N : ω (k) ∈ A} . (2.1)

That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {ω (k)}∞k=1 .

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we now that B has occurred. Thus we would
like to compute:

P (A|B) = lim
n→∞

# {k : 1 ≤ k ≤ n and ωk ∈ A ∩B}
# {k : 1 ≤ k ≤ n and ωk ∈ B}

,



8 2 Basic Probabilistic Notions

which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

P (A|B) = lim
n→∞

1
n# {k : 1 ≤ k ≤ n and ωk ∈ A ∩B}

1
n# {k : 1 ≤ k ≤ n and ωk ∈ B}

=
P (A ∩B)

P (B)
.

Definition 2.5. If B is a non-null event, i.e. P (B) > 0, define the condi-
tional probability of A given B by,

P (A|B) :=
P (A ∩B)

P (B)
.

There are of course a number of problems with this definition of P in Eq.
(2.1) including the fact that it is not mathematical nor necessarily well defined.
For example the limit may not exist. But ignoring these technicalities for the
moment, let us point out three key properties that P should have.

1. P (A) ∈ [0, 1] for all A ⊂ Ω.
2. P (∅) = 1 and P (Ω) = 1.
3. Additivity. If A and B are disjoint event, i.e. A ∩B = AB = ∅, then

P (A ∪B) = lim
N→∞

1
N

# {1 ≤ k ≤ N : ω (k) ∈ A ∪B}

= lim
N→∞

1
N

[# {1 ≤ k ≤ N : ω (k) ∈ A}+ # {1 ≤ k ≤ N : ω (k) ∈ B}]

= P (A) + P (B) .

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every ω ∈ Ω is equally likely, i.e. P ({ω}) = 1

2N .
Assuming this we are then forced to define

P (A) =
1

2N
# (A) .

Observe that this probability has the following property. Suppose that σ ∈
{0, 1}k is a given sequence, then

P ({ω : (ω1, . . . , ωk) = σ}) =
1

2N
· 2N−k =

1
2k

.

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Example 2.7. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now Ω = {0, 1}N

, then we should define

P ({ω ∈ Ω : (ω1, . . . , ωk) = σ}) =
1
2k

(2.2)

for any k ≥ 1 and σ ∈ {0, 1}k
. Assuming there exists a probability, P : 2Ω →

[0, 1] such that Eq. (2.2) holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

An = {ω ∈ Ω : ωn = 1} = {heads at time n}
BN := ∪n≥NAn = {at least one heads at time N or later}

and
B = ∩∞N=1BN = {An i.o.} = ∩∞N=1 ∪n≥N An.

Since

Bc
N = ∩n≥NAc

n ⊂ ∩M≥n≥NAc
n = {ω ∈ Ω : ωN = · · · = ωM = 1} ,

we see that
P (Bc

N ) ≤ 1
2M−N

→ 0 as M →∞.

Therefore, P (BN ) = 1 for all N. If we assume that P is continuous under taking
decreasing limits we may conclude, using BN ↓ B, that

P (B) = lim
N→∞

P (BN ) = 1.

Without this continuity assumption we would not be able to compute P (B) .

The unfortunate fact is that we can not always assign a desired probability
function, P (A) , for all A ⊂ Ω. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z ∈ C : |z| = 1} be the unit cir-
cle. Then there is no probability function, P : 2S → [0, 1] such that P (S) = 1,
P is invariant under rotations, and P is continuous under taking decreasing
limits.

Proof. We are going to use the fact proved below in Lemma , that the
continuity condition on P is equivalent to the σ – additivity of P. For z ∈ S
and N ⊂ S let

zN := {zn ∈ S : n ∈ N}, (2.3)

that is to say eiθN is the set N rotated counter clockwise by angle θ. By
assumption, we are supposing that
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P (zN) = P (N) (2.4)

for all z ∈ S and N ⊂ S.
Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

– a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z, w ∈ S are equivalent if z = rw for some
r ∈ R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N ⊂ S be the set of these representative
points. Then every point z ∈ S may be uniquely written as z = nr with n ∈ N
and r ∈ R. That is to say

S =
∐
r∈R

(rN) (2.5)

where
∐

α Aα is used to denote the union of pair-wise disjoint sets {Aα} . By
Eqs. (2.4) and (2.5),

1 = P (S) =
∑
r∈R

P (rN) =
∑
r∈R

P (N). (2.6)

We have thus arrived at a contradiction, since the right side of Eq. (2.6) is either
equal to 0 or to ∞ depending on whether P (N) = 0 or P (N) > 0.

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2Ω . So we are going to only define P on
particular subsets, B ⊂ 2Ω . We will developed this below.



Part II

Formal Development



3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, N0 := N∪{0} be the non-negative integers
and Z = N0 ∪ (−N) – the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 . If
X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote f ∈ Y N

by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 3.2 More generally if {Xα : α ∈ A} is a collection of non-empty sets,
let XA =

∏
α∈A

Xα and πα : XA → Xα be the canonical projection map defined

by πα(x) = xα. If If Xα = X for some fixed space X, then we will write
∏

α∈A

Xα

as XA rather than XA.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice states that XA 6= ∅
provided that Xα 6= ∅ for each α ∈ A.

Notation 3.3 Given a set X, let 2X denote the power set of X – the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.

For A ∈ 2X let
Ac := X \A = {x ∈ X : x /∈ A}

and more generally if A,B ⊂ X let

B \A := {x ∈ B : x /∈ A} = A ∩Bc.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .

As usual if {Aα}α∈I is an indexed collection of subsets of X we define the union
and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and
∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 3.4 We will also write
∐

α∈I Aα for ∪α∈IAα in the case that
{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For example
let {An}∞n=1 be a sequence of subsets from X and define

inf
k≥n

An := ∩k≥nAk,

sup
k≥n

An := ∪k≥nAk,

lim sup
n→∞

An := {An i.o.} := {x ∈ X : # {n : x ∈ An} = ∞}

and
lim inf
n→∞

An := {An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff

∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.
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Definition 3.5. Given a set A ⊂ X, let

1A (x) =
{

1 if x ∈ A
0 if x /∈ A

be the characteristic function of A.

Lemma 3.6. We have:

1. {An i.o.}c = {Ac
n a.a.} ,

2. lim supn→∞An = {x ∈ X :
∑∞

n=1 1An
(x) = ∞} ,

3. lim infn→∞An =
{
x ∈ X :

∑∞
n=1 1Ac

n
(x) < ∞

}
,

4. supk≥n 1Ak
(x) = 1∪k≥nAk

= 1supk≥n An
,

5. inf 1Ak
(x) = 1∩k≥nAk

= 1infk≥n Ak
,

6. 1lim supn→∞ An = lim supn→∞ 1An , and
7. 1lim infn→∞ An

= lim infn→∞ 1An
.

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
3. A non-empty set X is countable iff there exists a surjective map, g : N → X.
4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then

A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. 1. If f : X → N is an injective map then so is the restriction, f |A,
of f to the subset A. 2. Let f (1) = minΛ and define f inductively by

f(n + 1) = min (Λ \ {f(1), . . . , f(n)}) .

Since Λ is infinite the process continues indefinitely. The function f : N → Λ
defined this way is a bijection.

3. If g : N → X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .

Then f : X → N is injective which combined with item
2. (taking Λ = f(X)) shows X is countable. Conversely if f : X → N is

injective let x0 ∈ X be a fixed point and define g : N → X by g(n) = f−1(n)
for n ∈ f (X) and g(n) = x0 otherwise.

4. Let us first construct a bijection, h, from N to N×N. To do this put the
elements of N× N into an array of the form

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

...
. . .


and then “count” these elements by counting the sets {(i, j) : i + j = k} one
at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2), h(4) =
(3, 1), h(5) = (2, 2), h(6) = (1, 3) and so on. If f : N →X and g : N →Y are
surjective functions, then the function (f × g) ◦ h : N →X × Y is surjective
where (f × g) (m,n) := (f (m), g(n)) for all (m,n) ∈ N× N.

5. If A = ∅ then A is countable by definition so we may assume A 6= ∅.
With out loss of generality we may assume A1 6= ∅ and by replacing Am by
A1 if necessary we may also assume Am 6= ∅ for all m. For each m ∈ N let
am : N →Am be a surjective function and then define f : N×N → ∪∞m=1Am by
f(m,n) := am(n). The function f is surjective and hence so is the composition,
f ◦ h : N → ∪∞m=1Am, where h : N → N× N is the bijection defined above.

6. Let us begin by showing 2N = {0, 1}N is uncountable. For sake of
contradiction suppose f : N → {0, 1}N is a surjection and write f (n) as
(f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈ {0, 1}N by an := 1 − fn(n). By
construction fn (n) 6= an for all n and so a /∈ f (N) . This contradicts the as-
sumption that f is surjective and shows 2N is uncountable. For the general
case, since Y X

0 ⊂ Y X for any subset Y0 ⊂ Y, if Y X
0 is uncountable then so

is Y X . In this way we may assume Y0 is a two point set which may as well
be Y0 = {0, 1} . Moreover, since X is an infinite set we may find an injective
map x : N → X and use this to set up an injection, i : 2N → 2X by setting
i (A) := {xn : n ∈ N} ⊂ X for all A ⊂ N. If 2X were countable we could find
a surjective map f : 2X → N in which case f ◦ i : 2N → N would be surjec-
tive as well. However this is impossible since we have already seed that 2N is
uncountable.

We end this section with some notation which will be used frequently in the
sequel.

Notation 3.9 If f : X → Y is a function and E ⊂ 2Y let

f−1E := f−1 (E) := {f−1(E)|E ∈ E}.
If G ⊂ 2X , let

f∗G := {A ∈ 2Y |f−1(A) ∈ G}.
Definition 3.10. Let E ⊂ 2X be a collection of sets, A ⊂ X, iA : A → X be
the inclusion map (iA(x) = x for all x ∈ A) and

EA = i−1
A (E) = {A ∩ E : E ∈ E} .
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3.2 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of Y,
verify the following assertions.

Exercise 3.1. (∩i∈IAi)c = ∪i∈IA
c
i .

Exercise 3.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 3.3. f−1(∪i∈IAi) = ∪i∈If
−1(Ai).

Exercise 3.4. f−1(∩i∈IAi) = ∩i∈If
−1(Ai).

Exercise 3.5. Find a counterexample which shows that f(C ∩ D) = f(C) ∩
f(D) need not hold.

Example 3.11. Let X = {a, b, c} and Y = {1, 2} and define f (a) = f (b) = 1
and f (c) = 2. Then ∅ = f ({a} ∩ {b}) 6= f ({a}) ∩ f ({b}) = {1} and {1, 2} =
f ({a}c) 6= f ({a})c = {2} .

3.3 Algebraic sub-structures of sets

Definition 3.12. A collection of subsets A of a set X is a π – system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.13. A collection of subsets A of a set X is an algebra (Field)
if

1. ∅, X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪· · ·∪An ∈ A.

In view of conditions 1. and 2., 3. is equivalent to
3′. A is closed under finite intersections.

Definition 3.14. A collection of subsets B of X is a σ – algebra (or some-
times called a σ – field) if B is an algebra which also closed under countable
unions, i.e. if {Ai}∞i=1 ⊂ B, then ∪∞i=1Ai ∈ B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)

Example 3.15. Here are some examples of algebras.

1. M = 2X , then M is a σ – algebra.
2. M = {∅, X} is a σ – algebra called the trivial σ – field.

3. Let X = {1, 2, 3}, then A = {∅, X, {1} , {2, 3}} is an algebra while, S :=
{∅, X, {2, 3}} is a not an algebra but is a π – system.

Proposition 3.16. Let E be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and σ – algebra σ(E) which contains E .

Proof. Simply take

A(E) :=
⋂
{A : A is an algebra such that E ⊂ A}

and
σ(E) :=

⋂
{M : M is a σ – algebra such that E ⊂M}.

Example 3.17. Suppose X = {1, 2, 3} and E = {∅, X, {1, 2}, {1, 3}}, see Figure
3.1. Then

Fig. 3.1. A collection of subsets.

A(E) = σ(E) = 2X .

On the other hand if E = {{1, 2}} , then A (E) = {∅, X, {1, 2}, {3}}.

Definition 3.18. Let X be a set. We say that a family of sets F ⊂ 2X is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F .

Example 3.19. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}

where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

# (A(E)) = #(2{1,2,...,n}) = 2n.
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Example 3.20. Suppose that X is a finite set and that A ⊂ 2X is an algebra.
For each x ∈ X let

Ax = ∩{A ∈ A : x ∈ A} ∈ A,

wherein we have used A is finite to insure Ax ∈ A. Hence Ax is the smallest
set in A which contains x. Let C = Ax ∩ Ay ∈ A. I claim that if C 6= ∅, then
Ax = Ay. To see this, let us first consider the case where {x, y} ⊂ C. In this case
we must have Ax ⊂ C and Ay ⊂ C and therefore Ax = Ay. Now suppose either
x or y is not in C. For definiteness, say x /∈ C, i.e. x /∈ y. Then x ∈ Ax \Ay ∈ A
from which it follows that Ax = Ax \Ay, i.e. Ax ∩Ay = ∅.

Let us now define {Bi}k
i=1 to be an enumeration of {Ax}x∈X . It is now a

straightforward exercise to show

A = {∪i∈ΛBi : Λ ⊂ {1, 2, . . . , k}} .

Proposition 3.21. Suppose that M ⊂ 2X is a σ – algebra and M is at most
a countable set. Then there exists a unique finite partition F of X such that
F ⊂M and every element B ∈M is of the form

B = ∪{A ∈ F : A ⊂ B} . (3.1)

In particular M is actually a finite set and # (M) = 2n for some n ∈ N.

Proof. We proceed as in Example 3.20. For each x ∈ X let

Ax = ∩{A ∈M : x ∈ A} ∈ M,

wherein we have used M is a countable σ – algebra to insure Ax ∈M. Just as
above either Ax∩Ay = ∅ or Ax = Ay and therefore F = {Ax : x ∈ X} ⊂ M is a
(necessarily countable) partition of X for which Eq. (3.1) holds for all B ∈M.

Enumerate the elements of F as F = {Pn}N
n=1 where N ∈ N or N = ∞. If

N = ∞, then the correspondence

a ∈ {0, 1}N → Aa = ∪{Pn : an = 1} ∈ M

is bijective and therefore, by Lemma 3.8, M is uncountable. Thus any countable
σ – algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader.

Example 3.22 (Countable/Co-countable σ – Field). Let X = I = R and E :=
{{x} : x ∈ R} . Then σ (E) consists of those subsets, A ⊂ R, such that A is
countable or Ac is countable. Similarly, A (E) consists of those subsets, A ⊂ R,
such that A is finite or Ac is finite. More generally we have the following exercise.

Exercise 3.6. Let X be a set, I be an infinite index set, and E = {Ai}i∈I be a
partition of X. Prove the algebra, A (E) , and that σ – algebra, σ (E) , generated
by E are given by

A(E) = {∪i∈ΛAi : Λ ⊂ I with # (Λ) < ∞ or # (Λc) < ∞}

and
σ(E) = {∪i∈ΛAi : Λ ⊂ I with Λ countable or Λc countable}

respectively. Here we are using the convention that ∪i∈ΛAi := ∅ when Λ = ∅.

Definition 3.23. The Borel σ – field, B, on R is the smallest σ -field containing
all of the open subsets of R.

Exercise 3.7. Verify the σ – algebra, BR, is generated by any of the following
collection of sets:

1. {(a,∞) : a ∈ R} , 2. {(a,∞) : a ∈ Q} or 3. {[a,∞) : a ∈ Q} .

Exercise 3.8. Suppose f : X → Y is a function, F ⊂ 2Y and M ⊂ 2X . Show
f−1F and f∗M (see Notation 3.9) are algebras (σ – algebras) provided F and
M are algebras (σ – algebras).

Lemma 3.24. Suppose that f : X → Y is a function and E ⊂ 2Y and A ⊂ Y
then

σ
(
f−1(E)

)
= f−1(σ(E)) and (3.2)

(σ(E))A = σ(EA ), (3.3)

where MA := {B ∩A : B ∈M} . (Similar assertion hold with σ (·) being re-
placed by A (·) .)

Proof. By Exercise 3.8, f−1(σ(E)) is a σ – algebra and since E ⊂ F ,
f−1(E) ⊂ f−1(σ(E)). It now follows that

σ(f−1(E)) ⊂ f−1(σ(E)).

For the reverse inclusion, notice that

f∗σ
(
f−1(E)

)
:=

{
B ⊂ Y : f−1(B) ∈ σ

(
f−1(E)

)}
is a σ – algebra which contains E and thus σ(E) ⊂ f∗σ

(
f−1(E)

)
. Hence for

every B ∈ σ(E) we know that f−1(B) ∈ σ
(
f−1(E)

)
, i.e.

f−1(σ(E)) ⊂ σ
(
f−1(E)

)
.

Applying Eq. (3.2) with X = A and f = iA being the inclusion map implies

(σ(E))A = i−1
A (σ(E)) = σ(i−1

A (E)) = σ(EA).

Page: 16 job: prob macro: svmonob.cls date/time: 27-Sep-2006/12:13



Example 3.25. Let E = {(a, b] : −∞ < a < b < ∞} and B = σ (E) be the Borel
σ – field on R. Then

E(0,1] = {(a, b] : 0 ≤ a < b ≤ 1}

and we have
B(0,1] = σ

(
E(0,1]

)
.

In particular, if A ∈ B such that A ⊂ (0, 1], then A ∈ σ
(
E(0,1]

)
.
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