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Homework Problems:






-1

Math 280B Homework Problems

-1

-1.

.1 Homework 1. Due Monday, January 22, 2007

Hand in from p. 114 : 4.27

Hand in from p. 196 : 6.5, 6.7

Hand in from p. 234-246: 7.12, 7.16, 7.33, 7.36 (assume each X, is inte-
grable!), 7.42

Hints and comments.

. For 6.7, observe that X,, = o, N (0,1).
. For 7.12, let {U, : n = 0,1,2,...} be ii.d. random variables uniformly

distributed on (0,1) and take Xy = Uy and then define X,, inductively so
that XnJrl = Xn . Un+1~

. For 7.36; use the assumptions to bound E [X,] in terms of E[X,, : X, < x].

Then use the two series theorem.

.2 Homework 2. Due Monday, January 29, 2007

Resnick Chapter 7: Hand in 7.9, 7.13.

Resnick Chapter 7: look at 7.28. (For 28b, assume E[X;X,] < p(i — j) for
i > j. Also you may find it easier to show % — 0 in L? rather than the
weaker notion of in probability.)

Hand in Exercise [[3.2] from these notes.

Resnick Chapter 8: Hand in 8.4a-d, 8.13 (Assume Var (N,,) > 0 for all n.)

3 Homework #3 Due Monday, February 5, 2007

Resnick Chapter 8: Look at: 8.14, 8.20, 8.36

Resnick Chapter 8: Hand in 8.7, 8.17, 8.31, 8.30* (Due 8.31 first), 8.34
*Ignore the part of the question referring to the moment generating function.
Hint: use problem 8.31 and the convergence of types theorem.

Also hand in Exercise [[3.3] from these notes.

-1.4 Homework #4 Due Friday, February 16, 2007

e Resnick Chapter 9: Look at: 9.22, 9.33
e Resnick Chapter 9: Hand in 9.5, 9.6, 9.9 a-e., 9.10
e Also hand in Exercise from these notes: [14.2] [14.3] and [14.4]

-1.5 Homework #5 Due Friday, February 23, 2007

e Resnick Chapter 9: Look at: 8
e Resnick Chapter 9: Hand in 11, 28, 34 (assume Y o2 > 0), 35 (hint: show
P[¢, #01.0. ] =0.), 38 (Hint: make use Proposition [7.25])

-1.6 Homework #6 Due Monday, March 5, 2007

Look at Resnick Chapter 10: 11
Hand in the following Exercises from the Lecture Notes:
(8.3} [18.1]

e Resnick Chapter 10: Hand in 2, 5%, 7, 8**

"In part 2b, please explain what convention you are using when the denom-
inator is 0.

*A Poisson process, {N (t)},~ , with parameter \ satisfies (by definition): (i)
N has independent increments, so that N(s) and N(t) — N(s) are independent;
(ii) if 0 < w < v then N(v) — N(u) has the Poisson distribution with parameter
Av —u).

**Hint: use Exercise [2.1]

-1.7 Homework #7 Due Monday, March 12, 2007
e Hand in the following Exercises from the Lecture Notes:

e Hand in Resnick Chapter 10: 14 (take B, := o (Yy,Y1,...,Y,) for the
filtration), 16



-1.8 Homework #8 Due Wednesday, March 21, 2007 by
11:00AM!

Look at the following Exercise from the Lecture Notes: [19.4

Hand in the following Exercises from the Lecture Notes: [19.3

Resnick Chapter 10: Hand in 15, 28, and 33.

For #28, let B,, := o(Y3,...,Y,) define the filtration. Hint: for part b
consider, In X,,.



0

Math 280A Homework Problems

Unless otherwise noted, all problems are from Resnick, S. A Probability
Path, Birkhauser, 1999.

0.1 Homework 1. Due Friday, September 29, 2006

p- 20-27: Look at: 9, 12, ,19, 27, 30, 36
p- 20-27: Hand in: 5, 17, 18, 23, 40, 41

0.2 Homework 2. Due Friday, October 6, 2006

p- 63-70: Look at: 18
p. 63-70: Hand in: 3, 6, 7, 11, 13 and the following problem.

Exercise 0.1 (280A-2.1). Referring to the setup in Problem 7 on p. 64 of
Resnick, compute the expected number of different coupons collected after buy-
ing n boxes of cereal.

0.3 Homework 3. Due Friday, October 13, 2006

Look at from p. 63-70: 5, 14, 19
Look at lecture notes: exercise [4.4] and read Section [5.5]
Hand in from p. 63-70: 16

Hand in lecture note exercises: - and

0.4 Homework 4. Due Friday, October 20, 2006

e Look at from p. 85-90: 3, 7, 12, 17, 21
Hand in from p. 85-90: 4, 6, 8, 9, 15
e Also hand in the following exercise.

Exercise 0.2 (280A-4.1). Suppose {f,} —, is a sequence of Random Vari-
ables on some measurable space. Let B be the set of w such that f, (w) is
convergent as n — oo. Show the set B is measurable, i.e. B is in the o —
algebra.

0.5 Homework 5. Due Friday, October 27, 2006

Look at from p. 110-116: 3, 5
Hand in from p. 110-116: 1, 6, 8, 18, 19

0.6 Homework 6. Due Friday, November 3, 2006

Look at from p. 110-116: 3, 5, 28, 29
Look at from p. 155-166: 6, 34

Hand in from p. 110-116: 9, 11, 15, 25
Hand in from p. 155-166: 7

Hand in lecture note exercise:

0.7 Homework 7. Due Monday, November 13, 2006

Look at from p. 155-166: 13, 16, 37
Hand in from p. 155-166: 11, 21, 26

Hand in lecture note exercises: 8.19]

0.7.1 Corrections and comments on Homework 7 (280A)
Problem 21 in Section 5.10 of Resnick should read,

d - k—1
£P (s) = Z kpis®”~* for s € [0,1].

k=1

Note that P (s) = Y ;o ,prs® is well defined and continuous (by DCT) for
s € [-1,1]. So the derivative makes sense to compute for s € (—1,1) with no
qualifications. When s = 1 you should interpret the derivative as the one sided
derivative

d iy P =P =)



and you will need to allow for this limit to be infinite in case > ,—, kpr = oo.
In computing d%hP (s), you may wish to use the fact (draw a picture or give
a calculus proof) that

1—sk
1—s

increases to k as s T 1.
Hint for Exercise Start by observing that
S * 1
E{—— du=E| — Xk —
( n u) m <n k;( k u))

= > R m) (X (X0 (X, — )]
k,j,l,p=1

4

Then analyze for which groups of indices (k, j, 1, p);

E (X — 1)(X; — m)(X; = p)(X, — )] # 0.

0.8 Homework 8. Due Monday, November 27, 2006

Look at from p. 155-166: 19, 34, 38

Look at from p. 195-201: 19, 24

Hand in from p. 155-166: 14, 18 (Hint: see picture given in class.), 22a-b
Hand in from p. 195-201: 1la,b,d, 12, 13, 33 and 18 (Also assume EX,, = 0)*
Hand in lecture note exercises: [0.11

* For Problem 18, please add the missing assumption that the random
variables should have mean zero. (The assertion to prove is false without
this assumption.) With this assumption, Var(X) = E[X?]. Also note that
Cov(X,Y) = 0 is equivalent to E[XY] = EX - EY.

0.9 Homework 9. Due Noon, on Wednesday, December 6,
2006

Look at from p. 195-201: 3, 4, 14, 16, 17, 27, 30

Hand in from p. 195-201: 15 (Hint: |[a — b| = 2(a — b)* — (a — b). )

Hand in from p. 234-246: 1, 2 (Hint: it is just as easy to prove a.s. conver-
gence), 15
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1

Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R := RU{+o0}, i.e. it
is R with two new points called oo and —oo. We use the following conventions,
+00:-0=0, £o0-a = Fo0 if a € R with a > 0, +00-a = Foo if a € R with
a<0,oo+a==x0 for any a € R, co + o0 = 00 and —o0o — o0 = —o0 while
o0 — 00 is not defined. A sequence a, € R is said to converge to 0o (—oo) if for
all M € R there ezists m € N such that ap, > M (a, < M) for all n > m.

Lemma 1.2. Suppose {a,},—, and {b,},. | are convergent sequences in R,
then:

1. If a, < by, meI a.a. n then lim,,_, oo a, < lim,,_, oo bn.
2. If c € R, limy, o0 (cap) = climy, o0 ay.
3. If {an, + b, },— | is convergent and

lim (a, +b,)= lim a, + lim b, (1.1)

n—oo n—oo n—oo

provided the right side is not of the form oo — co.
4. {anby },2, is convergent and

lim (apb,) = lim a, - lim b, (1.2)

provided the right hand side is not of the for £00-0 of 0 (£00).

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

o ifa<l1
lim (ay, + by) = 0 fa=1
—ocoifa>1
while
lim a, + lim b,“="00 — o0.

n—oo n—oo

This shows that the requirement that the right side of Eq. (1.1)) is not of form
00— o0 is necessary in Lemma[l.2] Similarly by considering the examples a,, = n

! Here we use “a.a. n” as an abreviation for almost all n. So an < b, a.a. n iff there
exists N < oo such that a, < b, for all n > N.

and b, = n~% with a > 0 shows the necessity for assuming right hand side of
Eq. is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. . Let a :=lim, .« a, and b = lim,,_. o, b,. Case 1., suppose
b = oo in which case we must assume a > —oo. In this case, for every M > 0,
there exists NV such that b, > M and a,, > a — 1 for all n > N and this implies

ap +by, > M+a—1foralln > N.

Since M is arbitrary it follows that a, + b, — 0o as n — co. The cases where
b = —oo or a = oo are handled similarly. Case 2. If a,b € R, then for every
€ > 0 there exists N € N such that

la —an| <eand |b—b,| <eforalln>N.
Therefore,
la+b—(an+by)|=|a—an+b—by| <|a—a|+1|b—0,| <2

for all n > N. Since n is arbitrary, it follows that lim, . (a, + b,) = a + .

Proof of Eq. (1.2)). It will be left to the reader to prove the case where lim a,,
and lim b,, exist in R. I will only consider the case where a = lim,, .o a,, # 0
and lim,_ . b, = oo here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let @ := min (%, 1) . Given any M < oo, there exists
N € N such that a,, > a and b, > M for all n > N and for this choice of N,
anby, > Ma for all n > N. Since o > 0 is fixed and M is arbitrary it follows
that lim, o (anbyp) = 0o as desired. [

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup A = oo
if oo € A or A is not bounded from above and inf A = —oo0 if —co € A or Ais
not bounded from below. We will also use the conventions that sup() = —co
and inf ) = +o0.

Notation 1.3 Suppose that {x,} -, C R is a sequence of numbers. Then

liminf 2, = lim inf{zy : k > n} and (1.3)
n—oo n—oo
limsupz,, = lim sup{xy : k > n}. (1.4)



10 1 Limsups, Liminfs and Extended Limits

We will also write lim for liminf, .o and lim for limsup .

n—oo

Remark 1.4. Notice that if ay := inf{xy : &k > n} and by := sup{zy : k >
n}, then {ax} is an 1ncreabmg sequence whlle {br} is a decreasing sequence.
Therefore the limits in Eq. and Eq. (1.4) always exist in R and

lim inf T = SUP inf{zy, : k > n} and

limsup x,, = mf sup{zy : k > n}.

n—oo

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {a,,}22; and {b,}32, be two sequences of real numbers.
Then

1. liminf, . a, < limsupa, and lim,_. a, ezxists in R iff
n—oo

liminf a,, = limsupa, € R.
n—00 n—o0o

2. There is a subsequence {an, }52, of {an}S2y such that limy .o Gy, =
limsup a,,. Similarly, there is a subsequence {an, 32, of {an}5%; such that

n—oo
limy o0 ap, = liminf,_, ay.
3.
lim sup(a, + b,) < limsupa,, + limsup b, (1.5)
n—oo n—oo n—oo

whenever the right side of this equation is not of the form oo — oo.
4. If a, > 0 and b,, > 0 for all n € N, then

lim sup(anby,) < limsup a,, - limsup by, (1.6)

n—oo n—oo n—oo
provided the right hand side of @ is not of the form 0 - oo or oo - 0.

Proof. Item 1. will be proved here leaving the remaining items as an exercise
to the reader. Since

inf{ay : k > n} <sup{ai: k>n} Vn,

liminf a,, < limsup a,,.

n—00 n— oo

Now suppose that liminf,, .. a, = limsupa, = a € R. Then for all € > 0,
n—oo

there is an integer N such that

Page: 10 job: prob

a—e<inf{ag: k> N} <supfar : k> N} <a+e,
i.e.
a—e<ap<a-+eforal k> N.

Hence by the definition of the limit, limg_. o ax = a. If liminf,, . a, = oo,
then we know for all M € (0,00) there is an integer N such that

M <inf{ay : k > N}

and hence lim,, .., a, = 0o. The case where lim sup a,, = —o0 is handled simi-
n—oo

larly.
Conversely, suppose that lim, oo an, = A € R exists. If A € R, then for
every € > 0 there exists N(¢) € N such that |A — a,| < ¢ for all n > N(e), i.e

A—e<a, <A+c¢eforalln> N(e).
From this we learn that

A —e¢ <liminfa, <limsupa, < A+¢.

n— o0 n—oo

Since € > 0 is arbitrary, it follows that

A <liminfa, <limsupa, < A4,

i.e. that A = liminf, ., a, = limsupa,. If A = oo, then for all M > 0

there exists N = N(M) such that a, > M for all n > N. This show that
liminf, . a, > M and since M is arbitrary it follows that

oo < liminf a,, <limsup a,.
n—0oo n— oo

The proof for the case A = —oo is analogous to the A = co case. ]

Proposition 1.6 (Tonelli’s theorem for sums). If {ak,},,_; is any se-
quence of non-negative numbers, then

0o 00 SN
2D =D D o
k=1n=1 n=1k=1

Here we allow for one and hence both sides to be infinite.

Proof. Let
K N N K
M = sup{ZZakn :K,N € N} :sup{ZZakn :K,N € N}
k=1n=1 n=1k=1
macro: svmonob.cls date/time: 12-Mar-2007/12:25



and o o
L:= Z Z QAkn -
k=1n=1
Since
co oo K o K N
L= ZZakn :KIE)n ZZalm :Khm lim ZZa;m

—00 N—oo

k=1n=1 k=1n=1 k=1n=1

and Zle Zi:;l arn < M for all K and N, it follows that L < M. Conversely,

K N K o oo 0o
§ Zakng § Zakng § Zakn:L
k=1n=1 k=1n=1 k=1n=1

and therefore taking the supremum of the left side of this inequality over K
and N shows that M < L. Thus we have shown

0o 0o
E E Akp = M.
k=1n=1

By symmetry (or by a similar argument), we also have that 02 | >°7° | ap, =
M and hence the proof is complete. [






2

Basic Probabilistic Notions

Definition 2.1. A sample space {2 is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, 2 ={0,1}.
2. The sample space for flipping a coin N -times could be taken to be, 2 =
{0, 1}N and for flipping an infinite number of times,

Q={w=(w,ws,...) rw; €{0,1}} = {0,1}".
3. If we have a roulette wheel with 40 entries, then we might take
2 ={00,0,1,2,...,36}

for one spin,
2 =1{00,0,1,2,...,36}"

for N spins, and
2 ={00,0,1,2,...,36}"

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

2 =Dp:={(z,y) ER*:2” +y* < R}

for one throw,
2 =D¥

for N throws, and
N
for an infinite number of throws.

5. Suppose we release a perfume particle at location z € R? and follow its
motion for all time, 0 < ¢ < oco. In this case, we might take,

2 ={weC(0,0),R*:w(0)=2a}.
Definition 2.3. An event is a subset of 2.

Ezample 2.4. Suppose that 2 = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here w,, = 1 represents the fact that a head was
thrown on the n'® — toss, while w,, = 0 represents a tail on the n*" — toss.

1. A={w € 2 : w3 =1} represents the event that the third toss was a head.

2. A=U2, {w e N:w; =w;41 = 1} represents the event that (at least) two
heads are tossed twice in a row at some time.

3.A=NF_; Up>n {w € 2:w, =1} is the event where there are infinitely
many heads tossed in the sequence.

4. A = UF_y N>y {w € 2:w, =1} is the event where heads occurs from
some time onwards, i.e. w € A iff there exists, N = N (w) such that w, =1
for all n > N.

Ideally we would like to assign a probability, P (A), to all events A C (2.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, w (n) € (2 for each n € N,
then try to “define” P (A) by

P(A):A;iinoo%#{lgng:w(k)eA}. (2.1)

That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {w (k)} -, -

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we now that B has occurred. Thus we would
like to compute:

. #{k:1<k<nandw, € AN B}
P(AB)=1
(4]B) o #{k:1<k<nandwy € B} ’
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which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

%#{k:lgkgnandwkeAﬁB}
%#{k:lgkgnandwkeB}
P(ANB)
P(B)

P(A|B) = lim

n—oo

Definition 2.5. If B is a non-null event, i.e. P(B) > 0, define the condi-
tional probability of A given B by,

P(ANB)

PAIB) = =5

There are of course a number of problems with this definition of P in Eq.
including the fact that it is not mathematical nor necessarily well defined.
For example the limit may not exist. But ignoring these technicalities for the
moment, let us point out three key properties that P should have.

1. P(A) €[0,1] for all A C 0.
2. P(@)=1and P(N2) =1.
3. Additivity. If A and B are disjoint event, i.e. AN B = AB = (), then

P(AUB) = lim %#{1§k§N:w(k)eAuB}
:]\}iixlm%[#{lgng:w(k)eA}+#{1§k§N:w(k)eB}]
— P(A)+P(B).

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every w € 2 is equally likely, i.e. P ({w}) = k.
Assuming this we are then forced to define

P(A)= oo# (4).

Observe that this probability has the following property. Suppose that o €
{0, 1}]c is a given sequence, then
1 1
P({w:(wla"wwk)zo—}):27N'2N :27
That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.
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Ezxample 2.7. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now £2 = {0,1}", then we should define

P({we 2: (w,... (2.2)

for any k > 1 and o € {0, 1}k. Assuming there exists a probability, P : 22 —
[0,1] such that Eq. (2.2) holds, we would like to compute, for example, the

probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

Ap ={w € 2 :w, =1} = {heads at time n}

By :=Up>nA, = {at least one heads at time N or later}

and
B = ﬁ}’voleN = {An 10} = ﬂ})vozl UnZN An

Since
va = mnzNA% C ﬂMZnZNAfL = {w cEN:wny=-=wy = 1},

we see that

Therefore, P (By) = 1 for all N. If we assume that P is continuous under taking

decreasing limits we may conclude, using By | B, that

P(B) = lim P(By)=1.

Without this continuity assumption we would not be able to compute P (B).

The unfortunate fact is that we can not always assign a desired probability
function, P (A), for all A C 2. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z € C: |z| =1} be the unit cir-
cle. Then there is no probability function, P : 25 — [0,1] such that P (S) = 1,
P is invariant under rotations, and P is continuous under taking decreasing
limats.

Proof. We are going to use the fact proved below in Lemma , that the
continuity condition on P is equivalent to the o — additivity of P. For z € S
and N C S let

zN :={zneS:neN}, (2.3)

that is to say ¢’ N is the set N rotated counter clockwise by angle 6. By
assumption, we are supposing that
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P(zN) = P(N) (2.4)

forall z€ Sand N C S.
Let 4 '
Ri={z=¢e?":tcQ}={z=¢""":tc[0,1)NQ}

— a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z,w € S are equivalent if z = rw for some
r € R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N C S be the set of these representative
points. Then every point z € S may be uniquely written as z = nr with n € N
and r € R. That is to say

S=Y (rN) (2.5)

reR

where ) A, is used to denote the union of pair-wise disjoint sets {A,}. By

Eqgs. and ,
1=P(S)=>_ P(rN)=>_ P(N). (2.6)

r€ER rcR

We have thus arrived at a contradiction, since the right side of Eq. is either
equal to 0 or to co depending on whether P (N) =0 or P(N) > 0. |

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2. So we are going to only define P on
particular subsets, B C 22. We will developed this below.






Part 11

Formal Development






3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, Ny := NU{0} be the non-negative integers
and Z = Ny U (—=N) — the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let YX denote the collection of all
functions f : X — Y. If X = N, we will say that f € YN is a sequence
with values in'Y and often write f, for f(n) and express f as {fn}rry. If
X ={1,2,..., N}, we will write YV in place of Y112N}t and denote f € YN
by f = (f1, f2,..., fn) where fr, = f(n).

Notation 3.2 More generally if {X, : « € A} is a collection of non-empty sets,

let X4 = [] Xa and 7o : Xq4 — X, be the canonical projection map defined
acA
by mo(z) = zo. If If Xo = X for some fized space X, then we will write || X,
acA
as X4 rather than X 4.

Recall that an element x € X4 is a “choice function,” i.e. an assignment
ZTo = z(a) € X, for each @ € A. The axiom of choice states that X4 # 0
provided that X, # ) for each a € A.

Notation 3.3 Given a set X, let 2% denote the power set of X — the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={re X :a(zx)=1} C X.

In this way elements in {0,1}~ are in one to one correspondence with subsets
of X.
For A € 2% let
A =X\A={zeX:z ¢ A}

and more generally if A, B C X let
B\A:={zxeB:x¢ A} = An B°.

We also define the symmetric difference of A and B by
AAB:=(B\A)U(A\B).
As usual if {A4},,; is an indexed collection of subsets of X we define the union
and the intersection of this collection by
Ugerda ={z€X:F3a€l 3 x€ A,} and
NactAa ={zeX:z € A Vael}.

Notation 3.4 We will also write Zael A, for UgerAes in the case that
{Aa} e are pairwise disjoint, i.e. Aq N Ag =0 if o # .

Notice that U is closely related to 3 and N is closely related to V. For example
let {A,},~, be a sequence of subsets from X and define

inf A, == Ni>nAgk,
k>n -

sup A, = UanAk,
k>n

limsup A, :={A, l0.} ={z e X :#{n:xe€ A} =}

and
liminf A, := {A, a.a.} :={z € X : 2 € A, for all n sufficiently large}.

n—oo

(One should read {A,, i.0.} as A, infinitely often and {A,, a.a.} as A,, almost
always.) Then © € {A, i.0.} iff

VNeNdn>N>ze€A,
and this may be expressed as

{4, 1.0.} =Ny Up>n An.
Similarly, z € {4,, a.a.} iff

dNeN>Vn>N, z€ A,
which may be written as

{An a.a.} = U?\?:l ngN An
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Definition 3.5. Given a set A C X, let

wo={o s

be the characteristic function of A.

Lemma 3.6. We have:

{A, i.0.}° = {A¢ a.a.},

limsup A, ={z € X :> 7 14, () =00},
liminf, o An = {ac eEX Y, lae (z) < oo} ,
SUPg>n lAk (J}) = 1Uk2nAk = 1supk2n Apn>

infla, () = 1nana, = Linfrsn, Avs

Liimsup 4,, = limsup 1,4, , and

n—o0 n—oo

N oW e

Limint, o A, = liminf, 14, .

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f: X — N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

. If A C X is a subset of a countable set X then A is countable.

. Any infinite subset A C N is in one to one correspondence with N.

. A non-empty set X is countable iff there exists a surjective map, g : N — X.

Af X and Y are countable then X X Y is countable.

. Suppose for each m € N that A,, is a countable subset of a set X, then
A =UX_ Ay, is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then YX

is uncountable. In particular 2% is uncountable for any infinite set X.

Gr i Lo~

Proof. 1. If f : X — N is an injective map then so is the restriction, f|4,
of f to the subset A. 2. Let f (1) = min A and define f inductively by

fn+1) = min (A\{f(1),..., f(n)}).

Since A is infinite the process continues indefinitely. The function f : N — A
defined this way is a bijection.
3.If g : N — X is a surjective map, let

f(z) =ming™' ({z}) =min{n e N: f(n) = z}.

Then f: X — N is injective which combined with item
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2. (taking A = f(X)) shows X is countable. Conversely if f : X — N is
injective let 29 € X be a fixed point and define g : N — X by g(n) = f~1(n)
for n € f(X) and g(n) = xg otherwise.

4. Let us first construct a bijection, h, from N to N x N. To do this put the
elements of N x N into an array of the form

(1,1) (1,2) (1,3) ...
(2,1) (2,2) (2,3) ...
(3,1) (3,2) (3,3) ...

and then “count” these elements by counting the sets {(i,5): i+ j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1,3) and so on. If f : N—=X and g : N =Y are
surjective functions, then the function (f x g) o h : N—=X x Y is surjective
where (f x g) (m,n) := (f (m),g(n)) for all (m,n) € N x N.

5. If A = () then A is countable by definition so we may assume A # ().
With out loss of generality we may assume A; # () and by replacing A, by
A7 if necessary we may also assume A,, # @ for all m. For each m € N let
am : N —A,, be a surjective function and then define f: NxN — UX_, A, by
f(lm,n) := a;,(n). The function f is surjective and hence so is the composition,
foh:N—U¥X_1A,,, where h : N — N x N is the bijection defined above.

6. Let us begin by showing 2V = {O,l}N is uncountable. For sake of
contradiction suppose f : N — {0,1}N is a surjection and write f(n) as
(fi(n), f2(n), f3(n),...). Now define a € {0,1}" by a, := 1 — f,(n). By
construction f,, (n) # a, for all n and so a ¢ f(N). This contradicts the as-
sumption that f is surjective and shows 2N is uncountable. For the general
case, since ;¥ C Y¥ for any subset Yy C Y, if Y is uncountable then so
is YX. In this way we may assume Y; is a two point set which may as well
be Yy = {0,1}. Moreover, since X is an infinite set we may find an injective
map z : N — X and use this to set up an injection, i : 2V — 2% by setting
i(A) :={x, :n €N} C X for all A C N. If 2% were countable we could find
a surjective map f : 2% — N in which case f o : 2 — N would be surjec-
tive as well. However this is impossible since we have already seed that 2V is
uncountable. ]

We end this section with some notation which will be used frequently in the
sequel.

Notation 3.9 If f : X — Y is a function and £ C 2 let
frle=f1E) ={f1(B)E et}

If G C 2%, let
fG:={Aec2Y|f1(A) eg}.
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Definition 3.10. Let £ C 2X be a collection of sets, A C X, i4 : A — X be
the inclusion map (ia(z) = x for all z € A) and

Ea=i"(§)={ANE:Ec¢&}.

3.2 Exercises

Let f: X — Y be a function and {4;};c; be an indexed family of subsets of Y,
verify the following assertions.

Exercise 3.1. (N;erA;)¢ = U;er AS.

Exercise 3.2. Suppose that B C Y, show that B\ (U;er4;) = Nier(B\ A;).
Exercise 3.3. f 1 (UjerA;) = Uier fH(A).

Exercise 3.4. f~1(NierA;) = Nier fH(A)).

Exercise 3.5. Find a counterexample which shows that f(C N D) = f(C) N
f(D) need not hold.

Ezample 3.11. Let X = {a,b,c} and Y = {1,2} and define f (a) = f(b) =1
and f(c) = 2. Then § = f({a} N{b}) # f({a}) N f({b}) = {1} and {1,2} =
f{a}?) # f({a})" = {2}

3.3 Algebraic sub-structures of sets

Definition 3.12. A collection of subsets A of a set X is a 1 — system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.13. A collection of subsets A of a set X is an algebra (Field)
if

1.0, Xc A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if Ay,..., A, € A then A1U---UA, € A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 3.14. A collection of subsets B of X is a 0 — algebra (or some-
times called a 0 — field) if B is an algebra which also closed under countable
unions, i.e. if {A;};o, C B, then U2, A; € B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)
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Example 3.15. Here are some examples of algebras.

1. B=2% then B is a o — algebra.

2. B={0,X} is a 0 — algebra called the trivial o — field.

3. Let X = {1,2,3}, then A = {0, X,{1},{2,3}} is an algebra while, S :=
{0, X,{2,3}} is a not an algebra but is a 7 — system.

Proposition 3.16. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(E) which contains E.

Proof. Simply take

A(E) = m{A : A is an algebra such that £ C A}

and

(€)= m{./\/l : M is a o — algebra such that & C M}.
[

Ezample 3.17. Suppose X = {1,2,3} and & = {0, X, {1,2}, {1, 3}}, see Figure
Bl Then

GRS

Fig. 3.1. A collection of subsets.

AE) =0o(&) =2%.
On the other hand if £ = {{1,2}}, then A (£) = {0, X, {1, 2}, {3}}.

Exercise 3.6. Suppose that & C 2% for i = 1,2. Show that A(&;) = A (&)
iff & C A(&) and & C A (&) . Similarly show, o (£1) = o (&) iff & C o (&2)
and & C o (&1) . Give a simple example where A (&) = A (£2) while &1 # &;.
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Definition 3.18. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F.

Ezample 3.19. Let X be a set and &€ = {A;,...,A,} where Ay,..., A, is a
partition of X. In this case

A(E) = 0(&) = {Uieadi : AC {1,2,...,n}}
where U;e 1 A; := 0 when A = (). Notice that

#(A(E)) = #(202m)) = 2.

Example 3.20. Suppose that X is a finite set and that A C 2% is an algebra.
For each x € X let
Ar=nN{AecA:x € A} € A,

wherein we have used A is finite to insure A, € A. Hence A, is the smallest
set in A which contains z. Let C' = A, N A, € A. I claim that if C' # (), then
Ay = A,y. To see this, let us first consider the case where {z,y} C C. In this case
we must have A, C C and A, C C and therefore A, = A,. Now suppose either
x or y is not in C. For definiteness, say ¢ C,i.e. x ¢ y. Thenz € A, \ A, € A
from which it follows that A, = A, \ 4y, i.e. A, N A, = 0.

Let us now define {Bi}le to be an enumeration of {A,} .y . It is now a
straightforward exercise to show

A={UieaB; i AC{1,2,...,k}}.

Proposition 3.21. Suppose that B C 2% is a 0 — algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F C B and every element B € B is of the form

B=U{AeF:AcCBj}. (3.1)
In particular B is actually a finite set and # (B) = 2" for some n € N.
Proof. We proceed as in Example |3.20} For each z € X let
A,=n{AeB:zec A} € B,

wherein we have used B is a countable o — algebra to insure A, € B. Just as
above either A, N A, =0 or A, = A, and therefore F = {4, :z € X} C Bisa
(necessarily countable) partition of X for which Eq. holds for all B € B.

Enumerate the elements of F as F = {P,})_, where N € Nor N = co. If
N = oo, then the correspondence
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ae{0,1}" -4, =U{P,:a,=1}€B

is bijective and therefore, by Lemma[3.8] B is uncountable. Thus any countable
o — algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader. ]

Ezample 3.22 (Countable/Co-countable o — Field). Let X = R and & :=
{{z} : 2 € R}. Then o (£) consists of those subsets, A C R, such that A is
countable or A€ is countable. Similarly, A (€) consists of those subsets, A C R,
such that A is finite or A€ is finite. More generally we have the following exercise.

Exercise 3.7. Let X be a set, I be an infinite index set, and £ = {4;};cs be a
partition of X. Prove the algebra, A (£), and that o — algebra, o (£), generated
by & are given by

A(E) = {Usead; : A C I with # (A) < oo or # (A°) < oo}

and
(&) = {UjcaA; : A C I with A countable or A° countable}

respectively. Here we are using the convention that U;e4A; := @ when A = ().

Proposition 3.23. Let X be a set and & C 2%X. Let £¢ := {A°: A € £} and
E=EU{X,0}UE" Then

A(E) := {finite unions of finite intersections of elements from E.}.  (3.2)

Proof. Let A denote the right member of Eq. . From the definition of
an algebra, it is clear that £ C A C A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
z=UN4y

i=1j=1

where A;; € .. Therefore, writing B;; = Afj € &, we find that

N K K
z2=UBi= U (BuNByn-—-NByjy) €A
i=1j=1 Jyeedn=1
wherein we have used the fact that By;, NBaj,N- - -N By, is a finite intersection
of sets from &,. [ |
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Remark 3.24. One might think that in general o(€) may be described as the
countable unions of countable intersections of sets in £¢. However this is in

general false, since if
z=U N4y

i=1j=1
with A;; € &, then

LU (15
=1,... \/=1

ji=1,j2=1,...5~8v=1

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe o(€), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition

Exercise 3.8. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F'NV where F is closed and V is open.

Solution to Exercise . In this case 7. is the collection of sets which are
either open or closed. Now if V; C, X and F; C X for each j, then (N, V)N
(ﬁ;ﬁ:le) is simply a set of the form VNF where V C, X and F' C X. Therefore
the result is an immediate consequence of Proposition [3.23

Definition 3.25. The Borel o - field, B = Bg = B(R), on R is the smallest o
-field containing all of the open subsets of R.

Exercise 3.9. Verify the o — algebra, Bg, is generated by any of the following
collection of sets:

1. {(a,0):a € R}, 2. {(a,00):a € Q} or 3. {[a,0):a€Q}.
Hint: make use of Exercise [3.6

Exercise 3.10. Suppose f : X — Y is a function, F C 2¥ and B c 2X. Show
fYF and f.B (see Notation are algebras (o — algebras) provided F and
B are algebras (o — algebras).

Lemma 3.26. Suppose that f : X — Y is a function and £ C 2¥ and ACY
then

o (f7HE) = 1 (0(&)) and (3.3)
(@(€)a=0(a ), (3.4)

where B4 :={BNA: B e B}. (Similar assertion hold with o (-) being replaced
by A(-).)
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Proof. By Exercise f~Y(o(€)) is a o — algebra and since £ C F,
F7HE) C f~Ho(€)). Tt now follows that

a(f7HE) C FH(a(€)).
For the reverse inclusion, notice that
Fo (F7HE) ={BcY : fT(B)eo (7€)}
is a 0 — algebra which contains £ and thus ¢(£) C f.o (f*(£)). Hence for
every B € o(£) we know that f~1(B) € o (f71(£)), i.e.
fHo@) co(f71(E).
Applying Eq. with X = A and f = i4 being the inclusion map implies

(@(E) 4 =1ix' (0(£)) = a(i3' () = o (Ea).
]

Ezample 3.27. Let € = {(a,b] : —00 < a < b < oo} and B = o (£) be the Borel
o — field on R. Then

5(071] = {(a,b] :0 <a< b < 1}
and we have
By = o (0.1 -
In particular, if A € B such that A C (0,1], then A € o (£,17) -
Definition 3.28. A function, f : 2 — Y is said to be simple if f(£2) C Y is
a finite set. If A C 29 is an algebra, we say that a simple function f: 2 —Y

is measurable if {f =y} := f~1 ({y}) € A for all y € Y. A measurable simple
function, f: 2 — C, is called a simple random wvariable relative to A.

Notation 3.29 Given an algebra, A C 27, let S(A) denote the collection of
stmple random variables from (2 to C. For example if A € A, then 14 € S(A)
is a measurable simple function.

Lemma 3.30. For every algebra A C 2, the set simple random variables,
S(A), forms an algebra.

Proof. Let us observe that 1, =1 and 1p = 0 are in S(A). If f,g € S(A)
and ¢ € C\ {0}, then

{(freg=X= U {r=an{g=thea (3.5)

a,beC:a+cb=X\
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24 3 Preliminaries

and
{ro=x2= U W=anfg=thea (36)
a,beC:a-b=X\
from which it follows that f 4+ cg and f - g are back in S (A). |

Definition 3.31. A simple function algebra, S, is a subalgebra of the
bounded complex functions on X such that 1 € S and each function, f € S,
is a simple function. If S is a simple function algebra, let

AS)={ACX:14€S}.
(It is easily checked that A (S) is a sub-algebra of 2X.)

Lemma 3.32. Suppose that S is a simple function algebra, f € S and o €
f(X). Then {f =a} € A(S).

Proof. Let {\;},_, be an enumeration of f (X) with Ag = a. Then

b

_117,
g = [ (a)\i)] - (f—XN1)€es.

Moreover, we see that g = 0 on U, {f = A\;} while g =1 on {f = a}. So we
have shown g = 15—,y € S and therefore that {f = a} € A. ]

Exercise 3.11. Continuing the notation introduced above:

1. Show A(S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A € {Algebras C 2¥} — S(A) € {simple function algebras on X}

is bijective and the map, S — A(S), is the inverse map.

Solution to Exercise (|3.11)).

1. Since 0 = 1p,1 = 1x €S, it follows that f) and X arein A(S).If A € A(S),
then 14 =1 —14 € S and so A° € A(S). Finally, if A, B € A(S) then
lanp =14 -1p €S and thus AN B € A(S).

2. If f,g € S(A) and ¢ € F, then

{f+eg=2= | {f=an{g=0hed
a,beF:a+cb=X

and

{f-9g=X= U {f=anfg=theA

a,beEF:a-b=X
from which it follows that f + cg and f - g are back in S (A).
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3. If f: 2 — Cis a simple function such that 1;;_5; € S for all A € C,
then f = >\ ccAl{y=ay € S. Conversely, by Lemma if f €S then
1iy=xy € S for all A € C. Therefore, a simple function, f: X — Cisin S
iff 1;7—x) € S for all A € C. With this preparation, we are now ready to
complete the verification.

First off,
AcAS(A) < 1aeS(A) < Ac A

which shows that A (S (A)) = A. Similarly,
feSAQN)) — {f=XeAS)VreC
<~ 1{f:)\} esSvieC
<~ fesS

which shows S (A(S)) =S.
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4

Finitely Additive Measures

Definition 4.1. Suppose that £ C 2% is a collection of subsets of X and p :
& — [0,00] is a function. Then

1. i is monotonic if u(A) < u(B) for all A, B € £ with A C B.
2. u is sub-additive (finitely sub-additive) on & if

E) <) wE

whenever E = J!, E; € £ withn € NU{oo} (n € N).
3. u is super-additive (finitely super-additive) on £ if

whenever E =Y"" | E; € £ withn € NU{oo} (n € N).
4. 1 is additive or finitely additive on & if

whenever E =" | B, € £ with E; € € fori=1,2,...,n < c0.

5. If E = A is an algebra, 1 (0) = 0, and p is finitely additive on A, then p is
said to be a finitely additive measure.

6. 1 is o — additive (or countable additive) on & if item 4. holds even
when n = 0.

7. If € = A is an algebra, p(0) = 0, and p is o — additive on A then p is
called a premeasure on A.

8. A measure is a premeasure, i : B — [0,00], where B is a o — algebra. We
say that p is a probability measure if 1 (X) = 1.

4.1 Finitely Additive Measures

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose i is a finitely additive measure on an algebra, A C 2%, E,F € A with
E C Fand {Ej};.lzl C A, then :

1. (u is monotone) u(E) < u(F) if E C F.
2. For A, B € A, the following strong additivity formula holds;

p(AUB)+pu(ANB) = p(A)+pu(B). (4.3)

3. (u is finitely subbadditive) j(U7_ E;) < >0 u(Ey).
4. p is sub-additive on A iff

Z i) for A= Z A; (4.4)

where A € A and {A;};2, C A are pairwise disjoint sets.
5. (u is countably superadditive) If A=Y " A, with A;, A € A, then

o0 o0
o(E) = 2w
=1 =1
6. A finitely additive measure, i, is a premeasure iff p is sub-additve.

Proof.

1. Since F is the disjoint union of F and (F\ E) and F\E=FNE°€ Ait
follows that

u(F) = p(E) + p(F\ E) = p(E).

2. Since

AUB=[A\(ANB)]Y [B\(ANB)]Y AnB,
uw(AUuB)=p(AUB\(ANB))+p(ANB)
=p(A\N(ANB))+u(B\(ANB))+p(ANB).

Addmg 1 (AN B) to both sides of this equatlon proves Eq. .
3. Let E = E;\ (F1U---UE;_,) so that the E; ’s are pair-wise disjoint and
E=Uj_ E Since E C Ej it follows from the monotonicity of x that

- Y HE) < s,
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4. It A=;2,Bi with A € Aand B; € A, then A =2, A; where A; :=
B;\ (B1U...B;_1) € A and By = (). Therefore using the monotonicity of

pand Eq. (@4)
oo (oo}
<D nlA) <) (B
i=1 i=1
5. Suppose that A = Y ;2 A; with 4;,A € A, then Y. | A; C A for all n
and so by the monotonicity and finite additivity of p, >, p(4;) < p(A).
Letting n — oo in this equation shows pu is superadditive.
6. This is a combination of items 5. and 6.

Proposition 4.3. Suppose that P is a finitely additive probability measure on
an algebra, A C 2. Then the following are equivalent:

1. P is o — additive on A.
2. For all A, € A such that A, 1 A€ A, P(A,) 1 P(A).
3. For all A, € A such that A, | Ac A, P(A,) | P(A)
4. For all A, € A such that A, T 2, P(4,) 1T 1.
5. For all A, € A such that A, | 2, P(A,) | 1.
Proof. We will start by showing 1 <— 2 <= 3.
1 = 2. Suppose A, € A such that A, 1 A€ A Let A, := A, \ 4,1
with A := (. Then {4} } >, are disjoint, 4, = Uy_; A} and A = U, A].
Therefore,

P(4) =Y P(4) = lim 3" P(4}) = lim P(Uj_,A4}) = lm P(4,).
k=1 k=1

2 = 1.1If {A,};2, C A are disjoint and A :=
UN_, A, T A. Therefore,

U2 A, € A, then

N o
An) = lim Y P(4,)=3 P(4,)

n=1 n=1

2 = 3.If A, € Asuch that A,, | A € A, then A% T A° and therefore,

P(A)= lim P (UDZ,

lim (1— P(A,)) = lim P(AS) = P(A%) =1— P (A).

n— oo n—oo

3 = 2. If A, € Asuch that 4, T A € A, then AS | A° and therefore we
again have,

lim (1— P (A,)) = lim P(AS) =P (A% =1— P(A).

n—oo n—oo
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It is clear that 2 = 4 and that 3 = 5. To finish the proof we will show
5 = 2and 5 = 3.
5 = 2.If A, € A such that 4,, T A€ A, then A\ A, | 0 and therefore
lim [P(A) = P(4,)] = lim P(A\Ay) =

n—oo

5 = 3.1If A, € Asuch that A,, | A € A, then A, \ A | 0. Therefore,
lim [P (A4,) — P(A)]= lim P(A,\ A)=0.

Remark 4.4. Observe that the equivalence of items 1. and 2. in the above propo-
sition hold without the restriction that P (£2) =1 and in fact P (£2) = co may
be allowed for this equivalence.

Definition 4.5. Let (£2,B) be a measurable space, i.e. B C 2% is a 0 -
algebra. A probability measure on (£2,B) is a finitely additive probability
measure, P : B — [0,1] such that any and hence all of the continuity properties
in Proposition hold. We will call (£2,B, P) a probability space.

Lemma 4.6. Suppose that (£2,B, P) is a probability space, then P is countably
sub-additive.

Proof. Suppose that A, € B and let A/1 := Ay and for n > 2, let A, :=
A\ (A1 U...A,_1) € B. Then

P(Upl A,) = P (UL, AY) i <> P(An).

4.2 Examples of Measures

Most o — algebras and ¢ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.

Ezxample 4.7. Suppose that 2 is a finite set, B := 2% and p : 2 — [0,1] is a
function such that
> pw) =

weNR
Then
=Y pw) forall AC 2
weA
defines a measure on 2.
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Example 4.8. Suppose that X is any set and x € X is a point. For A C X, let

1if z€ A
5I(A)_{Oifx¢A.

Then p = 6, is a measure on X called the Dirac delta measure at .

Example 4.9. Suppose that p is a measure on X and A > 0, then A -y is also a
measure on X. Moreover, if {j;};c are all measures on X, then p = Z 1 s
ie.

A) = ZM(A) forall AC X

is a measure on X. (See Section for the meaning of this sum.) To prove this
we must show that u is countably additive. Suppose that {A4;};°, is a collection
of pair-wise disjoint subsets of X, then

4y =3

'MS
Mg

wUZA;) = i (A

i=1 =1 j=1
=03 pwi(A) = pi
j=11i=1 j=1
= (U2, 4;)

wherein the third equality we used Theorem and in the fourth we used that
fact that j1; is a measure.

Ezample 4.10. Suppose that X is a set A : X — [0, 00] is a function. Then

W= Z Az)d,

rzeX

A) =) Aw)

z€A

is a measure, explicitly

for all A C X.

Ezample 4.11. Suppose that F C 2% is a countable or finite partition of X and
B C 2% is the o — algebra which consists of the collection of sets A C X such
that

A=U{aeF:aC A}. (4.5)

Any measure p : B — [0,00] is determined uniquely by its values on F. Con-
versely, if we are given any function A : F — [0, 00] we may define, for A € B,
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pA) = 3 M) =Y Aa)laca

acFd3aCA acF

where 1,04 is one if @ C A and zero otherwise. We may check that p is a
measure on B. Indeed, if A =) 2, A; and a € F, then a C A iff a C A, for
one and hence exactly one A;. Therefore 1oca = > o) laca, and hence

A) = Z /\(a)laCA = Z )‘(0‘) Z laca,

acF acF
=3 3 Ma)laca = 3ol
i=1

i=1 a€F
as desired. Thus we have shown that there is a one to one correspondence
between measures p on B and functions A : F — [0, o0].

The following example explains what is going on in a more typical case of
interest to us in the sequel.

Example 4.12. Suppose that 2 = R, A consists of those sets, A C R which may
be written as finite disjoint unions from

S:={(a,0)NR: —c0<a<b< o}.
We will show below the following;:

1. A is an algebra. (Recall that Bg = o (A).)
2. To every increasing function, F' : R — [0, 1] such that

F (—o0) := wEIElooF(x) =0 and
F (+00) := lim F(z)=

r—00

there exists a finitely additive probability measure, P = Pgr on A such that
P((a,)) "NR)=F (b) — F(a) for all —oo<a<b<oo.

3. P is 0 — additive on A iff F' is right continuous.
4. P extends to a probability measure on By iff F' is right continuous.

Let us observe directly that if F' (a+) := limy,|, F (x) # F (a), then (a,a +
1/n] | @ while

P((a,a+1/n])=F(a+1/n)—F(a) | F(a+)— F (a) > 0.

Hence P can not be o — additive on A in this case.
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28 4 Finitely Additive Measures

4.3 Simple Integration

Definition 4.13 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A C 2X. For f € S(A) the integral or
expectation, E(f) = Ep(f), is defined by

=> yP(f =y). (4.6)

yeC
Ezample 4.14. Suppose that A € A, then
Elps=0-P(A°)+1-P(A)=P(A). (4.7)

Remark 4.15. Let us recall that our intuitive notion of P (A) was given as in

Eq. (1) by

P(A):A}@w%#{lgng:w(k)eA}

where w (k) € £2 was the result of the £ “independent” experiment. If we use
this interpretation back in Eq. (4.6)), we arrive at

Ef)=ZyP(f=y)= lim *Zy #{l<k<N:[f(wk) =y}

yeC yeC

= g Z Y Z Lpwmy=y = Jim_ % DD F @) L=y

yeC k=1 k=1yeC
1
= 1' —_
k=1
Thus informally, Ef should represent the average of the values of f over many

“independent” experiments.

Proposition 4.16. The expectation operator, E = Ep, satisfies:

1. If f € S(A) and A € C, then

E(\f) = XE(f). (4.8)
2.If f,g € S(A), then
E(f +9) = E(9) + E(f). (4.9)
3. E is positive, i.e. E(f) > 0 if f is a non-negative measurable simple func-
tion.
4. For all f € S(A),
Ef| <EI|f]. (4.10)
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Proof.
1. If A # 0, then

EAN)= Y. yPAf=y)= >  yP(f=y/N

yeCU{co} yeCU{oo}
= Y Xz P(f=2) =)E(f)
z€CU{oo}

The case A = 0 is trivial.
2. Writing {f = a,g = b} for f=1({a}) Ng=1({b}), then

E(f+9)=> zP(f+g=2)

zeC

:ZZP(Uaer:z{f:avg:b})
zeC

_Zz Z {f—a g—b})
zeC at+b=z

—ZZ (a+b)P({f=a, g=1b})
2€C a+b==z

=2 (e PUT =0 g=bh).

But

Y aP({f=a,g=b)=> a) P({f=0 g=0})
a b

a,b

=Y aP(U{f=a, g=1})
=Y aP({f=a}) =

and similarly,

> bP({f=a, g=b})=Eg

a,b

Equation (4.9) is now a consequence of the last three displayed equations.

3. If f >0 then

a>0
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4. First observe that

1= (A 1p=

AeC

and therefore,

E[f|=EY A 1lj=x =Y [AElj=x =Y [ P(f =) < max|f|.

AeC AeC AeC

On the other hand,

<Y P(f=XN=E|fl.

AeC

|Ef| =

D AP(f=))

AeC

Remark 4.17. Every simple measurable function, f : 2 — C, may be written as
f= Zjvzl Ajla; for some \; € Cand some A; € C. Moreover if f is represented
this way, then

N
Ef=E | Ajla,

Jj=1

N N
=> NEla, =) M\P(4))
j=1 j=1

Remark 4.18 (Chebyshev’s Inequality). Suppose that f € S(A), e > 0, and
p > 0, then

PUAZD =B <B| Ty <evmir.

Observe that
7= AP L=y
AeC
is a simple random variable and {|f[>¢e} = >0, {f =A} € A as well.

, ‘Q,p 1)f|>¢ is still a simple random variable.

€ A forn =

Lemma 4.19 (Inclusion Exclusion Formula). If A,
1,2,..., M such that (Uﬁ/leAn) < 00, then

k-‘rl Z

k=1 1<ni<ng<---<np <M

p(Ap, N NA,).  (4.12)

M:

/J nlA

Proof. This may be proved inductively from Eq. (4.3). We will give a dif-
ferent and perhaps more 1llum1nating proof here. Let A := UM | A,,.
Since A¢ = (UM A ) =NM | A¢, we have

n=1 ny
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M

T—da=1p = [[1as =] (0 -14,)
n=1
M
=2 D e lay,
k=0 0<ni<na< - <np <M
M
= Z(—l)k Z 1An1ﬂ---ﬂAnk
k=0 0<n<no<---<np <M
from which it follows that
M
k+1
lyw a, =1a=)» (-1) > 1a, Aen,, - (4.13)
k=1 1<ni<ne<---<nip <M
Taking expectations of this equation then gives Eq. (4.12)). ]

Remark 4.20. Here is an alternate proof of Eq. (4.13). Let w € 2 and by rela-
beling the sets {4, } if necessary, we may assume that w € A1 N---N A, and
wé Apyp1U---U Ay for some 0 < m < M. (When m = 0, both sides of Eq.
(4.13)) are zero and so we will only consider the case where 1 < m < M.) With
this notation we have

M

Z (—1)k+? Z

k=1 1<ni<ne<---<npg<M

S

1A, nena,, (W)

1a,,nna,, (W)

k=1 1<ni<na<--<np<m
_ i it ( )
k=1
—1— 1k1n—k<m>
>0ty

=1-(1-1)"=1.

This verifies Eq. (4.13)) since 1yn 4, (w) = 1.

Ezample 4.21 (Coincidences). Let £2 be the set of permutations (think of card
shuffling), w: {1,2,...,n} — {1,2,...,n}, and define P (A) := #(A) to be the
uniform distribution (Haar measure) on (2. We wish to compute the probability
of the event, B, that a random permutation fixes some index 7. To do this, let
A; = {w € N:w(i) =14} and observe that B = U ; A;. So by the Inclusion
Exclusion Formula, we have
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30 4 Finitely Additive Measures

n

P(B)=Y (-1 3 P4, N NA).
k=1 1<y <ig<ig<-<ip<n
Since
PA,n-NA,)=P{we R:w(ir) =1i1,...,w(ix) =ir})
(k)
N n!
and
#{1<i1<ig<izg<---<ip<n}= <Z>’
we find

- () -For

k=1
For large n this gives,

k1

PB) ==Y (-1

k=1

=~ — (e7' —1) =0.632.

Ezample 4.22. Continue the notation in Example[£.21] We now wish to compute
the expected number of fixed points of a random permutation, w, i.e. how many
cards in the shuffled stack have not moved on average. To this end, let

X; =14,

and observe that

n n

N(w):ZXi(W):Zlu(i):i:#{i:w(i):i}’
i=1

i=1
denote the number of fixed points of w. Hence we have

EN — ZH:EXZ- - ZH:P(Ai) - zn: (”;!1)! -1
=1 =1

i=1

Let us check the above formula when n = 6. In this case we have

w N(w)
123
132
213
231
312
321

_ O O = =W
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and so 5
P (3 a fixed point) = = = 3
while s
1 1 2
k+1
1 =1--4-=2
Z( ) k! 2 + 6 3
k=1
and

1
EN = (3+1+14+0+0+1) =1

4.4 Simple Independence and the Weak Law of Large
Numbers

For the next two problems, let A be a finite set, n € N, 2 = A" and X; : 2 — A
be defined by X; (w) = w; for w € 2 and i = 1,2,...,n. We further suppose
p: 2 —[0,1] is a function such that

d plw) =1
wes?
and P : 2% — [0,1] is the probability measure defined by
P(A):=> p(w) forall Ac2 (4.14)
wEA

Exercise 4.1 (Simple Independence 1.). Suppose ¢; : A — [0, 1] are func-
tions such that >, ¢ (A\) =1fori=1,2,...,nand If p(w) = [T ; ¢ (ws) .
Show for any functions, f; : A — R that

11+ (XZ-)] =[IErfi (X)) =[] Ea.fi
i=1 i=1 i=1

where Q; (7) = >_ye, ¢i (A) for all v C A

Exercise 4.2 (Simple Independence 2.). Prove the converse of the previous
exercise. Namely, if

Ep

Ep lH fi (Xz)] =[1Erf: (X)) (4.15)
i=1 i=1

for any functions, f; : A — R, then there exists functions ¢; : A — [0,1] with
Y orea @i (A) =1, such that p (w) = T, ¢ (wi).
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Exercise 4.3 (A Weak Law of Large Numbers). Suppose that A C R
is a finite set, n € N, 2 = A", p(w) = [, ¢(w;) where ¢ : A — [0,1]
such that ), ,q(\) =1, and let P : 22 — [0,1] be the probability measure
defined as in Eq. . Further let X; (w) = w; for i = 1,2,...,n, £ := EX;,
o2 :=E(X; —¢)?, and

1. Show, £ =>4 A ¢ (A) and
F =Y (A=Tqg(N) =D Ng()-& (4.16)
A€A AeA

2. Show, ES,, = £.

E[(X; - &) (X; - §)] = §ij0°.
4. Using S,, — € may be expressed as, = Y1 | (X; — &), show

'n

1
E (S, —¢)* = 50—2. (4.17)
5. Conclude using Eq. (4.17) and Remark that
L
P(|Sn—¢& >¢) < TEQU : (4.18)

So for large n, S;, is concentrated near £ = EX; with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Exercise 4.4 (Bernoulli Random Variables). Let A = {0,1},, X : A — R
be defined by X (0) = 0 and X (1) = 1, = € [0,1], and define Q@ = zé; +
(1 —1)dp,ie. Q({0}) =1—2z and Q ({1}) = x. Verity,
&(z) =EgX =z and
o} (x)=Fg (X —2)’=(1—z)z <1/4

Theorem 4.23 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f € C([0,1],C) and

pn () = Z <Z>f (S) " (1—z)" k.

k=0
Then
lim sup |f(x) —pn (z)| = 0.

n=%0 pe0,1]

(See Theorem for a multi-dimensional generalization of this theorem.)
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Proof. Let x € [0,1], A ={0,1},¢(0)=1—2z, ¢(1) =z, 2 = A", and

Py ({w}) = g (i) ... q(wn) = = (1 — )t "2l

As above, let S,, = % (X1 4+ X,), where X; (w) = w; and observe that

P, (sn = S) = <Z)xk (1—2)"".

Therefore, writing E, for Ep_, we have

s =31 (5) (1) 0ot =

k

Hence we find

P (2) = [ (2)] = [Eof (Sn) = [ (2)] = [Ex [f (Sn) — £ (2)]]
< Eq |f (Sn) = £ (2)]
=B [If (Sn) = f (2)] : |Sn — 2] = €]
+ B [If (Sn) = f (@)] :|Sn — 2| <]
<2M - Py (|S, — x| =€)+ (¢)

where

=
I

d
max |f (y)| an

6 (e) ==sup{|f(y) — f(@)| : 2,y € [0,1] and |y — x| < ¢}
is the modulus of continuity of f. Now by the above exercises,

1

P, (]S, —z| > ¢) < el (see Figure |4.1))
and hence we may conclude that
M
n - < 5
Jax [pn (2) = F @) < 55 +0(e)

and therefore, that

limsup max |p, () — f (z)| < 0 (e).

n—oo z€[0,1]

This completes the proof, since by uniform continuity of f, 6 (¢) | 0 as ¢ | 0.
]
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Fig. 4.1. Plots of P, (S, = k/n) versus k/n for n = 100 with x = 1/4 (black), z = 1/2
(red), and = = 5/6 (green).

4.5 Constructing Finitely Additive Measures

Definition 4.24. A set S C 2% is said to be an semialgebra or elementary
class provided that

e 0es

e S is closed under finite intersections

o if E €S8, then E€ is a finite disjoint union of sets from S. (In particular
X = 0° is a finite disjoint union of elements from S.)

Ezxample 4.25. Let X = R, then

S = {(a,b]ﬂR:a,bGR}
={(a,b] : a € [-00,00) and a < b < co} U {0, R}

is a semi-field

Exercise 4.5. Let A C 2% and B C 2¥ be semi-fields. Show the collection
E={AxB:A€ Aand B € B}

is also a semi-field.

Proposition 4.26. Suppose S C 2% is a semi-field, then A = A(S) consists of
sets which may be written as finite disjoint unions of sets from S.
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Proof. Let A denote the collection of sets which may be written as finite
disjoint unions of sets from S. Clearly S C A C A(S) so it suffices to show A is
an algebra since A(S) is the smallest algebra containing S. By the properties
of S, we know that ), X € A. Now suppose that A; = ZFeAi F € A where, for
i=1,2,...,n, A; is a finite collection of disjoint sets from S. Then

ﬁAz:ﬁ<ZF>: U (F1OF20---an)
i=1 i=1 \F€eA; (Fyyye o, Fp)EAL XX Ay

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections. Similarly, if A = ), F with A being a finite
collection of disjoint sets from S, then A° = (., F°. Since by assumption
Fee Afor F € A C S and A is closed under finite intersections, it follows that
Ac e A. ]

Ezample 4.27.Let X = R and S := {(a,b] NR:a,be ]R} be as in Example
Then A(S) may be described as being those sets which are finite disjoint

unions of sets from S.

Proposition 4.28 (Construction of Finitely Additive Measures). Sup-
pose S C 2% is a semi-algebra (see Deﬁnition and A = A(S) is the algebra
generated by S. Then every additive function p: S — [0, 00] such that u(0) =0
extends uniquely to an additive measure (which we still denote by p) on A.

Proof. Since (by Proposition [4.26]) every element A € A is of the form
A = )", E; for a finite collection of E; € S, it is clear that if 1 extends to a
measure then the extension is unique and must be given by

plA) = 3 u(Ey). (4.19)

To prove existence, the main point is to show that u(A) in Eq. (4.19) is well
defined; i.e. if we also have A = Zj F; with F; € S, then we must show

SO u(E) =3 ulFy). (4.20)

But E; = 3, (E; N F;) and the additivity of 4 on S implies pu(E;) = 3, p(E; N

F;) and hence

ZN(Ei) = ZZM(Ei NE;) = ZM(Ei NEFj).

Similarly,
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which combined with the previous equation shows that Eq. (4.20) holds. It is
now easy to verify that p extended to A as in Eq. (4.19) is an additive measure
on A. ]

Proposition 4.29. Let X =R, S be a semi-algebra
S={(a,b))NR: —00 <a<b< o0}, (4.21)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition[{.26, To each finitely additive probability measures p :
A — [0,00], there is a umique increasing function F : R —[0,1] such that
F(—00) =0, F(oc0) =1 and

w((a, b)) NR) = F(b) — F(a) ¥V a < b in R. (4.22)

Conversely, given an increasing function F : R — [0,1] such that F(—o0) = 0,
F(o0) = 1 there is a unique finitely additive measure p = pup on A such that

the relation in Eq. holds.
Proof. Given a finitely additive probability measure pu, let

F(x):=p((—oo0,z] NR) for all z € R.
Then F (c0) =1, F (—o0) = 0 and for b > a,
F(b) = F(a) = p((=00,0] NR) = p1((—00,a]) = p((a, b] NR).

Conversely, suppose F' : R —[0,1] as in the statement of the theorem is
given. Define p on S using the formula in Eq. . The argument will be
completed by showing y is additive on S and hence, by Proposition [£:28] has a
unique extension to a finitely additive measure on A. Suppose that

n

(a, b] = Z(ai, bl]

i=1
By reordering (a;, b;] if necessary, we may assume that
a=a;<by=ay<by=a3<---<bp_1=a, <b, =0
Therefore, by the telescoping series argument,

pl(a ) NR) = F(b) = F(a) = 3 [F(b) — Fla)] = 3 (e, b] N R)

i=1 i=1






5

Countably Additive Measures

5.1 Distribution Function for Probability Measures on
(Ra BR)

Definition 5.1. Given a probability measure, P on Bg, the cumulative dis-
tribution function (CDF) of P is defined as the function, F' = Fp : R — [0, 1]
given as

F (z):= P ((—o0,z]).
Ezxample 5.2. Suppose that

P=pé_1+4+¢b1 +7i;
with p,q,r > 0 and p + ¢+ r = 1. In this case,

0 for z< -1

p for—-1<z<1
p+qfor 1<z<m’

1 forr<z<oo

F(z)=

Lemma 5.3. If F = Fp : R —[0,1] is a distribution function for a probability
measure, P, on Bg, then:

1. F(—00) :=lim,;— o F () =0,
2. F(00) :=1limy o0 F (z) =1,

3. F is non-decreasing, and

4. F is right continuous.

Theorem 5.4. To each function F : R — [0, 1] satisfying properties 1. — 4. in
Lemma[5.3, there exists a unique probability measure, Pp, on Bg such that

Pr ((a,b)) = F(b) — F (a) forall —oco < a<b<oo.

Proof. The uniqueness assertion in the theorem is covered in Exercise 5.1
below. The existence portion of the Theorem follows from Proposition [5.7] and
Theorem [5.19 below. [

Ezample 5.5 (Uniform Distribution). The function,

Ofor x<0
F(zx):=qafor 0<z<1,
lforl<z< o

is the distribution function for a measure, m on Bg which is concentrated on
(0,1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

Recall from Definition that B C 2X is a 0 — algebra on X if B is an
algebra which is closed under countable unions and intersections.

5.2 Construction of Premeasures

Proposition 5.6. Suppose that S C 2% is a semi-algebra, A = A(S) and p :
A — [0,00] is a finitely additive measure. Then u is a premeasure on A iff y is
sub-additive on S.

Proof. Clearly if u is a premeasure on A then u is o - additive and hence
sub-additive on S. Because of Proposition to prove the converse it suffices
to show that the sub-additivity of y on & implies the sub-additivity of x4 on A.

[ee]
So suppose A = > A, with A € A and each A,, € A which we express as
n=1
A=Y" | Ejwith Ej € S and A, = Y1, E,,; with E,,; € S. Then

o} oo Np
Ej=ANE; =Y A,NE; =Y > E.NE;
n=1

n=1i=1
which is a countable union and hence by assumption,

oo Np

wE;) < Z ZN(En,i NE;j).

n=1 i=1

Summing this equation on j and using the finite additivity of u shows
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k k oo Np
=D nE) <3 3 Y n(Enin By)

j=1n=1i=1
o N, k o Ny [eS)
:Z Z,U'(En,imEj):ZZN(En,i):ZU(An)
n=1i=1 j=1 n=1 i=1 n=1
which proves (using Proposition the sub-additivity of p on A. ]

Now suppose that F' : R — R be an increasing function, F' (£oo) :=
lim,; 400 F (2) and p = pp be the finitely additive measure on (R,.A4) de-
scribed in Proposition [£:29] If y happens to be a premeasure on A, then, letting
A, = (a,by,] with b, | b as n — oo, implies

F(bn) — F(a) = p((a,bn]) | p((a,b]) = F(b) — F(a).

Since {b,},>, was an arbitrary sequence such that b, | b, we have shown
lim, |, F(y) = F(b), i.e. F is right continuous. The next proposition shows the
converse is true as well. Hence premeasures on .4 which are finite on bounded
sets are in one to one correspondences with right continuous increasing functions
which vanish at 0.

Proposition 5.7. To each right continuous increasing function F : R — R
there exists a unique premeasure j = pip on A such that

pr((a,b]) = F(b) — F(a) ¥V —oco<a <b< 0.

Proof. As above, let F(+00) := lim,; 1o F(z) and u = pp be as in Propo-
sition .29} Because of Proposition [5.6} to finish the proof it suffices to show p
is sub-additive on S.

First suppose that —o0o < a < b < o0, J = (a,b], J, = (an,b,] such that

J= > J, We wish to show

n=1

< Zu(Jn). (5.1)

To do this choose numbers @ > a, b, > b, in which case I := (a,b] C J,

In = (an,by] D JS = (an,En) D Jy.
_ _ oo
Since I = [a,b] is compact and I C J C |J JZ there exist N < oo such that
n=1
1 To see this, let ¢ := sup {m <b:[a,z] is finitely covered by {jZ}OO } .Ife<b,
~ ~ n=1
then ¢ € Jj, for some m and there exists « € J;, such that [a, z] is finitely covered
by {jo}oo say by {jo}N . We would then have that {J"}ma Xm0
n n=1 ) n n

covers [a, ] for all ¢/ € J3,. But this contradicts the definition of c.

finitely
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Using the right continuity of F' and letting @ | a in the above inequality,

H() = ul(ab) = F(6) = Fl) < 3 u ()
—Zu +Z,uJ\J (5.2)

n=1
Given ¢ > 0, we may use the right continuity of F to choose b, so that
(T \ J) = F(by) — F(by) <e27" ¥V n eN.

Using this in Eq. (5.2) shows

p(T) = p((a,b]) <> p(Jn) +e

which verifies Eq. (5.1)) since £ > 0 was arbitrary.
The hard work is now done but we still have to check the cases where
a = —o0 or b= 0. For example, suppose that b = co so that

S

n=1
with J,, = (an,b,] NR. Then
Iy = (a,M]=JNIy =Y J.NIy
n=1

and so by what we have already proved,

Now let M — oo in this last inequality to find that
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o0

((a,00)) = F(o0) = F(a) < 3 (7).

n=1

The other cases where a = —oo and b € R and @ = —oo and b = oo are handled
similarly. [

Before continuing our development of the existence of measures, we will
pause to show that measures are often uniquely determined by their values
on a generating sub-algebra. This detour will also have the added benefit of
motivating Carathoedory’s existence proof to be given below.

5.3 Regularity and Uniqueness Results

Definition 5.8. Given a collection of subsets, £, of X, let &, denote the col-
lection of subsets of X which are finite or countable unions of sets from E.
Similarly let Es denote the collection of subsets of X which are finite or count-
able intersections of sets from . We also write E,5 = (E5)5 and Eso = (£5), »
etc.

Lemma 5.9. Suppose that A C 2% is an algebra. Then:

1. A, is closed under taking countable unions and finite intersections.
2. As is closed under taking countable intersections and finite unions.

3 {A:Ac A} =As and {A°: Ae As} = A
Proof. By construction A4, is closed under countable unions. Moreover if
A=U2,A; and B = U, B; with A;, B; € A, then

ANB=U<_1A,NB; € A,,

1,7=1

which shows that A, is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3. ]

Theorem 5.10 (Finite Regularity Result). Suppose A C 2% is an algebra,
B=o0(A) and p : B — [0,00) is a finite measure, i.e. p(X) < co. Then for
every € > 0 and B € B there exists A € As and C € A, such that AC B C C
and p(C\ A) <e.

Proof. Let By denote the collection of B € B such that for every ¢ > 0
there here exists A € As and C € A, such that A C BC C and p(C\ A) < e.
It is now clear that A C By and that By is closed under complementation. Now
suppose that B; € By for i = 1,2,... and € > 0 is given. By assumption there
exists A; € As and C; € A, such that A; C B; C C; and u (C; \ 4;) < 27 %.

Let A := U2 A;, AN .= UN A, € As, B == U2 | B;, and C := UX,C; €
A,. Then AN ¢ Ac Bc C and
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CANA=[UZGINA=UZ [Ci\ Al CUZ, [Ci\ Al

Therefore,
p(C\A) = p (U2, [C;\ A Z (C;\ A) < Z (Ci \ Ay)

Since C'\ AN | C'\ A, it also follows that p (C'\ AY) < ¢ for sufficiently large
N and this shows B = U2, B; € By. Hence By is a sub-c-algebra of B = o (A)
which contains A which shows By = B. [ |

Many theorems in the sequel will require some control on the size of a
measure p. The relevant notion for our purposes (and most purposes) is that
of a 0 — finite measure defined next.

Definition 5.11. Suppose X is a set, E CB C 2% and p : B — [0,00] is a
function. The function p is o — finite on & if there exists E,, € £ such that
WEy) < oo and X =S, E,. If B is a 0 — algebra and p is a measure on B
which is o — finite on B we will say (X, B, 1) is a o — finite measure space.

The reader should check that if 4 is a finitely additive measure on an algebra,
B, then p is o — finite on B iff there exists X,, € B such that X, T X and
w(Xy) < oo.

Corollary 5.12 (¢ — Finite Regularity Result). Theorem continues
to hold under the weaker assumption that y : B — [0, 00] is a measure which is
o — finite on A.

Proof. Let X,, € A such that U2 X,, = X and pu(X,,) < oo for all n.Since
AeB —>un (A) = pu(X,NA) is a finite measure on A € B for each n, by
Theorem [5.10] for every B € B there exists C,, € A, such that B C C,, and
(X, [C’ \B}) = un (Cp \ B) < 27"e. Now let C' := U2, [X,NC,] € A,
and observe that B C C' and

p(C\B) = 21 ([(Xn NG\ B))

o0

(U5
gi (X, NC, \B:Z N[C,\ B]) <

Applying this result to B¢ shows there exists D € A, such that B¢ C D and
p(B\ D) =p(D\B%) <e.
So if we let A := D¢ € A, then A C B C C and
p(CNA) =p(BNAJUC\B)\A]) <pu(B\A)+p(C\B) <2

and the result is proved. [
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38 5 Countably Additive Measures

Exercise 5.1. Suppose A C 2% is an algebra and p and v are two measures on

B=o(A).

a. Suppose that p and v are finite measures such that 4 = v on A. Show
W=r.

b. Generalize the previous assertion to the case where you only assume that
i and v are o — finite on A.

Corollary 5.13. Suppose A C 2% is an algebra and p : B = o (A) — [0, 00] is
a measure which is o — finite on A. Then for all B € B, there exists A € As,
and C € Ays such that AC B C C and n(C'\ A) =0.

Proof. By Theorem [5.10} given B € B, we may choose A, € As and
C, € A, such that A, C B C C,, and u(Cp, \ B) < 1/n and u(B\ A4,) < 1/n.
By replacing Ay by UN_; A, and Cy by NY_,C,, we may assume that A, 1
and C, | as n increases. Let A = UA, € A5, and C = NC,, € A,s, then
AC B cCC and

w(C\A) = p(C\B) +pu(B\A) < pu(Cr \ B) + u(B\ An)
<2/n—0asn— .

Exercise 5.2. Let B = Bgrn = o ({open subsets of R"}) be the Borel o — alge-
bra on R™ and p be a probability measure on B. Further, let By denote those
sets B € B such that for every ¢ > 0 there exists FF C B C V such that F is
closed, V is open, and u (V' \ F) < . Show:

1. By contains all closed subsets of B. Hint: given a closed subset, FF C R™ and
keN,let Vi := UzerB (x,1/k), where B (z,0) := {y e R": |y — x| < d}.
Show, Vi, | F as k — oo.

2. Show By is a o — algebra and use this along with the first part of this
exercise to conclude B = By. Hint: follow closely the method used in the
first step of the proof of Theorem [5.10

3. Show for every ¢ > 0 and B € B, there exist a compact subset, K C R™, such
that K C B and pu(B\ K) < e. Hint: take K := FN{x € R" : |z| < n}
for some sufficiently large n.

5.4 Construction of Measures

Remark 5.14. Let us recall from Proposition [£.3]and Remark [£.4] that a finitely
additive measure p : A — [0, 00] is a premeasure on A iff u (A4,) T pu(A) for all
{A,}72, C Asuch that A, T A € A. Furthermore if u (X) < oo, then p is a

premeasure on A iff (A,) | 0 for all {A4,} | C A such that A, | 0.
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Proposition 5.15. Let i be a premeasure on an algebra A, then u has a unique
extension (still called p) to a function on A, satisfying the following properties.

1. (Continuity) If A, € Aand A, T A € Ay, then 1 (Ap) T 1 (A) asn — oo.
2. (Monotonicity) If A, B € A, with A C B then p(A) < u(B).
3. (Strong Additivity) If A, B € A,, then

p(AUB) +p(ANB) = p(A)+p(B). (5.3)

4. (Sub-Additivity on A,) The function p is sub-additive on A,, i.e. if
{A,},2, C A, then

HUA,) < 37 (Ay). (5.4)

5. (o - Additivity on A,) The function p is countably additive on A, .

Proof. Let A, B be sets in A, such that A C B and suppose {4,} -, and
{B,},~, are sequences in A such that A4, 1 A and B,, 1 B as n — oo. Since
B, NA, T A, as m — oo, the continuity of 1 on A implies,

14 (An) = n}gnoo 14 (Bm N An) < n}gnoo 14 (Bm) .
We may let n — oo in this inequality to find,

lim p(A4,) < lim p(Bp). (5.5)
Using this equation when B = A, implies, lim, oo pt (An) = limy, o0 pt (Bm)
whenever A,, T A and B,, T A. Therefore it is unambiguous to define y (A) by;

p(A) = lim 4 (An)

for any sequence {A4,},~, C A such that A, T A. With this definition, the
continuity of y is clear and the monotonicity of x follows from Eq. (5.5).

Suppose that A,B € A, and {A4,},~, and {B,} -, are sequences in A
such that A, T A and B, T B as n — oo. Then passing to the limit as n — oo
in the identity,

1 (AnUBy) + p(An N By) = p(An) + 1 (Bn)

proves Eq. (5.3)). In particular, it follows that u is finitely additive on A,.
Let {A,},~, be any sequence in A, and choose {A,;};~, C A such that
Apni T Ay as i@ — 0o. Then we have,

N N [eS)
i (UN_ An v < Z,U(An,N) < Z,U(An) < Zu (A,). (5.6)
n=1 n=1 n=1
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Since A > UY A, v T U2 A, € A,, we may let N — oo in Eq. to
conclude Eq. holds.

If we further assume that {A4,} 2, C A, is a disjoint sequence, by the finite
additivity and monotonicity of x4 on A,, we have

) N
Z p(An) = ]\;Enoo Z p(An) = A}gnoo/‘ (UnzlAn) < p(Unli4n).
n=1 n=1
The previous two inequalities show u is o — additive on A,. [

Suppose p is a finite premeasure on an algebra, A C 2%, and A € As N A,.
Since A, A° € A, and X = AU A®, it follows that 4 (X) = pu (A) 4+ p (A°) . From
this observation we may extend p to a function on 45 U A, by defining

w(A) :=pu(X)—p(A°) for all A € As. (5.7)

Lemma 5.16. Suppose p is a finite premeasure on an algebra, A C 2%, and p
has been extended to As U A, as described in Proposition and Fq.
above.

1.If Ae As and A, € A such that A, | A, then p(A) = lim, o pu(A4,).
2. 1 is additive when restricted to As.
3. IfAe As and C € A, such that A C C, then u(C\ A) = p(C) — u(4).

Proof.

1. Since AS 1 A°¢ € A,, by the definition of p(A4) and Proposition it
follows that

$(A) = 1 (X) = p(A%) = p(X) — lim pu (AS)

= lim [p(X) = p(A7)] = lim p(Ay).
n—oo n—oo

2. Suppose A, B € A; are disjoint sets and A,,, B,, € A such that A,, | A and
B, | B, then A, UB,, | AU B and therefore,

p(AUB) = lim p(A,UB,) = nll—)rr<>lo (1 (An) + 1 (Bn) — 1 (An N By)]

n—oo

— 11(A) + u(B)

wherein the last equality we have used Proposition |4.3]
3. By assumption, X = A°U C. So applying the strong additivity of u on A,
in Eq. (5.3) with A — A° € A, and B — C € A, shows

p(X)+p(C\A)=p(A°0C) +p(A°NC)
=p(A%) +p(C) =p(X) —p(A) +p(0).
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Definition 5.17 (Measurable Sets). Suppose i is a finite premeasure on an
algebra A C 2X. We say that B C X is measurable if for all ¢ > 0 there
exists A € As and C € A, such that A C B C C and u(C\ A) < e. We will
denote the collection of measurable subsets of X by B = B (u). We also define
fi: B — [0, (X)] by

g(B)=inf{u(C): BCCeA,}. (5.8)

Remark 5.18. 1t B € B, e >0, A € As and C € A, are such that A C B C C
and p (C'\ A) < e, then p(A) < i (B) < pu(C) and in particular,

0<p(B)—pu(A)<e, and0< pu(C)—p(B) <e. (5.9)
Indeed, if C’ € A, with B C C’, then A C C’ and so by Lemma [5.16]

1(A) < p(C'\ A) + i (A) = u(C)

from which it follows that u(A) < i (B). The fact that i (B) < p(C) follows
directly from Eq. (5.8)).

Theorem 5.19 (Finite Premeasure Extension Theorem). Suppose i is a
finite premeasure on an algebra A C 2X. Then B is a o — algebra on X which
contains A and i is a o — additive measure on B. Moreover, i is the unique
measure on B such that fi|4 = p.

Proof. It is clear that A C B and that B is closed under complementation.
Now suppose that B; € B for ¢ = 1,2 and € > 0 is given. We may then
choose 4; C B; C C; such that A; € As, C; € A,, and p(C;\ A;) < ¢ for
i = 1,2. Then with A = A1 U Ay, B = By UBy and C = C; U (s, we have
As > AC B cCCeA,. Since

C\A=(C1\A)U(C2\A) C (C1\ A1) U (C2\ A2),
it follows from the sub-additivity of u that with
p(C\A) < p(Cr\ A1)+ p(C2\ Az) < 2e.

Since € > 0 was arbitrary, we have shown that B € B. Hence we now know that
B is an algebra.

Because B is an algebra, to verify that B is a o — algebra it suffices to show
that B=)""", B, € Bwhenever {B,} —, is a disjoint sequence in B. To prove
B € B, let £ > 0 be given and choose A; C B; C C; such that A; € As, C; € A,
and p (C; \ A;) < 27" for all 4. Since the {A;};°, are pairwise disjoint we may
use Lemma [5.16] to show,
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40 5 Countably Additive Measures

Zu

n

(1 (Ai) + 1 (Ci \ A7)
1

i=

= p (U} +ZuC\A <p(X

=1

+Z<€2 i

Passing to the limit, n — oo, in this equation then shows

Z p(C

Let B =U2,B;, C:=U2,C; € Ay and for n € Nlet A" :=
ThenAgSA”CBCCGAmC\A”EA and

i \A") C Uiy (Ci \ AU [U2, 1G] € A,

Therefore, using the sub-additivity of u on A, and the estimate (5.10)),

Z 1 (Ci)

1=n—+1

X)+e < oo (5.10)

Z?:l A; € As.

C\ A" =

iz (C

\mlgﬁé (C;\ A;)

oo
<e+ Z w(C;) — € asn — oc.
i=n—+1

Since € > 0 is arbitrary, it follows that B € B. Moreover by repeated use of
Remark we find

i=n+1
n n n n
Sl ) =[S mB) — ()] < S I B) - p(A) <327
1=1 =1 =1 =1
Combining these estimates shows
A(B) =Y BB <2+ Y u(C)
i=1 i=n+1
which upon letting n — oo gives
A(B) - (B < 2.

Since € > 0 is arbitrary, we have shown f (B) = >_i, i (B;). This completes
the proof that B is a ¢ - algebra and that i is a measure on B. [ ]
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Theorem 5.20. Suppose that i is a o — finite premeasure on an algebra A.
Then
g(B)=inf{u(C):BCcCeA,} YVBeo(A

defines a measure on o (A) and this measure is the unique extension of u on A
to a measure on o (A).

(5.11)

Proof. Let {X,},~, C A be chosen so that p (X,,) < oo for all n and X,, 1
X asn — oo and let

tn (A) ==, (AN X,) for all A € A.

Each i, is a premeasure (as is easily verified) on .4 and hence by Theorem m
each u, has an extension, fi,, to a measure on o (A) . Since the measure [i,, are
increasing, fi := lim,,_ fi, is a measure which extends pu.

The proof will be completed by verifying that Eq. (5.11]) holds. Let B €
oc(A), B, = X, N B and € > 0 be given. By Theo there exists
Cm € A, such that By, C Cy,, C X, and i(Cyy, \ Bp)
Then C := U_,Cy, € A, and

u@\m<u<U C\B) > (Cm\B) < > [i(Cm \ By)

Thus

= fim(Cpm, \ Br) < €27

fi(B) <p(C)=p(B)+u(C\B)<pu(B)+e

which, since € > 0 is arbitrary, shows [ satisfies Eq. (5.11]). The uniqueness of
the extension fi is proved in Exercise [5.1} [

Ezample 5.21.If F (x) = =z for all x € R, we denote purp by m and call m
Lebesgue measure on (R, Bgr) .

Theorem 5.22. Lebesgue measure m is invariant under translations, i.e. for
B e Bg and z € R,
m(z + B) = m(B). (5.12)

Moreover, m is the unique measure on Bgr such that m((0,1]) = 1 and Eq.
holds for B € Br and x € R. Moreover, m has the scaling property

m(AB) = |A\|m(B)
where A € R, B € Bg and AB :={\z : z € B}.

(5.13)

Proof. Let m,(B) := m(xz+ B), then one easily shows that m,, is a measure
on Bg such that m;((a,b]) = b — a for all a < b. Therefore, m, = m by
the uniqueness assertion in Exercise For the converse, suppose that m is
translation invariant and m((0,1]) = 1. Given n € N, we have
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Therefore,

That is to say
1
0,—])=1/n.
m((0, ) = 1/n
l

Similarly, m((0, ~-]) = I/n for all I,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,,b, € Q such that b, | b and
an 1 a, then (an,by,] | (a,b] and thus
m((a,b]) = lim m((an,b,]) = lim (b, —a,) =b—aq,

n—oo

i.e. m is Lebesgue measure. To prove Eq. (5.13) we may assume that A # 0
since this case is trivial to prove. Now let my(B) := [A|”" m(AB). It is easily
checked that m is again a measure on Bg which satisfies

mx((a,b]) = A" m (Aa, \b)) = A1 (Ab— Xa) = b —a
if A >0 and
ma((a,0) = A" m (b, Aa)) = — AP (Ab—Xa) =b—a

if A < 0. Hence my = m. |

5.5 Completions of Measure Spaces

Definition 5.23. A set E C X is a null set if E € B and u(E) = 0. If P is
some “property” which is either true or false for each x € X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E:={x € X : P is false for z}
is a null set. For example if f and g are two measurable functions on (X, B, ),

f =g a.e. means that u(f # g) = 0.
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Definition 5.24. A measure space (X, B, 1) is complete if every subset of a
null set is in B, i.e. for all F C X such that F C E € B with u(E) = 0 implies
that F € B.

Proposition 5.25 (Completion of a Measure). Let (X, B, u) be a measure
space. Set

N =NF:={N C X :3F € Bsuch that N C F and u(F) =0},
B=B"={AUN:A€Band N € N} and
B(AUN) = u(A) for A€ B and N € N,
see Fig. . Then Biz's a o — algebra, [i is a well defined measure on B, [i is the
unique measure on B which extends p on B, and (X, B, i) is complete measure

space. The o-algebra, B, is called the completion of B relative to p and [i, is
called the completion of .

Proof. Clearly X,0) € B. Let A € B and N € N and choose F € B such

Fig. 5.1. Completing a o — algebra.

that N C F and u(F) = 0. Since N = (F\ N) U F°,

(AUN)® = AN N°® = A°n (F\ N UF°)
= [A°N (F\ N)]U[A° N F°]

where [A° N (F\ N)] € N and [A° N F¢] € B. Thus B is closed under
complements. If A; € B and N; C F; € B such that u(F;) = 0 then
U(4; UN;) = (UA;) U (UN;) € B since UA; € B and UN; C UF; and
w(UE;) <3 u(F;) = 0. Therefore, B is a o — algebra. Suppose AUN; = BU N,
with A, B € B and N;,Na,e N. Then A€ AUN, C AUN, UF, = BUFy
which shows that

u(A) < p(B) + u(Fz) = p(B).
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42 5 Countably Additive Measures

Similarly, we show that u(B) < p(A) so that u(A) = p(B) and hence fi(A U
N) := u(A) is well defined. It is left as an exercise to show fi is a measure, i.e.
that it is countable additive. ]

5.6 A Baby Version of Kolmogorov’s Extension Theorem

For this section, let A be a finite set, 2 := A® = AN, and let A denote the
collection of cylinder subsets of (2, where A C (2 is a cylinder set iff there
exists n € N and B C A™ such that

A=BxA* ={weR:(w,...,w,) € B}.

Observe that we may also write A as A = B’ x A® where B’ = B x AF C A"tk
for any k£ > 0.

Exercise 5.3. Show A is an algebra.

Lemma 5.26. Suppose {An}fle C A is a decreasing sequence of non-empty
cylinder sets, then N>, A, # (.

Proof. Since 4, € A, we may find N,, € N and B,, € A™» such that
A, = B,, x A%°. Using the observation just prior to this Lemma, we may assume
that {N,},—, is a strictly increasing sequence.

By assumption, there exists w(n) = (w1 (n),w2(n),...) € 2 such that
w(n) € A, for all n. Moreover, since w (n) € A,, C Ay, for all k¥ < n, it follows
that

(w1 (n), w2 (n),...,wn, (n)) € By for all k <n. (5.14)

Since A is a finite set, we may find a A\; € A and an infinite subset, I1 C N
such that wy (n) = Ay for all n € I, Similarly, there exists A2 € A and an
infinite set, Ix C I7, such that ws (n) = Ay for all n € Iy. Continuing this
procedure inductively, there exists (for all j € N) infinite subsets, I; C N and
points A\; € A such that 1 DI, D I3 D ... and w; (n) = A for all n € Ij.

We are now going to complete the proof by showing that A := (A1, Ag,...)
is in NS2; A,,. By the construction above, for all N € N we have

(wi(n),...,wn(n)) =(A1,...,An) foralln e I'y.
Taking N = Nj, and n € 'y, with n > k, we learn from Eq. (5.14]) that
()\17~-~>/\Nk) = (wl (n),...7ka (n)) € By,.

But this is equivalent to showing A\ € Aj. Since k € N was arbitrary it follows
that A € N22; A,,. ]
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Theorem 5.27 (Kolmogorov’s Extension Theorem 1.). Continuing the
notation above, every finitely additive probability measure, P : A — [0,1], has
a unique extension to a probability measure on o (A) .

Proof. From Theorem it suffices to show lim,, o P (A,) = 0 whenever
{4}, C A with A,, | . However, by Lemma if A, € Aand A, | 0,
we must have that A, = (} for a.a. n and in particular P (A,) = 0 for a.a. n.
This certainly implies lim,, o, P (A,) = 0. n

Given a probability measure, P : o(A) — [0,1] and n € N and
Moeeosdn) € A7, let

Pn (A, An) =PHweR:w =A,...,wn = A }) . (5.15)

Exercise 5.4 (Consistency Conditions). If p, is defined as above, show:

LY neaP1(A) =1 and
2. for all n € Nand (Aq,...,A,) € A™,

Po e An) = Past (Mo, An ).
AeA

Exercise 5.5 (Converse to . Suppose for each n € N we are given func-
tions, p, : A™ — [0, 1] such that the consistency conditions in Exercise hold.
Then there exists a unique probability measure, P on o (A) such that Eq.
holds for all n € N and (A1,...,A,) € A™.

Ezample 5.28 (Existence of iid simple R.V.s). Suppose now that ¢ : A — [0,1]
is a function such that )., ¢(A) = 1. Then there exists a unique probability
measure P on o (A) such that, for all n € N and (A\y,...,A,) € A", we have

PHweNR:wi=X,...c;wun=2})=q¢A1)...q¢(\n).

This is a special case of Exercise with pr, (A1, .., An) == q¢ (A1) ...q (M) .
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6

Random Variables

6.1 Measurable Functions

Definition 6.1. A measurable space is a pair (X, M), where X is a set and
M is a 0 — algebra on X.

To motivate the notion of a measurable function, suppose (X, M, ) is a
measure space and f: X — R, is a function. Roughly speaking, we are going
to define [ fdu as a certain limit of sums of the form,

X

oo

> aip(f~H(ai, aip])-

0<ai<az<asz<...

For this to make sense we will need to require f~*((a,b]) € M for all a < b.
Because of Corollary [6.7] below, this last condition is equivalent to the condition

fﬁl(BR) C M.

Definition 6.2. Let (X, M) and (Y,F) be measurable spaces. A function f :
X — Y is measurable of more precisely, M/F — measurable or (M,F) —
measurable, if f~H(F) C M, i.e. if f71(A) € M forall A€ F.

Remark 6.3. Let f: X — Y be a function. Given a o — algebra F C 2Y, the o
— algebra M := f~1(F) is the smallest o — algebra on X such that f is (M, F)
- measurable . Similarly, if M is a ¢ - algebra on X then

F=fM={Ac2V|f1(A) e M}
is the largest o — algebra on Y such that f is (M, F) - measurable.

Ezample 6.4 (Characteristic Functions). Let (X, M) be a measurable space and
A C X. Then 14 is (M, Bg) — measurable iff A € M. Indeed, 1;,*(W) is either
0, X, A or A¢ for any W C R with 1;1 ({1} =

Ezample 6.5. Suppose f : X — Y with Y being a finite set and F = 2. Then
f is measurable iff f~1 ({y}) € M forally € Y.

Proposition 6.6. Suppose that (X, M) and (Y, F) are measurable spaces and
further assume € C F generates F, i.e. F =0 (E). Then a map, f: X — Y is
measurable iff f~1 () C M.

Proof. If f is M/F measurable, then f~1(£) C f~! (F) C M. Conversely
if f=1(€) C M, then, using Lemma

FUR) =0 @E)=c(f71(6) cM.
]

Corollary 6.7. Suppose that (X, M) is a measurable space. Then the following
conditions on a function f: X — R are equivalent:

(M, Br) — measurable,
((a,00)) € M for all a € R,
((a,0)) € M for all a € Q,
((—o0,a]) € M for all a € R.

Exercise 6.1. Prove Corollary [6.7] Hint: See Exercise [3.9]

!

1.f
2. f~
3f

S
1
1
-1

Exercise 6.2. If M is the ¢ — algebra generated by £ C 2%, then M is the
union of the o — algebras generated by countable subsets F C &.

Exercise 6.3. Let (X, M) be a measure space and f, : X — R be a sequence
of measurable functions on X. Show that {z : lim, o fn(z) exists in R} € M.

Exercise 6.4. Show that every monotone function f : R — R is (Bg,Bgr) —
measurable.

Definition 6.8. Given measurable spaces (X, M) and (Y,F) and a subset A C
X. We say a function f: A —Y is measurable iff f is Ms/F — measurable.

Proposition 6.9 (Localizing Measurability). Let (X, M) and (Y,F) be
measurable spaces and f : X —'Y be a function.

1. If f is measurable and A C X then f|a: A — Y is measurable.
2. Suppose there exist A, € M such that X = U2, A, and f|A, is Ma,
measurable for all n, then f is M — measurable.

Proof. 1. If f : X —-Y is measurab]e, f*l(B) c M for all B e F and
therefore
fI2at(B)=Anf~1(B) € My for all B € F.
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2. If B € F, then

FHB) =02, (FH(B)NAy) = U, fI41(B).

Since each A, € M, M4, C M and so the previous displayed equation shows
f~YB) e M. n

The proof of the following exercise is routine and will be left to the reader.

Proposition 6.10. Let (X, M, u) be a measure space, (Y, F) be a measurable
space and f : X — Y be a measurable map. Define a function v : F — [0, 0]
by v(A) := pu(f~1(A)) for all A € F. Then v is a measure on (Y,F). (In the
future we will denote v by fopu or o f~1 and call f.p the push-forward of
by f or the law of f under p.

Theorem 6.11. Given a distribution function, F: R —[0,1] let G : (0,1) = R
be defined (see Figure [6.1]) by,

G(y):=inf{z: F(x) >y}.

Then G : (0,1) — R is Borel measurable and G.m = pp where jip is the unique
measure on (R, Br) such that pr ((a,b]) = F (b) — F (a) for all —co < a <b<
00.

&, G-ia;) >x

Fig. 6.1. A pictorial definition of G.

Proof. Since G : (0,1) — R is a non-decreasing function, G is measurable.
We also claim that, for all g € R, that

GTH((0,20]) = {y : G (y) < w0} = (0, F (o) NR, (6.1)

see Figure [6.2]
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Fig. 6.2. As can be seen from this picture, G (y) < xo iff y < F (20) and similalry,
G(y) <a iff y <.

To give a formal proof of Eq. (6.1)), G (y) = inf {z : F () > y} < xg, there
exists x,, > xo with x,, | z¢ such that F (x,) > y. By the right continuity of F,
it follows that F' (zp) > y. Thus we have shown

{G < 20} € (0, F (20)] N (0,1).

For the converse, if y < F (xg) then G (y) = inf{x: F(z) >y} < zo, ie.
y € {G <z} Indeed, y € G~ ((—00, z0]) iff G (y) < xo. Observe that

G (F (z9)) =inf{z: F(z) > F(x0)} < o
and hence G (y) < zp whenever y < F (zp) . This shows that
(0, F (x0)] N (0,1) € G~ ((0, 0]) .
As a consequence we have G,m = pup. Indeed,

(Gem) (=00, z]) = m (G~ ((—o0,2])) =m ({y € (0,1) : G (y) < x})
=m((0,F (2)] N (0,1)) = F (x).

See section 2.5.2 on p. 61 of Resnick for more details. [

Theorem 6.12 (Durret’s Version). Given a distribution function, F
R —1[0,1] let Y : (0,1) — R be defined (see Figure[6.3) by,

Y (z) :=sup{y: F(y) < z}.

ThenY : (0,1) — R is Borel measurable and Yom = up where up is the unique
measure on (R, Br) such that pr ((a,b]) = F (b) — F (a) for all —co < a <b <
00.
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Fig. 6.3. A pictorial definition of Y (z).
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Proof. Since Y : (0,1) — R is a non-decreasing function, Y is measurable.
Also observe, if y <Y (x), then F (y) < z and hence,

F(Y (2)-) = y%%c)F(y) <@

For y > Y (x), we have F' (y) > = and therefore,

FY @)= F(Y @+) = lm F()>a

and so we have shown
F(Y(@)-) <z < F(Y ().
We will now show
{z€(0,1):Y (z) <yo} = (0,F (y0)] N (0,1). (6.2)

For the inclusion “C,” if z € (0,1) and Y (z) < yo, then z < F (Y () < F (o),
ie. x € (0,F (yo)] N (0,1). Conversely if € (0,1) and = < F (yo) then (by
definition of Y (2)) yo > Y (x).

From the identity in Eq. , it follows that Y is measurable and

(Yam) (=00, y0)) = m (Y~ (—00,40)) = m ((0, F (y0)] N (0, 1)) = F (yo) -
Therefore, Law (Y) = pp as desired. ]

Lemma 6.13 (Composing Measurable Functions). Suppose that
(X, M), (Y,F) and (Z,G) are measurable spaces. If f : (X, M) — (Y, F) and
g: (Y, F) — (Z,G) are measurable functions then go f : (X,M) — (Z,G) is
measurable as well.
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Proof. By assumption ¢=1(G) C F and f~! (F) C M so that

(go /) (G) =F1(g7(G) C fTH(F) c M.
| |

Definition 6.14 (¢ — Algebras Generated by Functions). Let X be a set
and suppose there is a collection of measurable spaces {(Yo, Fo) : € A} and
functions fo : X — Y, for alla € A. Let o(f, : « € A) denote the smallest o
— algebra on X such that each f. is measurable, i.e.

o(fa:a€A)= U(Uafa_l(]:a))'

Example 6.15. Suppose that Y is a finite set, F = 2, and X = YV for some
N € N. Let m; : YN — Y be the projection maps, ; (y1,--.,yn) = y;. Then,
as the reader should check,

o(m,...,mp) ={Ax AN AC A}

Proposition 6.16. Assuming the notation in Definition |6.14] and additionally
let (Z, M) be a measurable space and g : Z — X be a function. Then g is
M,0(fa : a € A)) — measurable iff fo 0 g is (M,Fy)-measurable for all
a € A

Proof. (=) If g is (M, 0(fs : @ € A)) — measurable, then the composition
fa0gis (M, F,) — measurable by Lemma (<) Let

G=0(fa:a€A)=0(Useafs (Fa)).
If fo 0gis (M, F,) — measurable for all «, then
g VTN F) Cc MYac A
and therefore
9" (Uaeafy (Fa)) = Uacag ' 31 (Fa) C M.
Hence
971(G) =97 (0 (Vaeafa ' (Fa))) = 097" (Vaeafa ' (Fa)) M
which shows that ¢ is (M, G) — measurable. |

Definition 6.17. A function f : X — Y between two topological spaces is
Borel measurable if f~1(By) C Bx.

Proposition 6.18. Let X and Y be two topological spaces and f: X — Y be
a continuous function. Then f is Borel measurable.
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Proof. Using Lemma and By = o(1y),
F7'By) = fHo(ry)) =a(f ' (1v)) Co(rx) = Bx.
n

Ezample 6.19. For i = 1,2,...,n, let m; : R™ — R be defined by m; () = a;.
Then each ; is continuous and therefore Bg» /Bg — measurable.

Lemma 6.20. Let £ denote the collection of open rectangle in R™, then Bgrn =
o (€). We also have that Bgn = o (1, ...,7,) and in particular, Ay x---x A, €
Brn whenever A; € Br fori = 1,2,...,n. Therefore Brn may be described as
the o algebra generated by {A; X --- x A, : A; € Br}.

Proof. Assertion 1. Since £ C Bgn, it follows that o (£) C Brn. Let
& :={(a,b):a,b € Q" 3 a < b},
where, for a,b € R", we write a < b iff a; < b; for i =1,2,...,n and let
(a,b) = (a1,b1) X -+ X (an,by) . (6.3)

Since every open set, V' C R"™, may be written as a (necessarily) countable
union of elements from &y, we have

Vea(&)call),

ie. 0(&) and hence o (€) contains all open subsets of R™. Hence we may
conclude that

Brn = o (open sets) C o (&) C o (£) C Bgrn.

Assertion 2. Since each m; is Brn/Bgr — measurable, it follows that
o (m1,...,7n) C Brn. Moreover, if (a,b) is as in Eq. (6.3)), then

(a,b) = ﬁ’;:lwfl ((as, b;)) € o (M1, .. mh) .

Therefore, £ C o (71,...,m,) and Brr =0 () C o (M1,...,7n) .
Assertion 3. If A; € Bg for i =1,2,...,n, then

Ay x - XAn:ﬂ?:ﬂTi_l (Al) EO’(7T1,...,7T7L):B]R1L.

Corollary 6.21. If (X, M) is a measurable space, then

f=0U1f o, fn) : X >R

is (M, Bgn) — measurable iff f; : X — R is (M, Bgr) — measurable for each i.
In particular, a function f: X — C is (M, Bc) — measurable iff Re f and Im f
are (M, Br) — measurable.
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Proof. This is an application of Lemma and Proposition [6.16) [

Corollary 6.22. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f + g and f - g are also (M,Bg) -
measurable.

Proof. Define F: X - CxC, AL :CxC—-Cand M :CxC — C
by F(z) = (f(x),9(z)), A+(w,2) = w+ z and M(w,2) = wz. Then AL and
M are continuous and hence (Bgz,Bc) — measurable. Also F' is (M, Be2) —
measurable since m o F' = f and mooF = g are (M, B¢ ) — measurable. Therefore
AyoF = fd+gand MoF = f-g, being the composition of measurable functions,
are also measurable. ]

As an example of this material, let us give another proof of the existence of
i.i.d. simple random variables — see Example [5.28 above.

Theorem 6.23 (Existence of i.i.d simple R.V.’s). This Theorem has been
moved to Theorem[7.29 below.

Corollary 6.24 (Independent variables on product spaces). This Corol-
lary has been moved to Corollary[7.23 below.

Lemma 6.25. Let a € C, (X, M) be a measurable space and f : X — C be a
(M, Bc) — measurable function. Then

i @) #£0
=0

Fl) ::{ o if f(x)

is measurable.

Proof. Define i : C — C by

, Lif 240
’(Z)_{Oif z=0.

For any open set V' C C we have
THV) = (VA {0 v (V n{0})

Because i is continuous except at z = 0, i~ 1(V \ {0}) is an open set and hence
in Be. Moreover, i1 (V N {0}) € Bc since i~ 1(V N {0}) is either the empty
set or the one point set {0}. Therefore i~!(7c) C Bc and hence i~(Bc) =
i~t(o(rc)) = o(i~Y(rc)) C Bc which shows that i is Borel measurable. Since
F =io f is the composition of measurable functions, F' is also measurable. m

Remark 6.26. For the real case of Lemma define 7 as above but now take
z to real. From the plot of i, Figure [6.26] the reader may easily verify that
i~ ((—00, a]) is an infinite half interval for all a and therefore i is measurable. 2
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We will often deal with functions f : X — R =RU{+oco}. When talking
about measurability in this context we will refer to the ¢ — algebra on R defined
by

Bg := o0 ({[a,0] : a € R}). (6.4)

Proposition 6.27 (The Structure of Bg). Let Br and Bg be as above, then
Bg={ACR:ANR EBg}. (6.5)
In particular {oo} , {—o0} € Bg and Br C Bg.
Proof. Let us first observe that
{—oo} = MyZi[—o0, —n) = ML [—n, o0 € By,
{00} =N, [n, <] € Bg and R = R\ {+o0} € Bg.
Letting i : R — R be the inclusion map,

i (Bg) =0 (i7" ({{a,00] :a €R})) =0 ({i7" ([a,00]) : @ € R})
=0 ({la,0]NR:a €R}) =0 ({[a,) : a € R}) = Br.

Thus we have shown
Br =it (Bg)={ANR:Ac Bg}.
This implies:

1. Ae Bg = ANR B and

2. if A C Ris such that ANR €Bg there exists B € Bp such that ANR = BNR.
Because AAB C {*+oo} and {oo},{—o0} € Bz we may conclude that
A € Bg as well.

This proves Eq. (6.5). ]
The proofs of the next two corollaries are left to the reader, see Exercises

6.5 and [6.6]
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Corollary 6.28. Let (X, M) be a measurable space and f : X — R be a func-
tion. Then the following are equivalent

is (M, Bg) - measurable,

“1((a,0]) € M for all a € R,

“1((—o00,a]) € M for all a € R,

“1({—c}) e M, f71({oo}) € M and fO: X — R defined by

(@)= 1e (f (@) = {f g@ iﬁff(i)(? {eiﬂio}
is measurable.

Corollary 6.29. Let (X, M) be a measurable space, f,g: X — R be functions
and define f-g: X — R and (f + g) : X — R using the conventions, 0 - oo = 0
and (f +g) () =0 if f(x) =00 and g(x) = —oc0 or f(z) = —o0 and g (z) =
oo. Then f -g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 6.5. Prove Corollary [6.28 noting that the equivalence of items 1. —
3. is a direct analogue of Corollary Use Proposition to handle item 4.

Exercise 6.6. Prove Corollary [6.29]

Proposition 6.30 (Closure under sups, infs ‘and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R for j € N is a sequence of
M /By — measurable functions. Then

sup; f;, inf;fj, liﬁsip f;j and lijﬂiorolf fi

are all M /By — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g (z) := sup, f;(x), then
{z:g4(x) <a}={z: fi(z) <aVj}
— o f() <a} e M
so that g1 is measurable. Similarly if g_(z) = inf; f;(z) then
{z:g9-(x) 2 a} =ny{z: fj(x) > a} e M.

Since
limsup f; =infsup{f; :j > n} and
j—o0 n
liminf f; =supinf{f;:j > n}
J—0 n
we are done by what we have already proved. ]
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48 6 Random Variables
Definition 6.31. Given a function f : X — R let fi(z) := max {f(x),0} and
f- (x) := max (—f(x),0) = —min (f(z),0). Notice that f = f+ — f_.

Corollary 6.32. Suppose (X, M) is a measurable space and f : X — R is a
function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition implies f1 are measurable.
Conversely if fi are measurable then sois f = f. — f_. ]

Definition 6.33. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — By
measurable and p(X) contains only finitely many elements.

Any such simple functions can be written as

= Aila, with A; € M and ); € F. (6.6)
i=1
Indeed, take A1, Aa,..., A, to be an enumeration of the range of ¢ and A; =
@ 1({\i}). Note that this argument shows that any simple function may be
written intrinsically as
o= Yot (6.7)
yeF

The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 6.34 (Approximation Theorem). Let f : X — [0, 00] be measur-
able and define, see Figure[6.4}

n2™—1

on(x) = Z ﬁlf,l((%’k;zl )(x) +n1f71((n2n700])(l‘)

n2n
k:
Z ? 2% %} (.’L‘) + nl{f>n2n}(x)
k=0

then p, < f for all n, p,(z) T f(x) for allx € X and v, 1 f uniformly on the
sets Xpr :={x € X : f(x) < M} with M < cc.

Moreover, if f: X — C is a measurable function, then there exists simple
functions @, such that lim, . on(z) = f(x) for allz and |on| T |f] as n — oc.

Proof. Since

(Foktl 2% 2K+l 2k+1 2k+2

27’ on ]_ (2n+1’ on+1 ] ( on+l 7 9n+l ]’
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Fig. 6.4. Constructing simple functions approximating a function, f : X — [0, co].

if ¢ € (( 2he, Z541])  then @n() = ¢nt1(z) = b and if ¢ €
F((2 1 2h421) then ¢, (z) = 525 < 22 = ¢4 (2). Similarly

(2", 00] = (2", 2" U (2", o0,

and so for z € f71((2""! oq]), pn(z) = 2" < 2" = @, 1(z) and for z €
2™, 27, opaa(x) > 2™ = ¢, (x). Therefore ¢, < p,11 for all n. It is
clear by construction that ¢, (x) < f(x) for all x and that 0 < f(z) — ¢n(z) <
27" if x € Xon. Hence we have shown that o, (z) T f(z) for all x € X and
@n T f uniformly on bounded sets. For the second assertion, first assume that
f: X — R is a measurable function and choose ;" to be simple functions such
that @ 1 f+ as n — oo and define ¢,, = ¢} — ¢~. Then

lonl = o8 + 00 < @i+ g1 = ol
and clearly [on| = @i} +o5 T fr+f-=|fland oo = o =5 = fr—f-=f
as n — co. Now suppose that f : X — C is measurable. We may now choose

simple function u,, and v, such that |u,| T |Re f|, |vn| T |Im f|, u, — Re f and
v, — Im f as n — oo. Let ¢,, = u,, + iv,, then

lonl® = u2 + 02 1 |Re fI° + [Im > = | f?

and ¢, = u, +iv, — Ref+iIm f = f as n — oo. |
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6.2 Factoring Random Variables

Lemma 6.35. Suppose that (Y,F) is a measurable space and Y 2 —>Yisa
map. Then to every (o(Y),Bg) — measurable function, H : {2 — R, there is a
(F,Bg) — measurable function h:Y — R such that H =hoY.

Proof. First suppose that H = 14 where A € o(Y) =Y }(F). Let B € F
such that A = Y~!(B) then 14 = ly-1(p) = 1 oY and hence the lemma
is valid in this case with h = 1. More generally if H = 5 a;14, is a simple
function, then there exists B; € F such that 14, = 15,0Y and hence H = hoY
with h := 3" a;1p, — a simple function on R.

For a general (F,Bg) — measurable function, H, from 2 — R, choose simple
functions H,, converging to H. Let h, : Y — R be simple functions such that
H, = h, oY. Then it follows that

H = lim H, =limsup H,, =limsuph, oY =hoY

n—oo n— o0 n—oo

where h := limsup h,, — a measurable function from Y to R. [ ]

n—o0
The following is an immediate corollary of Proposition and Lemma
0.0l

Corollary 6.36. Let X and A be sets, and suppose for a € A we are give a
measurable space (Yo, Fo) and a function fo : X — Yo. Let Y := [[ e Yas
F := QacaFa be the product o — algebra on'Y and M := o(f, : a € A) be the
smallest o — algebra on X such that each f, is measurable. Then the function
F: X =Y defined by [F(z)], = fa(x) for each a € A is (M, F) — measurable
and a function H : X — R is (M, Bg) — measurable iff there exists a (F,Bg) —
measurable function h from'Y to R such that H = ho F.






7

Independence

7.1 7 — XA and Monotone Class Theorems

Definition 7.1. Let C C 2% be a collection of sets.

1. C is a monotone class if it is closed under countable increasing unions
and countable decreasing intersections,

2.C is a ™ — class if it is closed under finite intersections and

3. C is a A—class if C satisfies the following properties:

a) X eC

b)If A,B € C and A C B, then B\ A € C. (Closed under proper differ-
ences.)

c)If A, € C and A, 1 A, then A € C. (Closed under countable increasing
unions.)

Remark 7.2. If C is a collection of subsets of {2 which is both a A — class and a
m — system then C is a o — algebra. Indeed, since A° = X \ A, we see that any A
- system is closed under complementation. If C is also a m — system, it is closed
under intersections and therefore C is an algebra. Since C is also closed under
increasing unions, C is a o — algebra.

Lemma 7.3 (Alternate Axioms for a A\ — System*). Suppose that L C 2%
is a collection of subsets £2. Then L is a A — class iff \ satisfies the following
postulates:

1.Xel

2. A € L implies A° € L. (Closed under complementation.)

3 If {An}oo, C L are disjoint, the Y - A, € L. (Closed under disjoint
unions.)

Proof. Suppose that L satisfies a. — c. above. Clearly then postulates 1. and
2. hold. Suppose that A, B € £ such that AN B = {, then A C B¢ and

A°NB°=B°\Ae L.

Taking compliments of this result shows A U B € L as well. So by induction,
B, ==Y A, € L. Since B, T Yo", A, it follows from postulate c. that
Yoo A, €L

Now suppose that £ satisfies postulates 1. — 3. above. Notice that § € £
and by postulate 3., £ is closed under finite disjoint unions. Therefore if A, B €
L with A C B, then B¢ € £ and AN B° = () allows us to conclude that
AU B¢ € L. Taking complements of this result shows B\ A = A°NB € L as
well, i.e. postulate b. holds. If A,, € £ with A,, T A, then B,, := A, \ A,,-1 € L
for all n, where by convention Ag = ). Hence it follows by postulate 3 that
U A, =37 B, eL. ]

Theorem 7.4 (Dynkin’s 7 — A Theorem). If £ is a A class which contains
a contains a w — class, P, then o(P) C L.

Proof. We start by proving the following assertion; for any element C' € L,
the collection of sets,

LC:={DeL:CNnDeCL},

is a A — system. To prove this claim, observe that: a. X € £%, b. if A C B with
A, Be LY then ANC, BNC € L with ANC c B\ C and

(B\A)NC =[BNC]\A=[BNC]\[ANC] € L.

Therefore £ is closed under proper differences. Finally, c. if A, € £¢ with
A, 1A, then A,NC € Land A,NC 1 ANC € L,ie. Ac L. Hence we have
verified £ is still a A — system.

For the rest of the proof, we may assume with out loss of generality that £
is the smallest A — class containing P — if not just replace £ by the intersection
of all A — classes containing P. Then for C € P we know that L& C L is a A
- class containing P and hence £ = L. Since C' € P was arbitrary, we have
shown, CND € L for all C € P and D € L. We may now conclude that if
C € L, then P C LY C £ and hence again LY = L. Since C' € L is arbitrary,
we have shown CND € Lforall C,D € L, i.e. Lisanm—system. So by Remark
L is a o algebra. Since o (P) is the smallest o — algebra containing P it
follows that o (P) C L. [

As an immediate corollary, we have the following uniqueness result.

Proposition 7.5. Suppose that P C 2 is a m — system. If P and Q are two
probabilityfl] measures on o (P) such that P = Q on P, then P = Q on o (P).

! More generally, P and Q could be two measures such that P (£2) = Q (£2) < oo.
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Proof. Let L:={A€c(P): P(A) =Q(A)}. One easily shows L is a A —
class which contains P by assumption. Indeed, 2 € P C L, if A,B € L with
A C B, then

P(B\A)=P(B)-P(4)=Q(B)-Q(4) =Q(B\4)

so that B\ A € £, and if 4,, € £ with A,, T A, then P (A) = lim, . P (4,) =
lim,, 00 Q (4) = Q (A) which shows A € L. Therefore o (P) C £ = o (P) and
the proof is complete. [

Ezample 7.6. Let 2 := {a,b,c,d} and let u and v be the probability measure
on 2 determined by, pu ({z}) = 1 for all # € 2 and v ({a}) = v ({d}) = § and
v ({b}) = v ({c}) = 3/8. In this example,

L= {AGQQ:P(A):Q(A)}

is A — system which is not an algebra. Indeed, A = {a, b} and B = {a,c} are in
Lbut ANB ¢ L.

Exercise 7.1. Suppose that p and v are two measure on a measure space,
(2,B) such that 4 = v on a m — system, P. Further assume B = o (P) and
there exists {2, € P such that; i) u (£2,) = v (£2,) < oo for all n and ii) §2,, 7 2
asn T co. Show p = v on B.

Hint: Consider the measures, u,(4) = wp(AN2,) and v, (A) =
v(AN2,).
Solution to Exercise (7.1). Let u,(A) = pu(AN{§2,) and v, (A) =

v(AN{2,) for all A € B. Then p,, and v, are finite measure such pu, (2) =
vn (£2) and p,, = v, on P. Therefore by Proposition [7.5] u,, = v, on B. So by
the continuity properties of p and v, it follows that

w(A)= lim p(ANN,) = lim p, (4) = lim v, (4) = lim v(ANN,) =v(A4)

for all A € B.

Corollary 7.7. A probability measure, P, on (R, Bgr) is uniquely determined by
its distribution function,

F (z):= P ((—o0,x]).

Definition 7.8. Suppose that {Xi}?zl is a sequence of random variables on a

probability space, (2,8, P). The measure, u = P o (Xy,... ,Xn)_1 on Bgn is

called the joint distribution of (X1,...,X,). To be more explicit,
w(B):=P((X1,....,Xp,)€B)=P({we N: (X1 (w),...,X,(w) € B})

for all B € Bgn.
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Corollary 7.9. The joint distribution, u is uniquely determined from the
knowledge of

P((X1,...,Xn) € Ay x -+ x A,) for all A; € Bg
or from the knowledge of
P(Xy; <xz1,...,X, <xy,) forall A; € Br
for all x = (xq,...,z,) € R™
Proof. Apply Proposition [7.5 with P being the 7 — systems defined by
P:={A; x -+ x A, € Bgn: A; € B}
for the first case and
P :={(—00,x1] X -+ X (—00, 2] € Bgn : z; € R}
for the second case. ]

Definition 7.10. Suppose that {X;};_, and {Y;};_, are two finite sequences of
random variables on two probability spaces, (12,8, P) and (X, F, Q) respectively.
We write (X1,...,Xp) £ Y1,...,Y,) if (X4,...,X,) and (Y1, ...,Y,,) have the
same distribution, i.e. if

P((Xy1,....,Xn) € B)=Q((Y,...,Y,) € B) for all B € Bgn.

More generally, if {X;},o, and {Y;};2, are two sequences of random variables
on two probability spaces, (2,8, P) and (X,F,Q) we write {X;};, 4 {2,
i (X1, Xn) 2 (W1,...,Y,) for alln € N.

Exercise 7.2. Let {X;}.2, and {Y;};2; be two sequences of random variables
such that {X;}>, 4 {Y;}:2, . Let {S,},—, and {T,},>, be defined by, S, :=

n=1

Xi+---+X,and T, :=Y; 4+ --- 4+ Y,. Prove the following assertions.

1. Suppose that f : R® — R* is a Brn/Bgr — measurable function, then
d
(X, ., Xn)=f(M,..., V).
2. Use your result in item 1. to show {S,} 4 {T.} .
Hint: apply item 1. with £ = n and a judiciously chosen function, f : R® —
R™.
3. Show limsup X, < fim supY,, and similarly that liminf, .., X, =

n—oo n—oo
liminf,, . Y.

Hint: with the aid of the set identity,

Q.
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{limsuan > x} ={X, >z io.},
show
P (lim sup X, > 33) = lim lim P (UL, {Xk >2}).

n—oo n—oo Mm—00

To use this identity you will also need to find B € Bgm= such that

Urtn { Xk =2 2} ={(X1,..., Xin) € B}.

7.1.1 The Monotone Class Theorem
This subsection may be safely skipped!

Lemma 7.11 (Monotone Class Theorem*). Suppose A C 2% is an algebra
and C is the smallest monotone class containing A. Then C = o(A).

Proof. For C € C let
C(CY={BeC:CNnB,CNB*,BNC* e},

then C(C) is a monotone class. Indeed, if B,, € C(C) and B,, 1 B, then BS | B°
and so

C>5CNB,1CNB
C>CNB¢ | CNB° and
C>B,NnC¢1BNC"

Since C is a monotone class, it follows that C' N B,C N B¢, BN C°¢ € C, i.e.
B € C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C) is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C € C. If A € A C C, then
ANB,ANB,BNA° € A C C for all B € A and hence it follows that
A C C(A) C C. Since C is the smallest monotone class containing A and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A € A. Let
B € C and notice that A € C(B) happens iff B € C(A). This observation and
the fact that C(A) = C for all A € A implies A C C(B) C C for all B € C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B € C. That is to say, if A, B € C then
A € C=C(B) and hence ANB, AN B¢, A°N B € C. So C is closed under
complements (since X € A C C) and finite intersections and increasing unions
from which it easily follows that C is a o — algebra. ]

Page: 53 job: prob

7.1 m— X and Monotone Class Theorems 53

Exercise 7.3. Suppose that A C 2% is an algebra, B := o (A), and P is a
probability measure on . Show, using the m — A theorem, that for every B € B
there exists A € A such that that P (A A B) < e. Here

AAB:=(A\B)U(B\ A)

is the symmetric difference of A and B.
Hints:

1. It may be useful to observe that
laap = |14 — 15

so that P(AAB)=E|1l4— 15].
2. Also observe that if B = UB; and A = U; A;, then

B\ACUz(Bz\Az)CUZAzﬁBZ and
A\BCUi(Ai\Bi)CUiAiABi

so that
3. We also have
(B2\ B1) \ (A2\ A1) = Bo N B N (A2 \ Ay)°
= By N B{ N (A3 N Af)¢
=By NB{N(A5U A;)
= [Ba N BN A5 U [Bs N B N A4]
C (B \ A2) U (A1 \ By)

and similarly,
(A2 \ A1)\ (B2 \ B1) C (A2\ B2) U (B1\ A1)
so that

(A2 \ A1) A (B2 \ B1) C (B2 \ A2) U (A1 \ B1) U (A2\ B2) U (B1\ Ay)
= (A1 A Bl) U (AQ ABQ) .

4. Observe that A, € B and A, T A, then

P(BAA) =P (B\ A)+P (A, \B) — P(B\ A)+P(A\B)=P(AAB).

5. Let £ be the collection of sets B for which the assertion of the theorem
holds. Show £ is a A — system which contains A.
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Solution to Exercise ([7.3)). Since £ contains the 7 — system, .4 it suffices by
the m — A theorem to show L is a A — system. Clearly, 2 € £ since 2 € A C L.
If By C By with B; € £ and € > 0, there exists A; € A such that P (B; A A;) =
E |14, — 1p,| < &/2 and therefore,

P((B2\ B1) A (A2 \ A1) < P((A1 A B1) U (A2 A By))
P((ALABy)+P((A2 A By))<e

Alsoif B,, 1 B with B,, € L, there exists A,, € A such that P (B,, A A,) <e2™"
and therefore,

NE

P ([UnBn] A [URA,]) < P(B,AA,) <e

3
Il
_

Moreover, if we let B := U, B,, and AN := UﬁleAn, then
P(BAAN) =P (B\AY)+P (AN\ B) — P(B\ A)+P(A\ B) =P (B A A)

where A := U, A,,. Hence it follows for N large enough that P (B A AN) <e

7.2 Basic Properties of Independence

For this section we will suppose that (§2, B, P) is a probability space.

Definition 7.12. We say that A is independent of B is P(A|B) = P(A) or
equivalently that
P(AnB)=P(A)P(B).

We further say a finite sequence of collection of sets, {Ci}?zl , are independent

if
(Njes4;) =[] P4,

JjeJ
forall A; € C; and J C {1,2,...,n}.

Observe that if {C;};-, , are independent classes then so are {C; U {X}}!_;
Moreover, if we assume that X € C; for each i, then {C;}!_, , are independent
iff

H ) for all (A;,...,4,)€C x - xCp.

Theorem 7.13. Suppose that {C;}.—, is a finite sequence of independent m —
classes. Then {o (C;)};_, are also independent.
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Proof. As mentioned above, we may always assume with out loss of gener-
ality that X € C;. Fix, A; € C; for j = 2,3,...,n. We will begin by showing
that

P(ANAsN---NA,) =P(A)P(Ay)...P(A,) forall Ac o (C1). (7.1)

Since it is clear that this identity holds if P (A;) = 0 for some j =2,...,n, we
may assume that P (A;) > 0 for j > 2. In this case we may define,

Q(A)_P(AmAgm---mAn)_P(AmA2m---mAn)
 P(Ay)...P(A,)  P(Ayn---NA,)
=P(AlAsN---NA,) forall Aeo(Ch).

Then equation Eq. is equivalent to P (A) = Q (A) on ¢ (Cy). But this is
true by Proposition using the fact that @Q = P on the m — system, Cj.

Since (Asg, ..., A,) € Co X -+ X C,, were arbitrary we may now conclude that
o(Cy),Ca,...,C, are independent.

By applying the result we have just proved to the sequence, Ca, . .., Cp, 0 (C1)
shows that o (C2),Cs,...,Cp, 0 (C1) are independent. Similarly we show induc-
tively that

g (Cj) ,Cj+1, ce ,Cn,O'(Cl) g ,O'(Cj_l)

are independent for each j = 1,2,...,n. The desired result occurs at j =n. =

Definition 7.14. A collection of subsets of B, {Ct},c is said to be independent
iff {Ci},e 4 are independent for all finite subsets, A C T. More explicitly, we are
requiTIng
P (Nieads) = H P (Ay)
teA

whenever A is a finite subset of T and Ay € Cy for allt € A.

Corollary 7.15. If {Ct},p is a collection of independent classes such that each
Ci is am — system, then {0 (Ct)},cr are independent as well.

Ezample 7.16. Suppose that 2 = A™ where A is a finite set, B = 2, P ({w}) =
[1j=1 9 (wj) where g; : A — [0,1] are functions such that -, 4 ¢; (\) = 1.
Let C; := {A"" x Ax A"™": AC A} . Then {C;};_, are independent. Indeed,
if B; := A1 x A; % Anii, then

ﬂBi:Ale2x~-~><An

and we have

prB)= > e =I1> «®™

wWEA] X AaX XAy i=1 i=1 €A,
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while

P(B;) = Z HQi (wi) = Z ai (A).

weEATTIXA; x An—ti=1 AEA;

Definition 7.17. A collections of random variables, {X; : t € T} are indepen-
dent iff {o (X;) : t € T} are independent.

Theorem 7.18. Let X := {X;:t €T} be a collection of random variables.
Then the following are equivalent:

1. The collection X,

2.
P(Niea{Xi € Ay}) = H P(X, € A)
teA
for all finite subsets, A C T, and all Ay € Bg fort € A.
3.

P(Niea{X: < a¢}) = H P(X; <uxy)
teA

for all finite subsets, A C T, and all x; € R fort € A.

Proof. The equivalence of 1. and 2. follows almost immediately form the
definition of independence and the fact that o (X;) = {{X; € A} : A € Br}.
Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary
with C; := {{X¢ < a} : a € R} and making use the observations that C; is
a m — system for all ¢ and that o (C;) = o (X). |

Example 7.19. Continue the notation of Example and further assume that

A C R and let X; : 2 — A be defined by, X; (w) = w;. Then {X;};_, are

independent random variables. Indeed o (X;) = C; with C; as in Example
Alternatively, from Exercise [I.1] we know that

Ep lH i (Xi)] = HEP [fi (X3)]

for all f; : A — R. Taking A; C A and f; := 14, in the above identity shows
that

P(XleAl,...,XneAn):]Ep

=[P xie 4
i=1
as desired.

Page: 55 job: prob

7.2 Basic Properties of Independence 55

Corollary 7.20. A sequence of random wvariables, {Xj}§:1 with countable
ranges are independent iff

k
P (M (X =25}) = [[ P(X; = y) (7.2)

j=1
for all z; € R.

Proof. Observe that both sides of Eq. ((7.2) are zero unless x; is in the range
of X for all j. Hence it suffices to verify Eq. (7.2]) for those z; € Ran(X;) =: R;

for all j. Now if {XJ}J.:1 are independent, then {X, = z;} € o (X;) for all
z; € R and therefore Eq. (7.2) holds.
Conversely if Eq. (7.2) and V; € Bg, then

P(Mf_ {X;evih)=P b | > {X;=u1}

z; €ViNR;
=p >
(@1, 20) €115y VINR,
~ Y P =)

(@1,-z1) €TTSy VINR,

> lj i =)

(z1, gck)el'[J L ViNR; 7

(Mo {X; = ;3]

Definition 7.21. As sequences of random variables, {Xn}f;l , on a probability
space, (2,8, P), are i.i.d. (= independent and identically distributed)
if they are independent and (X,,), P = (X), P for all k,n. That is we should
have

P(X,€eA)=P((XreA) forallk,neN and A € Bg.

Observe that {X,},-  are i.i.d. random variables iff

P(Xi€Ar,...XoeA) = [[P(Xicd)=[P(Xie)=]]un
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56 7 Independence

where p = (X1), P. The identity in Eq. (7.3) is to hold for all n € N and all
A; € Bg.

Theorem 7.22 (Existence of i.i.d simple R.V.’s). Suppose that {¢;};_, is a
sequence of positive numbers such that y ., q; = 1. Then there exists a sequence
{Xy}rey of simple random variables taking values in A = {0,1,2...,n} on
((0,1], B,m) such that

m({X1 :il,...,Xk :'Lz}) :qil"‘qik
for all iy, ig,... i €{0,1,2,...,n} and all k € N.

Proof. For i = 0,1,...,n, let o_; = 0 and o0; := Zz:o ¢; and for any
interval, (a,b], let

T; ((a,b]) :==(a+04-1(b—a),a+ o; (b— a)].
Given i1,1i9,...,4, € {0,1,2,...,n}, let
Ji17i27~~,ik = Tik (Tik—l ( .. Ti1 ((07 1])))

and define { X}~ on (0,1] by

Xk = E Z]clJihi2 ..... i

i1,42,...,ix€{0,1,2,...,n}

see Figure Repeated applications of Corollary shows the functions,
X : (0,1] — R are measurable.
Observe that

m (T ((a,0])) = ¢; (b — a) = gim ((a,b]) (7.4)
and so by induction,
(i inyenin) = Qi Qi1 - - - s
The reader should convince herself/himself that
{Xi=t1,... Xk =%} = Jiyia,....in

and therefore, we have
m ({Xl =11,... an = 11}) =m (Jil,iQ ,,,,, Zk) =i, Qiy_y - - - iy

as desired. -

Page: 56 job: prob

é—l
o)
]
(]
o
Q)
e

[ e
< :

o - -
Xy= 1

Fig. 7.1. Here we suppose that po = 2/3 and p1 = 1/3 and then we construct J; and
Jik for I,k € {0, 1}.

Corollary 7.23 (Independent variables on product spaces). Suppose
A =H{0,1,2....n}, ¢; > 0 with Y1 g = 1, 2 = A>° = AV, and for
i € Ny letY; : 2 — R be defined by Y; (w) = w; for all w € (2. Further let
B :=o0cM,Ys,...,Y,, ...). Then there exists a unique probability measure,
P :B —|[0,1] such that

P({Yl :il,...,Yk :Zz}) =iy -+ -Gy, -
Proof. Let {X;} | be as in Theorem and define T': (0,1] — £2 by
T(x) = (X1 (2), X (2),..., Xp (2),...).

Observe that T is measurable since Y; o T' = X; is measurable for all i. We now
define, P := T,m. Then we have
P{Yi=i1,....Ys=4}) =m (T ({Y1 =i1,...,Ye =4;}))
:m({}/lOT:il,...,Yk OT:ii})
:m({X1 = il,...,Xk :Zl}) = qil qlk
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Theorem 7.24. Given a finite subset, A C R and a function q : A — [0,1]
such that )\, q(\) = 1, there exists a probability space, (£2,B,P) and an
independent sequence of random variables, {X,},., such that P (X, =\) =
q(A) for all X € A.

Proof. Use Corollary to shows that random variables constructed in
Example [5.28| or Theorem [7.22] fit the bill. |

Proposition 7.25. Suppose that {X,,},~ | is a sequence of i.i.d. random vari-

ables with distribution, P(X, =0) = P(X,=1) = 3. If we let U :=

S 27X, then P(U < x) = (0Vz)AL, i.e. U has the uniform distribution

n=1

on [0,1].

Proof. Let us recall that P (X,, = 0 a.a.) = P (X,, = 1 a.a.). Hence we may,
by shrinking {2 if necessary, assume that {X,, =0 a.a.} =0 = {X, =1 a.a.}.
With this simplification, we have

{U<;}:{X1:O},

and hence that
3 1 1 3
— 5 = - Z < e
{U<4} {U<2}U{2_U<4}
={X; =0}u{X; =1,X,=0}.

From these identities, it follows that

1 1 1 1 3 3
P == P - =—-, P — = — P — = —.
(U <0)=0, (U< 4> 7 (U< 2) 5 and (U< 4> 1

More generally, we claim that if z = 77| ;277 with ¢; € {0,1}, then
PU<z)=u. (7.5)

The proof is by induction on n. Indeed, we have already verified ([7.5)) when n =
1,2. Suppose we have verified (7.5) up to some n € N and let x = Y77 £;27

j=1
and consider
P<U<x+2*(”+1)) =P(U <x)+P(m <U <x+2’("+1))

:a:+P(x§U<z+27(”+1)>.
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Since
{37 < U<z+ 2—(n+1)} = [ﬂ?zl {Xj = Ej}] N {Xn+1 = 0}

we see that
P (z <U<z+ 2*("“)) — 9-(n+1)

and hence
P (U <z+ 2_("“)) =g+ 2~ (D)

which completes the induction argument.

Since x — P (U <x) is left continuous we may now conclude that
P({U <z) =z for all x € (0,1) and since © — x is continuous we may also
deduce that P (U < z) =z for all z € (0,1) . Hence we may conclude that

PU<z)=(0Vzx)ALl
n

Lemma 7.26. Suppose that {B; : t € T} is an independent family of o — fields.

And further assume that T =3 _oTs and let

BTS = \/tETsBS =0 (UtETSBS) .
Then {Br,},cg is an independent family of o fields.

Proof. Let
Cs = {maEKBa 1B, € Bou K cc Ts} .

It is now easily checked that {C,}, g is an independent family of 7 — systems.
Therefore {Br, = 0 (Cs)},cg is an independent family of o — algebras. ]

We may now show the existence of independent random variables with ar-
bitrary distributions.

Theorem 7.27. Suppose that {p,},—, are a sequence of probability measures
on (R,Bgr). Then there exists a probability space, (£2,B,P) and a sequence
{Y,}.2 | independent random variables with Law (Y,,) := P oY, ' = p, for all
n.

Proof. By Theorem there exists a sequence of i.i.d. random variables,
{Z,};, ,such that P(Z, = 1) = P (Z, = 0) = 1. These random variables may
be put into a two dimensional array, {X; ; : ¢,j € N}, see the proof of Lemma

For each i, let U; := >0 27X, ; — o ({X”};”;l) — measurable random

Jj=1
variable. According to Proposition [7.25] U; is uniformly distributed on [0,1].

o0
Moreover by the grouping Lemma [7.26 {0‘ ({Xi,j };’il) } are independent o
=/ Ji=1
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58 7 Independence

— algebras and hence {U;};~, is a sequence of i.i.d.. random variables with the
uniform distribution.

Finally, let F;(x) w((=oo0,z]) for all z € R and let G;(y)
inf {z : F; (x) > y} . Then according to Theorem Y; := G; (U;) has p; as

its distribution. Moreover each Y; is o (‘{Xi,j};il — measurable and therefore

the {Y;}.;2, are independent random variables. ]

7.2.1 An Example of Ranks

Let {X,,}, 7, be i.i.d. with common continuous distribution function, F. In this
case we have, for any i # j, that

P(X;=X;)=pr@pr ({(z,2) 12 €R}) =0.

This may be proved directly with some work or will be an easy consequence
of Fubini’s theorem to be considered later, see Example below. For the
direct proof, let {al}fi_oo be a sequence such that, a; < a;4q for all | € Z,
lim;_, o a; = oo and lim;_, _ ., a; = —o0. Then

{(z,2) : € R} C Uiez [(ar, ar41] x (ar, ar41]]

and therefore,

P(X;=X;) <Y P(Xi € (aas1), Xj € (g, ai4]) = Y [F (ai41) = F (@)

leZ lEZ
< sup [F (1) = F (@0)] Y [F (0142) = F (@) = sup [P () — F (@)

leZ

Since F' is continuous and F (co+) =1 and F (co—) = 0, it is easily seen that
F' is uniformly continuous on R. Therefore, if we choose a; = %, we have

(5) (3]

Let R,, denote the “rank” of X,, in the list (X1,...,X,), i.e.

P (X; = X;) < limsupsup
N—oo I€EZ

Ry=> lxsx, =#{j<n:X;>X,}.
j=1

For example if (X, Xo, X3, X4, X5,...) = (9,-8,3,7,23,...), we have Ry =
1, Ro = 2, R3 = 2, and Ry = 2, Rs 1. Observe that rank order, from
lowest to highest, of (X17X2,X3,X4,X5) is (X27X37X4,X1,X5) . This can be
determined by the values of R; for i = 1,2,...,5 as follows. Since R5 = 1, we
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must have X5 in the last slot, i.e. (x,#,%, %, X5). Since Ry = 2, we know out
of the remaining slots, X; must be in the second from the far most right, i.e.
(*, %, X4, %, X5) . Since Rz = 2, we know that X3 is again the second from the
right of the remaining slots, i.e. we now know, (x, X3, X4, *, X5) . Similarly, Ry =
2 implies (X2, X3, X4, %, X5) and finally Ry = 1 gives, (X2, X3, X4, X1, X5) . As
another example, if R; =i for i =1,2,...,n, then X,, < X, 1 <--- < Xj.

Theorem 7.28 (Renyi Theorem). Let {X,} ~, be i.i.d. and assume that
F (z) := P (X, < x) is continuous. The {R,},>_, is an independent sequence,

P (R,

1
k)=— fork=1,2,...,n,
n
and the events, A, = {X,, is a record} = {R,, = 1} are independent as n varies
and
P(A,) =P (R,

1
1 —.
) n
Proof. By Problem 6 on p. 110 of Resnick, (X1,...,X,) and (X1, ...
have the same distribution for any permutation o.
Since F' is continuous, it now follows that up to a set of measure zero,

aXan)

Q:Z{X0'1<XU2<"'<XU71}

and therefore

1=P(2)=> P({Xo1 < Xo2 <+ < Xon}).

Since P ({Xs1 < Xo2 < -+ < X4y }) is independent of o we may now conclude

that

1
P({X01<X02<"'<Xgn})zﬁ

for all 0. As observed before the statement of the theorem, to each realization
(e1,...,€n), (here g; € N with ¢; < i) of (Ry,..., Ry) there is a permutation,
oc=o0(e1,...,en) such that X1 < X590 < -+ < X,,. From this it follows that

{(Rla-“aRn) = (Ela”-aen)}: {Xal <X02 < <X<7n}

and therefore,

1
a.

P{(Ry1,...,Rn)=(e1,..,en)}) =P (Xo1 < Xp2 <+ < Xop) =

Since
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P({Rn = 5n}) = Z

(61,...6”_1)

1 1 1
_ [ N T
o Z n!_<n 1! n!  n

(61,...€n71)

P({(R,...

we have shown that

P({(Rl,...,Rn):(€1,...

7.3 Borel-Cantelli Lemmas

Lemma 7.29 (First Borel Cantelli-Lemma). Suppose that {A,},—, are
measurable sets. If

iP(An) < 00, (7.6)
n=1

then
P ({A, io})=0.

Proof. First Proof. We have

P({Ayi0.}) = P (M2 Upsn Ar) = lim P (Upzndy) < lim ) P (Ay) =0.
k>n

(7.7)

Second Proof. (Warning: this proof require integration theory which is

developed below.) Equation (7.6) is equivalent to

ilAn] < o0

n=1

E

from which it follows that -
Z 1la, < o0 as.
n=1

which is equivalent to P ({4, i.0.}) = 0. |

Ezample 7.30. Suppose that {X,} are Bernoulli random variables with
P(X,=1)=p,and P(X,=0)=1—-p,. If

> <0
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then
P(X,=110)=0

and hence
P(X,=0a.a.)=1.

In particular,

n—00

P(lim Xn:O):l.

Figure below serves as motivation for the following elementary lemma
on convex functions.

Fig. 7.2. A convex function, ¢, along with a cord and a tangent line. Notice that
the tangent line is always below ¢ and the cord lies above ¢ between the points of
intersection of the cord with the graph of ¢.

Lemma 7.31 (Convex Functions). Suppose that p € PC? ((a,b) — R)ﬂ with
¢" (x) > 0 for almost all x € (a,b). Then ¢ satisfies;

1. for all zg,x € (a,b),

¢ (z0) + ¢ (x0) (x — 20) < ¢ ()
and

2 PC? denotes the space of piecewise C? — functions, i.e. ¢ € PC? ((a,b) — R) means
the ¢ is C! and there are a finite number of points,

{a=ap<a1<az <+ <apn-1<an=">},

such that <p|[aj isC? forall j =1,2,...,n.

,1,aj]ﬂ(a,b)
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60 7 Independence

2. for all w < v with u,v € (a,b),
plutt—u)) <e)+tle@)—e() Vtelol].

(This lemma applies to the functions, e’ for all X\ € R, |z|* for a > 1,
and —Inz to name a few ezamples. See Appendiz[I1.7 below for much more on
convez functions.)

Proof. 1. Let

f @)= (@) = [ (20) + ¢ (z0) (x — 20)] -
Then f(z9) = f' (o) = 0 while f”(x) > 0 a.e. and so by the fundamental
theorem of calculus,

F () = ¢ (2) — o (w0) = / o () dy.

Zo

Hence it follows that f'(z) > 0 for z > ¢ and f'(z) < 0 for x < z¢ and
therefore, f (x) > 0 for all x € (a,b).
2. Let

@) :=¢)+t(p ) —p) -puttl-u).

Then f(0) = f (1) =0 with f (£) = — (v —u)* " (u+t (v —u)) <0 for almost
all t. By the mean value theorem, there exists, to € (0,1) such that f (to) =0
and then by the fundamental theorem of calculus it follows that

foy=[ @

to

In particular, f(¢) < 0 for t > to and f(t) > 0 for t < to and hence f (t) >
f(1)=0fort>tygand f(t) > f(0) =0 for t <tg,ie f(t)>0. |

Ezample 7.32. Taking ¢ (z) := e~, we learn (see Figure [7.3),
l—z<e*forallzeR (7.8)

2

and taking ¢ (x) = e=** we learn that

l—z>e *for0<ax<1/2. (7.9)
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-1 -05 0 0s 1

X

Fig. 7.3. A graph of 1 — z and e~ ® showing that 1 —x < e~ % for all z.

1

X

Fig. 7.4. A graph of 1 — x and e~ ® showing that 1 — 2 > ¢~ 2® for all 2 € [0,1/2].

Exercise 7.4. For {a,},—, C [0,1], let

00 N
[[a-a.):= Jim [T -an.
n=1 n=1

(The limit exists since, ngl (1—ay) | as N 1.) Show that if {a, },—, C [0,1),
then

o0 o0
[[a-a)=0if > a,=cc.
n=1 n=1

Solution to Exercise (|7.4]). On one hand we have

N N N
[[0 o< [ = (—zan>
n=1 n=1 n=1
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which upon passing to the limit as N — oo gives

o0
H(lfan <exp< Zan>.
n=1
Hence if Y ° | a, = oo then [[°2, (1 —a,) = 0.

Conversely, suppose that Zzozl a, < oo. In this case a,, — 0 as n — o0
and so there exists an m € N such that a,, € [0,1/2] for all n > m. With this
notation we then have for N > m that

N m N
(1-an)=J[0=an)- J[ 1—-an)
n=1 n=1 n=m-+1
m m N
ZH (1—ay)- H 62“"—H(1an)~exp<2 Z an>
n=1 n=m+1 n=1 n=m+1
Zﬁ(l—an exp( 2 Z an>.
n=1 n=m-+1

So again letting N — oo shows,

oo
H l_an >

Lemma 7.33 (Second Borel-Cantelli Lemma). Suppose that {A,} - are

independent sets. If
> P(4,) = o, (7.10)
n=1

s

(1—-an) exp( 2 Z an>>0

n=m-+1

then
P({A, io})=1. (7.11)

Combining this with the first Borel Cantelli Lemma gives the (Borel) Zero-One

law,
o JOdf S P(An) <00
P (A, io.) —{ LS5 P (AL) = oo

Proof. We are going to prove Eq. (7.11) by showing,
=P ({4, i.0.}°) = P({AS a.a}) = P (U2 Nk>n A7) .

Since Np>pAf T UsZ; Ni>n Af as n — oo and NP, A7 | N2y Uksn A as
m — 00,
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P(Uzozl Ni>n A;) = lim P(ﬂk>nAz) = lim lim P(mmZanA%)-

n—oo - n—oo m—0o0
Making use of the independence of {A;};—, and hence the independence of
{Ag 7|, we have

P (Nm>k>nAf) =

II P45 = J[ a-PA). (7.12)

m>k>n m>k>n

Using the simple inequality in Eq. (7.8]) along with Eq. (7.12) shows

= exp ( Z P (Ak)> .
k=n

Using Eq. , we find from the above inequality that
lim,, oo P (ﬂm>k>nA ) = 0 and hence

P (Nm>k>ndf) < H

m>k>n

P(Uzozl Nk>n Az) = lim lim P(mm>k>nA(]é) = 1lim 0=0

n—oo m—0o0 - n—oo

as desired. -

Ezample 7.3 (Example continued). Suppose that {X,,} are now indepen-
dent Bernoulli random variables with P (X,, =1) = p, and P(X,, =0) =1 —
Pr. Then P (lim, 00 X, =0) = 1iff Y p, < co. Indeed, P (lim,,—,o0 X, = 0) =
1iff P(X, = 0aa)=1if P(X, =110.)=0iff Y pp = 3 P (X, = 1) < cc.

Proposition 7.35 (Extremal behaviour of iid random variables). Sup-
pose that {X,} 7, is a sequence of i.i.d. random variables and c,, is an increas-
ing sequence of positive real numbers such that for all o > 1 we have

ZP (X1>a7'¢,) =00 (7.13)
while
(o)
> P(X1 > ac,) < . (7.14)
n=1
Then x
limsup — =1 a.s. (7.15)

n—oo Cn

Proof. By the second Borel-Cantelli Lemma, Eq. (7.13) implies
P (Xn > a~te, io. n) =1

from which it follows that
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X
limsup — > a~ ! as..

n—oo Cn

Taking a = a, = 1+ 1/k, we find

X X 1
P (hmsup" > 1) =P (ﬂ?il {limsupn > }) =1
n—oo Cp n—oo Cp (72

Similarly, by the first Borel-Cantelli lemma, Eq. (7.14]) implies
P (X, > ac, 1.0.n)=0

or equivalently,
P (X, <ac, a.a.n) = 1.
That is to say,

) X
limsup — < « a.s.

n— oo Cn

and hence working as above,

Xn . X,
P <limsup < 1) =P (ﬂi"_l {hmsup < ak}> =1
n—oo Cn n—oo Cp

Hence,

Xn . Xn : X
P(limsupzl) :P({hmsup>l}ﬁ{hmsup <1}> =1.
n—oo Cn n—oo Cn n—oo Cn

Ezample 7.36. Let {E,}.._, be a sequence of independent random variables
with exponential distributions determined by

P(E,>z)= e~ @V or P (B, <x)=1- e~ (@v0)

(Observe that P (E, <0)=0) so that E,, > 0 a.s.) Then for ¢, > 0 and « > 0,
we have

S > = S = S
n=1 n=1 =
Hence if we choose ¢, = Inn so that e~ = 1/n, then we have
OoP(En>ozlnn)= 3 1 ’
=1 -\

which is convergent iff & > 1. So by Proposition it follows that

. E,
limsup — =1 a.s.
n—oo 1N
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Ezample 7.37. Suppose now that {X, }, -, are i.i.d. distributed by the Poisson
distribution with intensity, A, i.e.

In this case we have

and

Thus in terms of convergence issues, we may assume that
A A

~
! V2mzxe %x®
wherein we have used Stirling’s formula,

z! ~\2rxe Tt

Now suppose that we wish to choose ¢,, so that

P(Xl >LE)

P (X1 > cn) ~1/n.

This suggests that we need to solve the equation, £ = n. Taking logarithms of
this equation implies that

_lun
Inx
and upon iteration we find,
Inn Inn Inn
xTr = = =
ln(lnn) £l (ﬂ) — Yy (:E) 2 (n) — 4y (%)
_ Inn

b (n) — L3 (n) + €5 ()

macro: svmonob.cls date/time: 12-Mar-2007/12:25



k - times

—
where £, =Inolno---oln. Since, < In(n), it follows that ¢3 () < ¢3 (n) and

hence that
B In (n) _In(n) l5(n)
v= ot = ho 00 (i)

Thus we are lead to take ¢, := % We then have, for « € (0, 00) that

(ae,)™™ = exp (acy, [Ina + Ine,))
=ex aln(n) no n) — 43 (n
—exp (a2 £z () fa (0]
B b 1O P
=ew (a [ 1 mim)
— na(1+€n(a))
where
e (a) = Ina — 25 (n)
Hence we have
A\&en (\/e)* 1

P (X1 > acy) ~ V2racse—Cn (acn)" ~ V2rac, no(iten(@)’

Since |

nn In(\/e)
——In(\e) = Inn® %0
Gy V)

In(\/e)*" = ac,In (N e) =«

it follows that

(Ae)? = Fatnr

Therefore,

In(\/e)

n® m 1 {5 (n) 1

[in() no(+en(@) — \/ In (n) no(+on(e)
fz(n)

where §,, (o) — 0 as n — oo. From this observation, we may show,

P(X; > acy) ~

ZP(Xlzacn)<ooifoc>1and

n=1
ZP(Xl >ac,) =0 ifa<l
n=1

and so by Proposition [7.35 we may conclude that

lim sup =1 a.s.

o T (n) /3 (n)
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7.4 Kolmogorov and Hewitt-Savage Zero-One Laws

Let {X,}—, be a sequence of random variables on a measurable space, ({2, ).
Let B, := 0 (X1,...,X0n), B :=0(X1,X0,...), Ty i= 0 (Xpnt1, Xnt2,--- ),
and 7 := N2, 7, C Bs. We call 7 the tail o — field and events, A € 7, are
called tail events.

Example 7.38. Let S,, := X1 +---+X,, and {bn}fbo=1 C (0, 00) such that b,, T co.
Here are some example of tail events and tail measurable random variables:

1. {32, X,, converges} € 7. Indeed,

{Z X converges} = { Z Xy converges} eT,

k=1 k=n+1

for all n € N.
2. both limsup X,, and liminf,,_ . X,, are 7 — measurable as are lim sup %

and lirﬂ inf,, o %. l
3. {lim X,, exists in R} = {lim sup X,, = liminf, . Xn} € 7 and similarly,
Sn, = Sn . . .Sk
lim — exists in R = ¢limsup — = liminf — , € 7
by n—oo  bn n—oo by
and

{limf" exists in R} = {—oo < 1imsup% = liminf% < oo} eT.

n n— o0 n n—0o0 0Op
4. {hmn%o Sa — o} € 7. Indeed, for any k € N,

lim & = lim (Xt +b’ 4+ Xn)

from which it follows that {mww Sa - 0} € Ty, for all k.

Definition 7.39. Let (12,8, P) be a probability space. A o — field, F C B is
almost trivial iff P (F) ={0,1}, i.e. P(A) € {0,1} for all A € F.

Lemma 7.40. Suppose that X : 2 — R is a random variable which is F mea-
surable, where F C B is almost trivial. Then there exists ¢ € R such that X = ¢
a.s.
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64 7 Independence

Proof. Since {X = oo} and {X = —oc0} are in F, if P(X =00) > 0 or
P(X =—-00) > 0, then P(X =00) = 1 or P(X = —00) = 1 respectively.
Hence, it suffices to finish the proof under the added condition that P (X € R) =
1.

Foreachz € R, {X < z} € F and therefore, P (X < x) is either 0 or 1. Since
the function, F (x) := P (X <z) € {0,1} is right continuous, non-decreasing
and F (—oo) = 0 and F' (+00) = 1, there is a unique point ¢ € R where F' (¢) = 1
and F (c—) = 0. At this point, we have P (X =¢) = 1. |

Proposition 7.41 (Kolmogorov’s Zero-One Law). Suppose that P is a
probability measure on (£2,B) such that {X,} -, are independent random vari-
ables. Then T is almost trivial, i.e. P (A) € {0,1} for all A€ T.

Proof. Let A € T C By. Since A € 7, for all n and 7, is independent of
B, it follows that A is independent of U2, BB,, for all n. Since the latter set is a
multiplicative set, it follows that A is independent of By, = o (UB,,) = V2, B,,.
But A € B and hence A is independent of itself, i.e.

P(A)=P(ANA)=P(A)P(A).

Since the only z € R, such that x = z* is = 0 or « = 1, the result is proved.
In particular the tail events in Example have probability either 0 or 1. m

Corollary 7.42. Keeping the assumptions in Proposition and let

{b,}o2, C (0,00) such that b, 1 oo. Then limsupX,, liminf, . X,,
n—oo

lim sup f—:, and liminf,, o % are all constant almost surely. In particular,

n—0oo

either P({ lim f” ea:ists}) =0 or P({ lim ‘2“’ exists}) = 1 and in the

n— o0 n—oo “n

latter case lim % =c a.s for some ¢ € R.
n—oo

n

Let us now suppose that 2 := R® = RY, X, (w) = w, for all w € £,
and B := o (X1, Xs,...). We say a permutation (i.e. a bijective map on N),
7 : N— N is finite if 7 (n) = n for a.a. n. Define T : 2 — 2 by T (w) =
(Wr1,Wr2y - ) -

Definition 7.43. The permutation invariant o — field, S C B, is the collec-
tion of sets, A € B such that T;* (A) = A for all finite permutations .

In the proof below we will use the identities,
laap=1|1la—1p| and P(AAB)=E|14 — 15].

Proposition 7.44 (Hewitt-Savage Zero-One Law). Let P be a probability
measure on (2,B) such that {X,}.- | is an i.i.d. sequence. Then S is almost
trivial.
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Proof. Let By := U2 0 (X1, Xa,...,Xp). Then By is an algebra and
o (By) = B. By the regularity Theorem for any B € B and € > 0, there
exists A, € By such that 4,, 1 C € (By),, BC C, and P (C\ B) < €. Since

P(A,AB) = P ([Ay \ BJU[B\ An]) = P (A, \ B) + P (B\ A,)
— P(C\B)+P(B\C)<e,

for sufficiently large n, we have P (AAB) < € where A = A,, € By.

Now suppose that B € S, ¢ > 0, and A € 0 (X1, Xs,...,X,,) C By such
that P (AAB) < €. Let m : N — N be the permutation defined by 7 (j) = j+n,
m(j+n)=jforj=1,2,...,n,and 7 (j + 2n) = j + 2n for all j € N. Since

B={(X1,...,Xn) €B}={w: (w1,...,w,) € B'}
for some B’ € Br», we have

71 (B) ={w: (Tx W)y, .-, (Tr (w)),) € B}
={w: (Wr1,...,wmn) € B'}
={w: (Wnt1,--+,Wnin) € B’}
={(Xnt1,--» Xnin) €E By €0 (Xnt1,--+s Xntn),

it follows that B and T;'(B) are independent with P(B) = P (T *(B)).
Therefore P (BNT;'B) = P (B)2 . Combining this observation with the iden-
tity, P (A) = P(ANA) =P (ANT;'A), we find

|P(4) - PBY| = |P(ANT; ) = P(BAT; B)| = [E [Lanry 14— Tpor, 18|
<E ‘1A0T;1A - 1BﬂT;1B‘
—E[Lalp14 — 1151
=E ‘[1A —1p]lp-1,+ 1B [1T;1A - 1T;1B:| ’
SE|la - 16l +E Ly s = Ly
=P (AAB) + P (T, "AAT;'B) < 2e.

Since |P (A) — P(B)| < P(AAB) < ¢, it follows that
)P(A) [P (A)+ O(e)ﬂ <e.

Since £ > 0 was arbitrary, we may conclude that P (A) = P (A)® for all A € S.
[
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Ezample 7.45 (Some Random Walk 0 — 1 Law Results). Continue the notation
in Proposition @

1. As above, if S, = X3 + .-+ X,,, then P (S, € Bio.) € {0,1} for all
B € Bg. Indeed, if 7 is a finite permutation,

T-'({S, € Bio.})={S,0T, € Bio.} ={S, € Bio.}.

Hence {S, € B i.0.} is in the permutation invariant ¢ — field. The same
goes for {S,, € B a.a.}
2. If P(X; #0) > 0, then limsup S,, = co a.s. or limsup S,, = —c0 a.s. Indeed,

n—oo n—oo

T;1 {limsupSn < 33} = {HmsupSn oT, < m} = {limsup S, < x}

n—oo n—oo n—oo

which shows that limsup.S,, is & — measurable. Therefore, limsup S,, = ¢

n—oo n—oo

a.s. for some ¢ € R. Since, a.s.,

¢ = limsup Sp,41 = limsup (S, + X1) = limsup S,, + X1 = c+ X3,

n—oo n—oo n—oo

we must have either ¢ € {£o0} or X7 = 0 a.s. Since the latter is not allowed,
limsup S,, = oo or limsup S,, = — a.s.

3. Now assume that P (X; #0) > 0 and X, L Xy, ie. P(X;€A) =
P(—X; € A) for all A € Bg. From item 2. we know that and from what
we have already proved, we know limsup S, = ¢ a.s. with ¢ € {f+oo0}.

n—oo

Since {X,},—, and {-X,} o, are iid. and —X, 4 X, it follows

that {X,} 4 {=X,},2, The results of Exercise then imply that
limsup S, 4 jim sup (—S,) and in particular limsup (—S,,) = ¢ a.s. as well.

n—oo n—oo n—oo

Thus we have

¢ = limsup (—S5,,) = —liminf S,, > —limsup S,, = —c.
n—o0 n—oo n—oo
Since the ¢ = —oo does not satisfy, ¢ > —c, we must ¢ = co. Hence in this

symmetric case we have shown,

limsup S,, = oo and limsup (—=S,) = oo a.s.
n—oo n—oo

or equivalently that

limsup S,, = oo and liminf S,, = —oo a.s.

n— oo n—0oo






8

Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section above. Recall there that if (£2, B, u) was
measurable space and f : {2 — [0, 00] was a measurable simple function, then

we let
E.f:= Z Au(f=A).
A€E€[0,00]
8.1 A Quick Introduction to Lebesgue Integration Theory

Theorem 8.1 (Extension to positive functions). For a positive measurable
function, f: 2 — [0,00], the integral of f with respect to u is defined by

/ [ () du(z) :=sup{E,¢ : ¢ is simple and o < f}.
X

This integral has the following properties.

1. This integral is linear in the sense that

/Q(f+)\9)d,u=/nfd,u+)\/ggdu

whenever f,g > 0 are measurable functions and X\ € [0, 00).
2. The integral is continuous under increasing limits, i.e. if 0 < f,, T f, then

/fd,u:/ lim f, dp = lim / fn du.
See the monotone convergence Theorem [8.15] below.

Remark 8.2. Given f : {2 — [0, oo] measurable, we know from the approxima-
tion Theorem [6.34] ¢, 1 f where

Therefore by the monotone convergence theorem,

/fdu= lim [ @ndp
(%} (]

n2™—1
k k k+1
= 1i < n )
nhm [kg_o 2nu(2n <f< on )+nu(f>n2 )]

We call a function, f : £2 — R, integrable if it is measurable and fQ |f]dp <
0o. We will denote the space of i —integrable functions by L' (1)

Theorem 8.3 (Extension to integrable functions). The integral extends
to a linear function from L' (u) — R. Moreover this extension is continuous
under dominated convergence (see Theorem . That is if f, € L* (1) and
there exists g € L' (u) such that |f,| < g and f :=lim,, . f, exists pointwise,

then
/fdu=/ lim f, dp = lim fn/ dp.

Notation 8.4 We write [, fdu == [,1af dp for all A € B where f is a
measurable function such that 14 f is either non-negative or integrable.

Notation 8.5 If m is Lebesgue measure on Bg, f is a non-negative Borel mea-
surable function and a < b with a,b € R, we will often write f:f(x) dx or

Y fdm for Jiaspom Fdm.

Ezample 8.6. Suppose —oo0 < a < b < o0, f € C([a,b],R) and m be Lebesgue
measure on R. Given a partition,

W:{a:af()<a1<"'<an:b}7

let
mesh(7) ;= max{|a; —a;_1|:j=1,...,n}
and
n—1
fr (x) = Z f (al) 1(az,az+1](m)-
1=0
Then
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b n—1 n—1
[t dm =3 1@ m(Ganaal) = Y- F @) o = a)
a =0 =0

is a Riemann sum. Therefore if {m;},-, is a sequence of partitions with
limy_, oo mesh () = 0, we know that

hm fﬂk dm = / f(z (8.1)

where the latter integral is the Rlemann integral. Using the (uniform) continuity
of f on [a,b], it easily follows that limy_ fr, (z) = f (2) and that |fr, (z)] <
g(w) := M1(qy) (v) for all z € (a,b] where M := max,¢[q4 |f (7)] < co. Since
Jz gdm = M (b— a) < co, we may apply D.C.T. to conclude,

b b b
Jim / frp dm = / i fr, dm = / fdm.

This equation with Eq. (8.1) shows

/abfdm:/abf(ac)dx

whenever f € C([a,b],R), i.e. the Lebesgue and the Riemann integral agree
on continuous functions. See Theorem below for a more general statement
along these lines.

Theorem 8.7 (The Fundamental Theorem of Calculus) Suppose —00 <
a<b<oo, feC((ab),R)NL ((a,b),m) and F(z) = [* f(y . Then

1. F € C([a,b],R) N C*((a,b),R).

2. F'(z) = f(z) for all x € (a,b).

3. If G € C([a,b],R) N C*((a,b),R) is an anti-derivative of f on (a,b) (i.e.
f=G"l(ap) then

b
/ F(@)dm(z) = G(b) — Gla).

Proof. Since F(z) := [ 1(a,2) () f(@)dm(y), limy—.: 1(q,2)(y) = 1(a,2) (y) for

—a.e. y and |1 (a,2) (Y )f( )| < (v )|f(y) is an L! — function, it follows
from the dominated convergence Theorem [8.34] that F' is continuous on [a, b].
Simple manipulations show,

S ) = S dmiy)] it h > 0
S U w) = f(@)] dm(y)] £k <0

LA - @) dm(y) it h >0
|h| fx+h ‘ (y

F(x+h) — F(x) 1

=0 )| = o

\/\/

F(@)dm(y) if h <0
<sup{[f(y) — f()|:y € [z — |h],z + |h]]}
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and the latter expression, by the continuity of f, goes to zero as h — 0 . This
shows F’ = f on (a,b).
For the converse direction, we have by assumption that G'(x) = F'(z) for
€ (a,b). Therefore by the mean value theorem, F' — G = C for some constant
C. Hence

b
| f@im() = F®) = Fo) - Fla)
= (G(b) + C) — (G(a) + C) = G(b) — G(a).

]
We can use the above results to integrate some non-Riemann integrable
functions:

Ezxample 8.8. For all A > 0,

e 1
/ e Mdm(x) = A7 and / sdm(x) = .
0 r1+x

The proof of these identities are similar. By the monotone convergence theorem,
Example|8.6{and the fundamental theorem of calculus for Riemann integrals (or
Theorem below),

and

/ L @) = tim [ dm(e) = 1 [ L4
—ami\xr) = 1m m\xr) = 1m —axr
r 1+ 22 Nooo J_n 1+ 22 Nooo J_n 1+ 22

1 p—p+1|t
= lim —dx = lim
n—oo [1 xP n—oo —-p 1/n
1 .
oo ifp>1
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If p=1 we find

1 "1
/ — dm(z) = lim —dzr = lim In(z )H/n =00
(©

xP n—oo |1 X n—oo
1] n

Exercise 8.1. Show
* 1 o ifp<1
/1 am(z )—{pilifp>1'

Ezxample 8.9. The following limit holds,

n

nlirr;o ; (1 — %)ndm(x) =1.

To verify this, let f,(z) := (1 — %)n Lio,n) (). Then limy, oo fr(z) = e~ for all
x > 0 and by taking logarithms of Eq. (7.

In(l—2)<—zforx<l.

Therefore, for x < n, we have

(1 B {)n _ enln(l—%) < e—n(%) — ¥
n

from which it follows that
0 < fu(x) <e® forall z > 0.

From Example we know

/ e Tdm(z) =1 < oo,
0

so that e™® is an integrable function on [0, 00). Hence by the dominated con-
vergence theorem,

n

lim | (1—5) dm(z) = lim fn(x)dm(x)

n—oo n n— oo 0

:/OOo lim fn(x)dm(x):/oooe_”’dm(x)zl.

n— oo

The limit in the above example may also be computed using the monotone
convergence theorem. To do this we must show that n — f,, (x) is increasing in
n for each = and for this it suffices to consider n > z. But for n > =z,
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@ = g [ (1= D)) =m (- D)+ 25

:1n<1—§>+1_%£:h(x/n)

n

where, for 0 <y < 1,

Since h (0) = 0 and

1 1 Y
n (y) = — + + >0

it follows that A > 0. Thus we have shown, f, (z) 1 e~ as n — oo as claimed.

Ezample 8.10 (Jordan’s Lemma). In this example, let us consider the limit;

lim cos (Sin ) e~ 5@ g,
0 n

Let 0
fn (0) = 1(0,x) (0) cos <sin ) e—nsin(6)
n
Then
|fn| < 1(0’7‘-] € Ll (m)
and

lim_ fr, (6) = 10,7 () 1z} (6) = 14y (6) -

n—oo

Therefore by the D.C.T.,

T 0 .
lim cos (sin ) e msin@gp = / Lz} (0) dm (0) = m ({n}) = 0.
n—o0 0 n R
Exercise 8.2 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:
sin(£)
1. nlLrI;o fo (e=as dz.

1
2. lim 0 (H"I — dx
n—oo

3. lim fooom dx

n—o00 (1+z%)

4. For all a € R compute,

oo

f(a) = lim n(1 + n*z*) " 'da.

—
n—oo a

Now that we have an overview of the Lebesgue integral, let us proceed to
the formal development of the facts stated above.

macro: svmonob.cls date/time: 12-Mar-2007/12:25



70 8 Integration Theory

8.2 Integrals of positive functions

Definition 8.11. Let LT = LT (B) = {f : X — [0,00] : f is measurable}.
Define

/f ) dje

We say the f € LT is integrable if [, fdu < co. If A€ B, let

/f ) dpe /fdu—/lAfdu

Remark 8.12. Because of item 3. of Proposition if ¢ is a non-negative
simple function, [y ¢du =E,¢ so that [, is an extension of E,,.

/ fdp :==sup{E, ¢ : ¢ is simple and ¢ < f}.

Lemma 8.13. Let f,g € L™ (B). Then:

1. if A >0, then
/)\fdu:)\/ fdu
X X

wherein X [y fdp =0 if X\=0, even if [ fdu = oc.

2.if0< f <g, then
[ saus [ gan (8.2)
X X

1 1
>e) < — P dp < — Pdu. 8.3
u(f_S)_gp/Xf (F2e) u_sp/xf u (8.3)

3. For alle >0 and p > 0,

The inequality in Fq. 1s called Chebyshev’s Inequality for p = 1 and
Markov’s inequality for p = 2.

4. Iffodu < oo then p(f = 00) =0 (i.e. f < oo a.e.) and the set {f > 0}
is 0 — finite.

Proof. 1. We may assume A > 0 in which case,

/ Afdp = sup{E,p : ¢ is simple and ¢ < \f}

X
= sup {E#go : @ is simple and A1y < f}
=sup{E, [A\)] : ¢ is simple and ¢ < f}
=sup{AE, [¢] : ¢ is simple and ¢ < f}

= /\/deu.
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2. Since
{p is simple and ¢ < f} C {p is simple and ¢ < g},

Eq. (8.2)) follows from the definition of the integral.
3. Since 1(y>.y < 1{f28}%f < %f we have

1 \? 1 \?
1{f26} < 1{f26} (e’:‘f) < <€f>

and by monotonicity and the multiplicative property of the integral,

p(f = e) = /X L ooy < (i) / 1{f>s}fpdu<< ) / fPdu.

4. If p(f = o00) > 0, then ¢, := nlys_ is a simple function such that
pn < f for all n and hence

ni (f = 00) = By () < /deu

for all n. Letting n — oo shows [y fdu = oco. Thus if [, fdu < oo then

p(f =o00)=0.
Moreover,
{f >0 = {f > 1/n}
with p(f > 1/n) <n [y fdu < oo for each n. [

Lemma 8.14 (Sums as Integrals). Let X be a set and p : X — [0,00] be a
Junction, let p =3 oy p(x)dy on B=2% i.e.

p(A) =" pla).

z€A

If f : X — [0,00] is a function (which is necessarily measurable), then

/X fan=3 1o

Proof. Suppose that ¢ : X — [0,00) is a simple function, then ¢ =

ZZE[0,00) Zl{%":'z} and

Z(’Dp_ Z ) Z Zl{tp z} Z Z 1{Lp z} )
zeX z€[0,00) z€[0,00) zEX
= > Zu({<p=2}):/ pdp.
z€[0,00) X
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So if ¢ : X — [0, 00) is a simple function such that ¢ < f, then

/ pdp=> op< > fp.
X X X

Taking the sup over ¢ in this last equation then shows that

[ tau=Y 10
X X

For the reverse inequality, let A CC X be a finite set and N € (0,00). Set
N (z) = min {N, f(x)} and let ¢ 4 be the simple function given by ¢n 4(z) =
La(z) fN (z). Because pn a(z) < f(),

ZfNP = ZSDN,AP = / on,adp < / fdu.
1 = X X
Since fV 1 f as N — 0o, we may let N — oo in this last equation to concluded

ZA:fp < /deu-

Since A is arbitrary, this implies

ZX:fp < /deu-

Theorem 8.15 (Monotone Convergence Theorem). Suppose f, € LT is
a sequence of functions such that f, T f (f is necessarily in L) then

[t [sasn—c

Proof. Since f, < f,, < f, for all n <m < oo,

JEXY RS

from which if follows [ f,, is increasing in n and

tw [ 1.< [ f (8.4)
For the opposite inequality, let ¢ : X — [0,00) be a simple function such

that 0 < ¢ < f, @ € (0,1) and X,, := {f, > ap}. Notice that X,, T X and
fn > alx, ¢ and so by definition of [ f,,
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[ 2z Bulatx ol = aBulix, ol (35)

Then using the continuity of p under increasing unions,

nILH;OEu [1x,¢] = lim /1Xn Zyl{sa:y}

n—oo
y>0

= lim > yu(Xa N {p=y})
y>0

TNy dim (X, N {e = y))
V0 n— o0

= v lim n({p=y}) =E,[¢]
y>0

This identity allows us to let n — oo in Eq. to conclude lim,,_, - f fn >
aE, [¢] and since a € (0,1) was arbitrary we may further conclude,E, [¢] <
lim, . [ fn. The latter inequality being true for all simple functions ¢ with
@ < f then implies that

which combined with Eq. (8.4]) proves the theorem. ]

Corollary 8.16. If f,, € LT is a sequence of functions then

In particular, if Y .o | [ fn < o0 then > ", fr < 00 a.e.

Proof. First off we show that

/(f1+f2)=/f1+/f2

by choosing non-negative simple function ¢, and %, such that ¢, T f1 and

Un T f2. Then (¢n, + 1) is simple as well and (@, + ¢,) T (f1 + f2) so by the
monotone convergence theorem,

(fr+ f2) = lim [ (pn+tn) = lim | [ on+ [y
/ (o [o)
= lim ¢n+n1LH;O/¢n:/f1+/f2-
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Now to the general case. Let gy = Z fnand g = Z fn, then gy T g and so
n=1

again by monotone convergence theorem and the add1t1v1ty just proved,

Remark 8.17. Tt is in the proof of this corollary (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measur-
able. In fact the definition f fdu makes sense for all functions f : X — [0, o0]
not just measurable functions. Moreover the monotone convergence theorem
holds in this generality with no change in the proof. However, in the proof of
Corollary we use the approximation Theorem [6.34] which relies heavily on
the measurability of the functions to be approximated.

Ezample 8.18. Suppose, 2 =N, B := 2" and p(A) = # (A) for A C 2 is the
counting measure on B. Then for f: N — [0, 00), the function

n) Liny

uMz

is a simple function with fy T f as N — oco. So by the monotone convergence
theorem,

/fd,u— lim /de,u— lim Zf w({n})

= ngréogf(n) = gf(n)
Exercise 8.3. Suppose that p, : B — [0, co] are measures on B for n € N. Also
suppose that p,(A) is increasing in n for all A € B. Prove that p: B — [0, 00]
defined by p(A) := lim,, o tin(A) is also a measure. Hint: use Example

and the monotone convergence theorem.

Proposition 8.19. Suppose that f > 0 is a measurable function. Then
fX fdu =0 iff f =0 a.e Also if f,g > 0 are measurable functions such that
[ <g ae. then [ fdu < [ gdu. In particular if f = g a.e. then [ fdu = [ gdp.
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Proof. If f =0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e. This
implies that u(¢~'({y})) = 0 for all y > 0 and hence [, pdu = 0 and therefore

Jx fdp = 0. Conversely, if [ fdu =0, then by (Lemm7
u(f >1/n) < n/fd,u = 0 for all n.

Therefore, p(f > 0) < > 0% u(f > 1/n) = 0, i.e. f = 0 a.e. For the second
assertion let E be the exceptional set where f > g, i.e. E:={z € X : f(z) >
g(x)}. By assumption F is a null set and 1gef < 1gcg everywhere. Because
g=1geg+1pg and 1gg =0 a.e.,

/gdu=/1Ecgdu+/1Egdu=/1Ecgdu

and similarly [ fdp = [1ge fdp. Since 1ge f < 1geg everywhere,
[ fdn= [ tesdu< [1pgdi= [ gan

Corollary 8.20. Suppose that {f,} is a sequence of non-negative measurable
functions and f is a measurable function such that f,, T f off a null set, then

[t [rasn—c

Proof. Let E C X be a null set such that f,1gc T flge as n — oo. Then
by the monotone convergence theorem and Proposition [8.19

/fn:/fnlEcT/flEc:/fasnﬂoo.

Lemma 8.21 (Fatou’s Lemma). If f,, : X — [0,00] is a sequence of measur-

able functions then
/ liminf f, < hm inf / fn

Proof. Define g, := 1I;fk fn so that g T liminf, . f, as k — oo. Since

gr < fn for all k < n,
/gkg/fnforalank

and therefore
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/gk < lim inf fn for all k.

n—oo

We may now use the monotone convergence theorem to let & — oo to find
/hm inf f, = / lim g MET im /g;C <lim inf /fn
n—oo k—o00 k—o00 n—oo
]

The following Lemma and the next Corollary are simple applications of

Corollary

Lemma 8.22 (The First Borell — Carntelli Lemma). Let (X,B,u) be a
measure space, A, € B, and set

{An i} ={x e X :x € A, for infinitely many n’s} = ﬂ U Ay
N=1n>N

IF >0 w(Ay,) < oo then p({A, i.0.}) =0.
Proof. (First Proof.) Let us first observe that

{4, i.0.} = {x € X: ilAn(x) = oo}
n=1

Hence if Y07 | u(A,) < oo then
o0 > Z,u(An) :Z/ lAnd,u:/ ZlAndM
n=1 n=1"%X X p=1

implies that Z 1a,(z) < oo for p - a.e. x. That is to say p({4, i.o.}) = 0.

(Second Proof ) Of course we may give a strictly measure theoretic proof of this
fact:

w(A, i.0.) = ngnoolu U A,

n>N
< lim Z w(Ay)
e n>N
and the last limit is zero since Y - | u(A,) < oco. |

Corollary 8.23. Suppose that (X, B, 1) is a measure space and {A,},>, C B
is a collection of sets such that u(A; N A;) =0 for all i # j, then

1 (UnZi An) Zu
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Proof. Since

w(Up Ay = / Lyse  a,dp and
X

S p(Ay) = /X S 1 di

it suffices to show

D la, =1lux,a, p-ae (8.6)

Now Y0 14, > Ly 4, and Yoot 1la,(z) # Ly a,(x) iff z € A; N Aj for
some i # j, that is

{ Z 1An 75 1U°°,1A ( )} = Ui<in n Aj

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. and hence the corollary. [

Ezample 8.24. Let {r,}5°; be an enumeration of the points in Q N [0,1] and
define

oo
; \/|xfrn|

with the convention that
1

Ve —=mrnl

=bifz=r,

Since, By Theorem

/1 L4 /1 L4 +/T" L4
——dz = ——dx ——dx
0 1/\$—7“n| rn VI —Tp o VIn—«
=2Vx =1y — 2V — 2l =2 (V1 =1 — /)

<4,

we find

f@)dm(x) = 3 dzx < i 27" =4 < 0.

1
9—n / b <
o D N et >

In particular, m(f = co) = 0, i.e. that f < oo for almost every x € [0, 1] and
this implies that
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74 8 Integration Theory

o 1
22 "———— < oo forae z€0,1].
n=1

Ve =1yl

This result is somewhat surprising since the singularities of the summands form
a dense subset of [0, 1].

8.3 Integrals of Complex Valued Functions

Definition 8.25. A measurable function f : X — R is integrable if f, :=
flgssoy and f— = —f 1gp<oy are integrable. We write L' (u;R) for the space
of real valued integrable functions. For f € L' (u;R), let

/fdu= /f+du—/ffdu

Convention: If f, g : X — R are two measurable functions, let f+ g denote
the collection of measurable functions i : X — R such that h(z) = f(z) + g(z)
whenever f(z)+ g(z) is well defined, i.e. is not of the form oo — 0o or —oo + 0.
We use a similar convention for f — g. Notice that if f,g € L!(u;R) and
hi,hs € f + g, then hy = hs a.e. because |f| < co and |g] < oo a.e.

Notation 8.26 (Abuse of notation) We will sometimes denote the integral
Jx fdp by p(f). With this notation we have p (A) = p(14) for all A € B.

Remark 8.27. Since
J <|fI < fe + f-,

a measurable function f is integrable iff [ |f| dup < co. Hence
L' (u;R) := {f : X — R: f is measurable and / |f| dp < oo}.
b'e

If f,g € L' (;R) and f = g a.e. then fo = g+ a.e. and so it follows from
Proposition that [ fdu = [ gdp. In particular if f,g € L' (u;R) we may

define
v ardn= [ na

where h is any element of f + g.

Proposition 8.28. The map
feLll @R~ [ jduer
X

is linear and has the monotonicity property: [ fdp < [gdu for all f,g €
L (;R) such that f < g a.e.
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Proof. Let f,g € L' (4;R) and a, b € R. By modifying f and g on a null set,
we may assume that f, g are real valued functions. We have af +bg € L (u;R)
because
laf +bg| < lal [f] +1b] |9 € L' (4; R).

If a < 0, then
(af)+ = —af and (af)- = —af;

Jar=-afrvafr=a[t-[r)=a]1s

A similar calculation works for ¢ > 0 and the case a = 0 is trivial so we have

shown that
/af = a/f.

Now set h = f +g. Since h =hy — h_,

so that

hy —h_=fy—f-+9+—9g-

or
hy+f-+g9-=h_+fi+g+.
Therefore,
/h++/f,+/g,=/h,+/f++/g+
and hence

fom fru- foom foos fors [ foo= [+ o

Finally if f — f- = f < g=g¢9+ —g_ then fi +g_ < gy + f— which implies

that
/f++/g—§/g++/f—
or equivalently that

1= 5= fofore o

The monotonicity property is also a consequence of the linearity of the integral,
the fact that f < g a.e. implies 0 < g — f a.e. and Proposition [8.19] |

Definition 8.29. A measurable function f : X — C is integrable if
fX |f| du < co. Analogously to the real case, let

Ll(u;(C)::{f:X—>(C: f is measurable and /X\f| du<oo}.
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denote the complex valued integrable functions. Because, max (|Re f|, |[Im f|) <

[fI < V2max ([Re f|, Tm f]), [[f] du < oo iff
/|Ref|du+/\lmf\du<oo.

For f € L (u;C) define

/fdu:/Refdu—i—i/Imfdﬂ.

It is routine to show the integral is still linear on L! (1;C) (prove!). In the
remainder of this section, let L' (i) be either L' (4;C) or L' (u;R). If A € B
and f € L' (u;C) or f: X — [0,00] is a measurable function, let

/A fu = /X Lafdp.

Proposition 8.30. Suppose that f € L (u;C), then

] /X fdu'é /X |fl . (8.7)

Proof. Start by writing [ f du = Re? with R > 0. We may assume that
R = |fX fdu‘ > 0 since otherwise there is nothing to prove. Since

R:e_“’/xf du:/Xe‘i‘gf du:/XRe (e_wf)du—ki/xlm (e7f) du,

it must be that fX Im [e_wf] dp = 0. Using the monotonicity in Proposition
‘ / fdu‘ = [ Re(e ) du< [ |Re(ep)]duz [ Ifldn
X X X X

Proposition 8.31. Let f,g € L' (1), then
1. The set {f # 0} is o — finite, in fact {|f| > L} 1 {f # 0} and p(|f| = 1) <

oo for all n.
2. The following are equivalent

a)fEf:ngforallEGB
b)£|f—g|=0

c) f=gae
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Proof. 1. By Chebyshev’s inequality, Lemma [3.13

ﬂ(|f\2%)§n/X|f\du<oo

for all n.
2. (a) = (c) Notice that

ft=[ae [(=a=0

for all £ € B. Taking E = {Re(f — g) > 0} and using 1gRe(f — g) > 0, we
learn that

OzRe/E(f—g)d,u:/lERe(f—g)=>1ERe(f—g)=Oa.e.

This implies that 1 = 0 a.e. which happens iff

1 ({Re(f —g) > 0}) = u(E) = 0.

Similar p(Re(f—g) < 0) = 0 so that Re(f —g) = 0 a.e. Similarly, Im(f —g) =0
a.e and hence f —g = 0 a.e., i.e. f = g a.e. (c) => (b) is clear and so is (b)

= (a) since
’[Ef—/Eg‘</|f—g|=0.

Definition 8.32. Let (X, B, ) be a measure space and L'(n) = LY (X, B, u)
denote the set of L' (u) functions modulo the equivalence relation; f ~ g iff
f =g a.e. We make this into a normed space using the norm

I =gl = / I~ gldu

and into a metric space using p1(f,q) = ||f — g1 -

Warning;: in the future we will often not make much of a distinction between
L'(u) and L (1) . On occasion this can be dangerous and this danger will be
pointed out when necessary.

Remark 8.85. More generally we may define LP(u) = LP(X, B, ) for p € [1,00)
as the set of measurable functions f such that

/ |fIP dp < o0
X

modulo the equivalence relation; f ~ g iff f =g a.e.
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We will see in later that

1/p
110 = (/ fl”du> for f € LP()

is a norm and (LP(u), [|-||.») is a Banach space in this norm.

Theorem 8.34 (Dominated Convergence Theorem). Suppose fr,gn,g €
L' (u), fo — f ae, |fo] < gn €LY (1), gn — g a-e. and [y gadp — [ gdp.

Then f € L' (1) and
/ fdp = tim / Fudp.
X h—oo [x

(In most typical applications of this theorem g, = g € L () for all n.)

Proof. Notice that |f] = lim,—oo |fn] < limy—oo |gn] < ¢ a.e. so that
f € L' (u). By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,

[ o= D= [ ot (£ ) dp < it [ (g0 ) d
X X n—oe Jx

= lim gndp + lim inf <i/ fndu>

/gdu—i—liminf (:I:/ fnd,u>
X n—o0 X

Since liminf,, o (—a,) = — limsup a,,, we have shown,

n—oo

liminf, o [y fudp
gdui/fdué/gdwr —l
/X . X h}lri sup Jx frdp

and therefore

limsup/ fndu §/ fdp <liminf [ f,dp.
X X X

n— oo n—oo

This shows that lim [, fndu exists and is equal to [ fdpu. m

Exercise 8.4. Give another proof of Propositionby first proving Eq. (8.7)
with f being a simple function in which case the triangle inequality for complex
numbers will do the trick. Then use the approximation Theorem [6.34] along with
the dominated convergence Theorem to handle the general case.
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Proposition 8.35. Suppose that (12,8, P) is a probability space and {Zj}?:l
are independent integrable random wvariables. Then H;‘Zl Z; is also integrable
and

E ﬁzj :ﬁEZj.
j=1 j=1

Proof. By definition, {Z;}"_, are independent iff {c (Z;)}]_, are indepen-
dent. Then as we have seen in a homework problem,

E[la,...14,]=E[1la,]...E[l4,] when A; € 0 (Z;) for each .
By multi-linearity it follows that
Elpr- . on] =E[p]...Elpn]

whenever @; are bounded o (Z;) — measurable simple functions. By approx-
imation by simple functions and the monotone and dominated convergence
theorem,

EY:..V,]=E[Y1]...E[Y,]

whenever Y; is o (Z;) — measurable and either Y; > 0 or Y; is bounded. Taking
Y; = |Z;| then implies that

E[]1Zl| =] E|Z| <
j=1

j=1

so that H?Zl Zj is integrable. Moreover, for K > 0, let ZZK = Z;i1,z,/<k, then

E ] Zitz<x | = [ E[Zi12<x] -
j=1 j=1

Now apply the dominated convergence theorem, n + 1 — times, to conclude

E HZj = KlznooE HZj1|Zj|§K = HKIEHOOE [Zi112,)<x] = HEZj'
=1 J=1

Jj=1 Jj=1

The dominating functions used here are [[7_, |Z;|, and {|Zj|}?:1 respectively.
[

Corollary 8.36. Let {f,},., C L'(u) be a sequence such that
> [ fallrr( < oo, then S0y [ is convergent a.e. and

/X (g fn> dp = g/xfndu-
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Proof. The condition 3777, || fall11(,) < oo is equivalent to 3572 [fu] €

L' (1) . Hence Y°°°, f,, is almost everywhere convergent and if Sy 1= YN f,.,

then N
Sl < STl <3 1l € L ()
n=1 n=1

So by the dominated convergence theorem,

fn d,u:/ lim Sydp = lim / Sndu
/X<ng1 x N—oo N—oo [x

:hmEJ/nw _$Anw.

Ezample 8.37 (Integration of Power Series). Suppose R > 0 and {a,} -, is a
sequence of complex numbers such that Y7 |a,|r" < oo for all r € (0, R).
Then

,6 oo
/ (Z anx"> Z an / " dm(x Z ap———
@ n=0
for all —R < o < 3 < R. Indeed this follows from Corollary [8:36] since
o B s 18] la|
S [ tantel” dama) < S { [ enl o dme) + [ " dm)
n=0"%

n+1 ‘ |n+1 ]

B n
<Z|n|‘ | — <27*Z|an|7“ < 0

n=0

ﬁn-&-l an+1

where r = max(|(], |a]).

Corollary 8.38 (Differentiation Under the Integral). Suppose that J C R
is an open interval and f : J x X — C is a function such that

1.z — f(t,x) is measurable for each t € J.
2. f(to,-) € L*(u) for some to € J.
3. %{(t,x) exists for all (t,x).

4. There is a function g € L' (u) such that

%(t,)’ < g for each t € J.

Then f(t,-) € L*(u) for all t € J (ie. [ |f(t, @) du(z) < o), t —
fX ft, x)du(x) is a differentiable function on J and

;lt/xf(t,x)du(x)Z/)(Z(t,x)dﬂ(x)~
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8.3 Integrals of Complex Valued Functions T

Proof. By considering the real and imaginary parts of f separately, we may
assume that f is real. Also notice that

of

“hty) = Tim nl(f(t+ntw) — (1)

and therefore, for v — %(t, x) is a sequential limit of measurable functions and
hence is measurable for all £ € J. By the mean value theorem,

1f(t,2) — f(to, )] < g(x) |t —to| for all t € J (8.8)
and hence
[f (&, )| < |f(t,x) = fto, 2)| + | f (o, 2)| < g(@) [t —to| + [ f (£0, )] -
This shows f(t,) € L' () for all t € J. Let G(t) := [ f(t,z)du(x), then
G(ti - th(to) -/ f(t,fvl)t = %fo(to,w)dﬂ(x).

By assumption,

im L0 = S0w) O oy age x
t—to t— tO at

and by Eq. (8.8]),

t - f@
W <g(z) forallt € J and x € X.
—to

Therefore, we may apply the dominated convergence theorem to conclude

i =00 _ [ f2)=Sl02), 0
— o

to lim
n—oo t, — to e

:/ f(tmx) f(t0> >du(.’L’)

tn - tO

= [ S tt0.)iua)

for all sequences t, € J\ {to} such that t, — to. Therefore, G(to) =
G(t)=G(to)
t—to

exists and

G(to):Ag—{(to7x)du(1).

1imt_,t0
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Ezample 8.39. Recall from Example [8:8| that

A= / e~ dm(z) for all A > 0.
[0,00)
Let € > 0. For A > 2¢ > 0 and n € N there exists Cp,(g) < oo such that
0< _4 ' e A = g"e M < Ole)e 50,
S{—m <

Using this fact, Corollary [8:38 and induction gives

d\" d\"
-1 _ [ _ 2 -1 _ T —Az
nI\ ( d>\> A /[0700) ( d)\) e "*dm(x)

= / z"e N dm(x).
[0,00)

That is n! = A" [, ne~*dm(z). Recall that

0,00) x
I'(t) = / ' te " dx for t > 0.
[0,00)

(The reader should check that I'(t) < oo for all ¢ > 0.) We have just shown
that I'(n 4+ 1) =n! for all n € N.

Remark 8.40. Corollary may be generalized by allowing the hypothesis to
hold for x € X \ E where E € B is a fixed null set, i.e. E must be independent
of t. Consider what happens if we formally apply Corollary to g(t) :=
fooo ly<tdm(z),

d

. o 7 [0
g(t) = a/{) 1x§tdm($) = A alxgtdm(l‘)

The last integral is zero since 2-1,<; = 0 unless ¢ = z in which case it is not
defined. On the other hand g(t) = ¢ so that ¢(¢) = 1. (The reader should decide
which hypothesis of Corollary has been violated in this example.)

8.4 Densities and Change of Variables Theorems

Exercise 8.5. Let (X, M, u) be a measure space and p : X — [0,00] be a
measurable function. For A € M, set v(A) := [, pdp.

1. Show v : M — [0, ] is a measure.
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2. Let f: X — [0, 00] be a measurable function, show

/X fdv = /X fpdp. (8.9)

Hint: first prove the relationship for characteristic functions, then for sim-
ple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X — C is in L*(v) iff |f|p € L'(n)
and if f € L'(v) then Eq. still holds.

Solution to Exercise (8.5)). The fact that v is a measure follows easily from
Corollary Clearly E holds when f = 14 by definition of v. It then
holds for positive simple functions, f, by linearity. Finally for general f € LT,
choose simple functions, ¢, such that 0 < ¢,, T f. Then using MCT twice we
find

/fdy: lim ppdy = lim / @npdu:/ lim (pnpd,u:/ fpdu.
X n—oo [y n—oo [y x n—00 X

By what we have just proved, for all f: X — C we have

[ vr1de= [ 1f1 0

so that f € L' (u) iff |f]p € L' (w). If f € L' (1) and f is real,

[ [ eav— [ v [ fopau— [ fopdn

:/X[fw*f—p]du:/XfﬂdM

The complex case easily follows from this identity.

Notation 8.41 [t is customary to informally describe v defined in Ezercise[8.5]
by writing dv = pdp.

Exercise 8.6. Let (X, M, 1) be a measure space, (Y, F) be a measurable space
and f : X — Y be a measurable map. Define a function v : F — [0, 00] by
v(A) == u(f~1(A)) for all A € F.

1. Show v is a measure. (We will write v = fopu or v =po f=1)

2. Show
[ odv= [ (g0 nan (3.10)
Y b
for all measurable functions g : ¥ — [0, oo]. Hint: see the hint from Exercise
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3. Show a measurable function g : Y — C is in L'(v) iff go f € L'(u) and
that Eq. (8.10) holds for all g € L!(v).

Solution to Exercise . The fact that v is a measure is a direct check
which will be left to the reader. The key computation is to observe that if A € F
and g = 14, then

/Ygduz/ylAdu:u(A)

Moreover, 1714y (z) = 1iff € f~* (A) which happens iff f (z) € A and hence
Ly—iay (x) =1a(f () = g (f (x)) for all z € X. Therefore we have

/Ygdl/=/x(90f)du

whenever ¢ is a characteristic function. This identity now extends to non-
negative simple functions by linearity and then to all non-negative measurable
functions by MCT. The statements involving complex functions follows as in
the solution to Exercise [R5l

=pn(f71(4) :/)(1f*1(A)dM-

Remark 8.42. If X is a random variable on a probability space, ({2, B, P), and
F(z):=P(X <z). Then

- / f(z)dF (z) (8.11)
R

where dF (z) is shorthand for dup (z) and pp is the unique probability measure
on (R, Bg) such that pp ((—o0,z]) = F (z) for all € R. Moreover if F: R —
[0, 1] happens to be C''-function, then

dur (z) = F' (z)dm (z) (8.12)

and Eq. may be written as
X)) = /R @) F () dm (z). (8.13)

To verify Eq. (8.12) it suffices to observe, by the fundamental theorem of cal-
culus, that

b
F((a,b]):F(b)—F(a):/ F’(x)dx_/( |

From this equation we may deduce that pup (A) = [, F'dm for all A € Bg.
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Exercise 8.7. Let F' : R — R be a C'-function such that F’(z) > 0 for all
x € R and lim, o F(2) = +oo. (Notice that F is strictly increasing so that
F~!:R — R exists and moreover, by the inverse function theorem that F~!

a C! — function.) Let m be Lebesgue measure on Bg and

-1

v(A) =m(F(A)) =m((F~') " (4)) = (F7'm) (4)

for all A € Bg. Show dv = F’'dm. Use this result to prove the change of variable
formula,

/hoF-F’dm = / hdm (8.14)
R R

which is valid for all Borel measurable functions h : R — [0, co].

Hint: Start by showing dv = F’dm on sets of the form A = (a,b] with
a,b € R and a < b. Then use the uniqueness assertions in Exercise to
conclude dv = F'dm on all of Bg. To prove Eq. apply Exercise with
g=hoF and f=F"1

Solution to Exercise (8.7). Let du = F’dm and A = (a,b], then
v((a,0]) = m(F((a,b])) = m((F(a), F(b)]) = F(b) - F(a)

u((a, b)) :/( RE :/ F/(2)dz = F(b) — Fla).

It follows that both 4 = v = up — where pp is the measure described in
Proposition By Exercise [8.6] - with g =ho F and f = F~ !, we find

/hoF Fldm = /hoFdI/—/hoFd(F m):/(hoF)oF_ldm
R

/ hdm.

This result is also valid for all h € L' (m).

while

Lemma 8.43. Suppose that X is a standard normal random variable, i.e.

1
P(XeA)= E/Ae_”z/zdx for all A € Bg,

then

1
e /2 (8.15)

P(X>z)< Wor

ISH

amﬂ

1 See, Gordon, Robert D. Values of Mills’ ratio of area to bounding ordinate and
of the normal probability integral for large values of the argument. Ann. Math.
Statistics 12, (1941). 364-366. (Reviewer: Z. W. Birnbaum) 62.0X
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80 8 Integration Theory

. P(X>2x)
I11_)11010 T, (8.16)
2
Proof. We begin by observing that
1 e 1y _e 11 2 o
P20 = [ e Ry s [ e Ry = e

from which Eq. (8.15) follows. To prove Eq. (8.16)), let o > 1, then

o] 1 axr 1
p(sz):/ me_ywzdyz/ T

e_yQ/Qdy

arq Y 2 1 1 2
> LV Ry = - V2|
_/z e aa y o ar |2
1 1 2 2, 2
- - = —x°/2 —aat/2:|.
V21 ox {6 ©
Hence
ax _2? 2 2 2
P(X>a) _ o gme Py 1 [tz emat2] ~(a2-1)a?/2
1 1 7I2/2 = 1 1 7:E2/2 2 - —182/2 = — |:1 — e .
RV, = Var© « ¢ “

From this equation it follows that

. P(X > z) 1
= > =
hmwglgoi 12 6_12/2 =«

Since a > 1 was arbitrary, it follows that

P(X >
lim inf %;522 =
xr— 00 Eﬁe
Since Eq. (8.15]) implies that
 P(xzw)

we are done.
Additional information: Suppose that we now take
_ 1+aP

_ -p
a=1+z"P= pran

Then
(a2 - 1) % = (1:72}’ + 2;1:7]”) z? = (:c272p + 2z27p) .
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Hence if p =2 — 4, we find
(a2 — 1) 2 = (;1:2(71“;) + 2x‘s> < 32°

so that
P

>

> ) 1

> >
1 e—7?/2 T 1 4 g—(2-9)

{1 B efgzé/z}

8 |

o
3

for x sufficiently large. [

Ezample 8.44. Let {X,,} -, be i.i.d. standard normal random variables. Then

1
P (X, > ac,) ~ e/,

acy

Now, suppose that we take ¢, so that
e—ci/Q — g
n

or equivalently,
/2 =1n(n/0)

or

cn =+/2In(n) —2In (C).
(We now take C' = 1.) It then follows that
1 1

a\/21n(n)ﬁ

1

ay/21n (n)

—a?1n(n) —

P (X, > acy) ~

and therefore -
ZP(XnZacn):ooifa< 1
n=1

and -
ZP(Xn > ac,) < oo if a > 1.
n=1

Hence an application of Proposition [7.35] shows

lim sup =1 a.s..

n— oo

Xy
vV2Inn
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8.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 8.45. Suppose that (X, B, p) is a complete measure spaceﬂ and
f: X — R is measurable.

1. If g : X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2.1If f, - X — R are measurable and f : X — R is a function such that
lim, . fn = f, u - a.e., then f is measurable as well.

Proof. 1. Let £ = {x : f(x) # g(z)} which is assumed to be in B and
w(E) =0. Then g = 1gcf + 1gg since f = g on E°. Now lgcf is measurable
so g will be measurable if we show 1gg¢g is measurable. For this consider,

1,0 JEU(Qgg)Tt(A\{0})if0€ A
(1eg)™ (4) = {(1E9)1(A) if0¢ A (8.17)
Since (1gg)~'(B) ¢ E if 0 ¢ B and p(E) = 0, it follow by completeness
of B that (1gg)~'(B) € B if 0 ¢ B. Therefore Eq. (8.17) shows that 1gg is
measurable. 2. Let E = {z : lim f,(z) # f(z)} by assumption E € B and

w(E) = 0. Since g := 1gf = lim, o Lge frn, ¢ is measurable. Because f = ¢
on E¢ and u(E) =0, f = g a.e. so by part 1. f is also measurable. ]

The above results are in general false if (X, B, 1) is not complete. For exam-
ple, let X = {0,1,2}, B={{0}, {1,2}, X, ¢} and pu = §y. Take g(0) =0, g(1) =
1, g(2) =2, then g = 0 a.e. yet g is not measurable.

Lemma 8.46. Suppose that (X, M, ) is a measure space and M is the com-
pletion of M relative to p and [i is the extension of i to M. Then a function
f:X —Ris (M,B=Bgr) — measurable iff there exists a function g : X — R
that is (M, B) — measurable such E = {z : f(x) # g(x)} € M and i (E) = 0,
i.e. f(x) = g(x) for i — a.e. x. Moreover for such a pair f and g, f € L*(ji) iff

g € L'(u) and in which case
/ fdp = / gdp.
X X

Proof. Suppose first that such a function g exists so that (£) = 0. Since
g is also (M, B) — measurable, we see from Proposition that f is (M, B) —
measurable. Conversely if f is (M, B) — measurable, by considering f+ we may

2 Recall this means that if N C X is a set such that N € A € M and u(A) = 0,
then N € M as well.
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assume that f > 0. Choose (/\;I,B) — measurable simple function ¢,, > 0 such
that ¢, T f as n — oco. Writing

on = ZaklAk

with Ay € M, we may choose By, € M such that Bj, C A, and ji(Ax \ Bx) = 0.

Letting
‘ﬁn = Z a’lek

we have produced a (M, B) — measurable simple function @, > 0 such that
E, = {pn # ¢n} has zero i — measure. Since i (U,E,) < > fi(Ey), there
exists F' € M such that U, E,, C F' and p(F) = 0. It now follows that

lp - Gn=1p -n T g:=1pf asn — oo.

This shows that g = 1pf is (M, B) — measurable and that {f # g} C F has i
— measure zero. Since f = g, i — a.e., [y fdji = [ gdfi so to prove Eq. (8.18)

it suffices to prove
/ gdp = / gdp. (8.18)
X X

Because i = p on M, Eq. is easily verified for non-negative M — mea-
surable simple functions. Then by the monotone convergence theorem and
the approximation Theorem [6.34] it holds for all M — measurable functions
g : X — [0,00]. The rest of the assertions follow in the standard way by con-
sidering (Reg), and (Img), . |

8.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let —0co < a < b < oo and f : [a,b] — R be a
bounded function. A partition of [a,b] is a finite subset © C [a,b] containing
{a,b}. To each partition

r={a=t<t1 <---<t,=0b} (8.19)

of [a, b] let
mesh(7) == max{|t; —t;_1|:j=1,...,n},

M; =sup{f(z) : t; <z <t;j_1}, mj=inf{f(z): t; <x <tj_1}

Gr = f(a)l{a} + ZMjl(tj—lytj}’ Ir = f(a>1{a} + ijl(tjflatj] and
1 1
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82 8 Integration Theory

Sef =Y Mj(t;

Notice that

ti—1) and s f = ij ti—1).

b b
Srf z/ Grdm and s, f z/ grdm.

The upper and lower Riemann integrals are defined respectively by
b a
/ f(z)dx = inf S, f and / f(z)dx = sup s, f.
a 4 Jp a

Definition 8.47. The function f is Riemann integrable iff ftbf = fbf eR

and which case the Riemann integral f: f is defined to be the common value:

/ab f(x)dx = /abf(x)dx = /abf(x)dm

The proof of the following Lemma is left to the reader as Exercise |8.18
Lemma 8.48. If 7’ and w are two partitions of [a,b] and 7 C 7' then
GWZGW/ Zfzgw’ Zgﬂ' (J/de
Sﬂ'f > Srr’f > 57r/f > S‘n'f'

There exists an increasing sequence of partitions {my}p, such that mesh(my) |
0 and

Sﬂk_fl/abf andswka/bf as k — oo.

If we let
G:= klim Gr, and g := klirn G, (8.20)
then by the dominated convergence theorem,

b
/ gdm = lim Gr, = lim sq, f :/ f(z)dz (8.21)

[a.b] h=00 Jlab) koo Ja_

and

)
Gdm = lim Gr, = hm Sro f :/ f(z)de. (8.22)

[a,b] k=00 Jiq,b] a

Notation 8.49 For x € [a,b], let
H(z) = limsup f(y) = lim sup{f(y) : [y —z| <¢, y € [a,b]} and
g

Yy—

Yy—x

h(z) = limint f(y) = lim inf {f(y): ly — o] <=, y € fa.b]).
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Lemma 8.50. The functions H,h : [a,b] — R satisfy:

hz) < f(z) < H(z) for all x € [a,b] and h(zx) =
at x.

2. If {mi } oy is any increasing sequence of partitions such that mesh(my) | 0
and G and g are defined as in Eq. , then

G(x) = H(z) > f(z) = h(z) = g(x) V& ¢ m:= U2 7. (8.23)
(Note 7 is a countable set.)
3. H and h are Borel measurable.
Proof. Let Gy, := G, | G and g :== g, 1 g
1. Tt is clear that h(z) < f(z) < H(z) for all z and H(z) = h(z) iff lim f(y)
exists and is equal to f(z). That is H(xz) = h(x) iff f is continuouéHazC x.

2. For z ¢ m,
Gi(x) > H(z) = f(x) = h(z) = gr(2) V k

and letting £ — oo in this equation implies

G(z) > H(z) > f(z) > hz) > g

Moreover, given ¢ > 0 and = ¢ T,

sup{f(y) : ly —z| < ¢, y € [a,0]} > Gr(x)

for all k large enough, since eventually G (x) is the supremum of f(y) over
some interval contained in [z — €,z 4 ¢]. Again letting k¥ — oo implies

sup f(y) > G(x) and therefore, that
ly—z|<e

H(z) iff f is continuous

(x)Vxé&m. (8.24)

H(z) =limsup f(y) > G(x)
y—
for all x ¢ w. Combining this equation with Eq. (8.24) then implies H(x) =
G(z) if x ¢ m. A similar argument shows that h(x) = g(z) if * ¢ 7 and

hence Eq. is proved.

3. The functions G and ¢ are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set T,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 8.51. Let f : [a,b] — R be a bounded function. Then

b b
/ f:/ Hdm and/ f= hdm (8.25)
a [a,b] Ja_ [a,b]

and the following statements are equivalent:
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1. H(z) = h(zx) for m -a.e. x,
2. the set
E :={xz € [a,b] : f is discontinuous at x}

is an m — null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measumblfﬂ ie. fis L/B -
measurable where L is the Lebesque o — algebra and B is the Borel o — algebra
on [a,b]. Moreover if we let m denote the completion of m, then

b
/ Hdm :/ flx)dx :/ fdm = hdm. (8.26)
[a,b] a [a,b] la,b]

Proof. Let {m},-; be an increasing sequence of partitions of [a,b] as de-
scribed in Lemma and let G and g be defined as in Lemma Since

m(n) =0, H= G a.e., Eq. (8.25)) is a consequence of Egs. (8.21)) and (8.22]).
From Eq. (8.25)), f is Riemann integrable iff

/ Hdm = hdm
la,b] [a,b]

and because h < f < H this happens iff h(z) = H(x) for m - a.e. z. Since
E ={x: H(z) # h(x)}, this last condition is equivalent to F being a m — null
set. In light of these results and Eq. , the remaining assertions including
Eq. are now consequences of Lemma m ]

Notation 8.52 In view of this theorem we will often write f: f(z)dx for
b
[, fdm.

8.7 Exercises

Exercise 8.8. Let i be a measure on an algebra A C 2%, then u(A) + u(B) =
w(AUB) + u(ANB) for all A, B € A.

Exercise 8.9 (From problem 12 on p. 27 of Folland.). Let (X, M,pu)
be a finite measure space and for A,B € M let p(A,B) = pu(AAB) where
AAB = (A\ B)U(B\ A). It is clear that p (A, B) = p(B, A). Show:

1. p satisfies the triangle inequality:
p(A,C)<p(A,B)+p(B,C) forall A,B,C € M.

3 f need not be Borel measurable.
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8.7 Exercises 83
2. Define A ~ B iff u(AAB) = 0 and notice that p (A, B) = 0 iff A ~ B. Show

“~ 7 is an equivalence relation.

3. Let M/ ~ denote M modulo the equivalence relation, ~, and let [A4] :=
{B € M: B~ A}.Show that p([A], [B]) := p (4, B) is gives a well defined
metric on M/ ~ .

4. Similarly show fi ([A]) = p (A) is a well defined function on M/ ~ and show
i (M/~)— Ry is p — continuous.

Exercise 8.10. Suppose that p, : M — [0, 00] are measures on M for n € N.
Also suppose that p,(A) is increasing in n for all A € M. Prove that p: M —
[0, 00] defined by p(A) := lim, 0 pin(A) is also a measure.

Exercise 8.11. Now suppose that A is some index set and for each A € A, uy :
M — [0, 00] is a measure on M. Define 1 : M — [0, 00] by u(A) = >y 4 ua(A)
for each A € M. Show that p is also a measure.

Exercise 8.12. Let (X, M, 1) be a measure space and {4, },—; C M, show

w({A, a.a.}) <liminf u (A,)
and if g (Um>nAm) < oo for some n, then

w({Ay, i.0.}) > limsup p (A,) .

n—00

Exercise 8.13 (Folland 2.13 on p. 52.). Suppose that {f, }, -, is a sequence
of non-negative measurable functions such that f, — f pointwise and

lim [ f,= /f < 0.
Then

/f= im [ f.
E n—oo Jg

for all measurable sets £ € M. The conclusion need not hold if lim,, f fn =
J f. Hint: “Fatou times two.”

Exercise 8.14. Give examples of measurable functions {f,} on R such that
fn decreases to 0 uniformly yet [ f,dm = oo for all n. Also give an example
of a sequence of measurable functions {g,} on [0,1] such that g, — 0 while
J gndm =1 for all n.

Exercise 8.15. Suppose {a,},- . C C is a summable sequence (i.e.
Yoo lan] < o0), then f(6) :== 327 ane™ is a continuous function for
6 € R and
1 (™ .
an = o~ f(@)e~™0qg.
i

—T

macro: svmonob.cls date/time: 12-Mar-2007/12:25



84 8 Integration Theory
Exercise 8.16. For any function f € L' (m), show =« €
R—>f(_oo z]f(t) dm (t) is continuous in z. Also find a finite measure, p,

on Bg such that z — f(foo o f () dp (t) is not continuous.

Exercise 8.17. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is wrong
by a factor of —1 and the sum is on k = 1 to co. In part (e), s should be taken
to be a. You may also freely use the Taylor series expansion

- (27’L— 1 - ( n
(1—2)"1% = Z oo Z4n 22 for |z| < 1.

n=0 n=0

Exercise 8.18. Prove Lemma [R.48

8.7.1 Laws of Large Numbers Exercises

For the rest of the problems of this section, let (2,5, P) be a probability
space, {X,,},—, be a sequence if i.i.d. random variables, and S,, := Y ;_, Xj.
IHE|X, =E|X;| <oolet

u:=EX, — be the mean of X,
if E {|Xn\2] =E {|X1|2] < 0, let
o?:=FE {(Xn — M)Z} =E [XZ] — 12 — be the standard deviation of X,
and if E [|Xn|4} < 00, let

v:=E D}Yn "ﬁ44}~

Exercise 8.19 (A simple form of the Weak Law of Large Numbers).
Assume E [|X1|2} < 00. Show

5+
n

2 2
E<Sn—,u) :U—, and

for all e > 0 and n € N.
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Exercise 8.20 (A simple form of the Strong Law of Large Numbers).
Suppose now that E [|X1|4} < 00. Show for all € > 0 and n € N that

E l(s“ - u) 41 % (ny +3n(n — 1)0*)

% [n_lfy +3 (1 — n_l) 04}

and use this along with Chebyshev’s inequality to show

-1 _ o —1) 4
P(‘?—H'>€>Sn Y+3(1-n )0‘.

a2

Conclude from the last estimate and the first Borel Cantelli Lemma [8.22] that
lim,, oo 57" = [ a.s.
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9

Functional Forms of the m — A Theorem

Notation 9.1 Let 2 be a set and H be a subset of the bounded real valued
functions on H. We say that H is closed under bounded convergence if; for
every sequence, { f,},~, C H, satisfying:

1. there exists M < oo such that |fn, (w)| < M for allw € 2 and n € N,
2. [ (w):=limy, .o fn (w) exists for all w € £,

then f € H. Similarly we say that H is closed under monotone conver-
gence if; for every sequence, {f,} —, C H, satisfying:

1. there exists M < 0o such that 0 < fp, (W) < M for allw € 2 and n € N,
2. fn (w) is increasing in n for all w € 2,

then f:=lim, . f, € H.

Clearly if H is closed under bounded convergence then it is also closed under
monotone convergence.

Proposition 9.2. Let {2 be a set. Suppose that H is a wvector subspace of
bounded real valued functions from (2 to R which is closed under mono-
tone convergence. Then H is closed under uniform convergence. as well, i.e.
{fn}or, C H with sup, ey Supyeq | fn (w)| < 00 and f, — f, then f € H.

Proof. Let us first assume that {f,} —, C H such that f, converges uni-
formly to a bounded function, f : 2 — R. Let | f||, := sup,ecpn |f (w)|. Let
e > 0 be given. By passing to a subsequence if necessary, we may assume
If = fallo < €270, Let

Gn = fn—0n+M
with §,, and M constants to be determined shortly. We then have
In+1 — Gn = fn—i—l - fn + 511 - 5n+1 Z 7527(n+1) + 5n - 6n+1~

Taking d,, := 27", then §,, — 0,11 =27 (1 —1/2) = €2~ (1) in which case
gn+1 — gn > 0 for all n. By choosing M sufficiently large, we will also have
gn > 0 for all n. Since H is a vector space containing the constant functions,
gn € H and since g, T f + M, it follows that f = f + M — M € H. So we have
shown that H is closed under uniform convergence. ]

Theorem 9.3 (Dynkin’s Multiplicative System Theorem). Suppose that
H is a vector subspace of bounded functions from §2 to R which contains the
constant functions and is closed under monotone convergence. If M is mul-
tiplicative system (i.e. M is a subset of H which is closed under pointwise
multiplication), then H contains all bounded o (M) — measurable functions.

Proof. Let
L={AC:14€H}.
We then have 2 € L since 1, =1 € H, if A, B € L with A C B then B\ A€ L
since 1gp\4 = 1p — 14 € H, and if A,, € £ with 4, T A, then A € £ because
la, € Hand 14, T 14 € H. Therefore £ is A — system.
Let ¢, () = 0V [(nx) A 1] (see Figure below) so that ¢, (z) T lzso-
Given f1, fo,..., fx € M and aq,...,a; € R, let

k
F, = H‘Pn (.fz - ai)
=1

and let

M= sup sup|fi () — ail
i=1,.

By the Weierstrass approximation Theorem we may find polynomial func-
tions, p; (z) such that pl — (,, uniformly on [—M, M].Since p; is a polynomial
it is easily seen that HZ 1 Do (fi — a;) € H. Moreover,

le o(f; —a;) — F, uniformly as | — oo,

from with it follows that F}, € H for all n. Since,

k

£ T H 1{f1?>‘171} = 1ﬁf:1{fi>ai}
i=1

it follows that 1x (4,54,3 € H or equivalently that Nk, {fi > a;} € L. There-
fore £ contains the 7 — system, P, consisting of ﬁmte intersections of sets of
the form, {f > a} with f € M and a € R.
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i

Fig. 9.1. Plots of 1, 2 and 3.

As a consequence of the above paragraphs and the m — A theorem, £ contains
o (P) = o (M) . In particular it follows that 14 € H for all A € ¢ (M). Since
any positive o (M) — measurable function may be written as a increasing limit
of simple functions, it follows that H contains all non-negative bounded o (M) —
measurable functions. Finally, since any bounded o (M) — measurable functions
may be written as the difference of two such non-negative simple functions, it
follows that H contains all bounded o (M) — measurable functions. ]

Corollary 9.4. Suppose that H is a vector subspace of bounded functions from
2 to R which contains the constant functions and is closed under bounded con-
vergence. If M is a subset of H which is closed under pointwise multiplication,
then H contains all bounded o (M) — measurable functions.

Proof. This is of course a direct consequence of Theorem [0.3] Moreover,
under the assumptions here, the proof of Theorem simplifies in that Propo-
sition [9.2] is no longer needed. For fun, let us give another self-contained proof
of this corollary which does not even refer to the 7 — A theorem.

In this proof, we will assume that H is the smallest subspace of bounded
functions on {2 which contains the constant functions, contains M, and is closed
under bounded convergence. (As usual such a space exists by taking the inter-
section of all such spaces.)

For f € H, let Hf := {g € H: gf € H}. The reader will now easily verify
that H/ is a linear subspace of H, 1 € H/, and H/ is closed under bounded
convergence. Moreover if f € M, then M C H/ and so by the definition of H,
H=H’, ie fgcHforall fcMandgeH. Having proved this it now follows
for any f € H that M C H/ and therefore fg € H whenever f,g € H, i.e. H is
now an algebra of functions.

We will now show that B := {A C 2: 14 € H} is o — algebra. Using the fact
that H is an algebra containing constants, the reader will easily verify that B is
closed under complementation, finite intersections, and contains {2, i.e. B is an
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algebra. Using the fact that H is closed under bounded convergence, it follows
that B is closed under increasing unions and hence that B is o — algebra.
Since H is a vector space, H contains all B — measurable simple functions.
Since every bounded B — measurable function may be written as a bounded limit
of such simple functions, it follows that H contains all bounded B — measurable
functions. The proof is now completed by showing B contains o (M) as was done
in second paragraph of the proof of Theorem 9.3 ]

Exercise 9.1. Let (§2, B, P) be a probability space and X,Y : {2 — R be a pair
of random variables such that

Elf(X)g(V)]=E[f(X)g(X)]

for every pair of bounded measurable functions, f,g : R — R. Show
P (X =Y)=1. Hint: Let H denote the bounded Borel measurable functions,
h : R? — R such that

Er(X,Y)]=E[h(X,X)].

Use Corollary [9.4] to show H is the vector space of all bounded Borel measurable
functions. Then take h (z,y) = 1=y

Corollary 9.5. Suppose H is a real subspace of bounded functions such that
1 € H and H is closed under bounded convergence. If P C 22 is a multiplicative
class such that 14 € H for all A € P, then H contains all bounded o(P) —
measurable functions.

Proof. Let M = {1}U{14 : A € P}. Then M C H is a multiplicative system
and the proof is completed with an application of Theorem [

Ezample 9.6. Suppose p and v are two probability measure on ({2, B) such that

/Q fdp = /Q fdv (9.1)

for all f in a multiplicative subset, M, of bounded measurable functions on {2.
Then p = v on o (M) . Indeed, apply Theorem with H being the bounded
measurable functions on {2 such that Eq. olds. In particular if M =
{1} U{l4 : A € P} with P being a multiplicative class we learn that y = v on
cM)=0c(P).

Corollary 9.7. The smallest subspace of real valued functions, H, on R which
contains C. (R,R) (the space of continuous functions on R with compact sup-
port) is the collection of bounded Borel measurable function on R.
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Proof. By a homework problem, for —co < a < b < 00, 1,3 may be
written as a bounded limit of continuous functions with compact support from
which it follows that o (C.(R,R)) = Bg. It is also easy to see that 1 is a bounded
limit of functions in C.(R,R) and hence 1 € H. The corollary now follows by
an application of The result now follows by an application of Theorem with
M := C.(R,R). (]

For the rest of this chapter, recall for p € [1,00) that LP(u) = LP(X, B, ) is
the set of measurable functions f : 2 — R such that || f||, = ([ |f|" du) Yr
oo. It is easy to see that [|Af][, = [A[[|f]|, for all A € R and we will show below
that

1f +gll, < If1l, + llgll, for all f,g € LP (n),

Le. [, satisfies the triangle inequality.

Theorem 9.8 (Density Theorem). Let p € [1,00), (2,8, 1) be a measure
space and M be an algebra of bounded R — wvalued measurable functions such
that

1.McC L? (u,R) and o (M) = B.
2. There exists 1, € M such that ¥ — 1 boundedly.

Then to every function f € LP(u,R), there exist @, € M such that
lim, o0 ||f — gpn||Lp(H) =0, i.e. M is dense in L? (u,R).

Proof. Fix k£ € N for the moment and let H denote those bounded B —
measurable functions, f : 2 — R, for which there exists {¢,},.; C M such
that lim, o ||gf — <pn||Lp(M) = 0. A routine check shows H is a subspace of
the bounded measurable R — valued functions on (2, 1 € H, M C H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn € H and f,, — f boundedly. Then, by the dominated convergence theorem,
Hmy, oo Y% (f = fr)ll Loy = O[| (Take the dominating function to be g =
[2C |9 |]” where C is a constant bounding all of the {|f,|} —,.) We may now
choose ¢;, € M such that [[¢n — ¥k full 1o, < 1 then

lim sup [0S — @nll gy <lim sup [k (f = )l g

n—oo

+lim sup [[xfn — nllzogy =0 (9.2)

n— oo

which implies f € H.

An application of Dynkin’s Multiplicative System Theorem[9.3] now shows H
contains all bounded measurable functions on (2. Let f € LP (u) be given. The
dominated convergence theorem implies limg_, o Hz/Jkl{mSk}f — fHLP(m = 0.

L It is at this point that the proof would break down if p = co.
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(Take the dominating function to be g = [2C | f|]” where C' is a bound on all of
the |¢x|.) Using this and what we have just proved, there exists ¢, € M such
that

1
[t f = enll gy < 7

The same line of reasoning used in Eq. (9.2) now implies
limg—oo [|f — SﬁkHLP(M) =0. u

Ezample 9.9. Let p be a measure on (R, Bg) such that u ([—M, M]) < oo for all
M < oo. Then, C. (R,R) (the space of continuous functions on R with compact
support) is dense in LP (u) for all 1 < p < co. To see this, apply Theorem
with M = C. (R, R) and 9y, := 1{_ .

Theorem 9.10. Suppose p € [1,00), A C B C 29 is an algebra such that
o(A) = B and p is o — finite on A. Let S(A, ) denote the measurable simple
functions, ¢ : 2 — R such {p =y} € A for ally € R and u({¢ # 0}) < oc.
Then S(A, 1) is dense subspace of LP(u).

Proof. Let M := S(A, ). By assumption there exists {2, € A such that
w(2;) <ooand 2, 1 RPask — oco. If A € A, then 2;NA € Aand u (2: N A) <
oo so that 1o, na € M. Therefore 14 = limg_o0 12, n4 is 0 (M) — measurable
for every A € A. So we have shown that A C o (M) C B and therefore B =
o (A) C o (M) C B, ie. o (M) = B. The theorem now follows from Theorem [9.8]
after observing ¢y, := 1, € M and ¢ — 1 boundedly. [

Theorem 9.11 (Separability of LP — Spaces). Suppose, p € [1,00), A C B
is a countable algebra such that c(A) = B and p is o — finite on A. Then LP(p)
is separable and

D={> ajla, :a; € Q+iQ, A; € A with u(A;) < o}
is a countable dense subset.

Proof. It is left to reader to check D is dense in S(A, ) relative to the LP(p)
— norm. Once this is done, the proof is then complete since S(A, 1) is a dense
subspace of LP (i) by Theorem ]

Notation 9.12 Given a collection of bounded functions, M, from a set, {2, to
R, let My (M) denote the the bounded monotone increasing (decreasing) limits
of functions from M. More explicitly a bounded function, f : 2 — R is in My
respectively M| iff there exists f, € M such that f, T f respectively f, | f.

Theorem 9.13 (Bounded Approximation Theorem). Let (2,8, 4) be a
finite measure space and M be an algebra of bounded R — valued measurable
functions such that:
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1.0 (M) =B,
2.1eM, and
3. |f| €M for all f € M.

Then for every bounded o (M) measurable function, g : 2 — R, and every

iel e >0, there exists f € M| and h € My such that f < g <h and u(h— f) <e.

n
to
of

3.

Proof. Let us begin with a few simple observations.

1. M is a “lattice” — if f,g € M then

fUg=5(f+g+lf—g)eM

and L
frg=5(f+g—If—gl) €M

If f,geM; or f,g € M| then f 4 g € Mj or f+ g € M respectively.

.IfEX>0and feM; (f e M), then A\f € My (Af € M)).

. If f € My then —f € M| and visa versa.

. If f,, € My and f,, T f where f : 2 — Ris a bounded function, then f € M;.
Indeed, by assumption there exists f, ; € M such that f,; T f, as ¢ — oc.
By observation (1), g, := max {f;; : {,j < n} € M. Moreover it is clear that
gn <max{fr: k <n}=f, < fandhence g, T ¢ :=lim,_ g, < f. Since
fij < g for all 4,, it follows that f, = lim; . fn; < g and consequently
that f = lim, o fr < g < f. So we have shown that g, T f € M;.

Tk W N

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M C H and in fact it is also easy
to see that M; and M| are contained in H as well. For example, if f € My, by
definition, there exists f, € Ml C M such that f,, T f. Since M| > f,, < f <
feM; and p(f — fn) — 0 by the dominated convergence theorem, it follows
that f € H. As similar argument shows M| C H. We will now show H is a
vector sub-space of the bounded B = ¢ (M) — measurable functions.

H is closed under addition. If g; € H for i = 1,2, and ¢ > 0 is given, we
may find f; € M| and h; € My such that f; < g; < h; and pu (h; — f;) < ¢e/2 for
i=1,2.Sinceh=hy +hoeMy, f:=fi+foeM|, f<g1+92<h,and

p(h—f)=plhs— f1) +u(he — f2) <e,

it follows that g; + go € H.

H is closed under scalar multiplication. If g € H then A\g € H for all
A € R. Indeed suppose that € > 0 is given and f € M| and A € M such that
f<g<hand p(h—f)<e Thenfor A >0, M| 3 Af < Ag < Ah € M; and

(M= Af) =M (h— f) < Ae.
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Since ¢ > 0 was arbitrary, if follows that Ag € H for A > 0. Similarly, M| >
—h < —g< —feM;and

w(=f = (=h))

which shows —g € H as well.

Because of Theorem to complete this proof, it suffices to show H is
closed under monotone convergence. So suppose that g, € H and g,, T g, where
g : 2 — R is a bounded function. Since H is a vector space, it follows that
0 <6p = gnt1 —gn € H for all n € N. So if € > 0 is given, we can find,
M, 3 u, < 6, < v, € My such that p (v, — uy,) < 27 "¢ for all n. By replacing
Up, by un, VO € M (by observation 1.), we may further assume that u, > 0. Let

=p(h—f)<e

vi= Z v, =1 hm Z vy, € My (using observations 2. and 5.)

n=1

and for N € N, let

N
N= Z un, € M (using observation 2).

n=1
Then
Z5n: lim Z5n: hm (Gnp1—91)=9—a
n=1

and vV < g — g1 < v. Moreover,

vfu Zu n — Un) i (Vn <Z<€2 "+ Z Un)
n=N+1 n=N+1
<e+ Z M(Un)'
n=N+1

However, since

Zﬂ (vn) gz (O +227") = 1 (6n) +2p(R2)
= n=1

Z p(g—g1) +en () < oo,

it follows that for N € N sufficiently large that Y " .|yt (vn) < e. Therefore,
for this N, we have u (v —ulv ) < 2e and since € > 0 is arbitrary, if follows
that g — g1 € H. Since g1 € H and H is a vector space, we may conclude that
g=(9-91)+g €M u
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Theorem 9.14 (Complex Multiplicative System Theorem). Suppose H
is a complex linear subspace of the bounded complex functions on 2,1 € H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M C H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued o(M)-measurable functions.

Proof. Let My = spans(MU {1}) be the complex span of M. As the reader
should verify, M is an algebra, My C H, M is closed under complex conjuga-
tion and o (M) = o (M) . Let

HF .= {f € H: f is real valued} and
ME := {f € My : f is real valued} .

Then HF is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and M C HE. Moreover, M is a multiplicative
system (as the reader should check) and therefore by Theorem H® contains
all bounded o (M) — measurable real valued functions. Since H and M are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = %(f—i—f) and Im f = %(f—f) are in H or
M respectively. Therefore My = M + iM{, o (M§) = o (Mp) = o (M), and
H = H® 4 iH®. Hence if f : 2 — C is a bounded o (M) — measurable function,
then f = Re f +4Im f € H since Re f and Im f are in HE. [






10

Multiple and Iterated Integrals

10.1 Iterated Integrals

Notation 10.1 (Iterated Integrals) If (X, M,u) and (Y,N,v) are two
measure spaces and f : X xY — C is a M @ N - measurable function, the
iterated integrals of f (when they make sense) are:

[ auta) [ s = [ | [ ena] due)

[ avt) [ autorsn) = [ [ /. f(x,y>du<x>] v (y).

Notation 10.2 Suppose that f : X — C and g : Y — C are functions, let f®g
denote the function on X XY given by

f@g(z,y) = f(x)g(y).

Notice that if f, g are measurable, then f® g is (M @ N, Bc) — measurable.
To prove this let F(z,y) = f(x) and G(x,y) = g(y) so that f ® g = F - G will
be measurable provided that F' and G are measurable. Now F' = f o m; where
m : X XY — X is the projection map. This shows that F' is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

and

10.2 Tonelli’s Theorem and Product Measure

Theorem 10.3. Suppose (X, M, ) and (Y,N,v) are o-finite measure spaces
and f is a nonnegative (M @ N, Br) — measurable function, then for eachy €Y,

v — f(z,y) is M — Bjg,oc] measurable, (10.1)

for each x € X,
y — f(z,y) is N — Bjo,oc] measurable, (10.2)

x —>/ [z, y)dv(y) is M — By o] measurable, (10.3)
Y

y —>/ f(x,y)dp(z) is N~ Big o) measurable, (10.4)
X

and

@) [ avwran = [ avt) [ )@ 005)
Proof. Suppose that E=Ax B€ £ := M x N and f = 1g. Then
f(y) =1axp(z,y) = 1a(z)1p(y)
and one sees that Egs. and hold. Moreover
| fenav) = [ 1a@iaay) = 1a@wms),
Y Y

so that Eq. (10.3)) holds and we have

/ dyu(z) / dv(y) f(z.y) = v(B)u(A). (10.6)
X Y
Similarly,
/X f(.y)dp(z) = u(A)1p(y) and
[ avtw) [ duta)s(e.) = vBIn(4)
Y X

from which it follows that Eqgs. and hold in this case as well.

For the moment let us now further assume that ;(X) < oo and v(Y) < oo
and let H be the collection of all bounded (M ® N, Bg) — measurable functions
on X x Y such that Egs. - hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence the-
orem (the dominating function always being a constant), one easily shows that
H closed under bounded convergence. Since we have just verified that 1 € H
for all F in the m — class, &, it follows by Corollary that H is the space
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of all bounded (M ® N, Bgr) — measurable functions on X x Y. Moreover, if
f: X xY —[0,00] is a (M ®@N,Bg) — measurable function, let foy = M A f
so that fa; 1 f as M — oo. Then Egs. —~ hold with f replaced by
far for all M € N. Repeated use of the monotone convergence theorem allows
us to pass to the limit M — oo in these equations to deduce the theorem in the
case p and v are finite measures.

For the o — finite case, choose X,, € M, Y,, € N such that X,, 1 X, Y, 1Y,
w(Xy) < oo and v(Y,) < oo for all m,n € N. Then define p,, (A) = p(X,, N A)
and v, (B) = v(Y,NB) for all A € M and B € N or equivalently du,, = 1x, du
and dv, = ly, dv. By what we have just proved Egs. - with
u replaced by g, and v by v, for all (M ® N,Bg) — measurable functions,
f: X xY — [0, 00]. The validity of Egs. - then follows by passing
to the limits m — oo and then n — oo making use of the monotone convergence
theorem in the following context. For all u € LT (X, M),

/udum:/ uled,uT/ udp, as m — oo,
X X X
and for all and v € LT (Y, N),

/Ud,un:/vlynduT/vdu as n — oo.
Y Y Y

Corollary 10.4. Suppose (X, M,u) and (Y,N,v) are o - finite measure
spaces. Then there exists a unique measure T on M QN such that 7(A x B) =
w(A)v(B) for all A € M and B € N. Moreover  is given by

n(E) = /X dpu(z) /Y () Le(z,y) = /Y du(y) /X dp(@)lp(ey)  (10.7)

foral E€ M QN and w is o — finite.

Proof. Notice that any measure 7 such that 7(A x B) = u(A)v(B) for
all A € M and B € N is necessarily o — finite. Indeed, let X,, € M and
Y, € N be chosen so that u(X,) < oo, v(¥,) < 0o, X;, 1 X and Y,, 1Y,
then X, xY, e MN, X, xY, 1 X xY and (X, xY,,) < oo for all n.
The uniqueness assertion is a consequence of the combination of Exercises |4.5
and Proposition with &€ = M x N. For the existence, it suffices to
observe, using the monotone convergence theorem, that 7 defined in Eq.
is a measure on M ® N. Moreover this measure satisfies 7(A x B) = u(A)v(B)
for all A€ M and B € N from Eq. (10.6). n

Notation 10.5 The measure 7w is called the product measure of pu and v and
will be denoted by p & v.
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Theorem 10.6 (Tonelli’s Theorem). Suppose (X, M,u) and (Y,N,v) are
o — finite measure spaces and ™ = p @ v is the product measure on M @ N.
Iffe LY (X xY,M®N), then f(-,y) € LT (X, M) for ally € Y, f(z,-) €
LY (Y,N) for all z € X,

/ Fw)duly) € L (X, M), / f(x, du(x) € L*(Y,N)

and

/Xxyf d”:/xd/*(x)/de(y)f(:v,y) (10.8)
= /Y dv(y) /X dp(z) f(z,y). (10.9)

Proof. By Theorem and Corollary the theorem holds when
f =1 with E € M ® N. Using the linearity of all of the statements, the
theorem is also true for non-negative simple functions. Then using the mono-

tone convergence theorem repeatedly along with the approximation Theorem
one deduces the theorem for general f € LT (X X Y, M @ N). [

Ezxample 10.7. In this example we are going to show, I := fR e~ /2dm (x) =
v 27. To this end we observe, using Tonelli’s theorem, that

o [ /R = 2, (@} o /R eV { /R e 2dm (x)} dm ()

where m? = m ® m is “Lebesgue measure” on (RQ, Br: = B ® BR) . From the

monotone convergence theorem,

2= i [ e )
R

where Dp = {(#,y) : 2> + y*> < R?} . Using the change of variables theorem
described in Section below [T we find

/ e (@ +°)/2g (z,y) =/ e 2rdrdd
Dr (0,R) x (0,27)
R 2 2
:271'/ efr/zrdrz27r<1—efR/2).
0

L Alternatively, you can easily show that the integral J D fdm? agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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From this we learn that

as desired.

10.3 Fubini’s Theorem

The following convention will be in force for the rest of this section.

Convention: If (X, M, u) is a measure space and f : X — C is a mea-
surable but non-integrable function, i.e. f « [fldpu = oo, by convention we will
define [, fdu := 0. However if f is a non-negative function (i.e. f : X — [0, 00])
is a non-integrable function we will still write [  fdp = oo.

Theorem 10.8 (Fubini’s Theorem). Suppose (X, M,pu) and (Y,N,v) are
o — finite measure spaces, 1 = u ® v is the product measure on M @ N and
f:XxY —CisaM®N — measurable function. Then the following three
conditions are equivalent:

/ |f|dr < oo, i.e. f € LY(m), (10.10)
XxY
/ </ If(ﬂc,y)ldV(y)) du(z) < oo and (10.11)
x \Jy
[ ([ e mlau ) ant) < o (1012)
v \JXx
If any one (and hence all) of these condztwn hold, then f(z ) € Ll( ) for p-a.e.
xf(,y)GLl()forl/ae y,fy y)dv(y GL1 fX u(z) € LY (v)

and Egs. and (-) are still valzd

Proof. The equivalence of Egs. (10.12)) is a direct consequence of
Tonelli’s Theorem [10.6} u Now suppose f € L1(7r) is a real valued function and
let

E = {xEX:/Y|f(3:,y)|dV(y)—oo}. (10.13)

Then by Tonelli’s theorem, 2 — [, |f (z,y)|dv (y) is measurable and hence
E € M. Moreover Tonelli’s theorem implies

/X[/Y|f(x,y)|dz/(y)] du(gc):/xxy|f|dﬁ<oo

which implies that u (F) = 0. Let f1 be the positive and negative parts of f,
then using the above convention we have
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/ f (@, y)dv (y) = / 1 (2) f (2,9) dv (y)
Y Y
- /Y Lpe (2) Ufy (29) — f- (@ 9)] dv ()

= [ 1@ @) = [ 1o @1 @),
(10.14)
Noting that 1ge (z) f+ (z,y) = (1ge ® 1y - f1) (z,y) is a positive M @ N —
measurable function, it follows from another application of Tonelli’s theorem

that x — fo(x,y) dv (y) is M — measurable, being the difference of two
measurable functions. Moreover

@ dute) < [ | [ 17 @l )] doe) < o0

which shows fY y)dv(y) € L'(u). Integrating Eq. (10.14) on x and using
Tonelli’s theorem repeatedly implies,

/X {/Yf(x,y) dv (y)} dy ()

= [ dux) | dv(y)lge @) fr (2,9) — | du(z) | dv(y)lge (@) f- (z,y)
fomo |, RIS
~ [ [ @1 @) e = [ ) [ du@)1s @1 @)
= [ dv(y) | du(@)fy (zy)— [ dv(y) | dp(z)f-(z,y)

favo ], faro ],

which proves Eq. (10.8]) holds.
Now suppose that f = u+iv is complex valued and again let E be as in Eq.
(10.13)). Just as above we still have E € M and u (E) = 0. By our convention,

| Famae) = [ 1o @ @ndm = [ 16 @+ i@l o)
:/YlEc (x)u(x,y)du(y)—l—i/ylEc(x)v(x,y)du(y)

which is measurable in x by what we have just proved. Similarly one shows

Jy f( (y) € L' (1) and Eq. (10.8) still holds by a computation similar to
that done in Eq (10.15)). The assertions pertaining to Eq. (10.9) may be proved
in the same way. ]

The previous theorems have obvious generalizations to products of any finite
number of ¢ — finite measure spaces. For example the following theorem holds.
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Theorem 10.9. Suppose {(X;, My, ui)};—, are o — finite measure spaces

and X = X1 X --- X X,. Then there exists a unique measure, T, on
(X, My ®---®@M,,) such that

m(Ap X - x Ap) = p1(Ar) ... un(Ay) for all A; € M,.

(This measure and its completion will be denoted by 1 ® -+ @ pn.) If f: X —
[0,00] is a M1 ® -+ - ® M,, — measurable function then

[tan= [ o) [ Aot (om) flaren) (10.16)
X X1 X

o(n)

where o is any permutation of {1,2,...,n}. This equation also holds for any
f € LY(n) and moreover, f € L' () iff

/X dﬂo’(l)(xo(l))"'/ dlu‘o(n)(xa(n)) |f(x177:17n)| < o0
(1)

o(n)
for some (and hence all) permutations, o.

This theorem can be proved by the same methods as in the two factor case,
see Exercise Alternatively, one can use the theorems already proved and
induction on n, see Exercise [I0.5in this regard.

Proposition 10.10. Suppose that {Xk}Z:1 are random variables on a prob-
ability space (£2,B,P) and p, = P o Xk_1 s the distribution for Xy for
k= 1,2,....n, and m := Po (Xl,...,Xn)_1 is the joint distribution of
(X1,...,X,). Then the following are equivalent,

1. {Xy};_, are independent,
2. for all bounded measurable functions, f: (R™, Bgn) — (R, Br),

Ef (X1,...,Xn) = fx1, . yzn)dpy (1) .. dpn (z), (taken in any order)
]R'n.

(10.17)
and

ST = @2 ® @ fin-

Proof. (1 = 2) Suppose that {X;},_, are independent and let H denote
the set of bounded measurable functions, f : (R™, Bg») — (R, Bg) such that Eq.
holds. Then it is easily checked that H is a vector space which contains
the constant functions and is closed under bounded convergence. Moreover, if
f=14,x...xa, where A, € Bg, we have
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Ef(X1,...,Xn)=P((X1,...,Xpn) € A1 X --- X A4,)
=[IPx;e4)=T]m )
Jj=1 j=1
= flxy, .. zn)dpy (21) .. dpn (z5) -
]R’n
Therefore, H contains the multiplicative system, M := {14, x...xa, : 4; € Br}
and so by the multiplicative systems theorem, H contains all bounded o (M) =

Bgr~» — measurable functions.
(2 = 3) Let A € Bgn and f =14 in Eq. (10.17) to conclude that

W(A):P((XlavXn) GA):ElA(X17"'aXn)

:/n1A<x1,...,xn>dm(xl)...dumn):wl@--o@un)m).

(3 = 1) This follows from the identity,

P((X1,...,Xp) € Ay x -+ x Ap) =7 (A x - x An) = [ [ 1y (4))
j=1

P(X; € 4j),
1

n

J

which is valid for all A; € Bg. ]
Ezample 10.11 (No Ties). Suppose that X and Y are independent random vari-
ables on a probability space (£2, B, P) . If F' (z) := P (X < z) is continuous, then
P(X =Y)=0. To prove this, let p(A) :=P(X € A)andv(A)=P(Y € A).
Because F' is continuous, p ({y}) = F (y) — F (y—) = 0, and hence

P(X=Y)=E[l{x=y}] = /R Lppd (@ v) (2,9)
~ [ ) [ an@1imp = [ nt) v )
= /RO dv (y) = 0.

Ezxample 10.12. In this example we will show

X M gin g
lim
M—oo 0 X

dx = 7/2. (10.18)

To see this write % = fooo et dt and use Fubini-Tonelli to conclude that
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:/ e (1—teMsinM — e M cos M) dt
0

wherein we have used the dominated convergence theorem (for instance, take
g(t) = th (1+te” ~1)) to pass to the limit.

The next example is a refinement of this result.

Ezxample 10.13. We have

/ ST Az gy = 37~ arctan A for all A > 0 (10.19)
0 X

and forA, M € [0, 0),

—MA
e
<C

M .
1
/ ST Az gy o + arctan A (10.20)
0

X

where C' = max;>¢ 11;:—;2 = 2\/%_2 =~ 1.2. In particular Eq. (10.18) is valid.

To verify these assertions, first notice that by the fundamental theorem of

calculus,
xT xr T
sinal = | [ cosyay| < [ eosstan| < | [“1s] = i
0 0 0

so [#22] < 1 for all x # 0. Making use of the identity

/ e dt =1/x
0

and Fubini’s theorem,
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M oo
sinx _ _
/ ey = dxsmme Am/ Lt
0

T
M
/ dt/ dx sin g e~ (ATt

7/0017 (cos M + (A +t)sin M) e~ (A“)dt
0 (A + ) +1

o (A+t)+1 0 (A+1)?+

1

=57 arctan A — (M, A) (10.21)
where Mo (At M
- [0 i
0 (A+1)+1

Since

cos M + (A+t)sin M < 14+ (A+1) <
(A+1)°+1 T (A1

e8] —MA
(M, 4)] < / M@+ gy — o
0 M

This estimate along with Eq. (10.21)) proves Eq. (10.20)) from which Eq. (10.18]

follows by taking A — oo and Eq. (10.19)) follows (using the dominated conver-
gence theorem again) by letting M — oo.

Note: you may skip the rest of this chapter!

10.4 Fubini’s Theorem and Completions
Notation 10.14 Given E C X XY and x € X, let
E={yeY :(x,y) € E}.
Similarly if y € Y is given let
E,:={zeX:(z,y) € E}.

If f : X xY — C is a function let f = f(x,:) and fY := f(-,y) so that
fz: Y —=Cand f¥: X — C.
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96 10 Multiple and Iterated Integrals

Theorem 10.15. Suppose (X, M, ) and (Y,N,v) are complete o — finite
measure spaces. Let (X XY, L, \) be the completion of (X XY, MQN,u®v). If
f is L — measurable and (a) f >0 or (b) f € L*(\) then f, is N' — measurable
for p a.e. x and fY is M — measurable for v a.e. y and in case (b) f. € L*(v)
and f¥ € L*(u) for u a.e. x and v a.e. y respectively. Moreover,

(ZH/YfﬂdI/> € L' (u) and (yﬂ/xfydu) c L' (v)
/Xxyfd)\z/ydu/Xduf:/Xdu/yduf.

Proof. f Fe M®N is a p @ v null set (i.e. (u® v)(E) =0), then

and

0= (e (E) = [viBydu(e) = [ w(E,)v(y).

X X

This shows that

p{z v E) # 0}) = 0 and v({y : p(Ey) # 0}) =0,

ie. v(oF) =0 for p ae. x and p(Ey,) =0 for v a.e. y. If h is £ measurable and
h =0 for A — a.e., then there exists £ € M @ N such that {(z,y) : h(z,y) #
0} C E and (p®v)(E) = 0. Therefore |h(z,y)| < 1g(z,y) and (p @ v)(E) = 0.
Since

{hs #0} ={y €Y : h(z,y) #0} C . F and

{hy # 0} = {o € X : hla,y) £ 0} C B,
we learn that for 4 a.e. z and v a.e. y that {h, #0} € M, {h, 7£0} eN,
v({hy #0}) = 0 and a.e. and p({h, # 0}) = 0. This 1mphes [y bz, y)dv(y)

exists and equals 0 for p a.e. x and similarly that [, h(z,y)du(z) exists and
equals 0 for v a.e. y. Therefore

0:/)(thd)\:/y</xhdu) dV:/X(/,hdy) dpu.

For general f € L*()\), we may choose g € LY (M &N, p®v) such that f(z,y) =
g(z,y) for A— a.e. (z,y). Define h := f —g. Then h = 0, A— a.e. Hence by what
we have just proved and Theorem f = g+ h has the following properties:

1. For pae. z, y — f(z,y) = g(z,y) + h(z,y) is in L1 (v) and

/ f(z,y)dv(y)
Y
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- / g, y)dv(y).
Y

2. For v ae. y, v — f(x,y) = g(x,y) + h(z,y) is in L' (u) and

/ F(a, y)dpla / g(,y)dpu().

From these assertions and Theorem it follows that

[ dute) [ v = [ dnte) [ avtigtan)
- [ o) [ avwrgte.n

:/Xxyg(x,y)d(,u@)l/)(%y)
:/ f(z,y)dA(z, y).
XxXY

Similarly it is shown that

| ) [ antorsta

- / f(,y)dA(z, v).
XxY

10.5 Lebesgue Measure on R? and the Change of
Variables Theorem

Notation 10.16 Let

d times d times
mt=me--0m on Bra = Br ® -+ - ® Bgr

be the d — fold product of Lebesque measure m on Bg. We will also use m?

to denote its completion and let Lq be the completion of Bra relative to mo.
A subset A € L4 is called a Lebesque measurable set and m¢ is called d —
dimensional Lebesgue measure, or just Lebesque measure for short.

Definition 10.17. A function f : R?
Y(Br) C L.

Notation 10.18 I will often be sloppy in the sequel and write m for m? and
dz for dm(z) = dm?(x), i.e.

— R is Lebesgue measurable if

f(z)dx = / fdm = fdm?.
]Rd ]Rd ]Rd,

Hopefully the reader will understand the meaning from the context.

macro: svmonob.cls date/time: 12-Mar-2007/12:25



Theorem 10.19. Lebesque measure m® is translation invariant. Moreover m®

is the unique translation invariant measure on Bra such that m®((0,1]%) = 1.
Proof. Let A=J; x --- x J; with J; € Bg and z € R?. Then
x4+ A=(x1+ 1) X (@2 + J2) X -+ x (2g+ Jg)
and therefore by translation invariance of m on Br we find that
m(z+ A) =m(z1+ 1) ... m(zq + Jg) = m(Jr) ... m(Jy) = m?(A)

and hence m?(z + A) = m9(A) for all A € Bya since it holds for A in a multi-
plicative system which generates Bra. From this fact we see that the measure
m@(x + -) and m?(-) have the same null sets. Using this it is easily seen that
m(z+ A) = m(A) for all A € L4. The proof of the second assertion is Exercise
1LO. 6 [ |

Exercise 10.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on By which is invariant under translations and
satisfies, m(By(e)) > 0 for all € > 0. Show m(V) = oo for all non-empty open
subsets V' C H.

Theorem 10.20 (Change of Variables Theorem). Let 2 C, R? be an open
set and T : 2 — T(£2) C, R? be a C* ~ diﬁeomorphism see Figure|10.1,. Then
for any Borel measurable function, f:T(£2) — [0, 00],

[1@@det @lae= [ 1w (10.22)
(0]

T(2)

where T'(x) is the linear transformation on R? defined by T'(z)v := % |oT(z +
tv). More explicitly, viewing vectors in R? as columns, T' (z) may be represented

by the matriz
81T1 (,CC) e 8dT1 (.’17)

T' (z) = S , (10.23)
ale (:L') N 8de (x)

i.e. the i - j — matriz entry of T'(z) is given by T'(x),; = 0;Tj(x) where
T(z) = (Th(x),...,Ty(x))™ and 9; = 0/0x;.

2 That is T : 2 — T(2) C, R? is a continuously differentiable bijection and the
inverse map T~ : T(£2) — 2 is also continuously differentiable.

Page: 97 job: prob

10.5 Lebesgue Measure on R? and the Change of Variables Theorem 97

18

A

T(xy=¢

LQE 4 /
g :
Y - Spoce
d
S

g - JaaTion) dx

K- dpole

Fig. 10.1. The geometric setup of Theorem |10.20]

Remark 10.21. Theorem [[0.201is best remembered as the statement: if we make
the change of variables y = T (z), then dy = | det T" (z) |dx. As usual, you must
also change the limits of integration appropriately, i.e. if x ranges through 2
then y must range through T (£2).

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise B.7] Nevertheless, for the sake of completeness let us give a
proof here. Suppose d = 1, a < a < [ < b such that [a,b] is a compact
subinterval of 2. Then |detT'| = |T”| and

B
/[a,b] Lo (T (@) |T" (z)| dz = / L5 (@) |T" ()| dx = / T (z)| da.

[a,b] a

If 7" (z) > 0 on [a,b], then

while if 77 (x) < 0 on [a,b], then
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98 10 Multiple and Iterated Integrals

B B8
/|T’(m)|dm:—/ T (@) dz = T (a) — T (8)

«

m (T () = [

T([a,b])

17 ((a,8) (¥) dy.

Combining the previous three equations shows

la,b

J(T @) 1T (2)] d = / £ (v)dy (10.24)
] T([a,b])

whenever f is of the form f = lp((a,s)) With a < o < 8 < b. An application
of Dynkin’s multiplicative system Theorem then implies that Eq.
holds for every bounded measurable function f : T ([a,b]) — R. (Observe that
|T" ()| is continuous and hence bounded for z in the compact interval, [a, )] .)
Recall that 2 = 22;1 (an,by) where ap,b, € RU{xocc} forn=1,2,--- < N
with N = oo possible. Hence if f : T (£2) — R 4 is a Borel measurable function
and a, < ap < O < b, with a; | a, and B T b,, then by what we have
already proved and the monotone convergence theorem

/1(%,1)”) (foT)-|T'|dm = / (I7((anbn)) - f) 0T - |T'|dm
5 o
= hm (IT([ak,ﬁk]) . f) ol - |T/| dm

k—oo
2

— lim L7 (a5 - | dm

k—oo
T(£2)
= / 1T((anybn)) ’ f dm.
T(02)

Summing this equality on n, then shows Eq. holds.

To carry out the induction step, we now suppose d > 1 and suppose the
theorem is valid with d being replaced by d — 1. For notational compactness, let
us write vectors in R% as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, 77 (x) , will always be taken to be given

as in Eq. (10.23)).

Case 1. Suppose T (z) has the form
T (z) = (xi, T2 (2),...,Tu(x)) (10.25)
or

T(x)=(Ty(2),....Ta-1 (), x;) (10.26)
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the case of T in Eq. (10.26)) may be handled similarly. For ¢ € R, let 4, : R4~ —
R? be the inclusion map defined by

for some i € {1,... ,%)r definiteness we will assume T is as in Eq. ,
10.26
it (W) ;= wy := (W1, ..., Wi—1, b, Wit 1, -, Wi—1)
2; be the (possibly empty) open subset of R¢~! defined by
2 = {w eRY: (wy, . Wiy, b Wi, Wa—1) € Q}
and T, : 2, — R%1 be defined by

Ty (w) = (Ta (wy) 5. .., Ta (wy))

see Figure [10.2] Expanding det 7” (w;) along the first row of the matrix 7" (w;)

Tw)

Fig. 10.2. In this picture d = i = 3 and (2 is an egg-shaped region with an egg-shaped
hole. The picture indicates the geometry associated with the map 7' and slicing the
set {2 along planes where z3 = ¢.

shows
|det T (wy)| = |det T} (w)] .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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/foT|detT'|dm:/1Q-foT|detT'|dm
2 Rd

_ /19 (we) (f o T) (wr) | det T' (wy) |dwdt

Rd

:/]R /(foT) (wy) | det T (wy) |dw | dt
L2,

:/ /f(t,Tt(w))|detTt’(w) \dw | dt
R 9,

:/ / f(t,2) dz dt:/R /1T(Q)(t,z)f(t,z)dz dt

[T (£2¢) a-1

:/f ) dy

T(2)
wherein the last two equalities we have used Fubini-Tonelli along with the iden-
tity;
=Y T (2) =Y {(t2):z€Ti(2)}.
teR teR

Case 2. (Eq. (10.22) is true locally.) Suppose that 7" : 2 — R? is a general
map as in the statement of the theorem and zy € {2 is an arbitrary point. We
will now show there exists an open neighborhood W C §2 of x( such that

/foT| detT’|dm:/ fdm
o (W)

holds for all Borel measurable function, f : T(W) — [0, 00]. Let M; be the 1-4
minor of 7’ (%), i.e. the determinant of T’ (zo) with the first row and i‘h —
column removed. Since

)" a.Ty (20) - M;,

Mg

0 # det T' (xg) =

z=1
there must be some i such that M; # 0. Fix an ¢ such that M; £ 0 and let,
S(x) = (v, T2 (z),...,Tq (x)). (10.27)
Observe that |det S’ (xg)| = |M;| # 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of g such that W C, 2 and S (W) c, R¢
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and S : W — S (W) is a C! — diffeomorphism. Let R : S (W) — T (W) C, R?
to be the C' — diffeomorphism defined by

R(z):=ToS ' (z) forall z€ §(W).
Because
(Ty (2),...,Tq(z)) =T (z) = R(S (2)) = R ((x;, T2 (2) ..., Ty (z)))
for all z € W, if
(21,22, -, 2a) = S (z) = (23, To (2), ..., Ty (z))

then
R(Z) = (Tl (S_l (Z)) ,22,...7Zd) . (1028)

Observe that S is a map of the form in Eq. (10.25)), R is a map of the form in Eq.
(10.26), T" () = R’ (S (z)) S’ (x) (by the chain rule) and (by the multiplicative
property of the determinant)

|det T" (z)| = |det R' (S (z)) | |det S" (z)| V z € W.

Soif f: T(W) — [0, 00] is a Borel measurable function, two applications of the
results in Case 1. shows,

/fOT-\detT’|dm:/(fOR-\detR'|)OS-|detS’| dm
W

/foR-\detR’|dm: / fdm

S(W) R(S(W))
= / fdm
(W)
and Case 2. is proved.

Case 3. (General Case.) Let f : £2 — [0, o0] be a general non-negative Borel
measurable function and let

K, :={z € 02 :dist(z,2°) > 1/n and |z| < n}.

Then each K,, is a compact subset of {2 and K,, T {2 as n — oo. Using the
compactness of K,, and case 2, for each n € N, there is a finite open cover W,
of K, such that W C 2 and Eq m ) holds with §2 replaced by W for each
W e W,. Let {W} | be an enumeration of U3, W, and set W; = W; and
W, == W, \(WiU---UW,;_y) for all § > 2. Then 2 = 21:1 W; and by repeated
use of case 2.,
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100 10 Multiple and Iterated Integrals

oT|detT'|dm = Ly det T'|dm
f |

= lﬂ
—Z/ (i T} | det T'|dm
= 1W
—Z/ ) fdm= Z/lT(~i)-fdm
Lriws) =lr()
= / fdm.
T(0)

Remark 10.22. When d = 1, one often learns the change of variables formula as

T(b)
/ F(T (@) T (z) de = / f () dy (10.29)

T(a)

where f : [a,b] — R is a continuous function and 7" is C! — function defined in

a neighborhood of [a,b]. If T/ > 0 on (a,b) then T ((a,b)) = (T (a),T (b)) and

Eq. is implies Eq. with 2 = (a,b). On the other hand if 77 < 0
n (a,b) then T ((a,b)) = (T (b),T (a)) and Eq. is equivalent to

T(a)
£ (T (@) (~ [T (&)]) da = —/ f(y)dy:—/T(( 1)

(a,b) T(b)

which is again implies Eq. (10.22)). On the other hand Eq. (10.29) is more general

than Eq. (10.22]) since it does not require 7" to be injective. The standard proof
of Eq. (10.29) is as follows. For z € T ([a, b]) , let

z

F(z):= f(y)dy

T(a)

Then by the chain rule and the fundamental theorem of calculus,

b b
/f T (@)do = [ F(0@)T (@) do = [ (P (T ()] da
a b o) a
=F (T (x = dy.
(T @) I, /m) 7 () dy

An application of Dynkin’s multiplicative systems theorem now shows that Eq.
(10.29) holds for all bounded measurable functions f on (a,b). Then by the
usual truncation argument, it also holds for all positive measurable functions

n (a,b) .
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Ezample 10.25. Continuing the setup in Theorem [10.20] if A € By, then
m (T (A)) = / gy () dy = / ) (To) et T (a) | do
R R¢

= / 14 (z)|det T (z)| dx
Rd
wherein the second equality we have made the change of variables, y = T (z) .
Hence we have shown
d(moT)=|detT’ ()| dm.

In particular if T € GL(d,R) = GL(RY) - the space of d x d invertible matrices,
then mo T = |det T|m, i.e.

m (T (A)) = |det T|m (A) for allA € Bga. (10.30)

This equation also shows that m o T" and m have the same null sets and hence
the equality in Eq. (10.30) is valid for any A € Lg.

Exercise 10.2. Show that f € L' (T (£2),m?) iff

/|foT\|detT/|dm<oo

and if f € L' (T (£2),m?), then Eq. holds.

Ezample 10.24 (Polar Coordinates). Suppose T : (0,00) x (0,27) — R? is de-
fined by
x=T(r,0) = (rcosf,rsinb),

i.e. we are making the change of variable,

xr1 =7rcost and x5 = rsinf for 0 <r < oo and 0 < 6 < 2.

T'(r,0) = (c.osﬂ —rsin9>

sinf rcos6

In this case

and therefore
dx = |det T (r, 0)| drdf = rdrd6.

Observing that
R?\ T ((0,00) x (0,27)) = £ := {(,0) : x > 0}

has m? — measure zero, it follows from the change of variables Theorem [10.20
that

27 [e%s)
dr = do dr r- 0, sin 6 .
. f(z)dz /0 /0 rr- f(r(cosf,sind)) (10.31)

for any Borel measurable function f : R? — [0, oc].
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Ezample 10.25 (Holomorphic Change of Variables). Suppose that f : §2 C, C =
R%— C is an injective holomorphic function such that f’(z) # 0 for all z € £2.
We may express f as

flo+iy) =
for all z =z + iy € £2. Hence if we make the change of variables,

U (z,y) +1iV (z,y)

Ul(z,y)+1iV (z,y)

w=u+iv=f(x+iy) =

then
U, Uy

Ve Vy

Recalling that U and V satisfy the Cauchy Riemann equations, U, = V,, and
Uy = =V, with f' = U, + iV, we learn

dudv =

det[ ”dxdy—|UV Uy V| dady.

UV, — U,V = U2+ V2= |f.

Therefore
dudv = | f' (z + iy)|* dzdy.

Ezxample 10.26. In this example we will evaluate the integral

I:= //Q (334 - y4) dzdy

Q:{(x,y):1<ar;2—y2<27 0<azy<l1},
see Figure We are going to do this by making the change of variables,

(u,v) = T (2,y) =

det {23@ —2y}
Yy T
Notice that

(x4 _ y4) _ (xz —y?

The function T is not injective on {2 but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
2=-DUDand T(£D) = (1,2) x (0,1). The change of variables theorem
then implies

Ii—// zt — gt dxdy— // ududv—f—\ :§
£D (1,2)%(0,1) 4

2. (3/4) = 3/2.

where

($2 - yzaxy) 9

in which case

dudv =

drdy = 2 (2 + y?) dady

) (a:Q + yQ) =u (m2 + y2) = %ududv.

and therefore I =1, +1_ =
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Exercise 10.3 (Spherical Coordinates). Let T : (0, 00)
R? be defined by
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x (0,7) x

T (r,¢,0) =

= r (sin p cos b, sin ¢ sin 0, cos p) ,

(rsingcosf,rsinpsin b, r cos )

see Figure [10.4] By making the change of variables z = T (r, ¢, 6) , show

Fig. 10.4. The relation of = to (r, ¢, 6) in spherical coordinates.

date/time:
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Fig. 10.3. The region {2 consists of the two curved rectangular regions shown.
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102 10 Multiple and Iterated Integrals
™ 2m oo
f(x)dx = / d(p/ d9/ dr r?sing - f(T (r,¢,0))
R3 0 0 0

for any Borel measurable function, f : R® — [0, cc].

Lemma 10.27. Let a > 0 and

Ii(a) == /e‘“‘wlzdm(:v).
Rd
Then Iy(a) = (7/a)¥/2.
Proof. By Tonelli’s theorem and induction,
Tu(a) = / el ool (dy) dt
RI-1xR
= Iy 1(a)1(a) = I(a). (10.32)
So it suffices to compute:
Iy(a) = / e dm(x) =
R2 R2\{0}

Using polar coordinates, see Eq. (10.31)), we find,

0o 2m 00
Ir(a) = / dr r/ dg e o = 27r/ re=" dr
0 0 0
M

e Mg
=27 lim re " dr = 21 lim / =T 7/a.
M—oo [ M—oo —2a 0 2a

2 2
e~ @1H22) o dao.

This shows that Iz(a) = m/a and the result now follows from Eq. (10.32). m

10.6 The Polar Decomposition of Lebesgue Measure

Let
d

St —fr e RY: |z = me =1}
i=1
be the unit sphere in R? equipped with its Borel ¢ — algebra, Bga—1 and & :
R\ {0} — (0, 00) x §971 be defined by @(z) := (|z|,|z|" #). The inverse map,
@1 :(0,00) x S — R4\ {0}, is given by &~ !(r,w) = rw. Since ¢ and &1
are continuous, they are both Borel measurable. For F € Bga-1 and a > 0, let

E,:={rw:r€(0,a] and w € B} = & *((0,a] x E) € Bga.
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Definition 10.28. For E € Bga-1, let 0(E) := d-m(E1). We call o the surface
measure on S41L.

It is easy to check that o is a measure. Indeed if £ € Bga—1, then F; =
&1 ((0,1] x E) € Bga so that m(Ey) is well defined. Moreover if E = >"° | E;,
then E1 = Zjil (Ez)l and

o(E)=d-m(E)) =) m((E),) =) o(E).
i=1

=1

The intuition behind this definition is as follows. If E € S !isaset and e > 0
is a small number, then the volume of

(Ll+e-E={rw:re(l,1+¢land w € E}
should be approximately given by m ((1,1+¢]- E) = o(E)e, see Figure [10.5]
below. On the other hand

’

£ \ L\,\»«}'E

Fig. 10.5. Motivating the definition of surface measure for a sphere.

m((1,1+€]E) =m (B4 \ E1) = {1+ ) — 1} m(E).
Therefore we expect the area of E should be given by

o(B) = lim LLFE = L m(EY)
€l0 e

The following theorem is motivated by Example and Exercise [10.3

Theorem 10.29 (Polar Coordinates). If f : R? — [0,00] is a (Bga,B)-
measurable function then
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/f(x)dm(x) = frw)yr®=t drdo(w). (10.33)
R

(0,00)x Sd—1

In particular if f: Ry — Ry is measurable then

/ Fla|)de = / T mavn) (10.34)
Rd 0

where V(r) =m (B(0,r)) = r?m (B(0,1)) = d~'o (S*71) ro.
Proof. By Exercise [8.6]
/fdm = / (fod ) oddm= / (fod™') d(®.m) (10.35)
R R\ {0} (0,00 x 841

and therefore to prove Eq. (10.33) we must work out the measure ®,m on
B(O,oo) ® Bga-1 defined by

d,m(A) :=m (@71(14)) VAe 8(0700) ® Bga-1. (10.36)
If A= (a,b] x E with0<a<band E € Bga-1, then
o HA) ={rw:rec(a,b and w € E} = bE, \ aF;

wherein we have used E, = aF; in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(@.m) ((a,b] X E) = m (bE1 \ aEy) = m(bEy) — m(aEy)
= bim(Ey) — a'm(Ey) = d - m(E)) /b ri=tdr.  (10.37)
Letting dp(r) = r?~ldr, i.e.
p(J) = /er—ldr V J € B, (10.38)

Eq. may be written as
(@.m) ((a,] x B) = p((a,b]) - 0(E) = (p20) (a,b] x B).  (10.39)
Since
E={(a,b) x E:0<a<band FE € Bga-1},

is a 7 class (in fact it is an elementary class) such that o(£) = B(g,o0) ® Bga-1,
it follows from the m — A Theorem and Eq. (10.39)) that ®.m = p ® 0. Using

this result in Eq. (10.35)) gives
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/fdm: (fod™) d(p®o)
Rd

(0,00) x Sd—1
which combined with Tonelli’s Theorem proves Eq. (10.35]). ]
Corollary 10.30. The surface area o(S%™1) of the unit sphere S¥~1 C R? is
27.(.d/2

§4=1) = 10.40

where I is the gamma function given by

oo
I'(z):= / u” e du (10.41)

0

Moreover, I'(1/2) = /m, I'(1) =1 and I'(x + 1) = «I'(z) for z > 0.
Proof. Using Theorem [10.29 we find

Id(l):/ dr ri—le"’ / daza(S’d_l)/ rd=le=r* dr.
0 0
Sd—l

We simplify this last integral by making the change of variables u = r? so that
r=u!? and dr = Ju='/2du. The result is

o0 2 o0 d—1 ].
/ rdle™r dr:/ uT e vy 2y
0 0 2

1 [ 1
= f/ we e "du = =I'(d/2). (10.42)
2 J 2

Combing the the last two equations with Lemma|10.27|which states that I;(1) =
7%2 we conclude that

1
72 = I,(1) = 5a(sd—l)r(d/Q)
which proves Eq. (10.40). Example implies I'(1) = 1 and from Eq. (10.42]),
o0 oo
Ir1/2)= 2/ e_’"Zdr:/ e dr
0 —0o0
=1L(1) = V.

The relation, I'(x + 1) = «I'(x) is the consequence of the following integration
by parts argument:

° du e d
I 1) = —u o+l 77 / Tl —— e " )d
(z+1) /0 e " u " ; u ( 70 € > u

:x/ ut e du =2 I'(x).
0
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10.7 More Spherical Coordinates

In this section we will define spherical coordinates in all dimensions. Along

the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r,60) € (0,00) X

[0,27) so that
z1\ (rcosf\
(@) - (rsin@) =T2(6,7)-

For n = 3 we let x3 = rcos ¢; and then

<i1> = T5(0,rsinpq),

2

as can be seen from Figure [I0.6] so that

Fig. 10.6. Setting up polar coordinates in two and three dimensions.

no

T . rsin 7 cos 6
T . .
o | = ( 2(677"5111901)) = | rsinpysing | =: T3(0,¢1,1,).
- T COS P1 i
3 7 COS 1

We continue to work inductively this way to define

T
T,(0,01,...,0n_2,Tsinp,_1,
zn+1

So for example,
T1 = 78in g sin 1 cos
ZTo = 7 sin g sin g sin §
T3 = rsin 2 cos Y1

T4 = T COS P2
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and more generally,
21 = 7rsin,_s...sin pysin ¢ cosl

To = TsinY,_o . ..sin pysin pg sinf

T3 = rsin,_o...sin e cos @1

Tp_o = 7sin @y _9Sin 3 COS Pr_4
Tp—1 = TSN Q,_2COS Pp_3

Ty, = T COS Pp_2a. (10.43)

By the change of variables formula,

f(z)dm(z)
RTL
o An(0,01, ..., Qn_2,T)
= dr/ doy ...dp,_odl by ’
/o 0< s <m,0<O<2m oL P2 Xf(Th(0, 1, .., Pn—2,7))
(10.44)
where
A (0,01, on_o,r) = |det T (0,01, ..., 0n_2,7)].
Proposition 10.31. The Jacobian, A, is given by
An(0,01,. .., pna,r) = " sin" "2 @, .. .sin? pysing;. (10.45)

If f is a function on rS™1 — the sphere of radius r centered at 0 inside of R",
then

/T o f@dea) = / F(rw)do(w)

Sn—l
FTn(0, 01, .., on—2,17))An(0,01,..., ¢n—2,7)dp1 ...dp,_2dd
(10.46)

/os%sﬂ,oseswr

Proof. We are going to compute 4,, inductively. Letting p := rsing,_1

and writing ag;" for 887;" (0,01, ,0n_2,p) we have

An+1(97§017 ey Pn—2,Pn—1, 7")

aT, oT, oT, 9T, OT,
80n BLpT - agoniz 6; T COS Pp—1 apn SN Qp—1
0 0 ... 0 —rsin,_1 COS (P —1

=7 (COS2 On_1 + sin? On-1) An(,0,01,. .., Pn—2,p)
= TATL(07 Ply--r Pn—2, 7 sin ¢H—1)7
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ie.
Api1(0,01, ..y on—o,0n—1,7) =1A,(0,01, ..., n_o,rsinp,_1). (10.47)

To arrive at this result we have expanded the determinant along the bottom

row. Staring with Ay(6,r) = r already derived in Example [10.24] Eq. (10.47)
implies,

As(0,01,7) = rAy(h, rsin 1) = r? sin ¢y
Ay(0, 01, p2,7) = rA3(0, 01, rsinps) = r3 gin? 2 sin @1

n—2

An (0,01, .., pp_a,r) = ™ lgin On_g...sin? pysing;

which proves Eq. (10.45)). Equation (10.46) now follows from Eqgs. (10.33)),
(10.44)) and (10.45)). ]
As a simple application, Eq. (10.46)) implies

o(S" 1 = / sin" "2 p,_o...sin% @ sinp1depy . .. dp,_odf
0< i <m,0<0<2m
n—2
=27 [ % =o(5" ) n2 (10.48)
k=1

where v := fow sin® odp. If k > 1, we have by integration by parts that,

Vi = / sin® pdp = —/ sin* "t dcosp = 26,1 + (k — 1)/ sin* =2 ¢ cos? pdyp
0 0 0

=201+ (k— 1)/ sin® "% (1 —sin® ) dp = 20k1 + (k — 1) [ve—2 — Vi
0

and hence v, satisfies v = 7, 71 = 2 and the recursion relation

k—1
Ve = Vi—2 for k > 2.
Hence we may conclude
B _ s 1 _22 31 _422 531
Yo =T, V1= 4, 72_277a 73_3 5 74_4271-7 75_53 776_64271-
and more generally by induction that
(2k — 1! (2K
=n1—Z2" and =2——.
B O 75 TR DY D IT
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Indeed,
%42 _2%k+2, (@R [2(k+ D)
TN T o T o 3T @k + ) T (2(k + 1)+ DI
and
_2k+1 _2k+1ﬂ(2k—1)!!_ﬂ(2k+1)!!
AN T o 1M T 2k k2" 2k T (2k+ 2N
The recursion relation in Eq. (10.48) may be written as
o(S") =0 (S"71) Yu1 (10.49)
which combined with ¢ (S*) = 27 implies
o (5’1) =2,
o(S%) =2m -y =272,
1 2272
3y _ _ .
o(S°)=2r-2-v9=271-2- 5T = o
2272 22r2 2 2372
N v — .94 _
o)== S 2 T
1 2 31 2373
5 = . . o—_ . o—_ - —_—— —_— ————
o(S°)=2m-2 57 32 137 =
1 231 42 2473
6
—9r-2.Zx-29. 227,229 =
o) =am 2 gm g2 3™ 5327 hn
and more generally that
2 (27)" (2m)"
52"y = 2 — and o(S*" 1) = 10.50
o) = G pn T = o (10:50)
which is verified inductively using Eq. (10.49)). Indeed,
202m)"  (2n—1DN  (2m)"t!
2n+1y _ 2n _ —
() = o5 e = B T @ 2n)!
and
2m)" T (2n)!! 2 (27)"
S(n+1) — 52n+2 — 52n+1 " _ ( ) — )
o )= o (S = o (S e = S5 S G T @n g N
Using

)l =2n(2(n—1))...(2-1) =2"n!

27Tn+1

we may write ¢(S*" ) = 22— which shows that Eqs. (]10.33[) and (]10.50| are
in agreement. We may also write the formula in Eq. (10.50)) as

2(2m)"/?

n (n—1)!

o(S") = 71

@m) 2 for n odd.

for n even
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10.8 Exercises

Exercise 10.4. Prove Theorem Suggestion, to get started define

m(A) = Xldu(ml).../xndu(xn)lA(xl,...,a:n)

and then show Eq. (10.16)) holds. Use the case of two factors as the model of
your proof.

Exercise 10.5. Let (X;, M, p;) for j = 1,2,3 be o — finite measure spaces.
Let F': (Xl X X2) X X3 — X1 X X2 X X3 be defined by

F(($1,Q§2),x3) = (’131,332,1‘3).

1. Show F'is (M1 ® Mz) @ M3, M1 ® Ma ® M3) — measurable and F~! is
(M @ M2 @ M3, (M1 @ M3) ® Ms) — measurable. That is

F (X7 x X2)><X3, (M4 ®M2)®M3) — (X1 xXox X3, M1 QMo Ms3)

is a “measure theoretic isomorphism.”

2. Let m:= F, [(u1 ® p2) ® p3], ie. 7(A) = [(u1 ® p2) @ pz] (F~1(A)) for all
A e My @ My ® Ms. Then 7 is the unique measure on M; @ My ® M3
such that

m(Ar x Az x Az) = p1 (A1) p2(A2)ps(As)
for all A; € M,;. We will write 7 := 1 ® 2 ® 3.
3. Let f: X1 X Xo x X5 — [0,00] be a (M1 @ Ma ® M3, Bg) — measurable
function. Verify the identity,

/Xlx&x& fdﬂ—/Xg du3(:c3)/xz dﬂz(xz)/Xl dpiy (1) f (21, 2, 23),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible
orderings of the iterated integrals.

Exercise 10.6. Prove the second assertion of Theorem [10.19] That is show m?
is the unique translation invariant measure on Bga such that m<((0,1]?) = 1.
Hint: Look at the proof of Theorem [5.22

Exercise 10.7. (Part of Folland Problem 2.46 on p. 69.) Let X = [0,1], M =
Bjg,1; be the Borel o — field on X, m be Lebesgue measure on [0, 1] and v be
counting measure, v(A) = #(A). Finally let D = {(z,x) € X? : z € X} be the
diagonal in X?2. Show

/XUX 1D(x,y)du(y)] dm(x)#/x[/x 1D(x,y)dm(x)} dv(y)

by explicitly computing both sides of this equation.
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Exercise 10.8. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 10.9. Folland Problem 2.50 on p. 69 pertaining to area under a curve.
(Note the M x B should be M ® Bg in this problem.)

Exercise 10.10. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 10.11. Folland Problem 2.56 on p. 77. Let f € L*((0,a),dm), g(z) =
fa @dt for z € (Oa Cl), show g€ Ll((o, a),dm) and

/Oag(x)dx _ /Oaf(t)dt.

Exercise 10.12. Show [~ ‘Sin’”|dm(x) = o0. So #2Z ¢ L1([0,00),m) and

x

fooo Si%dm(m) is not defined as a Lebesgue integral.

Exercise 10.13. Folland Problem 2.57 on p. 77.

Exercise 10.14. Folland Problem 2.58 on p. 77.

Exercise 10.15. Folland Problem 2.60 on p. 77. Properties of the I" — function.
Exercise 10.16. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 10.17. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on S" 1,

Exercise 10.18. Folland Problem 2.64 on p. 80. On the integrability of
|2|* |log |#||” for = near 0 and z near oo in R™.

Exercise 10.19. Show, using Problem that
1
/ wiwjda (w) = 7(5”-0 (Sd_l) .
Sd—l d

Hint: show [g, , w?do (w) is independent of i and therefore

d
1
2 2
/Sdil wido (w) = p JEZI /Sdil wido (w).
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11

LP — spaces

Let (£2,B, 1) be a measure space and for 0 < p < oo and a measurable

function f : 2 — C let
1/p
1l = ( / Ifl”du> (11.1)

[flloc =inf{a >0: p(|f] > a) =0} (11.2)

and when p = oo, let

For 0 < p < o0, let
LP(£2,B,u) ={f: 2 — C: f is measurable and ||f||, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g||, =0 iff f ~ g and if f ~ g then
Ifll, = llgllp- In general we will (by abuse of notation) use f to denote both
the function f and the equivalence class containing f.

Remark 11.1. Suppose that ||f|lcc < M, then for all a > M, u(|f| > a) = 0 and
therefore p(|f| > M) = limy, oo (| f| > M +1/n) =0, ie. |f(w)] < M for p -
a.e. w. Conversely, if |f| < M a.e. and a > M then u(|f] > a) = 0 and hence
[I/lloo < M. This leads to the identity:

[ flloc =inf{a>0:|f(w)| <afor u—ae w}.

11.1 Modes of Convergence

Let {fn}ro; U{f} be a collection of complex valued measurable functions on
2. We have the following notions of convergence and Cauchy sequences.

Definition 11.2. 1. f, — f a.e. if there is a set E € B such that u(E) = 0
and limy, oo 1ge frn = 1ge f.
2. fn — f in p — measure if lim, oo pu(|fn— f| > ) =0 for alle > 0. We
will abbreviate this by saying fn — f in L° or by f, & f.
3. fn— fin LP iff f € L and f, € L? for alln, and lim,, s || fo — f||, = 0.

Definition 11.3. 1. {f,} is a.e. Cauchy if there is a set E € B such that
w(E) =0 and{1ge f,} is a pointwise Cauchy sequences.
2. {fn} is Cauchy in p — measure (or L° — Cauchy) if imyy, oo (| fr— fm| >
g) =0 for alle > 0.
3. A fn} is Cauchy in LP if limy, noo | fr — finll, = 0.

When p is a probability measure, we describe, f;, LN f as f, converging
to f in probability. If a sequence {f,},-, is LP — convergent, then it is L? —
Cauchy. For example, when p € [1,00] and f,, — f in LP, we have

1= Fanlly < 1= £IL, 4 1 = Fnll, — 0 a8 m,m — oo,
The case where p = 0 will be handled in Theorem below.

Lemma 11.4 (L? — convergence implies convergence in probability).
Let p € [1,00). If {fn} C LP is LP? — convergent (Cauchy) then {f.} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (8.3)),
1 1
— p P . p I p
pf122) = n(sP =) < 5 [ 1P du= 5181
and therefore if {f,} is LP? — Cauchy, then

1
wlfr = fml > €) < g,an — fmllh — 0as m,n — oo

showing {f,} is L — Cauchy. A similar argument holds for the LP — convergent
case. |

0 125 25 375 5

X

. . . m
Here is a sequence of functions where f,, — 0 a.e., f,, - 0in L', f, =5 0.
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25

Above is a sequence of functions where f,, — 0 a.e., yet f, - 0 in L. or in

measure.
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Above is a sequence of functions where f,, — 0 in L', f, - 0 a.e., and
fn 0.

Theorem 11.5 (Egoroff’s Theorem: almost sure convergence implies
convergence in probability).
Suppose u(2) =1 and f,, — f a.s. Then for all e > 0 there exists E = E. €

B such that w(E) < € and f, — f uniformly on E°. In particular f, -~ f as
n — oo.

Proof. Let f,, — f a.e. Then for all ¢ > 0,

0=pl{|fn— f|] >eio. n})

U {1fa—f1>¢}

n>N

> lijf[rljup/i({'fN — fl>¢})

= A}gnoo,u (11.3)

from which it follows that f,, -~ f as n — co. To get the uniform convergence
off a small exceptional set, the equality in Eq. (11.3) allows us to choose an
increasing sequence { Ny}, , such that, if

by = U

1
{fn —f]> k:}’ then p(Ey) < 27k,
n>Ng

The set, E = U, Ej, then satisfies the estimate, u(E) < >, e27% = e.
Moreover, for w ¢ E, we have |f, (w) — f (w)| < ¢ for all n > Nj, and all k.
That is f,, — f uniformly on E°. ]
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oo
Lemma 11.6. Suppose a, € C and |ant1 — an| < &, and Y. £, < co. Then

n=1

o0
lim a, =a € C exists and |a — ap| < 6, := > ex.
k=n

n—oo

Proof. Let m > n then

m—1 00
< 3 agyr —ak] < > ek =0y (11.4)

k=n k=n

m—1
|am - an‘ = Z (ak—H - ak)

k=n

S0 |am — an| < dmin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo
in :11.4 to find |a — a,| < 6,. [

Theorem 11.7. Let (2,8, 1) be a measure space and {f,},-, be a sequence
of measurable functions on 2.

1. If f and g are measurable functions and f, % f and f, & g then f = g
a.e.

2. If fo 5 f then {fn}o, is Cauchy in measure.

3. If{fn},, is Cauchy in measure, there exists a measurable function, f, and
a subsequence g; = fn, of {fn} such that lim; . g; := f exists a.e.

Af{fn},2, is Cauchy in measure and f is as in item 3. then f, L7

. Let us now further assume that p (2) < co. In this case, a sequence of func-
tions, {fn} -, converges to f in probability iff every subsequence, {f}}
of {fn}or, has a further subsequence, {f!/}o-_, , which is almost surely con-
vergent to f.

[

Proof.

1. Suppose that f and g are measurable functions such that f, £ g and
fn L fasn — oo and € > 0 is given. Since

{If =gl >er ={lf = fot fo—gl >} CHIf = ful + [fn — 9l > €}
CAlf = fal > /23 U{lg = ful > €/2},

p(lf =gl >e) <ullf — ful >€/2) +1(lg — ful >€/2) = 0asn — oco.

Hence
p(lf =gl >0) =M(Ui°1{f—g| > ;}) < Zu(lf—gl > i) =0,
n=1
ie. f=gae.
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2. Suppose f, *> f, ¢ > 0 and m,n € N and w € £2 are such that
|fn (W) = fim (W) > &. Then

e <|fn (W) = fm (W)| < |fn (W) = F (@) + | (@) = frm ()]

from which it follows that either |f,, (w) — f (w)| > /201 |f (w) — fim (w)| >
/2. Therefore we have shown,

{fn = fml >} C{lfn = fI > /2 U{|fm — f] > £/2}

and hence
w(lfo = fml >€) S u(lfu = fI>e/2)+p(|fm — fI > /2) — 0 as m,n — oo.

3. Suppose {f,} is LY (1) — Cauchy and let &, > 0 such that > &, < oo

n=1

(en = 27" would do) and set 6, = ) . Choose g; = f,,, where {n;} is a
k=n !
subsequence of N such that

n({lgi+1 — g5l > €5}) <ej-
Let Fi :=Uj>n {[gj+1 — g;1 > €;} and
E:=n0F_1FN = {lgj+1 — g;| > ¢; i.0.}

and observe that p (Fy) < 0y < oo. Since

o0

ZM({\QJ‘H —gjl >¢&5}) < Z«sj < 00,

Jj=1 j=1
it follows from the first Borel-Cantelli lemma that
0= p(B) = Jim_u(Fx).
Forw ¢ E, |gj+1 (w) — g; (w)] < & for a.a. j and so by Lemmal[l1.6} f (w) :=
jlivrgo gj(w) exists. For w € E we may define f (w) = 0.
4. Next we will show gy & f as N — oo where f and gn are as above. If
w € Fy =N~ {lgj+1 — gi| < &5},

then
l9j+1 (w) — g; (w)| < ¢; for all j > N.

Another application of Lemma/|11.6{shows | f(w) — g;(w)| < §; for all j > N,

i.e.
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Fy cnjsn{we 2:[f(w) —gj(w)] <6;}.
Taking complements of this equation shows
{If —gnl>dn} CUn{If —gi| > 6;} C F.
and therefore,

p(|f—gn|>0n) S u(Fy) <dy — 0as N — oo

and in particular, gn £ fas N — oco.
With this in hand, it is straightforward to show f, £ f. Indeed, since

{fo —fI>et ={If —gj +9j — ful > ¢}
CAlf =gl + g5 — faul > ¢}
CAlf —gil > /2y U{lgy — ful > €/2},

we have

n({lfn = f1>€}) < p(lf —gil > €/2}) + ullgs — ful > €/2).

Therefore, letting j — oo in this inequality gives,

n({|fn — fI > e}) < limsup p(lg; — fu| > €/2) = 0asn — oo

J—00

because {f,} -, was Cauchy in measure.

5. If { fn}io=1 is convergent and hence Cauchy in probability then any subse-
quence, {f} -, is also Cauchy in probability. Hence by item 3. there is a
further subsequence, {f//} >, of {f/} >, which is convergent almost surely.
Conversely if { f,, },-_; does not converge to f in probability, then there exists
an € > 0 and a subsequence, {ny} such that infy u (| f — fn,.| =€) > 0. Any
subsequence of {f,, } would have the same property and hence can not be

almost surely convergent because of Theorem [11.5

Corollary 11.8 (Dominated Convergence Theorem). Let (£2,8,u) be a
measure space. Suppose {fn}, {gn}, and g are in L* and f € L° are functions
such that

|fn‘ < gn a.e., fnL)fv gnL)gv and /gn_’/g as n — oo.

Then f € L' and lim, . ||f — foll, = 0, i.e. f,, — f in L'. In particular
hmn—woffn = ff
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Proof. First notice that |f| < g a.e. and hence f € L! since g € L!. To see

that |f| < g, use Theorem to find subsequences {f,,} and {gn,} of {fn}
and {g,} respectively which are almost everywhere convergent. Then

[fl= lm [fo [ < lm gn, =g ae.

If (for sake of contradiction) lim, . ||f — fal|l; # O there exists ¢ > 0 and a
subsequence {f,,} of {f.} such that

[15= =< toralt . (11.5)

Using Theorem again, we may assume (by passing to a further subse-
quences if necessary) that f,, — f and g,, — ¢ almost everywhere. Noting,

If = forl <9+ 9gn. — 29 and [ (9 + gn,) — [ 29, an application of the domi-
nated convergence Theorem implies limy_o0 [ |f — fn,| = 0 which contra-

dicts Eq. (11.5)). ]

Exercise 11.1 (Fatou’s Lemma). Let ({2, B, 1) be a measure space. If f,, > 0
and f, — f in measure, then [, fdu <liminf, .o [, fadp.

Exercise 11.2. Let ({2, 8, 1) be a measure space, p € [1,00), {fn} C L (1)
and f € LP (). Then f, — f in LP (1) if f, == f and [|fal” — [

Solution to Exercise ([11.2). By the triangle inequality,

11, = 1 fall,| <
| f = fall, which shows [|f,[" — [|f["if f,, — fin LP. Moreover Chebyschev’s
inequality implies f, —— f if f,, — f in LP.

For the converse, let F, := |f — fu|” and G,, := 2°P71[|f|” + |fn|’] . Then
F, %0, F, <G, e L' and [ G, — [ G where G := 27 |f|" € L'. Therefore,

by Corollary L8] [|f — ful”" = [ F. — [0 =0.

Corollary 11.9. Suppose (£2,B, 1) is a probability space, fr, SN f and gy, LN
g and ¢ : R — R and ¢ : R? — R are continuous functions. Then

1. ¢ (fn) Lf(f),
3. fn + Gn L’f"'gv and
4- fn'gn L)fg
Proof. Item 1., 3. and 4. all follow from item 2. by taking ¢ (z,y) = ¢ (),

Y (z,y) =x+y, and ¢ (z,y) = x - y respectively. So it suffices to prove item 2.
To do this we will make repeated use of Theorem [11.
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Given a subsequence, {ny}, of N there is a subsequence, {n} } of {n;} such
that f,, — f a.s. and yet a further subsequence {ny’} of {nj } such that g, — g
a.s. Hence, by the continuity of v, it now follows that

T 6 (fuy,00) =0 (f.0) as

which completes the proof. [

11.2 Jensen’s, Holder’s and Minikowski’s Inequalities

Theorem 11.10 (Jensen’s Inequality). Suppose that (2,8, ) is a proba-
bility space, i.e. p is a positive measure and p(2) = 1. Also suppose that
f e Lip), f: 2 — (a,b), and ¢ : (a,b) — R is a convex function, (i.e.
¢ (x) >0 on (a,b).) Then

w(/gf@) S/Qw(f)du

where if ¢ o f ¢ LY(un), then @ o f is integrable in the extended sense and
Jae(f)dp = oo.

Proof. Let t = [, fdu € (a,b) and let § € R (8 = ¢ (t) when ¢ (t) exists),
be such that ¢(s) — ¢(t) > B(s —t) for all s € (a,b). (See Lemma and
Figure when ¢ is C! and Theorem below for the existence of such a
B in the general case.) Then integrating the inequality, p(f) — ¢(t) > 8(f — 1),
implies that

0< [ eDin=t) = [ etau—s[ san)
Moreover, if ¢(f) is not integrable, then o(f) > () + B(f — t) which shows

that negative part of ¢(f) is integrable. Therefore, [, ¢(f)du = oo in this case.
|

Example 11.11. Since e® for x € R, —Inx for x > 0, and 2P forz > 0 and p > 1
are all convex functions, we have the following inequalities

exp </Qfdu> S/Qefdu, (11.6)
] 1ol 1) < tog ( /| Ifldu)

and for p > 1,

Page: 111 job: prob

11.2 Jensen’s, Holder’s and Minikowski’s Inequalities 111

’/Qfdup§</nf|du>p§/g|fpdu.

As a special case of Eq. 1) if pj,s;, >0fori=1,2,...,nand ), , 1% =1,
then

n

) LC 23
‘s T Llne A

S1...8p = izt N8 — p2iz B NS < E —elnsi’ = E L, (11.7)
P =1 Pi

Indeed, we have applied Eq. 1} with 2 ={1,2,....n}, p=>", ]%51 and
f (i) :=Ins?". As a special case of Eq. (11.7)), suppose that s,t,p,q € (1,00)

with ¢ = S5 (ie. % + % =1) then

1 1
st < —sP 4 =1, (11.8)
p q

(When p = ¢ = 1/2, the inequality in Eq. follows from the inequality,
0<(s—1)°))

As another special case of Eq. , take p; = n and s; = ag/" with a; > 0,
then we get the arithmetic geometric mean inequality,

1 n
Yay...ay < ﬁZai. (11.9)
i=1

Theorem 11.12 (Hélder’s inequality). Suppose that 1 < p < co and q :=
ﬁ, or equivalently p~' + ¢t = 1. If f and g are measurable functions then

1£glls < W fllp - llgllg- (11.10)

Assuming p € (1,00) and || f|lp - lgllq < oo, equality holds in Eq. (11.10) iff |f|”
and |g|? are linearly dependent as elements of L' which happens iff

91?1 £ 115 = llgllg 117 a-e. (11.11)

Proof. The cases p =1 and ¢ = oo or p = oo and ¢ = 1 are easy to deal
with and will be left to the reader. So we now assume that p,q € (1,00). If
Ilfllg =0 or o or ||g|l, = 0 or oo, Eq. is again easily verified. So we will
now assume that 0 < [[f[l¢, lgll, < oo. Taking s = |f[/[[f]l, and t = |g[/llgll

in Eq. (11.8]) gives,

] I S O
I£llpllglle = P £l g llgll®

. . . —1 —1 .
with equality iff [g/|lglly| = [fP" /11" = [P /IFIBY, e lgloll £ =
lgllZ1fI". Integrating Eq. (11.12) implies

(11.12)
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If9ll1 Sl 1
Iflpllglle — 2 aq

with equality iff Eq. (11.11)) holds. The proof is finished since it is easily checked
that equality holds in Eq. (11.10) when |f|” = ¢|g|? of |g|? = c|f|" for some
constant c. [ |

Ezample 11.13. Suppose that a; € C for k =1,2,...,n and p € [1,00), then

n

>

p n
<P agP (11.13)
k=1 k=1

Indeed, by Holder’s inequality applied using the measure space, {1,2,...,n}
equipped with counting measure, we have

n n 1/p n 1/q n 1/p
S < (Daw’) (z ) (zaw)
k=1 k=1 k=1 k=1

where ¢ = z%' Taking the pt" — power of this inequality then gives, Eq. (11.14).

Theorem 11.14 (Generalized Holder’s inequality). Suppose that f; : 2 —
C are measurable functions for i = 1,...,n and p1,...,pn and r are positive
numbers such that Z?:l pi_1 =L then

I <IJs
=1 =1

Proof. One may prove this theorem by induction based on Hélder’s Theo-
rem [I1.12 above. Alternatively we may give a proof along the lines of the proof
of Theorem [[T.12] which is what we will do here.

Since Eq. is easily seen to hold if [|fi||,, = 0 for some i, we will

assume that [|f;||, > 0 for all 7. By assumption, S o =1, hence we may

replace s; by s! and p; by p;/r for each 7 in Eq. (11.7) to find

n

Zak-l

k=1

(11.14)

pi’

T

n (87)Pi/T n sPi
87 S’I S 7 =r 2 .
Lo ; pi/r ; pi

Now replace s; by |fi| / || fill,, in the previous inequality and integrate the result
to find

r n

1 1 /
<r) e | Ui
, sz' I fi ii o

i=1

1

[T i

11

i=1

Di

pidu:iizl.
i1

Pi
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Theorem 11.15 (Minkowski’s Inequality). If 1 < p < oo and f,g € LP
then

1+ gllp < 171> + llgllp- (11.15)

Proof. When p = oo, |f| < || fl|,, a-e. and |g| < ||g]|, a.e. so that |f + g| <
L1+ 19] < 1 fllo + 9]l a-e. and therefore

1f +9lle < 1l + 19/l -
When p < oo,
If +9I” < (2max (|f],]g]))" = 2" max (|f[", |g]") < 2" (|f]" + 19I"),
which impliesﬂ f+ g€ LP since
1f +gllp < 22 (I£115 + llglly) < oo

Furthermore, when p = 1 we have

1549l = [ 17+ gldu< [ \fldu+ [ lgld =11 + gl
19} n 10}

We now consider p € (1,00). We may assume | f + g|lp, || fll, and ||g][, are
all positive since otherwise the theorem is easily verified. Integrating

\f+ gl =1f+gllf +alP < (FI+1gDIf +gP~*
and then applying Holder’s inequality with ¢ = p/(p — 1) gives
/ |f+g|”duS/ |f] |f+9|”’1du+/ gl [f + 9P~ dp
o) Q Q
-1
< (£ llp + gllp) 11f + 9"~ g, (11.16)

where

107+l = [ (7ol du= [ 15+ glPdn= £+l (17
2 [0}

Combining Egs. (11.16) and (11.17)) implies
1f + gl < 1F 1ol + glB/* + gl lLf + gllz/ (11.18)

Solving this inequality for ||f + g||, gives Eq. (11.15). ]

! In light of Example [11.13] the last 27 in the above inequality may be replaced by

or—1,
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11.3 Completeness of LP — spaces

Theorem 11.16. Let |||, be as defined in FEq. , then
(L>°(2,B, 1), |I'l.) s a Banach space. A sequence {fn},—, C L*> con-

verges to [ € L iff there exists E € B such that u(E) = 0 and f, — f
uniformly on E°. Moreover, bounded simple functions are dense in L.

Proof. By Minkowski’s Theorem[IL.15} ||-||, satisfies the triangle inequality.
The reader may easily check the remaining conditions that ensure ||-|| is a
norm. Suppose that {f,} -, C L is a sequence such f, — f € L*, ie.
Ilf = fullo — 0 as n — oo. Then for all k € N, there exists N}, < oo such that

w(lf = ful > k') =0 for all n > N.

Let
E=U2 Uy {If = fal > k7).

Then p(E) = 0 and for z € E°, |f(z) — fu(z)] < k™! for all n > Nj. This
shows that f,, — f uniformly on E°€. Conversely, if there exists E € B such that
w(E) =0 and f, — f uniformly on E¢, then for any € > 0,

p(f =folze) =p({lf = ful 2} NES) =0

for all n sufficiently large. That is to say limsup ||f — fn||,, < € for all ¢ > 0.
j—o0
The density of simple functions follows from the approximation Theorem
So the last item to prove is the completeness of L°°.
Suppose € n I fm = fullo — 0 as m,n — oo. Let E,,
{Ifn — fm| > emn}t and E := UE,, ,,, then u(E) =0 and

sup |fm (-T) - fn ($)| < Emn — 0 as m,n — oo.
TEE°

Therefore, f := lim,, s fn exists on E° and the limit is uniform on F°. Letting
f =limy, o0 1ge fpn, it then follows that lim, . || fn — fl|., = 0. [

Theorem 11.17 (Completeness of LP(u)). For 1 < p < oo, LP(u) equipped
with the LP — norm, |||, (see Eq. ), is a Banach space.

Proof. By Minkowski’s Theorem |||, satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure [|-[|,
is a norm. So we are left to prove the completeness of LP(u) for 1 < p < oo, the
case p = oo being done in Theorem [11.16

Let {fn},~, C LP(u) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma , {fn} is L%-Cauchy (i.e. Cauchy in measure) and by Theorem
there exists a subsequence {g;} of {f,} such that g; — f a.e. By Fatou’s
Lemma,
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11.4 Relationships between different L? — spaces 113
lg; = fIIp = /klim inf[g; — gr[Pdp < lim inf/lgj — gilPdp
—00 k—oo

= lim inf|[g; — gk|lh — 0 as j — oo.
k—oco

In particular, | (|, < |lg; — fll, + llg;llp < 00 s the f € L? and g; = f. The
proof is finished because,

1frn = fllp < 1 fn = gillp + llg; = Fllp — 0 as j,n — oo

[ ]
See Proposition for an important example of the use of this theorem.

11.4 Relationships between different LP — spaces

The LP(p) — norm controls two types of behaviors of f, namely the “behavior
at infinity” and the behavior of “local singularities.” So in particular, if f blows
up at a point z¢ € {2, then locally near xq it is harder for f to be in LP(u)
as p increases. On the other hand a function f € LP(u) is allowed to decay
at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect LP(u) C L9(u) or L9(u) C LP(u). However,
there are two notable exceptions. (1) If u(£2) < oo, then there is no behavior at
infinity to worry about and L4(u) C LP(u) for all ¢ > p as is shown in Corollary
below. (2) If p is counting measure, i.e. u(A) = #(A), then all functions
in LP(p) for any p can not blow up on a set of positive measure, so there are no
local singularities. In this case LP(u) C L%(u) for all ¢ > p, see Corollary
below.

Corollary 11.18. If ;u(£2) < 00 and 0 < p < q¢ < o0, then Li(pn) C LP(p), the
inclusion map is bounded and in fact

171, < ()G |17, -
Proof. Take a € [1,00] such that

1 1 1

-—=—+-, ie.a= 24
p a q q—p
Then by Theorem [11.14]

1l = 1F -1, < 1l [11lla = (2711 fllg = p(2) 52| .

The reader may easily check this final formula is correct even when ¢ = oo
provided we interpret 1/p — 1/00 to be 1/p. ]
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The rest of this section may be skipped.

Ezample 11.19 (Power Inequalities). Let a == (a1, ..., a,) with a; > 0 for i =
1,2,...,n and for p € R\ {0}, let

1 1/p
o, (53]
=1

Then by Corollary [11.18, p — ||a||p is increasing in p for p > 0. For p = —¢ < 0,

we have
B 1 zn: . —1/q B ) 1/q . .
HaHp = (n 2 a; ) - %Z?:l (i)q a .
where % :=(1/a,...,1/ay). So for p < 0, as p increases, ¢ = —p decreases, so

that H%Hq is decreasing and hence ||é||q_1 is increasing. Hence we have shown
that p — |la|[, is increasing for p € R\ {0}.

= {/ai...a,. To prove this, write af =
ePlnai — 1 4 plna; + O (p2) for p near zero. Therefore,

1N 1o S 2
n;ai —1+pn;1nal+0(p)

Hence it follows that

n 1/p 1/p
hm||aH —hm< Z ) —hm <l—|—p ZlnaZ—FO( ))

=1

We now claim that lim, o [|af,

1
= en :L llnal = "/al Q.

So if we now define [|all, := {/a1..- @y, the map p € R —|[a]|, € (0,00) is
continuous and increasing in p.

We will now show that lim, .o [[al|, = max; a; =: M and lim,—._ [|al|, =
min; a; =: m. Indeed, for p > 0,

and therefore,
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Since (%)1/;; — lasp — oo, it follows that limy, .o [lal|,, = M. For p = —¢ <0,
we have

hm all, = hm = ! _ ! = m = mina,.
H1|| max; (1/a;)  1/m i

Conclusion. If we extend the definition of [lal|, to p = co and p = —o0
by |lall,, = max;a; and |ja||__, = min;a;, then R 3p — lall, € (0,00) is a
continuous non-decreasing function of p.

Proposition 11.20. Suppose that 0 < py < p1 < oo, A € (0,1) and p) €
(po,p1) be defined by
1 1-A A
I i
pA p() pl

with the interpretation that \/py = 0 if p1 = ooE| Then LP» C LPo + LP' j.e.
every function f € LP> may be written as f = g+ h with g € LP° and h € LP'.
For1<py<p <ooand f e LPo+ [P [et

11 = int {llgll, + Al < £ =g+h}.

(11.19)

Then (LPo + LP ||-||) is a Banach space and the inclusion map from LP* to
Lo+ LP1 is bounded; in fact ||f|| < 2| fl,, for all f € LP>.

Proof. Let M > 0, then the local singularities of f are contained in the
set F := {|f| > M} and the behavior of f at “infinity” is solely determined by
f on E°. Hence let g = flgp and h = flge so that f = g + h. By our earlier
discussion we expect that g € LP° and h € LP* and this is the case since,

fpo
lally = [ 177 vpoae =30 [ |
pr
< MPo
<vm [

P1
p1__ P p _ L f
1215y = (1715120, —/If\ e = MP / L

f Px
< Mpl
< [

2 A little algebra shows that A may be computed in terms of po, px and p; by

Ligi>nm

Ligjsar < MPOTPA|f2Y < o0

and

Lig<m

Lipicar < MPTPA| ) < oo,

_Po P1—pr
Px P1— po
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Moreover this shows
F{ il P o S Tl P s

Taking M = A ||f|,, then gives

1< (Nmim g xdmeaen) | g

and then taking A = 1 shows || f|| < 2| ]|, - The proof that (Lo + LP*,||-||) is
a Banach space is left as Exercise [I1.6] to "the reader. [

Corollary 11.21 (Interpolation of LP — norms). Suppose that 0 < py <
p1 <00, A € (0,1) and px € (po,p1) be defined as in Fq. , then LP° N
LPr C LP> and

11y < D11, 1117 (11.20)

Further assume 1 < pg < px < p1 < 00, and for f € LPo N LP* [et

1= 11 + 1F 1, -

Then (LPoNLP ||-|) is a Banach space and the inclusion map of LP° N LP into
LP> is bounded, in fact

141, <max (A= 07 (1, +141,,) . (112)

The heuristic explanation of this corollary is that if f € LPo N LP, then f
has local singularities no worse than an LP* function and behavior at infinity
no worse than an LP° function. Hence f € LP* for any py between py and p;.

Proof. Let A be determined as above, a = pg/\ and b = p;/(1 — A), then

by Theorem [T1.14]
171y = | U 2, = 1 et

It is easily checked that |-|] is a norm on LP° N LP*. To show this space is
complete, suppose that {f,} C LP° N L is a ||-|| — Cauchy sequence. Then
{fn} is both LPo and L”1 Cauchy. Hence there exist f € LP° and g € LP* such
that lim, oo || f — = 0 and lim,—. [|g = fal,, = 0. By Chebyshev’s
inequality ( Lemma ﬂ 11.4) f, — f and f, — ¢ in measure and therefore by
Theorem f = g a.e. It now is clear that lim, o ||f — faull = 0. The
estimate in Eq is left as Exercise [11.5] to the reader. n

Remark 11.22. Combining Proposition [L1.20[ and Corollary [11.21] gives
LPO n Lpl C LPA C LPO + Lpl

for 0 < pg < p1 < o0, A € (0,1) and py € (po,p1) as in Eq. (11.19).
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Corollary 11.23. Suppose now that i1 is counting measure on §2. Then LP(u) C
Li(p) for all0 <p < g < oo and || fll, < If]l,-

Proof. Suppose that 0 < p < ¢ = 0o, then
1112, = sup {|f(@)[" sz € 2} < Y |f @) = |11},
zes?
ie. |fll ||fH for all 0 < p < 0o. For 0 < p < ¢ < o0, apply Corollarym
with po = p and p1 = oo to find

1— 1—
£, < DI UAIS P < A NI = | £,

11.4.1 Summary:

LPoNLPr C L9 C LPo + LP* for any g € (po, p1)-
If p < g, then ¢/ C £% and || f]|, < | fIl,-

Since p(|f| > ¢) < e P fll,, LP — convergence implies L’ — convergence.

=W e

L% — convergence implies almost everywhere convergence for some subse-

quence.

5. If u(2) < oo then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L% —
convergence.

6. If u(2) < oo, then L? C LP for all p < g and L9 — convergence implies LP

— convergence.

11.5 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L% — convergent sequence is LP — convergent. This will lead us
to the notion of uniform integrability. To simplify matters a bit here, it will be
assumed that (2, B, 1) is a finite measure space for this section.

Notation 11.24 For f € L*(u) and E € B, let
p(f - E) = / fdp.
E
and more generally if A, B € B let
wu(f: A, B) ::/ fdp.
ANB

When u is a probability measure, we will often write E[f : E] for u(f : E) and
E[f: A, B] for u(f : A, B).
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Definition 11.25. A collection of functions, A C L'(u) is said to be uni-
formly integrable if,

lim sup p (|f|: |f| > a) = 0. (11.22)
a— 00 fEA

The condition in Eq. (11.22)) implies sup;c 4 | fll; < OOE| Indeed, choose a
sufficiently large so that supse 4 p (|f] ¢ [f| > a) <1, then for f € A

1y = w(f1: 11 = a) + p(f]: 1] < a) <T+ap(82).

Let us also note that if A = {f} with f € L* (1), then A is uniformly integrable.
Indeed, limg 00 (| f] : | f| = a) = 0 by the dominated convergence theorem.

Definition 11.26. A collection of functions, A C L'(p) is said to be umi-
formly absolutely continuous if for all ¢ > 0 there exists § > 0 such that

sup i (|f| : E) < € whenever u(E) < 4. (11.23)
feAa

Remark 11.27. Tt is not in general true that if {f,} C L'(u) is uniformly ab-
solutely continuous implies sup,, || f,|l; < oco. For example take 2 = {*} and
w({*}) = 1. Let f,(x) = n. Since for § < 1 a set E C {2 such that pu(E) < ¢
is in fact the empty set and hence {f,}, -, is uniformly absolutely continuous.
However, for finite measure spaces without “atoms”, for every § > 0 we may
find a finite partition of {2 by sets {E@}Izzl with pu(Ey) < 4. If Eq. (11.23) holds
with € = 1, then

k
plful) =Y p(Ifal = Be) <k
=1

showing that u(|f,|) <k for all n.

Lemma 11.28 (This lemma may be skipped.). For any g € L'(u), A =
{g} is uniformly absolutely continuous.

Proof. First Proof. If the Lemma is false, there would exist ¢ > 0 and sets
E,, such that p(E,) — 0 while u(|g| : E,,) > ¢ for all n. Since |1z, 9| < |g| € L!
and for any 6 > 0, u(lg, |g| > 0) < u(E,) — 0 as n — oo, the dominated
convergence theorem of Corollary [[1.8] implies lim,, o u(|g| : E,) = 0. This
contradicts p(|g| : Ey) > ¢ for all n and the proof is complete.

Second Proof Let ¢ = >, clp, be a simple function such that
lg — @ll, < /2. Then

3 This is not necessarily the case if p(£2) = oco. Indeed, if 2 = R and y = m is
Lebesgue measure, the sequences of functions, { fn = 1[,%”]}:’:1 are uniformly
integrable but not bounded in L' (m).
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plgl: E) <p(lel: E)+p(lg—ol: E)

<D el n(EnB) +lg — ¢l < (Z Czl> E)+e/2.

i=1
This shows i (|g| : E) < & provided that u(E) <e(2) i, \ci|)_1 . |

Proposition 11.29. A subset A C L' () is uniformly integrable iff A C L* (u)
is bounded is uniformly absolutely continuous.

Proof. (=) We have already seen that uniformly integrable subsets, A,
are bounded in L' (1) . Moreover, for f € A, and E € B,

u(f1 = B) = u(lf] : 1] = M, B) + u(|f]: | ] < M, E)
< supu(lf| : £ = M) + Mu(E),

So given ¢ > 0 choose M so large that sup,c 4 pu(|f] : [f| > M) < /2 and then
take § = 557 to verify that A is uniformly absolutely continuous.
(<=) Let K :=supsc, [|f]l; < oo. Then for f € A, we have

w(lfl=a) <|fll;/a < K/a for all a > 0.

Hence given € > 0 and § > 0 as in the definition of uniform absolute continuity,
we may choose a = K/ in which case

sup (| f|: [f| 2 a) <e
fea

Since ¢ > 0 was arbitrary, it follows that lim, o suppe 4 p (|| [f| = a) = 0 as
desired. [

Corollary 11.30. Suppose {fn},—, and {gn},., are two uniformly integrable
sequences, then {f, + gn} —, s also uniformly integrable.

Proof. By Proposition [11.29 m {fu}or, and {gn} -, are both bounded
in L' (p) and are both uniformly absolutely continuous. Since || f, + gnll; <
Il fally + llgnll, it follows that {f, + gn}.—, is bounded in L' (u) as well.
Moreover, for € > 0 we may choose § > 0 such that pu(|f,]: E) < ¢ and
i (lgn] : E) < e whenever p (E) < 6. For this choice of € and d, we then have

1 (fn+ gal : B) < (| fal + 19l : ) < 26 whenever pu(E) < 5,

showing { f,, + gn}f;)=1 uniformly absolutely continuous. Another application of

Proposition [11.29] completes the proof. [
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Exercise 11.3 (Problem 5 on p. 196 of Resnick.). Suppose that {X,,} 7|
is a sequence of integrable and i.i.d random variables. Then {%}2021 is uni-
formly integrable.

Theorem 11.31 (Vitali Convergence Theorem). Let (£2,B,u) be a finite
measure space, A := {f,} >, be a sequence of functions in L* (u), and f: 2 —
C be a measurable function. Then f € L' (p) and ||f — ful; — 0 as n — oo iff
fn — [ in p measure and A is uniformly integrable.

Proof. («<=) If f, — f in p measure and A = {f,},~ | is uniformly inte-
grable then we know M := sup, || fnl|; < co. Hence and application of Fatou’s
lemma, see Exercise|11.1

[ \7ldn < timint [ (fldu < 01 < oo,
.Q n—oo .Q

ie. f € L'(u). One now easily checks that Ag := {f — f,.}.—, is bounded in

n

L' (1) and (using Lemma [11.28) and Proposition [11.29) Aq is uniformly abso-
lutely continuous and hence Ay is uniformly integrable. Therefore,

Hf*an1:/L(|f7fn|:|f*fn|Za)+u(|f7fn|:|fffn|<a)

<ef(a)+ /!2 Lif—tui<alf = fuldp (11.24)

where
e(a) =supp(|f = fml: [f = fm| = a) = 0 as a — oo.
Since 15—y, |<a |f — fu| < a € L' (p) and

w(Lp—poi<alf = fal >€) Sp(lf = fo]l >€) = 0as n — oo,

we may pass to the limit in Eq. (11.24]), with the aid of the dominated conver-
gence theorem (see Corollary [11.8)), to find

limsup||f — full; <e(a) = 0as a — oo.
n—oo

(=) If f, — fin L' (i), then by Chebyschev’s inequality it follows that
fn — f in p — measure. Since convergent sequences are bounded, to show A is

uniformly integrable it suffices to shows A is uniformly absolutely continuous.
Now for F € B and n € N,

plfnl 2 B) < plf = ful 2 B) + u(f] 2 B) < f = fally + 0(f] 2 E).

Let en :=sup,sn |f — fnll;, then ey | 0 as N T oo and
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sup (|fnl : B) < sup [ fn] : E)V (en + pllf - B)) < en + plgn < B,

(11.25)
where gy = |f| + 25:1 |fn] € L. Given ¢ > 0 fix N large so that ey < £/2
and then choose § > 0 (by Lemma [11.28)) such that p(gn : F) < € if u (E) < 4.
It then follows from Eq. (11.25) that

sup p(|fn] : E) <€/2+¢/2 =¢ when u(E) < 0.

Ezample 11.32. Let £2 = [0,1], B = Bjg,1) and P = m be Lebesgue measure on
B. Then the collection of functions, f. (z) := 2(1 —xz/e) V0 for € € (0,1) is
bounded in L' (P), f. — 0 a.e. as £ | 0 but

= [ lim f.dP # i dpP =1.
0 /Qsl?gfs #;ﬁg/ﬂfs

This is a typical example of a bounded and pointwise convergent sequence in
L' which is not uniformly integrable.

Ezample 11.33. Let 2 = [0,1], P be Lebesgue measure on B = By j}, and for
e € (0,1) let a. > 0 with lim. g a. = oo and let f. := a.ly.). Then Ef. = ca.
and so sup,~g || fe|l; = K < oo iff ea. < K for all e. Since

supE [f. : fe > M] =sup [eae - 1o, >Mm],
1> I

if { .} is uniformly integrable and § > 0 is given, for large M we have ea. < § for
¢ small enough so that a. > M. From this we conclude that limsup, | (ca.) < ¢
and since ¢ > 0 was arbitrary, lim. g ea. = 0 if {f.} is uniformly integrable. By
reversing these steps one sees the converse is also true.

Alternatively. No matter how a. > 0 is chosen, lim.|( f = 0 a.s.. So from
Theorem if {f.} is uniformly integrable we would have to have

1{-:1{8 (eas) = lleol]EfE =[E0=0.

Corollary 11.34. Let (£2,B, ;1) be a finite measure space, p € [1,00), {fn}re,
be a sequence of functions in LP (u), and f : 2 — C be a measurable function.
Then f € LP (u) and ||f — fall, — 0 as n — oo iff f — f in p measure and
A= {|falP}02, is uniformly integrable.

oo

Proof. (<= ) Suppose that f, — f in g measure and A := {|f,|"},_;

is uniformly integrable. By Corollary | fnl? LN |fI” in p — measure, and
By = |f — ful? £ 0, and by Theorem [11.31} |f|” € L' () and |f.[® — |f|” in
L' () . Since
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= ‘f - fn|p < (|f| + |fn|)p

with g, — ¢ := 2P~ |f|” in L' (), the dominated convergence theorem in
Corollary implies

<27 + | fal”) =2 gn € LT (1)

||f*fn||§:/Q|f*fn|pdu:/ﬂhnduHOasnaoo.

(=) Suppose f € L? and f, — f in LP. Again f, — f in p — measure by
Lemma [TT.4l Let

ho = | fal” =

and g := 2|f|? € L'. Then g, * g, h, > 0 and [ g,du — [ gdu. Therefore
by the dominated convergence theorem in Corollary nh_)rr;o S hn dp =0,
ie. [ful? — |f|P in L' (u) E| Hence it follows from Theorem that A is
uniformly integrable. ]

The following Lemma gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly integrable.

[FIPL < [ ful? + [P = gn € LY

Lemma 11.35. Suppose that p(2) < oo, and A C L°(2) is a collection of
functions.

1. If there exists a mon decreasing function ¢ Ry — R4 such that

limg 00 p(z)/x = 00 and

K = sup p(p(|f]) < o0 (11.26)
fea

then A is uniformly integrable.
2. Conversely if A is uniformly integrable, there exists a non-decreasing con-
tinuous function ¢ : Ry — Ry such that ¢(0) = 0, lim,_,o p(z)/x = 00

and Eq. is valid.
4 Here is an alternative proof. By the mean value theorem,

AP = 1 Fal?l < plmax( ] D)™ S| = fall < oA+ LD AL = 1 fall

and therefore by Holder’s inequality,

/Ilflp — | fal?| Sp/(lfl F 1D AL = ol Sp/(lfl )P = fol di
<lIf = Fallo I+ )P o = 2l 1AL+ a2 = Falls
< (I fllp + 1 ulle?/41F = il

where ¢ := p/(p — 1). This shows that [||f|® — |fn]?|dp — 0 as n — oo.
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A typical example for ¢ in item 1. is ¢ (x) = zP for some p > 1.

Proof. 1. Let ¢ be as in item 1. above and set €, := sup, >, ﬁ — 0 as
a — oo by assumption. Then for f € A

W(lf1: 1= a) = (@ (f' Lol 2 ) < u(o (1) : |] > a)ea

<ulp(If]))ea < Keq

and hence
lim supp (\f| 1|f‘>a) < hm Ke, =0.

a—0o0 f

2. By assumption, e, := supsc it (|f| 1j5j>a) — 0 as a — oo. Therefore we
may choose a,, T oo such that

oo

Z(n—#l)aan < oo

n=0

where by convention ag := 0. Now define ¢ so that ¢(0) = 0 and

Pl@)=> (n+ 1)1, a,. @),
n=0
p(z) = /Ox W)y =3 (n+1)(xAanp1 — 2 Aay).
n=0

By construction ¢ is continuous, ¢(0) = 0, ¢'(x) is increasing (so ¢ is convex)
and ¢'(x) > (n+ 1) for > a,. In particular

p(2) o plan) + (n+ Dz

>n+1 for x > a,

from which we conclude lim, o ¢(z)/x = co. We also have ¢'(z) < (n+1) on

[0, ant1] and therefore
o(x) < (n+1ax for © < any.
So for f € A,

8

(D @n,ans1 (1£1))

e (If1) :Z

<3 D) ot (11)

oo
< Z (n+ 1) (1f11f20,) > (n+1)eq,
n=0
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and hence
oo

ilelgu(sa(\fl)) <> (n+1)e,, <.

n=0

11.6 Exercises

Exercise 11.4. Let f € LPN L for some p < oo. Show || f|, = limy—o || f], -
If we further assume p(X) < oo, show [|f|l, = limg.cc [/ f|, for all mea-
surable functions f : X — C. In particular, f € L* iff limg .o || f[[, < oo.
Hints: Use Corollary to show limsup,_. [[fll, < [Ifll. and to show
liminfy o [|fll, = [ fl Tet M < [|f]l,, and make use of Chebyshev’s in-
equality.
Exercise 11.5. Prove Eq. in Corollary (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a,b > 1 with a=! +b~! = 1 chosen
appropriately,

st b

st < —+ —
a

b
applied to the right side of Eq. ([11.20)).

Exercise 11.6. Complete the proof of Proposition [11.20] by showing (LP +
L7 |||l is a Banach space.

11.7 Appendix: Convex Functions

Reference; see the appendix (page 500) of Revuz and Yor.

Definition 11.36. A function ¢ : (a,b) — R is convex if for all a < zy < 1 <
bandt € [0,1] p(x:) < to(x1) + (1 — t)p(xg) where zy = tx1 + (1 — t)xo, see
Figure 77 below.

Example 11.37. The functions exp(x) and —log(z) are convex and |z|” is
convex iff p > 1 as follows from Lemma for p > 1 and by inspection
of p=1.

Theorem 11.38. Suppose that ¢ : (a,b) — R is convex and for x,y € (a,b)
with x < y, lef’]
y) — @ (x
F oy £W = 0@
y—z
Then;

® The same formula would define F (x,y) for  # y. However, since F (z,y) =
F (y,z), we would gain no new information by this extension.
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T20 ¥

(W) Ry

6 4 2 0 2 WaXx
\ 1
X

Fig. 11.1. A convex function with three cords. Notice the slope relationships; m; <
ms S mo.

1. F (z,y) is increasing in each of its arguments.
2. The following limits exist,
ol (x) == F (z,24) := liinF (z,y) < 0o and (11.27)
ylx
o (y)=F(y—,y) = %rylF(m,y) > —00. (11.28)

3. The functions, ¢! are both increasing functions and further satisfy,
—oo<¢ ()< (x) <y (y) <ooVa<az<y<b. (11.29)

4. For any t € [ (2), ¢, (2)]
oly)>p(x)+tly—=z) for alz,y € (a,b). (11.30)

5. Fora<a<pf<b, let K:=max{|¢, (a)|,|¢_ (B)|}. Then

lo(y) —@ (@) < K|y —x| forall z,y € |a,5].

That is ¢ is Lipschitz continuous on [«, 3] .

6. The function @', is right continuous and ¢’ is left continuous.

7. The set of discontinuity points for ', and for ¢’ are the same as the set of
points of non-differentiability of ¢. Moreover this set is at most countable.
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Proof. 1. and 2. If we let hy = tp(x1) + (1 — t)p(zo), then (x¢, ) is on
the line segment joining (g, ¢ (zo)) to (z1,¢ (x1)) and the statement that ¢ is
convex is then equivalent of ¢ (x;) < hy for all 0 < ¢ < 1. Since

hi — @ (x0)  @(x1) —p(z0)  (21) =My

Tt — X Tr1 — Xo 1 — Ty

the convexity of ¢ is equivalent to

_ he — _
p(2e) — @) he—e(@0) _ o @) —0(@0) ¢ o cp <
Ty — X Ty — X 1 — Zo

and to

p @) —p @) _ @)~ _ p(z1) — ()
xr1 — X xr1— Ty xr1 — Tt

for all zg < x; < 27

and convexity also implies

¢ (r) —p(xo) _ e —p(wo) _p(z1) —he _ p(@1) = ¢ (24)
e — T Tt — T 1 — T 1 — T

These inequalities may be written more compactly as,

) —plu) _pw)—pu) _pw)—p©) (11.31)

V—U - w—1Uu - w—v

valid for all ¢ < w < v < w < b, again see Figure The first (second)
inequality in Eq. shows F'(z,y) is increasing y (). This then implies
the limits in item 2. are monotone and hence exist as claimed.

3. Let a < x < y < b. Using the increasing nature of F,

/

—00 < ¢l (z) =F (z—,2) < F(z,2+) = ¢/, (z) <0
and
¢l (2) = F(z,04) < F(y—y) = ¢ (v)

as desired.
4. Let t € [¢_ (x),¢, (x)] . Then

t< ¢l (2) = F(v,a4) < F(,y) = W

or equivalently,
ely) > px)+t(y—z) fory > x.

Therefore Eq. (11.30)) holds for y > x. Similarly, for y < =z,
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o) —p(y)

tE(p’_(];):F(x—,l‘)ZF(y,x): T —y

or equivalently,

) =p@) —tl@—y) =p@)+t(y—=) fory <z

Hence we have proved Eq. (11.30)) for all z,y € (a,b).
5. Fora<a<z<y<pf<b, we have

¢l (a) < ¢l (z) = F(z,a+) < F(2,y) < F(y—y) = ¢ (y) < oL (B)
(11.32)
and in particular,

K <, () < Qp(y;_f(f) <y (B)<K.
This last inequality implies, |¢ (y) — ¢ ()] < K (y — ) which is the desired
Lipschitz bound.

6. Fora < c <z <y <b, wehave ¢, () =F (z,2+) < F (x,y) and letting
x | ¢ (using the continuity of F') we learn ¢/, (¢c+) < F' (c,y). We may now let
y | ¢ to conclude ¢/, (c+) < ¢/, (¢). Since ¢’ (¢) < ¢/, (c+), it follows that
¢’ (¢) = ¢!, (c+) and hence that ', is right continuous.

Similarly, for a < ¢ < y < ¢ < b, we have ¢’ (y) > F(x,y) and letting
y T ¢ (using the continuity of F) we learn ¢’ (¢c—) > F (z,¢). Now let « 1 ¢ to
conclude ¢’ (c—) > ¢’ (c). Since ¢’ (¢) > ¢ (¢—), it follows that ¢’ (¢) =
¢ (c—), i.e. ¢ is left continuous.

7. Since ¢4 are increasing functions, they have at most countably many
points of discontinuity. Letting = T y in Eq. , using the left continuity
of ', shows ¢’ (y) = ¢/ (y—). Hence if ¢’ is continuous at y, ¢’ (y) =
¢ (y+) = ¢/, (y) and ¢ is differentiable at y. Conversely if ¢ is differentiable
at y, then

ol (y=) =¢- (W) =¢ (v) =¥ (v)
which shows ', is continuous at y. Thus we have shown that set of discontinuity
points of ¢/, is the same as the set of points of non-differentiability of . That
the discontinuity set of ¢’ is the same as the non-differentiability set of ¢ is
proved similarly. ™

Corollary 11.39. If ¢ : (a,b) — R is a convex function and D C (a,b) is a
dense set, then

o (y) = sup [¢ (x) + ¢ () (y — 2)] for all z,y € (a,b).
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Proof. Let ¢+ (y) = sup,ep [¢ () + ¢+ (x) (y — )] . According to Eq.
(11.30) above, we know that ¢ (y) > ¢4 (y) for all y € (a,bd) . Now suppose that
z € (a,b) and z, € A with x,, 7 . Then passing to the limit in the estimate,
V- (y) 2 ¢ (@) + ¢_ (zn) (y — zn), shows ¥_(y) > ¢ (z) + . (z) (y — ).
Since = € (a,b) is arbitrary we may take x = y to discover ¥_ (y) > ¢ (y) and
hence ¢ (y) = ¥— (y) . The proof that ¢ (y) = ¥+ (y) is similar. ]
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12

Laws of Large Numbers

In this chapter {Xj},-; will be a sequence of random variables on a prob-
ability space, (2,8, P), and we will set S,, := X7 +---+ X, for all n € N.

Definition 12.1. The covariance, Cov (X,Y) of two square integrable ran-
dom wvariables, X and Y, is defined by

Cov(X,)Y)=E[(X —ax)(Y —ay)|=E[XY]-EX -EY
where ax = EX and ay := EY. The variance of X,
Var (X) := Cov (X, X) = E[X?] — (EX)” (12.1)

We say that X and Y are uncorrelated if Cov (X,Y) = 0, i.e. E[XY] =
EX - EY. More generally we say {Xy},_, C L*(P) are uncorrelated iff
Cov (X;,X;) =0 for all i # j.

Notice that if X and Y are independent random variables, then f (X), g (Y)
are independent and hence uncorrelated for any choice of Borel measurable
functions, f,g: R — R such that f(X) and g (X) are square integrable. It also

follows from Eq. (12.1)) that
Var (X) <E[X?] for all X € L*(P). (12.2)

Lemma 12.2. The covariance function, Cov (X,Y) is bilinear in X andY and
Cov (X,Y) = 0 if either X orY is constant. For any constant k, Var (X + k) =
Var (X) and Var (kX) = k*Var(X). If {Xy},_, are uncorrelated L* (P) -
random variables, then

Var (S,,) = ZVar (Xk) .
k=1
Proof. We leave most of this simple proof to the reader. As an example of

the type of argument involved, let us prove Var (X + k) = Var (X);

Var (X + k) = Cov (X + k, X + k) = Cov (X + &k, X) + Cov (X + k, k)
=Cov (X +k,X) =Cov (X, X)+ Cov (k, X)
= Cov (X, X) = Var (X).

Exercise 12.1 (A correlation inequality). Suppose that X is a random
variable and f,g : R — R are two increasing functions such that both f (X)
and g (X) are square integrable. Show Cov (f (X), ¢ (X)) > 0. Hint: let Y be
another random variable which has the same law as X and is independent of
X. Then consider

E[(f (V)= f(X))-(g(Y) - g(X))].

Theorem 12.3 (An L? — Weak Law of Large Numbers). Let {X,,} 7, be
a sequence of uncorrelated square integrable random variables, u, = EX, and
02 = Var (X,,). If there exists an increasing positive sequence, {a,} and i € R
such that

1

n
—E i — [t as n — oo and
2%

=1
n
1 2
—25 o; — 0 asn— oo,
a? “
j=1

then as—” — p in L? (P) and also in probability.
Proof. We first observe that ES,, = 2?21 p; and

2
n

E Sn—zn:uj :Var(Sn):Zn:VM(Xj):ZC’?'
i=1 =t

=1
Hence
1 n
ES, = Z.U] — p
j=1
and )
Sn = D25—1 1 1 &
n j=1"J 2
3" g
j=1
Hence,
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& _ _ Sp — Z?:l Hj + Z?:l 122 _
an ey an an rp)
Sy, =S s KTy
< 72]_1 s + 72]_1 Hi | — 0.
Qn, Qn,
L2(P)

]
Ezample 12.4. Suppose that { X}, C L? (P) are uncorrelated identically dis-
tributed random variables. Then
Sy L*(P)
— =
n

uw=EX; asn — oo.

To see this, simply apply Theorem [[2:3] with a,, = n.

Proposition 12.5 (L? - Convergence of Random Sums). Suppose that
{X)}rey C L? (P) are uncorrelated. If > ;- Var (X)) < oo then

Z X — ux) converges in L* (P).
k=1

where g, = EXj.

Proof. Letting S, := >.7_; (Xi — px), it suffices by the completeness of
L% (P) (see Theorem [11.17) to show [|S,, — S|, — 0 as m,n — oco. Supposing
n > m, we have

1S — Syl

E( > (X —Nk)>

k=m-+1
n

g Var (X}) = E 0% — 0 as m,n — oc.
k=m+1 k=m+1

]

Note well: since L?(P) convergence implies LP (P) — convergence for

0 < p < 2, where by L° (P) — convergence we mean convergence in prob-

ability. The remainder of this chapter is mostly devoted to proving a.s. conver-

gence for the quantities in Theorem [11.17] and Proposition [12.5( under various
assumptions. These results will be described in the next section.

12.1 Main Results

The proofs of most of the theorems in this section will be the subject of later
parts of this chapter.
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Theorem 12.6 (Khintchin’s WLLN). If {X,}>7 are i.i.d. L' (P) - ran-
dom wvariables, then %Sn Lt nw=EX;.

Proof. Letting
n
= Z Xilix;|<ns

we have {S], # S,} C U, {|Xi| > n} Therefore, using Chebyschev’s inequal-
ity along with the domlnated convergence theorem, we have

P(S, #5,) < znjp(pg\ >n) =nP(|Xi| > n)
i=1

<E[X1]:|X1| >n] —0.

Hence it follows that
!
P(Sn—sn‘>s> < P(S], #S,) —0asn— oo,
n n
o — 0. So it suffices to prove S;l it L

ie. Sz — 5,

, 2
We will now complete the proof by showing that, in fact, % P w. To

this end, let

1 n
— Y E[Xiljx<a] =E[Xi1)x, <]

=1

1
pn = —ES!, =
n

and observe that lim,, .. i, = p by the DCT. Moreover,

2
S! 1
E|—" — pn| = Var (”) = — Var(S;,)
n n n
1 n
=5 Var (Xiljx,<n)
i=1
1 1 s
= —Var (Xi1x,1<n) < B [X{1jx, <0
<E “Xl‘ 1|X1|§"]
— 0. This completes the proof since,
L2(P)
S/ !
- < |2 = pin + |t — | — 0 as n — oco.
" ORI L2(P)

In fact we have the stronger result.
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Theorem 12.7 (Kolmogorov’s Strong Law of Large Numbers). Suppose
that {X,,},>, are i.i.d. random variables and let S,, := X1 + -+ + X,,. Then
there exists 1 € R such that nS — u oa.s. iff X, is mtegmble and in which
case EX,, = u

Remark 12.8. f E | X;| = oo but EX| < oo, then %S’n — 00 a.s. To prove this,
for M >0let XM := X,, A M and SM =31 XM Tt follows from Theorem
that LM — )M = EXM as.. Since S,, > SM, we may conclude that

Sh
liminf — > liminf — SM M oas.
n—oo N n—oo N

S

Since M — oo as M — oo, it follows that liminf,, 2o = 00 a.s. and hence

that lim,, %" = 00 a.s.

One proof of Theorem is based on the study of random series. Theorem
[[2.11] and [[2.12] are standard convergence criteria for random series.

Definition 12.9. Two sequences, {X,} and {X]}, of random wvariables are
tail equivalent if

E lilx7l#xé‘| = iP<Xn #X,:l) < 0
n=1

n=1
Proposition 12.10. Suppose {X,,} and {X]} are tail equivalent. Then

1.3 (X, — X)) converges a.s.
2. The sum Y X, is convergent a.s. iff the sum > X/ 1is convergent a.s. More
generally we have

P ({ZX” is convergent} A {Z X! is convergent}) =1

3. If there exists a random variable, X, and a sequence a,, T co such that
nlingoa;kaX a.s

then

lim — X=X
Jm o Z p= X as

Proof. If {X,,} and {X/,} are tail equivalent, we know; for a.e. w, X, (w) =
X/, (w) for a.a n. The proposition is an easy consequence of this observation. m
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Theorem 12.11 (Kolmogorov’s Convergence Criteria).  Suppose
that {Y,},—, are independent square integrable random variables. If
Z —, Var (Y] ) < 00, then Z 1 (Y; — EYj) converges a.s.

Proof. One way to prove this is to appeal Proposition[I2.5]above and Lévy’s
Theorem below. As second method is to make use of Kolmogorov’s in-
equality. We will give this second proof below. [

The next theorem generalizes the previous theorem by giving necessary and
sufficient conditions for a random series of independent random variables to
converge.

Theorem 12.12 (Kolmogorov’s Three Series Theorem). Suppose that
{Xn}o2, are independent random variables. Then the random series, 37~ X;,
is almost surely convergent iff there exists ¢ > 0 such that

13707 P(|Xn| > ¢) < oo,
2. 220:1 Var (X”1|Xn\SC) < o0, and
8.3 (B (Xulix,|<c) converges.

Moreover, if the three series above converge for some ¢ > 0 then they con-
verge for all values of ¢ > 0.

Proof. Proof of sufficiency. Suppose the three series converge for some ¢ > 0.
If we let X, := X,,1|x, |<¢, then

(oo}

ip(x;ﬁéx Z (|1 X,] > ¢) < .
n=1

Hence {X,,} and {X],} are tail equivalent and so it suffices to show > >~ X/
is almost surely convergent. However, by the convergence of the second series
we learn

ZVar (X)) = ZVar (Xnlix,|<c) <00
n=1

and so by Kolmogorov’s convergence criteria,

o0
Z —[EX]) is almost surely convergent.

n=1

Finally, the third series guarantees that Y- >° | EX) = > E(X,1x,|<.) is
convergent, therefore we may conclude Y 2 | X/ is convergent. The proof of
the reverse direction will be given in Section [I2-§ below. |
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128 12 Laws of Large Numbers
12.2 Examples
12.2.1 Random Series Examples

Ezample 12.13 (Kolmogorov’s Convergence Criteria Example). Suppose that
{Y,},2, are independent square integrable random variables, such that
Z] 1 Var (Y;) < oo and Z L EY; converges a.s., then Z‘;O:l Y; converges a.s..

Definition 12.14. A random variable, Y, is normal with mean n standard
deviation o iff

P(Y € B) =

1 1 2
—5z(y—n)
e 22 dy for all B € Bg. 12.3
%27702/3 y f R ( )
We will abbreviate this by writing Y N (,u,JQ) . When =0 and 0> =1 we
will simply write N for N (0,1) and if Y £ N, we will say Y is a standard

normal random variable.

Observe that Eq. (12.3) is equivalent to writing

E[f(Y)] = y) e 2 007 gy

— [ 1«
V2ro? Jr
for all bounded measurable functions, f : R — R. Also observe that ¥ =

N (p, 02) is equivalent to Y LN + . Indeed, by making the change of variable,
y = oz + p, we find

EU@N+un:;#3/fwx+Me%“m

)e %%(y—#)zdy.

/f e_; (y—n)® dy
\/ o \/271'02

Lemma 12.15. Suppose that {Y,} —, are independent square integrable ran-

dom variables such that Y, 4 N(,un,a,%). Then Z]O‘;IYJ converges a.s. iff
Z;‘;l 0]2- < 00 and Z;il [j converges.

Proof. The implication “ = ” is true without the assumption that the
Y,, are normal random variables as pointed out in Example [[2.13] To prove
the converse directions we will make use of the Kolmogorov’s three series theo-

rem. Namely, if Z;’;l Y; converges a.s. then the three series in Theorem |12.12
converge for all ¢ > 0.

1. Since Y,, 4 onN + pn,, we have for any ¢ > 0 that
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= =1 L2
50> Y P(jonN + pinl >c):Z—*/ e” 2% du (12.4)
n=1 n=1 2 B,

where

Bn:(_ooa_c+un)u (C'u"’oo)'

On On
If lim,, o i, # 0 then there is a ¢ > 0 such that either u, > ci.o. or u, < —c
i.o. In the first case in which case (0,00) C B, and in the second (—o0,0) C
B,, and in either case we will have \/% fB e 3% dy > 1/2 i.o. which would

contradict Eq. (12.4). Hence we may concluded that lim,,_, o t,, = 0. Similarly
if lim,, o 0, # 0, then we may conclude that B, contains a set of the form
[, 00) i.0. for some a < oo and so

1 / -32°g > / 32" 4z i.0.
i e T > — e T 1.
V2T V2T

which would again contradict Eq. (12.4)). Therefore we may conclude that
2. The convergence of the second series for all ¢ > 0 implies

00 > ZVar (Yn1|yn|§c) = ZVar ([G'nN + pn) 1\onN+un\§c) ,i.e.

n=1 n=1

o0 o0
oo > Z [03 Var (NllonNﬂLnISc) + Ni Var (1|UnN+#n|§c)] > Z aian.
n=1

where «, := Var (NllanN+u,L|§c)~ As the reader should check, o, — 1 as

n — oo and therefore we may conclude > o> | 02 < co. It now follows by Kol-
5 . . o0 .

mogorov’s convergence criteria that y_ >~ ; (Y, — u,) is almost surely convergent

and therefore
o0 o0 o0
Zﬂn:ZYn_Z(Yn_
n=1 n=1 n=1

converges as well.
Alternatively: we may also deduce the convergence of Y > | i, by the
third series as well. Indeed, for all ¢ > 0 implies

E ([anN + pn) 1\anN+un|§c) is convergent, i.e.

1 1M

[010n + 1nfBr] is convergent.

n=1
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where §,, := E (N - 1|UnN+#n|§c) and 3, .= E (1|aﬂ/N+#n|§c) . With a little effort

one can show,
2 2
8y ~e ¥/ and 1 — B ~ e F/7n for large n.

Since e */7n < Co? for large n, it follows that 3207 0,6, < C 3227 03 < o0
so that fozl [n B is convergent. Moreover,

Z |,u'n (ﬂn - 1)| < CZ ‘/U'n|0—121 <00
n=1

n=1

and hence

Zun—Zunﬂn Zun =1

n=1

must also be convergent. u

Ezample 12.16 (Brownian Motion). Let {N,}.-
dom variable, i.e.

n—1 beii.d. standard normal ran-

P(N, € A) = e~ 2z for all A € Bg.

|
Let {wn}r—; CR, {an},—; CR, and ¢ € R, then

o0
E an Ny sinwy,t converges a.s.

n=1

provided Zn 1 a2 < co. This is a simple consequence of Kolmogorov’s conver-
gence criteria, Theorem [12.11] and the facts that E [a,, IV, sinwyt] = 0 and

: 2 i 2 2
Var (a, N, sinw,t) = a2 sin” w,t < a:.

As a special case, if we take w, = (2n — 1) and a,, = then it follows

V2
2 w(2n—1)’
that

2V2 Ny . m
By = = k:lzs:s R <k§t) (12.5)

is a.s. convergent for all ¢ € R. The factor 2‘[ has been determined by requiring,

[

d 2v/2
dt wk

2
sin (kjﬂ't)] dt =1

as seen by,
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/1 isin k—wt th_k2772 /1 cos k—ﬂt th

o Ldt 2 22 2
B K22 2 [kr ! B k272
T2 k¢ 23

t + —sin kmt

4 0

Fact: Wiener in 1923 showed the series in Eq. (12.5)) is in fact almost surely
uniformly convergent. Given this, the process, t — B; is almost surely contin-
uous. The process {B; : 0 <t < 1} is Brownian Motion.

Ezample 12.17. As a simple application of Theorem [12.12] we will now use
Theorem to give a proof of Theorem We will apply Theorem
with X, :=Y,, —EY,,. We need to then check the three series in the statement of
Theorem [12.12] converge. For the first series we have by the Markov inequality,

o0

ip(|Xn\>c Z%]E\Xnﬁzc%i\/ar(}/
n=1 n=1

For the second series, observe that

> Var (Xalpe,<e) < OB [(Xalix,<)’] < S B[] =3 Var(y,

n=1 n=1

and for the third series (by Jensen’s or Holder’s inequality)

STIE (Xulixaize)| € 3E (1Kl Lixee) < 30 Var(v;) < oo
n=1

n=1 n=1

12.2.2 A WLLN Example

Let {X,},—, be iid. random variables with common distribution function,
F(z) := P(X, <z). For z € R let F, (z) be the empirical distribution
function defined by,

1 < 1<
j=1 j=1

Since Elx,<, = F (z) and {1 ngw};i are Bernoulli random variables, the

1

weak law of large numbers implies F), (x) Eit F (z) as n — oo. As usual, for
€ (0,1) let
F=(p):=inf{z: F(z) > p}

and recall that F~ (p) < z iff F'(z) > p. Let us notice that
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130 12 Laws of Large Numbers

n
E (p)=inf{z: F,(x) >p} =inf{ = : ZlXij >np
j=1

=inf{z: #{j <n:X; <z} >np}.

The order statistic of (Xi,...,X,) is the finite sequence,
(X{”),Xén),...,xﬁm), where (X{”),X§">,...,X,S")) denotes (X1,...,X,)

arranged in increasing order with possible repetitions. Let us observe that X ,in)

are all random variables for k < n. Indeed, X,gn) <ziff#{j<n:X; <z} >k
iff Z?:l 1ngx Z k, i.e.

{X]Sn)gl'}: ZlXjSCL’Zk € B.

j=1

Moreover, if we let [z] = min{n € Z : n > x}, the reader may easily check that
Fm(p) = Xy

Proposition 12.18. Keeping the notation above. Suppose that p € (0,1) is a
point where

F(F~(p)—¢e)<p< FF " (p)+e) foralle >0

then XFZ;
probability, the pt* — quantile of the distribution F by observing {X:} .

1= Fo(p) L pe (p) as n — oo. Thus we can recover, with high

Proof. Let € > 0. Then

{Fy ) —F (p)>e} ={F, (p)<e+F ()} ={F, (p) <e+F (p)}
={F.(e+F (p) >p}

so that

{Fy (p) = F~ (p) > e}t ={F.(F' (p) +¢) <p}

={F(e+F (p)—F+F (p)<p-FF (p)+e)}.

Letting 0. := F (F'~ (p) +¢) —p > 0, we have, as n — oo, that
PAF, (p)-F(p)>el) =P(Fu(e+ F" (p)) = F(e+ F~ (p)) < —bc) = 0.
Similarly, let . := p — F (F (p) — ) > 0 and observe that

{(F=(p)—Fy ()=l ={F; (p) <F~ (p)—e} ={F(F" (p) —¢) 2 p}
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and hence,

P(F~(p)—F, (p) > ¢)

=P(F,(F"(p)—e) - F(F~(p)—e) zp—F(F" (p) —¢))
=P(F,(F~(p)—e)—F(F~ (p)—¢) >6.) = 0asn— oo.
Thus we have shown that XFZ;W RN (p) as n — oc. |

12.3 Strong Law of Large Number Examples

Ezample 12.19 (Renewal Theory). Let {X;};2, be ii.d. random variables with
0 < X; < oo a.s. Think of the X; as the time that bulb number i burns
and T,, := X; + --- + X,, is the time that the n'" — bulb burns out. (We
assume the bulbs are replaced immediately on burning out.) Further let N; :=
sup{n > 0: T, <t} denote the number of bulbs which have burned out up to
time n. By convention, we set Ty = 0. Letting u := EX; € (0, 00|, we have
ET,, = nu — the expected time the n*" — bulb burns out. On these grounds we

expect N; ~ t/u and hence
1 1
~Ny — — a.s. (12.6)
t Iz

To prove Eq. 1 , by the SSLN;, if 2 := {limn_,OO %Tn = [L} then P (£20) =

1. From the definition of Ny, Ty, <t < T, +1 and so

I, < * < TN‘H.
Ny = N Ny

Since X; > 0 as., 21 := {N; T oo ast ] oo} also has full measure and for
w € 29 N 27 we have

. . . TNt(w)Jrl (LU) Nt (w) + 1
=% N (w) — Py Ny (w) — P Ne(w)+1 N (w)

Ezample 12.20 (Renewal Theory II). Let {X;};°, be iid. and {Y;};2, be i.id.
with {X;};2, being independent of the {Y;};°, . Also again assume that 0 <
X; <ocand 0 <Y; < oo a.s. We will interpret Y; to be the amount of time the
i*" — bulb remains out after burning out before it is replaced by bulb number
i+ 1. Let R; be the amount of time that we have a working bulb in the time
interval [0,t] . We are now going to show

lim 1R = 7EX1
tfo t ' EX, +EY;
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To prove this, now let T}, := > | (X; + Y;) be the time that the n'" — bulb is
replaced and

Ny:=sup{n>0:T, <t}
denote the number of bulbs which have burned out up to time n. Then R; =
va:tl X Setting = EX; and v = EY7, we now have %Nt — % a.s. so that

+v
Ny = t + o(t) a.s. Therefore, by the strong law of large numbers,

M+V

Ny

1 1 N,
“R==-Y X, =t
£ tz t

i=1

- [ a.s.

Theorem 12.21 (Glivenko-Cantelli Theorem). Suppose that {Xn}n | are
i.i.d. random variables and F (z) := P (X; < x). Further let p, := 1 3" | 6,
be the empirical distribution with empirical distribution function,
1 n
F, = Uy, ((— = — 1x. <z
)= (oot = 1D e

Then
lim sup |F, (x) —

F(z)]=0 a.s.

Proof. Since {lx,<s},o, are iid random variables with Ely,<, =
P(X;<xz) = F(x), it follows by the strong law of large numbers the
lim, o Fy () = F(x) as. for each € R. Our goal is to now show that
this convergence is uniforrnE| To do this we will use one more application of the
strong law of large numbers applied to {1x,<,} which allows us to conclude,
for each x € R, that

lim F, (z—)=F(z—) a

n—oo

s. (the null set depends on x).

Given £k € N, let A, := {% i=1,2,...,k— 1} and let z; :=
inf{z: F(x)>i/k} for i = 1,1,2,...,k — 1. Let us further set = = oo
! Observation. If F is continouous then, by what we have just shown, there is a set

20 C 2 such that P (£20) = 1 and on 2, F, (r) — F (r) for all » € Q. Moreover
on (2, if x € Rand r <x < s with 7, s € Q, we have

F(r)= hm F, (r) <liminf F, (z) <limsup F, (z) < lim F, (s) = F (s).

n—00 n—o0o
We may now let s |  and r T = to conclude, on {2y, on

F (z) < liminf F;, () < limsup Fy, () <

n—oo n—oo

F (z) for all z € R,

ie. on 2, limp oo Fy () = F (). Thus, in this special case we have shown off a
fixed null set independent of x that lim,—eo Fy (x) = F () for all € R.

Page: 131 job: prob

12.3 Strong Law of Large Number Examples 131

and zp = —oo. Observe that it is possible that x; = x;41 for some of the .
This can occur when F has jumps of size greater than 1/k.

’W~‘ /

>

i X < Ko

Now suppose i has been chosen so that x; < x;11 and let z € (2, z;y1) .
Further let N (w) € N be chosen so that

|Fp () — F (z;)] < 1/k and |F, (z;—) — F (z:—)| < 1/k

forn > N(w)and i =1,2,...,
have

k—1and w € 2 with P(£2;) = 1. We then
and
F, (z) > F, (x;) > F(x;) = 1/k > F (z;31—) — 2/k > F (x) — 2/k.

From this it follows that |F (z) —
and n > N (w) that

F, ()] < 2/k and we have shown for w € §2;

sup |F' (z) —
z€R

Hence it follows on 2y := N3, £2 (a set with P (£29) = 1) that

F, (@) < 2/k.

lim sup|F, (z) — F (z)] = 0.

N0 zeR
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132 12 Laws of Large Numbers

Ezample 12.22 (Shannon’s Theorem). Let {X;}.2, be a sequence of i.i.d. ran-
dom variables with values in {1,2,...,r} C N. Let p (k) := P(X; = k) > 0 for
1 < k < r. Further, let 7, (w) = p (X1 (w))...p (X, (w)) be the probability of
the realization, (X1 (w),..., X, (w)). Since {lnp (X;)},2, are i.id.,

1 1<
fﬁlnﬂn:fEZhlp(Xi — —E[lnp(X1)] Zp )Ynp (k) =: H (p).

In particular if ¢ > 0, P (|[H — 2Inm,| > &) — 0 as n — oo. Since

{‘H—Flnwn } {H+ lnﬂn>6}U{H+]n'n—n<_5}
n n
1
= {lnﬂ'n > —H+€} U {lnﬂn < —H—g}
n n
= {’Nn > en(*H+€)} U {ﬂ—n < en(foa)}
and
1 ¢ c
{'Hlnwn >s} :{7(”>6 n(—H+e) {7r < enl(= H*E)}
n

{M < en(—H+a)} n {Wn > en(—H—e)}

_ {67n(H+£) <m, < efn(er)},

it follows that

P (e_"(H+5) <m, < e_”(H_E)> — 1 asn — oo.

Thus the probability, 7,, that the random sample { X7, ..., X} should occur is
approximately e with high probability. The number H is called the entropy
of the distribution, {p (k)},_, .

12.4 More on the Weak Laws of Large Numbers

Theorem 12.23 (Weak Law of Large Numbers). Suppose that {X,},.,
is a sequence of independent random variables. Let S, := Z;—;l X; and

n
=Y E(Xi:|Xx| <n)=nEk(X
k=1

1|X1|§n)

If
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> P(IXk[>n)—0 (12.7)
k=1
and
1 n
— > E (X7 Xkl <n) =0, (12.8)
k=1
then g
n—n Py,
n

Proof. A key ingredient in this proof and proofs of other versions of the
law of large numbers is to introduce truncations of the {Xj} . In this case we

consider .
=D Xilix,j<n-
k=1
Since {S,, # Sp/} C Ui, {|Xk| > n},
> 5)

_ ! _ !
P<‘Sn an S, —an >€) P(‘S" S
n n
gZP(|Xk|>n)—>Oasn—>oo.

n
P (S, # Sn)
k=1

an

. S’
Hence it suffices to show s

Sl —an L*(P)
——t =" (0asn— oo.
Observe that ES], = a,, and therefore,

e ([E5]) - - S

£ 0 as n — oo and for this it suffices to show,

Xkl\Xk|<n)

1 n
< EZ]E(XI?l\Xk\Sn) — 0 as n — o0.

k=1
]
We now verify the hypothesis of Theorem [12.23]in three situations.
Corollary 12.24. If {X,} ", are iid. L*(P) - random variables, then
15, 5 u=EX,.
Proof. By the dominated convergence theorem,
ap, 1 —
— == E(Xk:| Xl <n)=E(X;:]|X1| < . 12.9
2= A B X <) =B (X X <) — (12.9)
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Moreover,
1 ¢ X2 1 2 1 2
—22 k:|Xk|§n):ﬁIE(X1:\X1|§n)§EE(X1)HOasnﬂoo
and by Chebyschev’s inequality,
ZP (I Xkl >n) =nP (| X1| >n) < n—E\X1| — 0 asn — oo.
k=1

With these observations we may now apply Theorem [12.23| to complete the
proof. [

Corollary 12.25 (Khintchin’s WLLN). If {X,,} 7, are i.i.d. L' (P) - ran-
dom variables, then %Sn Lt uw=EX;.

Proof. Again we have by Eq. (12.9), Chebyschev’s inequality, and the dom-
inated convergence theorem, that

ZP |Xk] >n) =nP (| X1 >n) <n— IE[|X1\ |X1| >n] — 0 as n — oo.
k=1
Also
1 & 1 X,
=Y E(E s <) = 22 [0 s <) = 13 D]
k=1
and the latter expression goes to zero as n — oo by the dominated convergence

theorem, since
| X1

| X1 —lxgn < | X1| € L (P)

and lim,, o | X1| ‘)flll 1)x,|<n = 0. Hence again the hypothesis of Theorem [12.23
have been verified. u

Lemma 12.26. Let X be a random variable such that 7 (z) := P (| X| > z) —
0 as x — o0, then

1
lim —E [|X|2 X <n|=o0. (12.10)

n—oo 1

Note: If X € L' (P), then by Chebyschev’s inequality and the dominated con-
vergence theorem,

7(z) <E[|X]:|X|>2] =0 asx — oo.
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Proof. To prove this we observe that
E [|X|2 LX< n] —E [2/10§m§|x|§nxd4 - 2/P(O <z <|X| < n)ode

§2/ xP(|X|2x)dac:2/ 7 (x) dx.
0 0

Now given € > 0, let M = M () be chosen so that 7 (z) < ¢ for z > M. Then

n

M
E |X|2:|X|§n}:2/ T(x)daj—i—Q/ T(x)dr <2KM +2(n—M)e
0 M

where K = sup {7 (z) : ¢ > 0} . Dividing this estimate by n and then letting
n — 0o shows

hmsup IE [|X| |X| < n] < 2e.

n—oo

Since € > 0 was arbitrary, the proof is complete. [

Corollary 12.27 (Feller’s WLLN). If {X,}~, are i.id. and 7(z) :=
2P (|X1] > x) — 0 as © — oo, then the hypothesis of Theorem are satis-

fied.

Proof. Since

> P (IXk| > n) =nP (X1 >n) =7(n) > 0asn— oo,
k=1

Eq. (12.7)) is satisfied. Eq. (12.8)), follows from Lemma |12.26| and the identity,

1 n
52 E(X
k=1

1
2 lXi <n) = —E [|X1|2 X < n] .

12.5 Maximal Inequalities
Theorem 12.28 (Kolmogorov’s Inequality). Let {X,} be a sequence of

independent random variables with mean zero, S, = X1 + --- + X,, and
S} =maxj<, |S;|. Then for any o > 0 we have

P(Sy >a) < *E [SX : 19| > a] .

(See Proposition|19.40 and Example below for generalizations of this in-
equality.)
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134 12 Laws of Large Numbers
Proof. Let J = inf {j : [S;| > a} with the infimum of the empty set being
taken to be equal to co. Observe that

{J:j}:{|51|<0l7...,‘5j,1|<Oé,‘Sj|ZOZ}€O'(X1,...7Xj).

Now

N
E[S}:[Syl>a] =E[S}:J<N]=> E[S}:J =4

j=1

I
WE

E[(S; + Sy - 8 J = j]

.
I
—

I
M=

E[s§+(SN—sj)2+2Sj (Sy — S;) : J:j}

j=1

() N >

2N B[S+ (Sn - 85)7 T = ]
j=1
N N

>3 E[S}:J=j]>a*Y P[J=j]=a’P(Sy|>a).
j=1 j=1

The equality, (%), is a consequence of the observations: 1) 1;-;5; is
o(Xi,...,X;) — measurable, 2) (S, —S;) is 0 (X;+1,...,X,) — measurable
and hence 1;-;5; and (S, — 5;) are independent, and so 3)
E[S; (Sn = 55) : J = j] = E[Sjl=; (S — 5j)]
=E[S;1/—;]-E[Sy — 5] =E[S;1,—;] -0 =0.

Corollary 12.29 (L? — SSLN). Let {X,,} be a sequence of independent ran-
dom wvariables with mean zero, and 0? = EX2 < oco. Letting S, = > p_y X
and p > 1/2, we have

1
—S, — 0 a.s.
npb

If {Y,,} is a sequence of independent random wvariables EY,, = p and 02 =
Var (X,,) < oo, then for any 5 € (0,1/2),

V=0 (g).
n n
k=1
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Proof. (The proof of this Corollary may be skipped. We will give another
proof in Corollary [12.36] below.) From Theorem [12.28] we have for every € > 0
that
1 C

2 N2p CN = 2N @p-1)

S . 1
P(ij) ze) =P (Sy >eNP) < ml@ [S¥] =

Hence if we suppose that N,, = n® with a(2p — 1) > 1, then we have

Z_:IP ( NP 2 5) <> a1 ~®

and so by the first Borel — Cantelli lemma we have

S;‘Vn 3
P N7 > ¢ for n i.o. =0.

From this it follows that lim,, . 7

To finish the proof, for m € N, we may choose n = n (m) such that

=0 a.s.

n*=N,<m< Ny =(n+1)".

Since y .
M < Sj < M
Nimyrr — ™ 7 N
and

Npt1/Np — 1 asn — oo,

it follows that

* S* %
. n(m . No(m .
0= lim %: lim pi"g lim 7;
m— o0 n(m) m— o0 n(m)+1 m—o0 1,
* *
. Np(m . Np(m
< lim %: lim %:03.5.
mTee n(m) mmee n(m)+1
N S*
That is lim,, . 7% = 0 a.s. [}

Theorem 12.30 (Skorohod’s Inequality). Let {X,,} be a sequence of inde-
pendent random variables and let o« > 0. Let S, := X1+ -+ X,,. Then for all
a >0,

P(1Swl > ) 2 (1 ex (a)) P (magls;] > 2a).

where

en (@) = I]I%ag/{P(\SN - Sj|>a).
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Proof. Our goal is to compute
P (max|5j| > 2a> .
J<N

To this end, let J = inf {j : |S;| > 2a} with the infimum of the empty set being
taken to be equal to co. Observe that

{J =7} ={IS1] < 20,...,[S;-1| <20c,|5;| > 2a}
and therefore N
{?lgazizdsj > 204} = ;{J =
Also observe that on {J = j},
1Sn| =[Sy = 85 + Sj| = [S;| = [Sn = 5| > 2a =[S = 55l
Hence on the {J = j,|Sy — ;| < a} we have |Sy| > ¢, ie.
[J=3,|Sn — S| < a} € {ISx] > a} forall j < N.

Hence ti follows from this identity and the independence of {X,,} that

] =

P(Sn|>a)z ) P(J =35l —5jl <a)

1

.
Il

I
] =

P(J=3)P(ISy = 5j| < ).
1

.
Il

Under the assumption that P (|Sy —S;| > «) < ¢ for all j < N, we find
P(|Sv—=Sj|<a)>1-c

and therefore,

N
P (|Sn| > ) ZZ J(1—¢)= (1—C)P(§11§%<Sj|>2a>.

]
As an application of Theorem [12.30|we have the following convergence result.

Theorem 12.31 (Lévy’s Theorem). Suppose that { X}, are i.i.d. random
variables then Y~ | X, converges in probability iff Y .- X,, converges a.s.
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Proof. Let S,, := >_;_, X. Since almost sure convergence implies conver-
gence in probability, it suffices to show; if S, is convergent in probability then S,
is almost surely convergent. Given M € M, let Qs := sup,,> s |Sn — Su| and
for M < N, let Qv := SUppr<p<n |Sn — Su|. Given ¢ € (0,1), by assump-
tion, there exists M = M (¢) € N such that maxy<j<ny P (|Sy — Sj| >¢) <¢
for all N > M. An application of Skorohod’s inequality, then shows

P(|SN—SM‘>E) e

P >2¢) < = '
(Qm,n > 2¢) < (1 —maxpy<j<n P(|Sy — Sj| >¢)) ~ 1—¢

Since Qar,n T Qar a8 N — 00, we may conclude

3

P(QMZQE)S 1_5.

Since,
dpr = sup [Sp— S| < sup [|Sn — Su|+[Su — Swl] = 2Qum
m,n>M m,n>M

we may further conclude, P (dys > 4¢) < = and since € > 0 is arbitrary, it

follows that dps Loas M — . Moreover, since dj; is decreasing in M, it

follows that limps_,o Opr =: § exists and because dyps £0 we may concluded
that § = 0 a.s. Thus we have shown

lim |S, — Sn| =0 as.

m,n— 00

and therefore {S,},~, is almost surely Cauchy and hence almost surely con-
vergent. n

Proposition 12.32 (Reflection Principle). Let X be a separable Banach
space and {52}11\;1 be independent symmetric (i.e. & 4 —&;) random variables

with values in X. Let Sy, = Zle §i and Sy = sup, <y, [|S;]| with the convention
that Sg = 0. Then
P(S3 > 1) < 2P (|Sx]| 2 7). (1211)

Proof. Since

{Sx =y =Y L {lISil =r S5_y <1},

P(Sy >r)=P(Sy >, [ISx|l>7)+P(Sy >, [[Snll <)
= P(|Sy|| >r)+ P(Sy >, |ISx| < 7). (12.12)

where
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136 12 Laws of Large Numbers

P(S3 >, ||Sn| <) ZP I1S;]l > r, S5y <r [Svll<7r). (12.13)
By symmetry and independence we have

P(|S =7, Sj_y <r ISnll <7)=P(IS;| =7, Sj_y <r [[S;+D_ & <7)
k>j

= P(IS;ll =7, S;_y <7y |[Sj =D &l <7)

k>j
P([Sill =7, 81 <7, 2855 = Snl < 7).

If ||S;|| > r and ||25; — Sn|| < 7, then
r> 1285 = Snll = 21551 = [Snll = 2r — [|SN |l
and hence ||Sn|| > 7. This shows,
{ISill = r, S5y <r, 112S; = Swll <r} C {lISjll =, Sj_y <7, [ISnll >}
and therefore,
P([Sill =7, Sjq <y 1SNl <) < P(IS; = 7, Sj_y <7y [[Snll > 7).
Combining the estimate with Eq. gives

N
P(Sy =r, |Sxl <) <) PUSiI =7 Sj_y <7, |ISvll>7)

= P(Sy =z, |ISn] > 7) < P(ISv] = 7).

This estimate along with the estimate in Eq. (12.12]) completes the proof of the
theorem. -

12.6 Kolmogorov’s Convergence Criteria and the SSLN

We are now in a position to prove Theorem [12.11] which we restate here.

Theorem 12.33 (Kolmogorov’s Convergence Criteria).  Suppose
that {Y, }Oo are independent square integrable random wvariables. If
> 52y Var (Y, ) < oo, then 3372, (Y; — EYj) converges a.s.

Page: 136 job: prob

Proof. First proof. By Proposition the sum, 372 (V; — EY;), is
L? (P) convergent and hence convergent in probablhty An apphcation of Lévy’s
Theorem 1| then shows Z (Y; — EYj;) is almost surely convergent.

Second proof Let S, = Z 1 X where X; :=Y; — EY;. According to
Kolmogorov’s inequality, Theorern m for all M < N,

1
P, 155wl 20) < B (5w = 15 30 ® 1

N
Z Var (X))

j=M+1
Letting NV — oo in this inequality shows, with Qas := sup;>, [S; — Sul,
PQuza)sh Y v
a) < — ar (
M o2
j=M+1
Since

dp = sup |S; — Skl < sup [1S; — Sam| + 1S — Skl] < 2Qum
7,k>M 3k>

we may further conclude,

1
> -
P 0y > 2a) Sa Z Var (X
j=M+1

;) — 0as M — oo,

ie. oy £ 0as M — oo. Since dp is decreasing in M, it follows that

limps o0 Opr =: 9§ exists and because dyy L0 we may concluded that § = 0
a.s. Thus we have shown

lim |S, —Sm|=0as.

m,n— oo

and therefore {S,},2 is almost surely Cauchy and hence almost surely con-
vergent. ]

Lemma 12.34 (Kronecker’s Lemma). Suppose that {z;} C R and {a;} C
(0,00) are sequences such that ay, 1 oo and Y po 2—: exists. Then

n
. 1
lim — E zr = 0.
n—oo an
k=1
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Proof. Before going to the proof, let us warm-up by proving the following
continuous version of the lemma. Let a (s) € (0, oo) and z (s) € R be continuous
functions such that a (s) 1 oo as s — oo and fl al gds exists. We are going to

show

lim

: 1 " B
A /1 x(s)ds =0.
Let X (s) := [ = (u) du and

oo / o0
X' () du :/ z (u) du
a (u) s al(u)
Then by assumption, 7 (s) — 0 as s — 0 and X’ (s) = —a (s) ' (s) . Integrating
this equation shows

X(s)—X(so)z—/sa(u)r'(u)du:—a(u)r(u) Z:SO—F/ST(u)a’(u)du.

S0 S0
Dividing this equation by a (s) and then letting s — oo gives

lim sup X (5)] = lim sup [(50) 7 (50) —a(s) 7 (s) + ! ] /S r(u)a (u) du}

s—oo Q (3) s—oo | a (3) a (8

1 S
<limsup |—7r(s) + —/ 7 (u)|a’ (u) du}
s—oo | a (5) S0
. [a(s) —a(so) B
< limsup | —————= sup |r (u)|| = sup |r (u)| — 0 as sg — 0.
s—oo | a (3) u>sg u>so

With this as warm-up, we go to the discrete case.

Let
k oo T
Sk = ij and ry 1= Z i.
j=1 j=k 7

so that 7, — 0 as k — oo by assumption. Since x = ag (1x — 7k+1) , we find

1
S, 1< jlas
— = — E ar (T — Th1) = E agTi — E 1Tk
an ap

k=1

1 n
= — |a1r1 — apTpy1 + E (ag — ak—1) rk] . (summation by parts)
an

k=2

Using the fact that ax — ax_1 > 0 for all k£ > 2, and

m

1
lim — — ap_ =0
o &l e
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12.6 Kolmogorov’s Convergence Criteria and the SSLN 137

for any m € N; we may conclude

n
limsup |—| < hmsup — E (ag — ag—1) |7k
n—oo (079 n—oo 0n
k=2
n
—hmbup— g (ag — agp—1) |7&|
n—oo an
k=m
n
1
< sup |rg| - limsup — g (ar — ag—1)
k> n—oo Qdn
k=m
. 1
— sup [r4] - Timsup — [an — am_1] = sup |7
k>m n—oo Qn k>m
This completes the proof since supys.,, |rx| — 0 as m — oo. |

Corollary 12.35. Let { X, } be a sequence of independent square integrable ran-
dom variables and b, be a sequence such that b, T co. If

= Var (X
Z arb(2 k) < 00
k=1 k

then
S, — ES,

by,
Proof. By Kolmogorov’s Convergence Criteria, Theorem [12.33

— 0 a.s.

— X —EX}, .
Z ——— 1s convergent a.s.
k=1 b

Therefore an application of Kronecker’s Lemma implies

S, —ES,

n— o0 bn Py n— o0 n

1 n
0= lim —Z X, —EX}) = lim

Corollary 12.36 (L? — SSLN). Let {X,} be a sequence of independent ran-
dom variables such that 0? = EX2 < co. Letting S, = ZZ:1 X and p:=EX,,

we have
1

b

provided b, T oo and Zflozl b% < o0o. For example, we could take b, = n or

(S —np) — 0 a.s. (12.14)

b, = nP for anp > 1/2, orb, = n'/? (lnn)l/%E for any € > 0. We may rewrite

FEq. as
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138 12 Laws of Large Numbers
Sp—np=o0(1)b,

or equivalently,
Sh, bn
— —pu=o0(1)—.
o u=o(l)—
Proof. This corollary is a special case of Corollary [12.35| Let us simply

observe here that

> 1 > 1
Z = Z )1+25

n=2 (nl/2 (In n)1/2+6> ’ n—en(lnn
by comparison with the integral

/2 mdw:/lnzme dy:/ln2y1+28dy<oo,

wherein we have made the change of variables, y = Inx. ]

Fact 12.37 Under the hypothesis in Corollary

lim Sn;num =120 a.s.
n=c0 n1/2 (Inlnn) /

Our next goal is to prove the Strong Law of Large numbers (in Theorem
112.7) under the assumption that E | X;| < oco.
12.7 Strong Law of Large Numbers
Lemma 12.38. Suppose that X : 2 — R is a random variable, then
E|X]P = / psP P (| X| > s)ds = / psP 1P (| X| > s) ds.
0 0

Proof. By the fundamental theorem of calculus,

| X| 0o 00
| X = / psP~ds = p/ Lo<ix| - $7'ds = p/ Locx| - 87 'ds.
0 0 0

Taking expectations of this identity along with an application of Tonelli’s the-
orem completes the proof. [

Lemma 12.39. If X is a random variable and € > 0, then

o0 1 o0
> P(IX]>ne) < CElX| < > P(IX] > ne). (12.15)

n=1 n=0

Page: 138 job: prob

Proof. First observe that for all ¥ > 0 we have,

Slgy <Y<Y lugy +1= Lug,. (12.16)
n=1 n=1

n=0

Taking y = | X| /e in Eq. (12.16]) and then take expectations gives the estimate
in Eq. (12.15). .

Proposition 12.40. Suppose that {X,},-, are i.i.d. random variables, then
the following are equivalent:

1. E |X1‘ < 00.
2. There exists € > 0 such that Y~ | P (|X1| > en) < oc.
3. For alle >0, > > | P(|X1] >en) < oc.

. X,
4. limy, o0 % =0 a.s.

Proof. The equivalence of items 1., 2., and 3. easily follows from Lemma
[12:39] So to finish the proof it suffices to show 3. is equivalent to 4. To this end
we start by noting that lim,,_, ‘X—n”l =0 a.s. iff

Xn
0=P (|| >e i.o.) = P (|X,| > ne i.0.) for all € > 0. (12.17)
n

However, since {|X,,| > ne} ;| are independent sets, Borel zero-one law shows

the statement in Eq. (12.17) is equivalent to Y. -, P (|X,| > ne) < oo for all

e > 0. [}

Corollary 12.41. Suppose that {Xn}ff:l are i.1.d. random variables such that
18, —ceR as., then X, € L' (P) and p:=EX, = c.

1 . Sny1 _ Sa
Proof. If =5, — c a.s. then g, := ]

o — 0 a.s. and therefore,

X 1 1
n+1l Sn+1 _ Sn _5n+Sn |:_ :l

n+1 n+1 n+1 n n+1
1 S
=¢,+————20+0-c=0.
(n+1) n

Hence an application of Proposition [12.40| shows X,, € L' (P). Moreover by
Exercise 11.3L {%Sn}f;l is a uniformly integrable sequenced and therefore,

M:E[lsn} —>E[lim 15n] _E[]=c.

n n—oo n
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12.7 Strong Law of Large Numbers 139

Lemma 12.42. For all x > 0, Proof. This is a simple application of Lemma [12.42
=1 1 1 1 2 2
@)=Y —laca = — <2-min ( 1> > SE[IXP x| = [|X| > 1|X|<n] =E[|x* 0 (1X))]
n=1 n>x n=1 n= 1
Proof. The proof will be by comparison with the integral, [~ %dt = 1/a. <2E [|X|2 (|X1| A 1)] <2E[X].
For example,
= 1 *1 n
Z nZ <1+ /1 ﬁdt =1+1=2 With this as preparation we are now in a position to prove Theorem [12.7]
n=1 which we restate here.
and so
1 1 2 Theorem 12.44 (Kolmogorov’s Strong Law of Large Numbers). Sup-
n2 Z n2 ; for 0 <z <1 pose that {Xn};l'oz1 are i.1.d. random wvariables and let S, == X1 + --- + X,,.

Then there exists u € R such that %Sn — u a.s. iff X,, is integrable and in
which case EX,, =

Proof. The implication, 15, — 4 a.s. implies X,, € L' (P) and EX,,
has already been proved in Corollary m 12.41} So let us now assume X,, € L! (P)
and let p:= EX,,.

- Let X := Xnl|x,|<n- By Proposition [12.40

S P(X,#Xn) =Y P(Xul>n)=)Y P(Xi|>n) <E|X;| < o0,

n=1 n=1 n=1
and hence {X,} and {X]} are tail equivalent. Therefore it suffices to show
lim, o =5, = p a.s. where S, := X{ + -+ + X/,. But by Lemma [12.43

~ E [‘Xn|21|Xn\Sn}

3o YorlXs <ZE' _y

n=1 n=1

[\X1| 1|X1\<n}
Z - < 2E|X,| < oo.
n

Therefore by Kolmogorov’s convergence criteria,

-EX! |
Lemma 12.43. Suppose that X : {2 — R is a random variable, then Z Tn is almost surely convergent.
oo 1 -
Z — [|X|2 : 1|X|<n} <2E|X]|. Kronecker’s lemma then implies
n2 <
n=1

n

1
lim =" (X}, — EX}) =0 as.
n—oo N
k=1
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140 12 Laws of Large Numbers

So to finish the proof, it only remains to observe

n

1 1< 1 ¢
nlLHgOEZEX,; = lim =Y E[X,1x,/<n] = lim =Y E[X11x,<n]
k=1 k=1

n—oo N, — n—oo N,
= nan;OE [X11|X1|§n] = .

Here we have used the dominated convergence theorem to see that a, :=
E [Xll‘X1|<n] — pas n — oo. It is now easy (and standard) to check that
lim,, oo % k 1 Qpn = limy, .o ap = p as well. [ ]

We end this section with another example of using Kolmogorov’s conver-
gence criteria in conjunction with Kronecker’s lemma. We now assume that
{X,} 2, are i.i.d. random variables with a continuous distribution function
and let A; denote the event when X is a record, i.e.

Aj = {Xj > maX{Xl,Xg, .. -;Xk—l}}-

Recall from Renyi Theoremthat {4, } _, are independent and P (A;) = %
for all j.

Proposition 12.45. Keeping the preceding notation and let uy = Zjv 114,

denote the number of records in the first N observations. Thenlimy .o -5 = 1
a.s.

Proof. Since 14, are Bernoulli random variables, E14, = % and

Var (L) =E13 — (Ela,)” = % - =

Observing that

ZEIA *Z*N/ Zdr=In N

we are lead to try to normalize the sum ijl 14; by InN. So in the spirit of
the proof of the strong law of large numbers let us compute;

o0

B Lt < <1
ZVa (lnj) Z /2 /1 dy<oo

lnj J2 In’z n2 Y2

Therefore by Kolmogorov’s convergence criteria we may conclude

i1Aj—§:°° Ly [l
Inj — Inj Inj

Jj=2 Jj=

is almost surely convergent. An application of Kronecker’s Lemma then implies
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nlingo N =0as
So to finish the proof it only remains to show
N1
lim 2=t _ 1. (12.18)

X - X
o
N j+1 N
11 1
=S ()
=173 v =1/
N1
=N+ Z - (12.19)
— j
J
where
N N N
J+1 1 1
=Yt S =S sy 5|~ 3
= i=1 Ji=

and hence we conclude that limy_.. pny < co. So dividing Eq. (12.19)) by In N
and letting N — oo gives the desired limit in Eq. (12.18]). ]

12.8 Necessity Proof of Kolmogorov’s Three Series
Theorem

This section is devoted to the necessity part of the proof of Kolmogorov’s Three
Series Theorem [12.12] We start with a couple of lemmas.

Lemma 12.46. Suppose that {Y,, } _, are independent random variables such
that there exists c < oo such that |Y,| < ¢ < oo a.s. and further assume
EY, = 0. If Y00 | Y, is almost surely convergent then Y EY,? < oo. More
precisely the followmg estimate holds,

for all X > 0, (12.20)

o0 )\+C)2
EY? < (
2 7= P (sup, S < N)

where as usual, Sy, := Z?Zl Y.
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Remark 12.47. Tt follows from Eq. (12.20) that if P (sup,, |Sn| < o0) > 0, then

2;11 EY} < oo and hence by Kolmogorov’s Theorem, Z;’;l Y; = lim, o0 Sy,

exists a.s. and in particular, P (sup,, |Sn| < 00).

Proof. Let A > 0 and 7 be the first time |S,| > A, i.e. let 7 be the “stopping
time” defined by,
T=my:=inf{n>1:]5,] > A}.

As usual, 7 = o0 if {n >1:|S,| > A} = 0. Then for N € N,
E[SX] =E[S}:T<N]+E[S}:7> N]
SE[SJQV:TﬁN]+)\2P[T>N].
Moreover,

N
E[S%V:T:j]ZZE[|Sj+SN—Sj|2:T:j}

j=1

] =

E[S%VZTSN]:

<.
I
—

I
M=

E [Sj? +28; (Sy — S;) + (Sw — ;)% : T:j}

=Y B[S} 7 =i+ Y B[Sy~ 8| Plr =
<Y B[S+ 7 =] +E[S] Y P =

N
<Y E[(A+97:i7=j| +E[S}] Plr < N]

<.
I
—

[(Hc)? +E [s?\,]} P[r<NJ.
Putting this all together then gives,
E[S%] < [(A +¢)’+E

< [(/\+c)2—HE

form which it follows that

2 A+ Ato® (At
BN S PN ST Pr<od  Plr=od
A +0)?

P (sup, [Sul <X)
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Since S, is convergent a.s., it follows that P (sup,, |Sn| < c0) = 1 and therefore,
lim P (sup|Sn < A) =1
AToo n

Hence for A sufficiently large, P (sup,, |Sn| < A) > 0 ad we learn that

o] 2
S EY? = lim E[s%] < A+ < o0
j=1

NS00 ~ P(sup, |Sn] <)
[

Lemma 12.48. Suppose that {Y,,}.-_| are independent random variables such
that there exists ¢ < oo such that |Y,| < ¢ a.s. for all n. If Y77 | 'Y, converges
inR a.s. then Y .~ | EY,, converges as well.

Proof. Let (£2y, By, Py) be the probability space that {Y,,} ~, is defined on
and let
2:= (2 x 2y, B:=By® By, and P := Py ® Py.

Further let Y, (w1, ws) : =Y, (w1) and Y, (w1, ws) := Y, (w2) and
Zp (w1, ,w2) =Y, (w1,w2) = Y, (w1, ws) =Y, (w1) — Yy (w2) .

Then |Z,| < 2c as., EZ, =0, and

i Zn (w1, ws) = i Yo, (w1) — i Y, (w2) exists
n=1 n=1 n=1

for P a.e. (wi,ws). Hence it follows from Lemma [12.46| that
0> EZ2=> Var(Z,) =Y Var(Y; -Y,)
n=1 n=1 n=1

= i [Var (Y,)) + Var (V,))] = 2 i\/ar (Yn).
n=1

n=1

Thus by Kolmogorov’s convergence theorem, it follows that >~ | (Y, — EY,,) is
convergent. Since > 7, Y, is a.s. convergent, we may conclude that Y - | EY,,
is also convergent. ]
We are now ready to complete the proof of Theorem
Proof. Our goal is to show if {Xn}ff:l are independent random variables,
then the random series, >~ | X,,, is almost surely convergent iff for all ¢ > 0
the following three series converge;

L Y2 P(IXn|>c) < oo,
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2. 30 Var (X, 1)x, <) < 00, and
3. 30 E(Xnlx,|<c) converges.

Since Z;’ozl X, is almost surely convergent, it follows that lim,, .., X, =0
a.s. and hence for every ¢ > 0, P ({|X,| > ci.0.}) = 0. According the Borel
zero one law this implies for every ¢ > 0 that > | P (|X,| > ¢) < co. Given
this, we now know that {X,} and {XfL = Xn1|Xn‘§c} are tail equivalent for
all ¢ > 0 and in particular > >° | X¢ is almost surely convergent for all ¢ > 0.
So according to Lemma (with Y,, = X¢),

Z EX; = Z E (Xn1|Xn|§C) converges.
n=1

n=1

Letting Y, := X¢ — EX¢, we may now conclude that > - | Y,, is almost surely
convergent. Since {Y,,} is uniformly bounded and EY,, = 0 for all n, an appli-
cation of Lemma [12.46] allows us to conclude

i\/ar (Xnlix,<c) = iEYf < o0.

n=1 n=1



13

Weak Convergence Results

Suppose {X,,},—, is a sequence of random variables and X is another ran-
dom variable (possibly defined on a different probability space). We would like
to understand when, for large n, X,, and X have nearly the “same” distribu-
tion. Alternatively put, if we let p,, (A) := P (X,, € A) and p(A4) := P (X € A),
when is p, close to u for large n. This is the question we will address in this
chapter.

13.1 Total Variation Distance

Definition 13.1. Let u and v be two probability measure on a measurable space,
(£2,B) . The total variation distance, dry (u,v), is defined as

drv (p,v) = sup [ (A) —v(A)].

Remark 13.2. The function, A : B — R defined by, A (4) := pu (A) —v (A) for all
A € B, is an example of a “signed measure.” For signed measures, one usually
defines

|\l 7y = sup {Z IA(A;)| : n € N and partitions, {4;}"_, C B of .Q} .

i=1

You are asked to show in Exercise below, that when A = p—v, dry (u,v) =
1

3 = vy -

Lemma 13.3 (Scheffé’s Lemma). Suppose that m is another positive mea-
sure on (£2,B) such that there exists measurable functions, f,g : 2 — [0,00),
such that dp = fdm and dv = gde Then

1
dry () = 3 [ 17 = gldm.

Moreover, if {un},—, is a sequence of probability measure of the form, du, =
fodm with f, : 2 — [0,00), and f, — g, m - a.e., then dry (tin,v) — 0 as
n — oo.

! Fact: it is always possible to do this by taking m = u + v for example.

Proof. Let A\=pu—vand h:= f —g: 2 — R so that d\ = hdm. Since
A2)=p(2)—v(2)=1-1=0,

if A € B we have
AA)+ A (A =X (02)=0.

In particular this shows | A (A)] = |A (A°)

and therefore,

;HA(AN4|A(AﬂH;{j;hmn‘+ /;}Mn4] (13.1)
S;[AMMm+ACMM4:;AhMm

1
dry (1) = s N () < 5 [ [bldm.
AeB (%}

This shows

To prove the converse inequality, simply take A = {h > 0} (note A° = {h < 0})
in Eq. (13.1)) to find

1

- [/ hdm—/ hdm]

2 /4 .

1

1
[/MMm+/|hM4:/MMm
2 1Ja Ac 2 /o

For the second assertion, let G,, := f,, + g and observe that |f,, —g| — 0m
—ae, |fn—g| < GpeL'(m), G, —» G:=2gaec and [,Gpdm =2 — 2 =
J Gdm and n — co. Therefore, by the dominated convergence theorem m

A (4)]

1
lim dry (pin,v) = B lim | frn — gl dm = 0.

]
For a concrete application of Scheffé’s Lemma, see Proposition [13.35| below.

Corollary 13.4. Let ||h|| = sup,cq |k (w)| when h : 2 — R is a bounded
random variable. Continuing the notation in Scheffé’s lemma above, we have
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1
dTV(u,V):2sup{‘/ﬂhdu—/ﬂhdy

Consequently,
/ hdp — / hdv
Q 10

and in particular, for all bounded and measurable functions, h : {2 — R,

Al < 1}. (13.2)

< 2dry (1, v) - |7l (13.3)

/ hdp, — / hdv if dry (pn,v) — 0. (13.4)
o) 2

Proof. We begin by observing that

/hd,u—/ hdv
0 Q

:‘/W_g)dm]g/ 1Bl 1 — gl dim
0 Q

< thloo/ﬂ\ffgldmZQdTv () ],

Moreover, from the proof of Scheffé’s Lemma[13.3, we have

/hdu—/ hdv
Q Q

when h := 1554 — 1y<,4. These two equations prove Egs. and and
the latter implies Eq. . |

Exercise 13.1. Under the hypothesis of Scheffé’s Lemma show

1
dTV(,uaV):§

= vllgy = /Q 1 — gldm = 2dzy (u.v).

Exercise 13.2. Suppose that (2 is a (at most) countable set, B := 2, and
{pn} o are probability measures on ({2, B) . Let f,, (w) := p, ({w}) for w € £2.
Show

v (s tio) = 3 3 1 (@) — fo ()

wes?

and lim, oo d7v (fin, o) = 0 iff lim,, oo pn, ({w}) = po {w}) for all w € £2.

Notation 13.5 Suppose that X and Y are random variables, let

dry (X,Y) :=dpv (px, py) ::ug |[P(X € A)— P(Y € A)|,
€br

where px = Po X! and py = PoY L.
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13.2 Weak Convergence

Example 13.6. Suppose that P(Xn = l) = % for i € {1,2,...,n} so that

n
X, is a discrete “approximation” to the uniform distribution, i.e. to U where

P(U €A =m(AN[0,1]) for all A € Bg. If welet A, = {:i=1,2,...,n},
then P (X, € A,) = 1 while P(U € A,) = 0. Therefore, it follows that
drv (X,,U) =1 for all nf]

Nevertheless we would like X, to be close to U in distribution. Let us observe
that if we let F, (y) := P (X,, <y) and F (y) := P (U < y), then

Fn(y):P(XnS/y):i#{iE{l,Q,...,n}Z ' gy}

S|

and
F(y):=P(U<y)=(yA1)VO0.

From these formula, it easily follows that F' (y) = lim, . Fy, (y) for all y € R.
This suggest that we should say that X,, converges in distribution to X iff
P(X,<y) —» P(X <y) for all y € R. However, the next simple example
shows this definition is also too restrictive.

Ezample 13.7. Suppose that P (X,, =1/n) = 1 for all n and P (X, =0) = 1.
Then it is reasonable to insist that X, converges of X in distribution. However,
Fo(y) = 1y>1/n — 1y>0 = Fo (y) for all y € R except for y = 0. Observe that
y is the only point of discontinuity of Fj.

Notation 13.8 Let (X,d) be a metric space, f : X — R be a function. The set
of © € X where f is continuous (discontinuous) at x will be denoted by C (f)

(D (f))-

Observe that if ' : R — [0,1] is a non-decreasing function, then C (F)
is at most countable. To see this, suppose that € > 0 is given and let C. :=
{yeR:F(y+)—F(y—) >e}. Iy <y withy,y' € C., then F (y+) < F (y-)
and (F(y—),F (y+)) and (F(y'—),F (y'+)) are disjoint intervals of length
greater that . Hence it follows that

L=m([0,1]) = Y m((F(y=),F(y+)) = ¢ - #(C:)

yeCe

and hence that # (C.) < e~ < co. Therefore C := U2, Cy , is at most count-
able.

2 More generally, if 4 and v are two probability measure on (R, Br) such that
w({z}) = 0 for all z € R while v concentrates on a countable set, then drr (u,v) =
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Definition 13.9. Let {F, F,, : n=1,2,...} be a collection of right continuous
non-increasing functions from R to [0,1] and by abuse of notation let us also
denote the associated measures, urp and pg, by F' and F,, respectively. Then

1. F,, converges to F vaguely and write, F,, = F, iff F,, ((a,b]) — F ((a,b])
for all a,b e C(F).

2. F,, converges to F weakly and write, F,, = F, iff F,, (x) — F (x) for all
zeC(F).

3. We say F is proper, if F is a distribution function of a probability measure,
i.e. if F(00) =1 and F (—o0) = 0.

Ezample 13.10. If X,, and U are as in Example and F,, (y) := P (X, <vy)
and F (y) :== P(Y <y), then F,, % F and F,, > F.

Lemma 13.11. Let {F,F,, : n=1,2,...} be a collection of proper distribution
functions. Then F,, = F iff F,, = F. In the case where F,, and F are proper
and F,, 5 F, we will write F,, = F.

Proof. If F,, % F, then F, ((a,b]) = F, (b) — F, (a) — F(b) — F(a) =
F ((a,b]) for all a,b € C(F) and therefore F,, - F. So now suppose F,, = F
and let a < x with a,z € C (F). Then

F(z)=F(a)+ lim [F, (z) — F, (a)] < F(a) 4 liminf F,, (z).

n—oo n—oo

Letting a | —oo, using the fact that F' is proper, implies

F (z) <liminf F, (z).

n—oo
Likewise,

F(z)—F (a) = lim [F, (z) — F, (a)] > limsup [F, () — 1] = limsup F, (z)—1

n— 00 n— oo n— 00

which upon letting a T oo, (so F'(a) 1 1) allows us to conclude,

F (z) > limsup F,, (z) .

n—oo

Definition 13.12. A sequence of random variables, {X,}, -, is said to con-
verge weakly or to converge in distribution to a random variable X (writ-
ten X,, = X) iff F,, (y) =P (X, <y) = F(y):=P(X <y).
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Ezample 13.13 (Central Limit Theorem). The central limit theorem (see the
next chapter) states; if {X,} -, are i.i.d. L? (P) random variables with p :=
EX; and 02 = Var (X7), then

Sn — Ny
NG

Written out explicitly we find

= N (0,0) iUN(O,l).

‘%%Tg@:P@<Nmugw

1 bfwd
= — e 2 x
V2T Ja

or equivalently put

1 b
lim P (”H +ovna < S, < np+ U\/ﬁb) = 7\/27/ e~ 57 4y
n—oo T a

More intuitively, we have

d
Sn = np+ v/noN (0,1) 4N (nu,naz) .

Lemma 13.14. Suppose X is a random variable, {c,} -, C R, and X,, =
X 4+ cp. If c:=1lim, o ¢, exists, then X,, — X +c.

Proof. Let F'(z) := P (X < z) and
F,(2) =P(X,<2)=PX+c,<z)=F(x—c,).

Clearly, if ¢, — ¢ as n — oo, then for all x € C (F (- — ¢)) we have F, (z) —
F(x—c). Since F(x —¢) = P(X +c¢<uz), we see that X,, — X +ec.
Observe that F, () — F (z — ¢) only for € C (F (- — ¢)) but this is sufficient
to assert X,, — X +c. [ |

Example 13.15. Suppose that P (X, =n) = 1 for all n, then F,, (y) = 1>, —
0 = F (y) as n — oo. Notice that F is not a distribution function because all
of the mass went off to +o00. Similarly, if we suppose, P (X,, = £n) = % for all
n, then F, = 31 n) + ljnoo) — 5 = F(y) as n — oo. Again, F is not a
distribution function on R since half the mass went to —oco while the other half

went to +o0.

Ezxample 13.16. Suppose X is a non-zero random variables such that X 4 _x ,

then X,, := (-1)" X 2 X for all n and therefore, X,, = X as n — o0. On
the other hand, X,, does not converge to X almost surely or in probability.
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146 13 Weak Convergence Results

The next theorem summarizes a number of useful equivalent characteriza-
tions of weak convergence. (The reader should compare Theorem with
Corollary [13.4]) In this theorem we will write BC (R) for the bounded continu-
ous functions, f: R — R (or f : R — C) and C, (R) for those f € C' (R) which
have compact support, i.e. f (z) = 0 if |z| is sufficiently large.

Theorem 13.17. Suppose that {un},., is a sequence of probability measures
on (R, Br) and for eachn, let F,, (y) := pn ((—00,y]) be the (proper) distribution
function associated to . Then the following are equivalent.

1. For all f € BC (R),

/fd,un — / fduog as n — oo. (13.5)
R R

2. Eq. (15.5) holds for all f € BC (R) which are uniformly continuous.

3. Eq. (13.5) holds for all f € C.(R).

4. F, = F.

5. There exists a probability space (§2, B, P) and random variables, Y,,, on this
space such that PoY, 1 = p,, for alln and Y, — Yy a.s.

Proof. Clearly 1. = 2. = 3. and 5. = 1. by the dominated
convergence theorem. Indeed, we have

/ fdpn =E[f (V)] ST E[f (V)] = / Fduo
R R

for all f € BC (R). Therefore it suffices to prove 3. = 4. and 4. = 5.
The proof of 4. = 5. will be the content of Skorohod’s Theorem [I3.28| below.
Given Skorohod’s Theorem, we will now complete the proof.

(3. = 4.) Let —o00 < a < b < oo with a,b € C(Fp) and for € > 0, let
Je (x) > 1(qp and g () < 1(4,) be the functions in C. (R) pictured in Figure
@31 Then

timsup (a8 < limsup [ fodp = [ feduo (13.6)
n— 00 n—oo JR R

and
lim inf p,, ((a, b)) Zliminf/ggdunz/ggd,uo. (13.7)

Since fe — 1[4 and ge — 1(45) as€ | 0, we may use the dominated convergence
theorem to pass to the limit as ¢ | 0 in Egs. ((13.6)) and (13.7) to conclude,

lim sup g, ((a7 b]) < Mo ([a’ b]) = Ho ((a’ b])

n—oo

and
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lim inf 1, ((a,b]) > o ((a,b)) = po ((a, b)),

where the second equality in each of the equations holds because a and b are
points of continuity of Fy. Hence we have shown that lim,,_, p, ((a,b]) exists
and is equal to o ((a,d]).

/N

AN =

b bie

A

1

1

.

]
Fa
T

& as vz b >

Fig. 13.1. The picture definition of the trapezoidal functions, f. and g..

Corollary 13.18. Suppose that {Xn}f;o is a sequence of random variables,

such that X, L Xo, then X,, = Xo. (Recall that example shows the
converse is in general false.)

Proof. Let g € BC (R), then by Corollary g(Xn) il g (Xo) and since
g is bounded, we may apply the dominated convergence theorem (see Corollary

111.8)) to conclude that E [¢g (X,,)] — E[g (X0)]- |

Lemma 13.19. Suppose {Xn}ff:1 is a sequence of random variables on a com-

mon probability space and ¢ € R. Then X,, = c iff X, £
Proof. Recall that X,, & ¢ iff for all e > 0, P (|X; — ¢| > €) — 0. Since
{|IXn — | >e} ={Xp >c+e}U{X, <c—¢}

it follows X, = c iff P (X, >z) — 0forall z > cand P(X,, <) — 0 for all
2 < c. These conditions are also equivalent to P (X,, < z) — 1 for all x > ¢ and

P(X,<z)<P((X,<z')—0forall z <c (where x <z’ <¢). So anciff
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lim P (X, <xz)=

n—oo

{Oifx<C:F(JZ)

lifz>c

where F (z) = P (¢ < z) = 1;>.. Since C (F') = R\ {c}, we have shown X, Lo
iff X,, — e ™

We end this section with a few more equivalent characterizations of weak
convergence. The combination of Theorem and is often called the
Portmanteau Theorem.

Theorem 13.20 (The Portmanteau Theorem). Suppose {F,} ., are
proper distribution functions. By abuse of notation, we will denote pp, (A) sim-
ply by F,, (A) for all A € Bg. Then the following are equivalent.

1. F, = F}.

2. liminf,, o, F}, (U) > Fy (U) for open subsets, U C R.

3. limsup,, ., Fy (C) < Fo (C) for all closed subsets, C' C R.

4. limy, o0 F, (A) = Fy (A) for all A € B such that Fy (9A) = 0.

Proof. (1. = 2.) By Theorem [13.28|we may choose random variables, Y;,,
such that P(Y, <y) = F,(y) forally € Rand n € Nand Y,, — Yj a=s. as
n — oo. Since U is open, it follows that

1y (V) <liminf 1y (Y,,) a.s.

n— o0

and so by Fatou’s lemma,

FU)=P{ eU)=E[ly (V)]
<hm1anE[1U( )]—hmmfP(Y e U) =liminf F, (U).

(2. < 3.) This follows from the observations: 1) C C R is closed iff

= C°is open, 2) F(U) = 1— F(C), and 3) liminf, . (—F, (C)) =
—limsup,,_, ., F (C).

(2. and 3. <= 4.)If Fy (9A) =0, then A° C A C A with Fy (A\ A°) =0
Therefore

Fy (A) = Fy (4A°) < liminf F,, (A°) < limsup F, (14_1) < Fy ([1) =Fy(4).

n—00 n—00

(4. = 1.) Let a,b € C(Fp) and take A := (a,b]. Then Fy(0A) =
Fy ({a,b}) = 0 and therefore, lim,_,o Fy, ((a,0]) = Fy ((a,b]), i.e. F, = Fp.
[

Exercise 13.3. Suppose that F' is a continuous proper distribution function.
Show,

1. F: R —[0,1] is uniformly continuous.
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2.If {F,},~, is a sequence of distribution functions converging weakly to F,
then F,, converges to F uniformly on R, i.e.

lim sup |F (z) — F, (z)| = 0.

In particular, it follows that

sup lnr ((a,0]) — pr, ((a,b])] = sup |F(b) — F(a) = (F (b) = Fr (a))]

<sup [F'(b) — F, (b)[ +sup |F), (a) — F), (a)]
b a
— 0 asn — oo.

Hints for part 2. Given ¢ > 0, show that there exists, —oc0c = ag < a1 <
- < ay, = 00, such that |F (1) — F ()] < ¢ for all . Now show, for
T € [ay, iq1), that

[F () = Fo (2)] < (F (@ig1) = F () +[F (i) = Fo () [+(Fn (@ir) = Fo (1)) -

13.3 “Derived” Weak Convergence

Lemma 13.21. Let (X,d) be a metric space, f : X — R be a function, and
D (f) be the set of x € X where f is discontinuous at x. Then D (f) is a Borel
measurable subset of X.

Proof. For x € X and § > 0, let B, (§) = {y € X : d(z,y) < J}. Given
§>0,let f2: X — RU{oo} be defined by,

fo(z):= sup f(y).

yeBT((s)

We will begin by showing f? is lower semi-continuous, i.e. {f5 < a} is closed
(or equivalently {f‘S > a} is open) for all @ € R. Indeed, if f (z) > a, then
there exists y € By (J) such that f (y) > a. Since this y is in B, (§) whenever
d(z,z') < d—d(x,y) (because then, d (2',y) < d(x,y)+d (z,a") < §) it follows
that f(2’) > a for all 2’ € B, (6 — d(z,y)). This shows {f° > a} is open in
X.
We similarly define f5 : X — RU{—o0} by
fs(x):= inf f(y).

y€B: ()

Since f5 = — (—f)‘s , it follows that

{fs>a} = {(*f)é < fa}
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148 13 Weak Convergence Results

is closed for all @ € R, i.e. f5 is upper semi-continuous. Moreover, fs < f <
foforall 6 > 0and f° | fOand fs T fo as & | 0, where fo < f < f° and
fo: X — RU{—oco} and f° : X — RU{cc} are measurable functions. The
proof is now complete since it is easy to see that

D(f)={f"> fo} = {f°— fo #0} € Bx.
]

Remark 15.22. Suppose that x, — z with z € C(f) := D (f)°. Then f (z,) —
f(z) as n — oo.

Theorem 13.23 (Continuous Mapping Theorem). Let f : R —> R be a
Borel measurable functions. If X,, =— Xo and P(Xo €D (f)) = 0, then
f (X)) = f(Xo). If in addition, f is bounded, Bf (X,) — Ef (Xo).

Proof. Let {Yn}zozo be random variables on some probability space as in
Theorem [13.28] For g € BC (R) we observe that D (go f) C D(f) and there-
fore,

P(YoeD(go f)) < P(YoeD(f)) = P(Xo € D(f)) = 0.

Hence it follows that go foY;, — go foYy a.s. So an application of the dominated
convergence theorem (see Corollary [11.8]) implies

Elg (f (X))l =Elg (f (Ya)] = Elg (f (Yo))] = Elg (f (X0))] (13.8)
This proves the first assertion. For the second assertion we take g (z) =
(x A M)V (—M) in Eq. (I3.8) where M is a bound on |f]. ]

Theorem 13.24 (Slutzky’s Theorem). Suppose that X, — X and

Y, £ ¢ where ¢ is a constant. Then (Xn,Yn) = (X,c¢) in the sense
that E[f (X,,,Yn)] — E[f (X,c)] for all f € BC (R?). In particular, by tak-
ing f(x,y) = g(x+y) and f(z,y) = g(z-y) with g € BC(R), we learn
X,4+Y, = X+cand X,,- Y, = X - ¢ respectively.

Proof. First suppose that f € C.(R?), and for € > 0, let § := & () be
chosen so that

‘f(xay) - f(xlvy/” <eif ||(l’,y) - (m/7y/)” <.
Then

+E[[f (Xn,Yn) = f(Xn, o) [Yn — ¢ > 6]
<e+2MP(|Y, —¢| >6) — € as n — oo,
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where M = sup|f]|. Since, X,, = X, we know E[f (X,,c)] — E[f (X, ¢)]
and hence we have shown,

limsup |E [f (Xn, Yn) — f (X, 0)]|

n—oo

<limsup [E[f (X, Yn) — f (X0, 0)]] + limsup |E [f (X,,c) — f (X, )] <e.

n—oo n—oo

Since € > 0 was arbitrary, we learn that lim, . Ef (X,,Y,) =Ef (X, ¢).

Now suppose f € BC (]Rz) with f > 0 and let i (z,y) € [0, 1] be continuous
functions with compact support such that ¢y (z,y) = 1 if |z| V |y| < k and
¢k (z,y) 11 as k — oo. Then applying what we have just proved to fi := ppf,
we find

Elfi(X,¢)] = lim E[fy (Xn,Y)] < liminf E[f (X, Vo).

n—oo

Letting £k — oo in this inequality then implies that

E[f (X,c)] < lminfE[f (X, Yy)].

n—oo

This inequality with f replaced by M — f > 0 then shows,

M-E[f(X,o)] <lminfE[M — f(X,,Y,)] =M —limsupE [f (X,,Y,)].

n—oo n—oo
Hence we have shown,

limsupE[f (X, o) < E[f (X, )] < liminf E[f (X,,, Y;)]

n—oo n—oo

and therefore limy, .o E[f (X,,Y,)] = E[f (X,0)] for all f € BC (R?) with
f > 0. This completes the proof since any f € BC (RQ) may be written as a
difference of its positive and negative parts. ]

Theorem 13.25 (§ — method). Suppose that {X,},-_, are random variables,
beR, a, € R\ {0} with lim,_, a, =0, and

Xn,—b

Qn

= Z.

If g : R — R be a measurable function which is differentiable at b, then

Proof. Observe that
X, —

Qn

b
X, —b=ay, — 0-Z=0
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so that X,, = b and hence X, Zb. By definition of the derivative of g at b,
we have

glx+A)=g(b)+4g (b)A+e(A)A
where e (A) — 0 as A — 0. Let Y,, and Y be random variables on a fixed
probability space such that Y,, 4 X;—;b and Y £ Z with Y, — Y a.s. Then
Xn 4 anYy + b, so that
9(Xn) —g(b) a9 (anYs +b) — g (b) =g (b)Y + anYne (anYy)
an, G G
=g (0) Yy + Yne(a,Yy) = g (D) Y as.

This completes the proof since ¢’ (b)Y 4 g (b) Z. ]

Ezample 13.26. Suppose that {U,},-, are ii.d. random variables which are
1

uniformly distributed on [0, 1] and let Y,, := H;L=1 U; . Our goal is to find a,,

and b,, such that % is weakly convergent to a non-constant random variable.

To this end, let

1 n
X, =Y, =— i
n ny, - Z In U;
j=1
By the strong law of large numbers,
1
lim X, @ E[lnU,] = / Inzde = [zlnz —z)) = -1
n—oo 0
a.s. -1

and therefore, lim,, . Y, = e
Let us further observe that

1
E [In® U] :/ In® zdz = 2
0

so that Var (InU;) = 2 — (—=1)® = 1. Hence by the central limit theorem,

X”%(_l)z\/ﬁ(xnﬂ) — N(0,1).

vn
Therefore the § — method implies,

g(Xn) g(il) N g/(fl)N(Ovl)'

1
v

Taking g (z) := e using g (X,,) = eX» =Y,,, then implies
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Y, —e !
I

v

— ¢ IN(0,1) £ N (0,e7?).

Hence we have shown,
LN
Vv |[JUf —e'| = N(0,e7?).
j=1

Exercise 13.4. Given a function, f : X — R and a point x € X, let

lim inf =1 inf d 13.9
iminf f (y) i, ey (y) an (13.9)

limsup f (y) :=lim sup f(y), (13.10)
y—z 10 yeB;(9)

where
Bl(§):={ye X:0<d(z,y) <}.

Show f is lower (upper) semi-continuous iff liminf, ., f(y) > f(x)
(limsup,, ., f (y) < f(x)) for all z € X.

Solution to Exercise ((13.4])). Suppose Eq. (13.9) holds, a € R, and x € X
such that f (z) > a. Since,

lim inf — liminf f (y) > > a,
i, nf )/ (W) =liminf £ (y) > f(z) > a

it follows that inf,cp: (5) f () > a for some 6 > 0. Hence we may conclude that
B, (0) C {f > a} which shows {f > a} is open.

Conversely, suppose now that {f > a} is open for all a € R. Given z € X and
a < f(x), there exists § > 0 such that B, (§) C {f > a}. Hence it follows that
liminf, ., f (y) > a and then letting a T f (z) then implies liminf, ., f (y) >

f (). -

13.4 Skorohod and the Convergence of Types Theorems

Notation 13.27 Given a proper distribution function, F : R —[0,1], let Y =
F<:(0,1) — R be the function defined by

Y(z)=F (z)=sup{y €eR: F(y) <z}.

Similarly, let
YT (2):=inf{y e R: F(y) > z}.
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150 13 Weak Convergence Results

We will need the following simple observations about Y and Y+ which are
easily understood from Figure [13.4]

1. Y(2) <Yt (x)and Y (z) < Y (z) iff z is the height of a “flat spot” of F.

2. The set, E:={zx € (0,1): Y (z) <Y (2)}, of flat spot heights is at most
countable. This is because, {(Y (z),Y ¥ ())},cp is a collection of pairwise
disjoint intervals which is necessarily countable. (Each such interval contains
a rational number.)

3. The following inequality holds,

F(Y(z)-)<z<F(Y (2)) forall z € (0,1). (13.11)

Indeed, if y > Y (x), then F (y) > « and by right continuity of F' it follows
that F (Y (x)) > z. Similarly, if y < Y (z), then F (y) < = and hence
F(Y (5)-) <.

4. {z€(0,1):Y () <yo} = (0,F (yo)] N (0,1). To prove this assertion first
suppose that Y () < yo, then according to Eq. we have z <
F(Y (z)) < F(yo), ie. z € (0,F (yo)] N (0,1). Conversely, if z € (0,1)
and x < F (yo), then Y (z) < yo by definition of Y.

5. As a consequence of item 4. we see that Y is B(g,1)/Br — measurable and
moY ! = F, where m is Lebesgue measure on ((0, 1), 5(0,1)) )

Theorem 13.28 (Baby Skorohod Theorem). Suppose that {F,},. is a
collection of distribution functions such that F, = Fy. Then there ex-
ists a probability space, (£2,B,P) and random variables, {Y,},—, such that
P, <y) = F,(y) for all n € NU{oo} and lim,, o F,; = lim, oo ¥y, =
Y =F" as.

Proof. We will take 2 := (0,1), B = B(g,1), and P = m — Lebesgue measure
on {2andlet Y, := F,; and Y := F;” as in Notation Because of the above
comments, P (Y, <y) = F,(y) and P(Y <vy) = Fy(y) for all y € R. So in
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order to finish the proof it suffices to show, Y, (z) — Y (x) for all x ¢ E, where
E is the countable null set defined as above, £ := {z € (0,1) : Y (z) < YT (2)}.

We now suppose z ¢ E. If y € C(Fp) with y < Y (z), we have
lim, oo F, (y) = Fo(y) < z and in particular, F,, (y) < z for almost all n.
This implies that Y, (x) > y for a.a. n and hence that liminf,, . Y, (z) > v.
Letting y T Y (z) with y € C (Fp) then implies

linrr_1>i£f Y,(z)>Y (x).

Similarly, for x ¢ F and y € C(Fp) with Y (z) = Yt (z) < y, we have
lim,, oo ' (y) = Fo(y) > = and in particular, F,, (y) > =z for almost all n.
This implies that Y;, () < y for a.a. n and hence that limsup,,_, Y, (z) < y.
Letting y | Y (z) with y € C (Fp) then implies

limsup Y, (z) <Y (x).

n—0o0

Hence we have shown, for x ¢ E, that

limsupY, (z) <Y (z) < liminf Y, (x)

which shows
lim F,” (z) = lim Y, (z) =Y () = F (z) forallz ¢ E. (13.12)

Definition 13.29. Two random variables, Y and Z, are said to be of the same
type if there exists constants, A > 0 and B € R such that

Z2 Ay + B. (13.13)

Alternatively put, if U (y) := P (Y <y) and V (y) := P (Z <y), thenU and V
should satisfy,

Uly) =P <y)=P(Z<Ay+B)=V(Ay+B).
For the next theorem we will need the following elementary observation.

Lemma 13.30. If Y is non-constant (a.s.) random variable and U (y) :=
P(Y <y), then U™ (y1) < U™ (v2) for all v1 sufficiently close to 0 and ~,
sufficiently close to 1.

Proof. Observe that Y is constant iff U (y) = 1,>. for some ¢ € R, i.e.
iff U only takes on the values, {0,1}. So since Y is not constant, there exists
y € R such that 0 < U (y) < 1. Hence if v2 > U (y) then U™ (12) > y and
if v < U (y) then U (y1) < y. Moreover, if we suppose that 7, is not the
height of a flat spot of U, then in fact, U™ (1) < U™ (y2). This inequality
then remains valid as y; decreases and 7, increases. [ ]
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Theorem 13.31 (Convergence of Types). Suppose {X,}_, is a sequence
of random variables and an,ap, € (0,00), by, Bn € R are constants and Y and
Z are non-constant random variables. Then
1. 4f
Xn - bn
e 4 (13.14)
Qp

and X
Kn=bn _, Z, (13.15)

Qn

then' Y and Z are of the same type. Moreover, the limits,

A= lim 2% ¢ (0,00) and Bi= lim 22 —tn

n— 00 an n—oo an

(13.16)

exists and Y % AZ + B.
2. If the relations in Eq. (13.16) hold then either of the convergences in Eqs.
({13.14) or (13.15) implies the others with Z and Y related by Eq. (13.15).
3. If there are some constants, a, > 0 and b, € R and a non-constant random

variable Y, such that Eq. (15.14) holds, then Eq. holds using o, and
Bn of the form,

an = F (y2) = F (1) and B, == F; (31) (13.17)

for some 0 < v1 < o < 1. If the F, are invertible functions, Eq.

may be written as
FE, (6n) =71 and Fy, (an + Bn) = Y2 (13.18)

Proof. (2) Assume the limits in Eq. (13.16) hold. If Eq. (13.14) is satisfied,
then by Slutsky’s Theorem [13.20

anﬁn _Xn*bn+bn76na7n

Qnp Qn Qn
Xn_bnal_ ﬁn_bnal
27 Qp An  Qp

= A (Y-B)=Z
Similarly, if Eq. (13.15]) is satisfied, then
Xn_bn Xn_ n U4n n_bn

an Qnp, Qn Qn

= AZ+B=Y.

(1) If F,, (y) .= P (X, <vy), then
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Xn— n Xn_ n

n

By assumption we have
Fo(any +b,) = U(y) and F, (a,y + Bn) = V (y).
If w:=sup{y: F,, (apy + by) < x}, then a,w + b, = F,; (x) and hence

F= —b,
sup{y : Fy (any +bp) <z} = ¢

Qn
Similarly,
F(x) = Bn
up {y : B (e + ) < 2y = L2 D=0,

With these identities, it now follows from the proof of Skorohod’s Theorem
13.28| (see Eq. (13.12)) that there exists an at most countable subset, A, of
(0,1) such that,

W =sup{y : F,, (any +b,) <2} — U™ (x) and
%)_ﬁn:Sup{y:Fn(any+ﬁn)<‘(E}_)V<_(x)

for all x ¢ A. Since Y and Z are not constants a.s., we can choose, by Lemma

13.30L 71 < 72 not in A such that U™ (71) < U (y2) and V= (1) <V (72) .
In particular it follows that

Fr ()= Fr(n) _ F () =ba _ Fy (1) —bn

an Qn Qn

= U™ (v2)=U"(m)>0 (13.19)

and similarly

Fy (72)—F77 (71)

On

-V (’72) -V ('yl) > 0.

Taking ratios of the last two displayed equations shows,

On 4 U™ (72) —U" (m)

— A= S 0,00).
an V() =V () < ¢
Moreover,
F —-b
n (Z;) U= (71) and (13.20)
F - Mn F(_ - Mn n —
(71) B _In (71) p a——>AV ('Yl)
an ay, A,
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152 13 Weak Convergence Results

and therefore,

B —bn _ Fi () =B Fi () = b

Qn Qn Qn

(3) Now suppose that we define o, = F; (y2) — F5 (1) and 8, =
F:~ (71), then according to Egs. (13.19) and (13.20)we have

anfan = U () —U" (11) € (0,1) and
ﬁn _bn

— U (71) as n — o0.
an

Thus we may always center and scale the {X,,} using «,, and (3, of the form

described in Eq. (13.17)). [

13.5 Weak Convergence Examples

Ezample 13.32. Suppose that {X,,} 7 | are i.i.d. exp (\) — random variables, i.e.
X, >0as. and P (X, >z)=e > for all z > 0. In this case

F(z):=P(X)<z)=1-e V0
Consider M,, := max (X,...,X,). We have, for x > 0 and ¢,, € (0,00) that

Fp(z) := P (M, <z)=P(Nj_, {X; <z})

1P <o =F@) = (-,

We now wish to find a,, > 0 and b,, € R such that M’jlizb’” = Y.
1. To this end we note that

= F, (anx + by) = [F (anz + b,)]" .

If we demand (c.f. Eq. (13.18]) above)

P (M_b < o) = Fu (by) = [F (b)]" — 71 € (0.1).

then b,, — oo and we find

Iny ~nlnF (b,) =nln (1 —e ") ~ —ne 2.
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From this it follows that b, ~ A~'Inn. Given this, we now try to find a,, by
requiring,

P (Mn_bn < 1) = Fy (an +bn) = [F (an +b,)]" = 72 € (0,1).

Gnp
However, by what we have done above, this requires a,, + b, ~ A~! Inn. Hence

we may as well take a,, to be constant and for simplicity we take a,, = 1.
2. We now compute

lim P (Mn — )\_1 Inn < m) = lim (1 _ e—/\(w+/\711nn))

n—oo n—oo

— 1 1 6_>\$ " _ (_ —kx)
= l1m n = exp e .

n—oo

Notice that F'(z) is a distribution function for some random variable, Y, and
therefore we have shown

1
Mn—Xlnn = Y asn— o

where P (Y < z) = exp (—e™*?).

Ezxample 13.33. For p € (0,1), let X, denote the number of trials to get
success in a sequence of independent trials with success probability p. Then
P(X,>n)=(1—p)" and therefore for z > 0,

~ePlEl et as p — 0.

Therefore pX,, = T where T 4 exp(l),ie. P(T>x)=e* forx >0 or
alternatively, P (T <y) =1— e ¥V0,

Remarks on this example. Let us see in a couple of ways where the
appropriate centering and scaling of the X, come from in this example. For
this let ¢ = 1 — p, then P (X, =n) = (1—p)"~ "p=q¢" 'p for n € N. Also let

F,(2) = P(X, <) = P(X, < [o]) =1 — ¢
where [z] := Y07 - 1, ).
Method 1. Our goal is to choose a, > 0 and b, € R such that
lim, o F) (apz + b,) exists. As above, we first demand (taking = 0) that

lim F, (b,) =1 € (0,1).
p 10
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Since, 71 ~ F, (b,) ~ 1 — ¢” we require, ¢*» ~ 1 —~; and hence, ¢ ~ b,Ing =
byIn (1 —p) ~ —b,p. This suggests that we take b, = 1/p say. Having done this,
we would like to choose a, such that

Fy(z) = lillr(lj F, (apx +by) exists.
P

Since,

Fy (z) ~ F (apz +bp) ~1— gty
this requires that

(1—p)™™ ™ = ¢ ~ 1~ Fy (2)
and hence that

In(1-Fy(z)) = (apx +by)Ing ~ (apz +by) (—p) = —payz — 1.

From this (setting = 1) we see that pa, ~ ¢ > 0. Hence we might take
ap = 1/p as well. We then have

Fy(apz +by) = F, (plw+p~t) =1 — (1—p)lr @+

which is equal to 0 if x < —1, and for z > —1 we find

(1- p)[pil(z—i_l)] = exp ([pil (z+1)]In(1—p)) — exp(—(z+1)).
Hence we have shown,

ltn ) (a2 +b,) = [1 = exp (= (@ + 1) Lz
p

Xp—1/p
1/p
or again that pX, = T.
Method 2. (Center and scale using the first moment and the variance of
X,.) The generating function is given by

—pX, -1 — T—1

(o)
n _n— bz
f(z):zIE[zXf’]:nz_:lzq 1p:1—qz'

Observe that f (z) is well defined for |z| < % and that f (1) = 1, reflecting the
fact that P (X, € N) = 1, i.e. a success must occur almost surely. Moreover, we
have

f'(z)=E [XPZXp_l]  f"(2) =E[X, (X, - 1) ZXP_Q] )
f® () =E[X, (X, —1)...(Xp — k+1) 2% 7F]
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and in particular,

d\" pz
E[X, (X, —1)...(X, — k+1)] = f® (1) = (dz> e
Since
d pz _p(l—gz)+apz __ p
dz1-—qz (1—qz)? (1—qz)?
and

2 pz o P4

it follows that

1
pp = EX, = P 5 = — and
(1-g¢
Pq 2q
E[X, (X, —1)] =2 ==
[ P( p )] ( _q)g p2

Therefore,

2 1 1\?
2 2 2 q
02 = Var (X,) = EX2 — (EX :+_(>
P (10) P ( p) p2 p »
_2g+p-1_q¢ 1-p
p? p2

P2
Thus, if we had used p, and o, to center and scale X,, we would have considered,

Xp*]%:pofl
1—p /1_p

p

== T -1

instead.

Theorem 13.34. Let {X,} —, be i.id random wvariables such that
P(X,=41) = 1/2 and let S, = X1 + -+ + X, — the position of a
drunk after n steps. Observe that |S,,| is an odd integer if n is odd and an even
integer if n is even. Then j—% = N(0,1) as m — oo.

Proof. (Sketch of the proof.) We start by observing that Ss,, = 2k iff

#{i <2n:X; =1} =n+k while

and therefore,
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154 13 Weak Convergence Results

ron-m=(2) () - ()

Recall Stirling’s formula states,

n! ~n"e "V2rn as n — oo
and therefore,

P (Son = 2k)

2n __9n 2n
(2n)"e 4mn (1)
(n+ k)" e=(n+k) or (n+ k) - (n— k)" Fe=(n=F) /27 (n — k)

7 k —(n+k) k —(n—Fk)
= 1 —_— . 1_7
\/w<n+k><n—k>( *n) ( n)
1 1 2\ 7" K\ " k"
e (5 (6
m\l(1+5) (1-3) n n n
o\ —7 —k—1/2 k—1/2
LN R
NZZD n? n n
So if we let x := 2k/v/2n, i.e. k = 2/n/2 and k/n = 5= we have

(5

wherein we have repeatedly used
(1+ an)b" = ebnIn(tan) | gbntn when a,, — 0.

We now compute

% Z \2ﬁ (13.21)
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where the sum is over x of the form, 2 = % with k € {0,%1,...,+n}. Since

\/% is the increment of = as k increases by 1, we see the latter expression in

Eq. (13.21) is the Riemann sum approximation to

This proves 522% = N (0,1). Since

Sony1  Son + Xony1  Son 1 Xont1

= = + ,
Vn+1 V2n +1 V2n \/1+L Von+1
2n

it follows directly (or see Slutsky’s Theorem D that 5% = N(0,1)

as well. ]

Proposition 13.35. Suppose that {U,} —, are i.i.d. random variables which
are uniformly distributed in (0,1). Let Uy, ny denote the position of the Eth
largest number from the list, {U1,Us,..., Uy} . Further let k(n) be chosen so

that lim,, . k (n) = oo while lim,, o k(T” =0 and let

Ulk(nyn) — K (n) /”.

X, =
" k(n

5

3

Then dry (X, N (0,1)) — 0 as n — oo.

Proof. (Sketch only. See Resnick, Proposition 8.2.1 for more details.) Ob-
serve that, for z € (0,1), that

P (Uppy <) = (ZX >k> Z(z) at(1—a)" "

=k

From this it follows that p, () := 1¢1) () %P (Utk,n) < @) is the probability
density for Uy ). It now turns out that p, () is a Beta distribution,

pn () = (Z) keab (1 —x)" "

Giving a direct computation of this result is not so illuminating. So let us go
another route. To do this we are going to estimate, P (U(k,n) € (z,z+ A]) , for
A€ (0,1). Observe that if U, ) € (2,2 + A], then there must be at least one
Us € (z,x + A], for otherwise, U,y < 2 + A would imply Uy ) < 2 as well
and hence Uy, ny ¢ (z,7 + A]. Let
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2, ={U; € (z,x+ A] and U; ¢ (x,z + A] for j #i}.

Since
P (U;,U; € (z,z + A] for some i # j with i,7 <n) < Z P (U;,U; € (z,x+ A4))
i<j<n
2 _
LTy

9

we see that

P (U € (z,2+ A]) = ZP

= nP (U(k,n) € (z,z + 4], .Ql) + O (A2) .

Now on the set, £21; U(yn) € (x, 2+ A] iff there are exactly k — 1 of Uy, ..., U,
in [0,z] and n — k of these in [z + A, 1]. This leads to the conclusion that

(k) € (2,2 + 4], Qi)—i-O(AQ)

n—1

P(U(k,n) € ({E,SC-FAD :n<k_ 1

)xk_l (1—(z+2)""Aa+0(4%

and therefore,

pn () = g% P (Uk,n) GA(mvx +4]) _ = 1)!7!(71 — k)!xlc—l (1— x)”fk .
By Stirling’s formula,

n!

(k=1 (n—k)
n"e~"\/2mn
T k- )® Vet 2w<k—-n< — ) B for (0 k)
!
oY L (k—1) k 1 (" k) [n—k
_ e
vam () <1 S
Since

b1\ N\ (=12 N (k=1/2)
) -0 %)
1\ (5=1/2) 1\ (k=1/2)
== B
G ()
o\ (F=1/2)
o (5)
n
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we arrive at

n! Vn 1
G-Dl-n—k)! "~ Vox (&)1 (k)R

n

By the change of variables formula, with

o U= k(n)/n
k(n)
on noting the du = 7”];(n)dx, T = k(n) at u =0, and
. —k(n)/n _n—Fk(n)
VEk(n) Vk(n)

1
k(n)/n
EW@M=/p“)F W) g
0 k(n)
VEk(n Vi (
k(n n n
Using this information, it is then shown in Resnick that
k (n) k (n) e~z /2
n z+k(n)/n| —
: p< k() ) = €
which upon an application of Scheffé’s Lemma [13.3] completes the proof. [

Remark 13.36. 1t is possible to understand the normalization constants in the
definition of X, by computing the mean and the variance of U, 1). After some
computations (see Chapter ?7), one arrives at
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156 13 Weak Convergence Results

! n! .
EU(jn) = P11 - 2)" P ad
(k:m) /0 Ry e

k k
T+l w
2 ! n! k—1 n—k 2
EUG n) :/0 (k‘—l)!-(n—k)!x (1—2)" " zdx
k+1)k
- (n(+2)(73+1) and
(k+1)k k2

Var (Uk,ny) = (n+2)(n+1) (n+1)°

=t [rva ]

n+l|n+2 n+1
_k n—k+1 k
Cn+l|{(n+2)(n+1) n?’

13.6 Compactness and Tightness

Suppose that A C R is a dense set and F' and F are two right continuous
functions. If F = F on A, then F = F on R. Indeed, for x € R we have

F(z)= AlslgﬂmF N\ = Alsnﬁmﬁ (N =F(z).

Lemma 13.37. If G : A — R is a non-decreasing function, then
F(z): =G4 (z) =inf{G\):z< e A} (13.22)
is a mon-decreasing right continuous function.

Proof. To show F' is right continuous, let z € R and A € A such that A > x.
Then for any y € (x,\),

Fz)<F(y) =Gy (y) <G

and therefore,
F(z) < F(z+):=lmF (y) <G(N).

ylz

Since A > x with A € A is arbitrary, we may conclude, F' (z) < F (z+) <
Gy (z)=F(x),ie F(z+)=F(x). |

Proposition 13.38. Suppose that {F,,},> | is a sequence of distribution func-
tions and A C R is a dense set such that G (X\) := lim, 0 Fy, (A) € [0, 1] exists
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for all X € A. If, for oll x € R, we define F = G4 as in Eq. , then
F, (x) — F(x) for all z € C(F). (Note well; as we have already seen, it is
possible that F (00) < 1 and F (—o0) > 0 so that F' need not be a distribution
function for a measure on (R, Bg).)

Proof. Suppose that x,y € R with x < y and and s,t € A are chosen so
that £ < s < y < t. Then passing to the limit in the inequality,

Fo(s) < Fo(y) < Fo (1)
implies

F(z) =G4 (2) <G (s) <liminf F,, (y) <limsup F,, (y) < G (t).
Taking the infinum over ¢t € AN (y,00) and then letting « € R tend up to y, we
may conclude

F (y—) <liminf F}, (y) < limsup F,, (y) < F (y) for all y € R.

n—oo n—oo

This completes the proof, since F' (y—) = F (y) for y € C (F). |

The next theorem deals with weak convergence of measures on (IE_R, BR) . So
as not have to introduce any new machinery, the reader should identify R with
[-1,1] C R via the map,

[-1,1] 3 2 — tan <gx) €R.

Hence a probability measure on (R,BR) may be identified with a probability
measure on (R, Bg) which is supported on [—1, 1]. Using this identification, we
see that a —oo should only be considered a point of continuity of a distribution
function, F : R — [0,1] iff and only if F (—o0o) = 0. On the other hand, cc is
always a point of continuity.

Theorem 13.39 (Helly’s Selection Theorem). Every sequence of probabil-
ity measures, {un}ff:l , on (R, BR) has a sub-sequence which is weakly conver-

gent to a probability measure, pg on (R,B@) .

Proof. Using the identification described above, rather than viewing ., as
probability measures on (R,BR) , we may view them as probability measures
on (R, Bg) which are supported on [—1,1], i.e. un, ([—1,1]) = 1. As usual, let

F (2) = pin (=00, 2]) = pan (=00, 2] N [=1,1]).

Since {F, (z)},—; C [0,1] and [0,1] is compact, for each z € R we may find
a convergence subsequence of {F, (z)} ~, . Hence by Cantor’s diagonalization
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argument we may find a subsequence, {Gj := F,, };—, of the {F,} ~, such
that G (x) := limg o Gi, (2) exists for all z € A := Q.

Letting F (z) := G (z+) as in Eq. (13.22), it follows from Lemma [13.37 and
Proposition that G, = F,, = Fp. Moreover, since Gy, () = 0 for all
x € QN (—o0,—1) and G, (z) =1 for all z € QN [1,00). Therefore, Fy (z) =1
for all x > 1 and Fy () = 0 for all z < —1 and the corresponding measure, p

is supported on [-1,1]. Hence up may now be transferred back to a measure
on (R, B]R) . ]

Ezample 13.40. Suppose _, =—> d_ and 0, = ds and %(571 +i_,) =
% (000 + 0—oo) - This shows that probability may indeed transfer to the points
at £oo.

The next question we would like to address is when is the limiting measure,
4o on (]R, BR) concentrated on R. The following notion of tightness is the key
to answering this question.

Definition 13.41. A collection of probability measures, I', on (R, Br) is tight
iff for every € > 0 there exists M. < oo such that

inf p([—Ms, M) >1—e. (13.23)
pel’
We further say that a collection of random wvariables, {Xx : A € A} is tight
iff the collection probability measures, {P o X;l A E /1} is tight. Equivalently
put, {X» : A € A} is tight iff

lim sup P (|Xx| > M) =0. (13.24)
M—oo \en

Observe that the definition of uniform integrability (see Definition [L1.25]) is
considerably stronger than the notion of tightness. It is also worth observing
that if & > 0 and C :=sup,c 4 E | X»|" < 0o, then by Chebyschev’s inequality,

1 o C
S]ipP(|X)\| > M) SSl)l\p [WIEXA| } < WﬁOasMeoo

and therefore {X : A € A} is tight.

Theorem 13.42. Let I := {pu,}.., be a sequence of probability measures on
(R, Bg). Then I' is tight, iff every subsequently limit measure, pg, on (R,BR)
is supported on R. In particular if I' is tight, there is a weakly convergent sub-
sequence of I' converging to a probability measure on (R, Bg) .

_ Proof. Suppose that p,, = po with uo being a probability measure on
(R,Bg) . As usual, let Fy (z) := g ([—00,z]). If I is tight and € > 0 is given,
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we may find M, < oo such that M., —M. € C (Fy) and pp, ([-Me, M.]) > 1—¢
for all n. Hence it follows that

Ho ([_MsuMs]) = khirololink ([—M€7M5]) >1l-e

and by letting € | 0 we conclude that ug (R) = lim. o po ([—Me, Mc]) = 1.

Conversely, suppose there is a subsequence {,unk}l?;l such that pu,, = o
with 1o being a probability measure on (R, Bg) such that po (R) < 1. In this
case € := 1o ({—00,00}) > 0 and hence for all M < co we have

pio ([=M, M]) < po (R) — pio ({—00,00}) = 1 — eo.

By choosing M so that —M and M are points of continuity of Fy, it then follows
that
lim i, ([—M, M]) = pio ([=M, M]) < 1~ .

k—oo
Therefore,
inlf\IMn (([-M,M])) <1—¢ggforall M < oo
ne
and {un}oo, is not tight. n

13.7 Weak Convergence in Metric Spaces

(This section may be skipped.)

Definition 13.43. Let X be a metric space. A sequence of probability measures
{P,}>_, is said to converge weakly to a probability P if lim,_.o P,(f) = P(f)
for all for every f € BC(X). This is actually weak-* convergence when viewing
P, € BC(X)*.

For simplicity we will now assume that X is a complete metric space
throughout this section.

Proposition 13.44. The following are equivalent:

1. P, % P asn — oo, i.e. P, (f) — P(f) for all f e€ BC(X).
2. P, (f) — P(f) for every f € BC(X) which is uniformly continuous.
3. limsup P, (F) < P(F) for all F C X.

n—oo

4. liminf, o P,(G) > P(G) for all G C, X.
5. limy, o0 Py (A) = P(A) for all A € B such that P(bd(A)) = 0.
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158 13 Weak Convergence Results

Proof. 1. = 2. is obvious. For 2. = 3., let

1 if t<0
o(t) =S 1-tifo<t<1 (13.25)
0 if t>1

and let f,(z) := ¢(nd(z, F)). Then f,, € BC(X, [0, 1]) is uniformly continuous,
0<1p < f, for all n and f, | 1r as n — oo. Passing to the limit n — oo in
the equation

0 < Po(F) < Palfim)

gives

0 < limsup P, (F) < P(fyn)
and then letting m — oo in this inequality implies item 3. 3. <= 4. Assuming
item 3., let F' = G°, then

1 —liminf P,(G) = limsup(1l — P,(G)) = limsup P, (G°)

n—oo n—oo n—oo

< P(G*) = 1- P(G)

which implies 4. Similarly 4. = 3. 3. <= 5. Recall that bd(A4) = A\ A°,
so if P(bd(A)) = 0 and 3. (and hence also 4. holds) we have

limsup P, (A) < limsup P, (A) < P(A) = P(A) and

liminf P,(A) > liminf P,(A°) > P(A°) = P(A)

from which it follows that lim,_,o P,(A) = P(A). Conversely, let F' C X and
set Fs:={x € X :p(z,F) <4§}. Then

bd(F5) C Fs\{z € X : p(z, F) <} = As

where A5 := {r € X : p(z,F) = 6}. Since {As}4., are all disjoint, we must
have

> P(4s) < P(X) <1

>0
and in particular the set A := {§ > 0: P(As) > 0} is at most countable. Let
dn ¢ A be chosen so that d,, | 0 as n — oo, then

P(Fs, )= lim P,(Fs, ) > limsup P,(F).
Let m — oo in this equation to conclude P(F') > limsup,,_, ., P, (F') as desired.
To finish the proof we will now show 3. = 1. By an affine change of variables
it suffices to consider f € C(X, (0,1)) in which case we have
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k . k.
(i—1) i
E k 1{(i;1>gf<%}§f§21%1{(@;1)Sf<%}. (13.26)
1=

Let F; := {% < f} and notice that F}, = (). Then for any probability P,

k . .
S D )~ PR < P < Y04 (PU) ~ PUR). (1327)
Since
S (i—1)
> [P(Fiy) = P(F)]
3 (=1 pp y (=1 pp
- ; Lk ( 171) - ; Lk ( z)
k—1 i k i1 1 k—1
=Y PF) =) ——P(F)=1> P(F)
i=1 i=1 i=1
and
K 1
ZE [P(Fi-1) — P(F;)]
=1
M i1 ko
=3 — [P(Fia) = P(F)] + > 7 [P(Fia) = P(F)]
i=1 i=1
k—1
=) PF)+ -,
Eq. becomes,
1 k—1 1 k—1
72 PIE) S P(f) < 2> P(F) +1/k.

Using this equation with P = P,, and then with P = P we find

limsup P, (f) < limsup

n—oo n—oo

1 k—1
=1

N

" P(E) + 1/k < P(f) + 1/k.

IN
el

%
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Since k is arbitrary, limsup,,_, . P,(f) < P(f). Replacing f by 1 — f in
this inequality also gives liminf, . P,(f) > P(f) and hence we have shown
lim;, 00 Pn(f) = P(f) as claimed. |

Theorem 13.45 (Skorohod Theorem). Let (X,d) be a separable metric
space and {1, }, be probability measures on (X, Bx) such that p, = po as
n — oo. Then there exists a probability space, (£2,B, P) and measurable func-
tions, Y, : 2 — X, such that p,, = PoY, ! for all n € Ny := NU{0} and
lim, oo Yy, =Y a.s.

Proof. See Theorem 4.30 on page 79 of Kallenberg [3]. ]

Definition 13.46. Let X be a topological space. A collection of probability mea-
sures A on (X, Bx) is said to be tight if for every e > 0 there exists a compact
set K. € Bx such that P(K:) > 1 —¢ for all P € A.

Theorem 13.47. Suppose X is a separable metrizable space and A = {P,},__,
is a tight sequence of probability measures on Bx. Then there exists a subse-
quence { Py, } 1, which is weakly convergent to a probability measure P on Bx.

Proof. First suppose that X is compact. In this case C(X) is a Banach
space which is separable by the Stone — Weirstrass theorem, see Exercise ?77.
By the Riesz theorem, Corollary ??, we know that C'(X)* is in one to one cor-
respondence with the complex measures on (X, By). We have also seen that
C(X)* is metrizable and the unit ball in C(X)* is weak - * compact, see Theo-
rem ?7. Hence there exists a subsequence {P,, } -, which is weak -* convergent
to a probability measure P on X. Alternatively, use the cantor’s diagonaliza-
tion procedure on a countable dense set I' C C(X) so find {P,, };, such that
A(f) == limy 00 Py, (f) exists for all f € I'. Then for g € C(X) and f € I, we
have

1Py (9) = Pry(9)] < | Py (9) = Py (F)| + [Py (f) = Py ()]
+|Pnl(f)_Pﬂl(g)|
<2(lg = flloo + [Prai (f) = Py (f)]

which shows
limsup [Py, (9) — Pn,(9)] <29 — fll -

n—oo

Letting f € A tend to g in C(X) shows limsup,, . |Pn,(9) — Pn,(9)| = 0 and
hence A(g) := limy_o Py, (g) for all g € C(X). It is now clear that A(g) > 0
for all g > 0 so that A is a positive linear functional on X and thus there is a
probability measure P such that A(g) = P(g).

General case. By Theorem we may assume that X is a subset of
a compact metric space which we will denote by X. We now extend P, to X
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by setting P,(A) := P,(AN X) for all A € Bg. By what we have just proved,
there is a subsequence {P] := Pnk}zczl such that P} converges weakly to a
probability measure P on X. The main thing we now have to prove is that
“P(X) =1,” this is where the tightness assumption is going to be used. Given
e >0, let K. C X be a compact set such that P,(K.) > 1 — ¢ for all n. Since
K, is compact in X it is compact in X as well and in particular a closed subset
of X. Therefore by Proposition

P(K.) > 1imsup]5;;(K€) =1-¢.

k—o0

Since € > 0 is arbitrary, this shows with X := Uj2 K}/, satisfies P(Xy) = 1.
Because Xy € Bx NBx, we may view P as a measure on Bx by letting P(A) :=

P(AN Xp) for all A € Bx. Given a closed subset F' C X, choose F' = X such

that F' = FNX. Then

limsup P}(F) = limsup P (F) < P(F) = P(F N X,) = P(F),

k—o00 k—oo

which shows P} - P. n
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14

Characteristic Functions (Fourier Transform)

Definition 14.1. Given a probability measure, u on (R™, Bgn), let

A = / N du (o)

be the Fourier transform or characteristic function of p. If X =
(X1,...,Xpn) : 2 = R" is a random vector on some probability space (12,8, P),
then we let f(X) := fx (A) == E [e*X]. Of course, if p := Po X', then
fx () =4,

Notation 14.2 Given a measure p on a measurable space, (£2,8) and a func-
tion, f € L' (u), we will often write pu (f) for [, fdpu.

Definition 14.3. Let p and v be two probability measure on (R™, Bgn). The

convolution of u and v, denoted p * v, is the measure, P o (X + Y)_1 where
{X,Y} are two independent random vectors such that Po X' = p and P o
Y-l =vu

Of course we may give a more direct definition of the convolution of p and
v by observing for A € Bg~ that

pxv(A)=P(X+Y € A)

— [ o) [ r@)1ate+y) (14.1)
:/ v(A—z)du(x) (14.2)
= / w(A—2x)dv(z). (14.3)
Remark 14.4. Suppose that dp(x) = wu(x)dr where w(z) > 0 and
fRnu(x) dr = 1. Then using the translation invariance of Lebesgue mea-

sure and Tonelli’s theorem, we have

wxv(f)= /Rnxwf(x—l-y)u(x) dzdv (y) = /RnXRnf(ac)u(x—y) dzdv (y)

from which it follows that

1) @) = | [ ute =i a

If we further assume that dv (z) = v (z) dz, then we have

1)@ = | [ ute-y)o) ] .

To simplify notation we write,
uk v (z) =/ U(w—y)v(y)dy=/ v(z—y)uly)dy.

Ezample 14.5. Suppose that n = 1, du(x) = 1y (v)dr and dv(z) =
1j_1,0 () dx so that v (A) = pu(—A). In this case

d(pxv)(x) = (Lo * 1[-1,0) () dz

where

(Ljoa) * L—1,0)) (@) = [ 11,0 (z — y) Ljo,] (v) dy
Iio1y (y — ) 10,47 () dy

1o, 1+:v 1[0 1]( ) dy
=m ([0,1] N (z +[0,1])) = (1 — |=[),.

Il
%\%\%\

14.1 Basic Properties of the Characteristic Function

Definition 14.6. A function f : R™ — C is said to be positive definite, iff
fF(=A) = f() forall X € R™ and for all m € N, {)\j};n:l C R" the matriz,

({f (A — )\k)};n_k:l) is non-negative. More explicitly we require,

m

S FG = M) &SR =0 forall (&, 6m) €C™

jk=1
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Notation 14.7 Forl € NU{0}, let C' (R",C) denote the vector space of func-
tions, f : R™ — C which arel - time continuously differentiable. More explicitly,
if 0; == %, then f € C'(R"™,C) iff the partial derivatives, 9}, ...0;, f, exist

and are continuous for k=1,2,...,1 and all j1,...,5k € {1,2,...,n}.

Proposition 14.8 (Basic Properties of [i). Let u and v be two probability
measures on (R™, Brn), then;

1. 4(0) =1, and |1 (N)| < 1 for all M.

2. i () is continuous.

3. (A) = i (=A) for all X € R™ and in particular, fi is real valued iff 11 is
symmetric, i.e. iff u(—A) = p(A) for all A € Bgn. (If 4 = Po X1 for
some random vector X, then u is symmetric iff X 4 -X.)

4. [t is a positive definite function. (For the converse of this result, see
Bochner’s Theorem below.

5. 1If [on |z||" dp (z) < oo, then fi € C' (R™,C) and

= =

O0jy .05, (X)) = / (izj, .. .ixj, ) e™NTdu (z) for all m <.
6. If X and Y are independent random vectors then
Ixay A) = fx A) fy (X) for all A € R™.
This may be alternatively expressed as
pxv(N) =pa\) o (N forall X € R™.
7. Ifa e R, beR™ and X : 2 — R" is a random vector, then
faxtp(X) = €™ fx (ad) .
Proof. The proof of items 1., 2., 6., and 7. are elementary and will be left
to the reader. It also easy to see that fi (A\) = i (—=A) and () = (=) if p is

symmetric. Therefore if p is symmetric, then fi (\) is real. Conversely if i ()
is real then

A = i(-A) = / N () = ()

where v (A) := pu(—A). The uniqueness Proposition below then implies
W= v, i.e. u is symmetric. This proves item 3.

Item 5. follows by induction using Corollary [8:38] For item 4. let m € N,
{)\j};"zl C R™ and (&1, ...,&n) € C™. Then
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Z (g = M) € Z/ Z A=A T ey du (x)
e R"

1 G k=1

= [ eNrgedu @
RTL

jk=1

2
:/ Ze”f'xfj dp (z) > 0.

Jj=1

J

Ezample 14.9 (E:mmple continued. ). Let du (x) = 1jo1] (z) dr and v (A) =
w(—A). Then

i
e~ — 1
7 () = i(=X) = 1 () = “———, and
— ~ ~ ~ 2 €i>\—12 2
v () = i) = P = || = 55 [1 —cos .

According to example we also have d (u*v) (z) = (1 — |z[), dr and so
directly we find

/T*\u()\):/Rei)"”(l—|x|)+dsc:/Rcos()\sc) (1—|z|), dz

sin Az

1 1
:2/ (1fx)cos)\xdx:2/ (1—-2)d
0 0 A
1 . 1 e
:_2/ d(1—2) sln/\x:2/ sm/\xdeQ COb/\x\iié
0 A 0 A

1—cosA
=27

Proposition 14.10 (Injectivity of the Fourier Transform). If u and v are
two probability measure on (R™, Brn) such that i = 0, then p = v.

Proof. Let H be the subspace of bounded measurable complex functions, f :
R™ — C, such that u (f) = v (f). Then H is closed under bounded convergence
and complex conjugation. Suppose that A C Z¢ is a finite set, L > 0 and

p(x) = Z aye @/ (2rL) (14.4)
A€A
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with ay € C. Then by assumption,

A A
w(p) = ZGAﬂ (271'L> = Z axv (%L) =v(p)
AeA A€

so that p € H. From the Stone-Weirstrass theorem (see Exercise below)
or the theory of the Fourier series, any f € C (R™,C) which is L — periodic,
(i.e. f(z+ Le;) = f(z) for all x € R? and ¢ = 1,2,...,n) may be uniformly
approximated by a trigonometric polynomial of the form in Eq. (14.4)), see
Exercise [I4.8] below. Hence it follows from the bounded convergence theorem
that f € H for all f € C(R", C) which are L — periodic. Now suppose f €
C. (R™,C). Then for L > 0 sufficiently large the function,

fr(@):=Y flz+L\),

AEZ™

is continuous and L periodic and hence f; € H. Since fr — f boundedly
as L — oo, we may further conclude that f € H as well, i.e. C.(R",C) C
H. An application of the multiplicative system Theorem (see either Theorem
or Theorem implies H contains all bounded o (C. (R™,R)) = Bgn —
measurable functions and this certainly implies p = v. ]

For the most part we are now going to stick to the one dimensional case, i.e.
X will be a random variable and p will be a probability measure on (R, Bg) .
The following Lemma is a special case of item 4. of Proposition [14.8

Lemma 14.11. Suppose n € N and X is random variables such that E [| X|"] <
oo. If p = Po X~1 is the distribution of X, then i()\) = E [e”‘X] is C™ —
differentiable and

D\ =E [(iX)l ei)‘X} = / (iz) e dp (z) forl=0,1,2,...,n.
R
In particular it follows that

_ A9 (0)
it

E [X']

The following theorem is a partial converse to this lemma. Hence the com-

bination of Lemma [14.11) and Theorem [14.12f (see also Corollary [14.34] below)

shows that there is a correspondence between the number of moments of X and
the differentiability of fx.

Theorem 14.12. Let X be a random wvariable, m € {0,1,2,...}, f(A) =
E [ei)‘X] CIf f € C?™ (R, C) such that g := f®™) is differentiable in a neigh-
borhood of 0 and g" (0) = f®m+2(0) exzists. Then E[X?™*+2] < oo and
f e ™2 (R,C).
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Proof. This will be proved by induction on m. We start with m = 0 in
which case we automatically we know by Proposition or Lemma that
f € C(R,C)). Since

u(A) :=Re f(A) =E][cos (AX)],

it follows that u is an even function of A and hence ' = Re f’ is an odd function
of A and in particular, v’ (0) = 0. By the mean value theorem, to each A > 0
with A near 0, there exists 0 < c¢) < A such that

A)—u(0
OO ey) = o () o/ (0).
Therefore,
0) —u(A ! —u (0

O u) o) =0, o) asa Lo,
Since

E 1 —cos (AX) <E 1 —cos (AX) _ u (0) —u(N)

A2 - YN ACx

and limy o 1*%,5”‘) = %XZ, we may apply Fatou’s lemma to conclude,

1 1— AX

SE[X?] < lminfE [C‘;()] < " (0) < oc.

An application of Lemma [14.11| then implies that f € C? (R, C).
For the general induction step we assume the truth of the theorem at level
m in which case we know by Lemma that

JEM () = ()" E[XCmeNN] = (<1)" g ().

By assumption we know that g is differentiable in a neighborhood of 0 and that
9" (0) exists. We now proceed exactly as before but now with « := Reg. So for
each A > 0 near 0, there exists ¢y € (0, A) such that

U(O) _U(A) "
e ——u"(0) as A |0
and
om 1 — cos (AX) om1—cos(AX)]  u(0) —u(N)
E|X )\2:| <E |:X VR ] = VR .

Another use of Fatou’s lemma gives,

1 2m+2 o am 1 — cos (AX)
iE (X ] = hrﬁ%nfE X — < —u"(0) < 00
from which Lemma [14.11| may be used to show f € C?™*+2(R,C). This com-
pletes the induction argument. ]
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14.2 Examples Fr(t):=P(T<t)=1-e0 Since Fr(t) is piecewise differentiable, the
law of T, y1 := P o T~', has a density,

Ezample 14.13.1f —00 < a < b < o0 and dpu (z) = 52=1(4) (z) dz then
dp (t) = Ff (t) dt = ae™"1;>0dt.

1 b o\ eiAb _ gida
i (A) = Ay = ———.
() — /a edr = — =) Therefore, | . | .
E [ewT] = / ae”eMNdt = —— = i (\).
If a = —c and b = ¢ with ¢ > 0, then 0 a—1iA
sin \e Since a a
i (A) = . (N =i————and i/ (\) = -2————
A== pO) =it N = 2
Observe that ) it follows that
g =1— =X+ ... Y o
and therefore, i’ (0) = 0 and 2" (0) = —4¢? and hence it follows that ! ! “
and hence Var (T) = & — (5)2 =a2
/xdu( )—Oand/ 2dp ( )—502. , ,
R R Proposition 14.16. If du (z) := \/%e_g” 12dz, then fi(\) = e /2. In partic-
Ezxample 14.14. Suppose Z is a Poisson random variable with mean a > 0, i.e. ular we have
P(Z =mn)=e %% Then /xd,u () =0 and /xzdu (x) =1.
R R
fz(\) = zAZ — o Z ez/\n — e i (ae“‘ — exp (a (ei,\ _ 1)) ) Proof. Differentiating the formula,
n=0
ﬂ _ / —x°/2 ’L}\Idm
Differentiating this result gives, V2 Jr
fr ) = iae exp (a (e“‘ _ 1)) and for i with respect to A and then integrating by parts implies,
7 (\) = (faQeiQ)‘ — aei)‘) exp (a (ei)‘ -1)) 2 () = 1 / eI gy
vV 27r

from which we conclude,

[_e 12/2:| AT dop
1
Z:;f/z(o):aaHdEZZZ*fg(O):(era. \/ﬂ

e % /2 zkxdm:_)\ﬂ()\)
Therefore, EZ = a = Var (7). V2n

Ezxample 14.15. Suppose T is a positive random variable such that Solving this equation of /i (A) then implies

P(T>t+s|T>s)=P(T>t)forall s,t >0, or equivalently A0 = e’)‘2/2ﬂ 0) = 67}\2/% R) = N2
P(T>t+s)=P(T>t)P(T >s) forall s,t >0,

then P (T >t) = e~ for some a > 0. (Such exponential random variables

are often used to model “waiting times.”) The distribution function for 7T is
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Ezample 14.17. If p is a probability measure on (R, Bg) and n € N, then i™ is
the characteristic function of the probability measure, namely the measure

n times
W=k ek (14.5)

Alternatively put, if {X;},_, are ii.d. random variables with u = P o X; !,
then

fxvpax, (A) = %, (V).

Ezample 14.18. Suppose that {p,} -, are probability measure on (R, Br) and
{pn}ory C [0,1] such that > ° ' p, = 1. Then > 7 pnfin is the characteristic
function of the probability measure,

oo
K= Z Prfin.
n=0

Here is a more interesting interpretation of pu. Let { X, } .~ (U{T"} be independent
random variables with Po X, ! = u, and P (T =n) = p, for all n € Ny. Then
pu(A)=P(Xr € A), where X7 (w) := Xp(,) (w) . Indeed,

M(A):P(XTeA):iP(XTeA,T:n):iP(Xn € AT =n)
n=0 n=0

= ZP(Xn eAT=n)= an,un (A
n=0 n=0

Let us also observe that

ﬂ ()\) 1>\XT Z E iAXT ST = n Z E iIAX ST = TL]

= Z E [EMX"} P(T=n)= anﬂn (N
n=0 n=0

Ezample 14.19. If p is a probability measure on (R, Bg) then Zf;o Pp 1™ is the
characteristic function of a probability measure, v, on (R,Bg). In this case,
v=>3 " papt*" where *" is defined in Eq. . As an explicit example, if
a >0 and p, = %Le*“, then

an'u Z 7aﬂn — 670‘6&'& _ ea(ﬂfl)

n= 0

is the characteristic function of a probability measure. In other words,

.fXT ()‘) =E [ei)\XT] = exp (a (fXI (>‘) - 1)) .
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Lemma 14.20 (Tail Estimate). Let X : (2,8, P) — R be a random variable
and fx (\) :=E [EMX] be its characteristic function. Then for a > 0,

a 2/a a 2/a
P&YZMSQ/WJLﬁxMWM=Z/MO—&#MMMA(MQ

Proof. Recall that the Fourier transform of the uniform distribution on

[—c, ] is $82¢ and hence
’ Ac

1 1 f° IAX o [sineX
. fX() -+ [ = ]d)\_IE[CX].
Therefore,
1 f€ sincX
5 | G- fxona=1-5 "] —pw (14.7)
2c J_. c
where x
sin ¢
Yei=1-
cX

Notice that Y. > 0 (see Eq. (14.47))) and moreover, Y. > 1/2 if |cX| > 2. Hence
we may conclude

E[Y,] > E[Y, |cX|>2]>IE[ |cX|>2} 1P(|X|22/c).

Combining this estimate with Eq. (14.7]) shows,

o[ g nanz SP(xI > 2/,

Taking a = 2/c in this estimate proves Eq. (14.6). ]

Theorem 14.21 (Continuity =~ Theorem).  Suppose  that {un},—,
is a sequence of probability measure on (R,Br) and suppose that
F () = limy o0 fin (N) exists for all A € R. If f is continuous at A = 0, then
f is the characteristic function of a unique probability measure, 1, on Br and
Wy = [L as M — 0O.

Proof. By the continuity of f at A = 0, for ever ¢ > 0 we may choose a.
sufficiently large so that

/ae
%aa /2 (1—Re f(\)d\ < /2.

—2/ae
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166 14 Characteristic Functions (Fourier Transform)

According to Lemma and the DCT,

1 2/a.
po (o3 12] 2 ac)) < Gae [ (1= Re i, (1) i)
—2/ac
1 2/(15
— fae/ (I1=Ref(N)drx<eg/2.
2 —2/a.

Hence pn, ({2 : || > ac}) < e for all sufficiently large n, say n > N. By increas-
ing a. if necessary we can assure that p, ({z : |z| > a.}) < € for all n and hence
I :={un},~, is tight.

By Theorem we may find a subsequence, {uy, }r-, and a probability
measure p on Bg such that p,, = uask — oo. Since z — €*** is a bounded
and continuous function, it follows that

f(A\) = lim fi,, (A) = f(\) for all X € R,

that is f is the characteristic function of a probability measure, pu.

We now claim that u, == p as n — oo. If not, we could find a bounded
continuous function, g, such that lim, o pn (g) # 1 (g) or equivalently, there
would exists € > 0 and a subsequence {j}, := fi, } such that

I (g) — uy, (9)| > € for all k € N.

However by Theorem again, there is a further subsequence, pj’ = puy,
of pj such that g == v for some probability measure v. Since 7 (\) =
limy o0 1] (A) = f(A) = [t (M), it follows that p = v. This leads to a contradic-
tion since,

e < lim [p(g) — i (9)] = (9) = v (9)| = 0.
|
Remark 14.22. One could also use Bochner’s Theorem [14.41] to conclude; if
f () := limy o0 fir, (A) is continuous then f is the characteristic function of

a probability measure. Indeed, the condition of a function being positive defi-
nite is preserved under taking pointwise limits.

Exercise 14.1. Suppose now X : (2,B,P) — R? is a random vector and
fx (A) :=E [e"*X] is its characteristic function. Show for a > 0,

a d

P(xX], 2 a)<2(2)° /[2/%2/&](1 (- rxar=2(2) /[z/aw (1~ Re fx (A)) dA

(14.8)
where | X|_ = max; | X;| and d\ = d\q,...,d\q.
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Solution to Exercise ([14.1)). Working as above, we have

E d/ (1—e*X)dr=1 ﬁSinCXj —Y, (14.9)
2c [7670]d € - C_Xj e ’

j=1

where as before, Y. > 0 and Y. > 1/2 if ¢|X;| > 2 for some j, i.e. if ¢|X|_ > 2.
Therefore taking expectations of Eq. (14.9)) implies,

1 d
(20) /[c,c]d (1 - fX (/\)) dr=E [Yc] = E [Yc : |X|oo 2 2/0}

> |5 Xl 2 2/¢) = 5P (X 2 2/0).

Taking ¢ = 2/a in this expression implies Eq. (14.8]).

The following lemma will be needed before giving our first applications of
the continuity theorem.

Lemma 14.23. Suppose that {z,} -, C C satisfies, lim, oo nz, = ¢ € C,
then
lim (1+ z,)" = €*.

n—oo

Proof. Since nz, — &, it follows that z, ~ % — 0 as n — oo and therefore

by Lemma [14.45 below, (1 + z,) = e™(1*2n) and
1
(14 20) = 20 + 0 (2) = 2 + 0 <nZ>
Therefore,
(1+2z,)" = {eln(ﬁzn)r = enintan) = en(z"JrO(n%)) — €% as n — oo.

Proposition 14.24 (Weak Law of Large Numbers revisited). Suppose

that {X,},—, are i.i.d. integrable random variables. Then ‘%" LZEX, = L.

Proof. Let f (\) := fx, (A\) = E [¢**1] . Then by Taylor’s theorem, f ()) =
14+ idpA+o()N). Since,

e[ - [t oo ()]

it follows from Lemma [14.23] that
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lim fs, (\) = A

n—oo n

which is the characteristic function of the constant random variable, . By the

continuity Theorem [14.21{ it follows that % = p and since p is constant we
13.19

Sn P
may apply Lemma to conclude == — p. [

Theorem 14.25 (The Basic Central Limit Theorem). Suppose that
{Xn}oo, are i.i.d. square integrable random variables such that EX, = 0 and
EX{ =1 Then 52 = N(0,1).

Proof. By Theorem [14.21] and Proposition [14.16] it suffices to show

lim E {eﬂ%} — e /2 for all A € R.

n—0o0

Letting f (\) := E [¢"**1] , we have by Taylor’s theorem (see Eq. (14.43) and
(T4.46)) that

fO)=1- % (1+e(N)A? (14.10)

where € (A\) — 0 as A — 0. Therefore,
ixSn AN
fa 00 =5[] |1 ()]

3G e

wherein we have used Lemma [I4.23] with

=)

Alternative proof. This proof uses Lemma below as follows;

N (IRl

e G B eo(2)

— 0 asn — oo.

Page: 167 job: prob

14.3 Continuity Theorem 167

Corollary 14.26. If {X,,} | are i.i.d. square integrable random variables such
that EX; = 0 and EX? = 1, then

sup
AER

P(j%gy>_P(N(071)§y)‘—>O as n — oo. (14.11)

Proof. This is a direct consequence of Theorem and Exercise [ |
Berry (1941) and Essefi (1942) showed there exists a constant, C' < oo, such
that; if p3 := E|X;|* < oo, then

sup
AER

P(SE<v)-rwon<n|<c(l) va

In particular the rate of convergence is n~'/2. The exact value of the best

constant C' is still unknown but it is known to be less than 1. We will not prove
this theorem here. However we will give a related result in Theorem below.

Remark 14.27. 1t is now a reasonable question to ask “why” is the limiting

random variable normal in Theorem One way to understand this is, if

under the assumptions of Theorem |14.25, we know % —> L where L is some

random variable with EL = 0 and EL“ = 1, then

2n 2n

S n 1 = X; = Ve nXl

2 _ k=1, k odd “*J + k=1, k eve J (14.12)
V2n V2 vn vn

1

—

7 (L1 + Lo)

where L 4 L 4 Lo and Ly and Ly are independent. To rigorously understand
this, using characteristic functions we would conclude from Eq. (14.12)) that

A A
I 0 =15 (75) 7 ()

Passing to the limit in this equation then shows, with f (A) = lim, o fs. (A) =
e

1 (\), that 2
-]

Iterating this equation then shows

o= [r(@e)] -4 (< (&)

on
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168 14 Characteristic Functions (Fourier Transform)

An application of Lemma then shows

. A ? A
o= 15 () (= ()

= 6_%/\2 = fN(O,l) (>\) .

That is we must have L < N 0,1).

It is interesting to give another proof of the central limit theorem. For this
proof we will assume {X,,} ~, has third moments. The only property about
normal random variables that we shall use the proof is that if {N,} - are
i.i.d. standard normal random variables, then

Tn  Nit+- 4N

vn Vn
Theorem 14.28 (A Non-Characteristic Proof of the CLT). Suppose that

{X,}, are mean zero variance one i.i.d random variables such that E X1 <
oc. Then for f € C3 (R) with M := sup,cg ’f(?’) ()| < o0,

N(0,1).

1 M

o (3) w5

+ X, andNiN(O,l).

[|N|3 + \Xﬂ (14.13)

where S, == X1+ -+

Proof. Let {X,,, Nn}zozl be independent random variables such that N, =

N (0,1) and X, £ X,. To simplify notation, we will denote X,, by X,,. Let
T,:=Ni+---+ N, and for 0 < k < n, let

Vii= (N1 + -+ N+ Xpr + -+ X)) /v

with the convention that V,, = S,,/y/n and V = T, /y/n. Then by a telescoping

series argument, it follows that

F(Su/Vm) = f(Tu/vm) = £ (Vi) = F (Vo) = D 1f (Vi) = f (Vier)] . (14.14)

k=1

n

We now make use of Taylor’s theorem with integral remainder the form,
1
Fla+ )= f @)= (@) At o f" () A 41 (n, 4) &° (14.15)

where
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r(z, A) / " (w+tA) (1 —t)*d

Taking Eq. (14.15)) with A replaced by ¢ and subtracting the results then implies

Pt A) = fa+6) = (0) (A—0)+ L " (a) (42

where

-6 +p(x,4), (14.16)

o (2, A)] = |r (2, A) A® — 7 (2,05) %] < % [|A|3 + |5|3] : (14.17)

wherein we have used the simple estimate, |r (z, A)| < M/3!.

If we define Uy := (N1 + -+ Nk + X1 + -+ X5) /\/ﬁ, then V, =
Ui + Ni/+/n and Vi1 = U + X //n. Hence, using Eq. with z = Uy,
A= Ni/y/n and § = X;,//n, it follows that

fWe) = f(Vik—r) = f (Uk + Ni/vn) = f (U + Xi//n)
= =1 (U) (V= X) £ 51" (U (VE = XP) + R
(14.18)
where v
|Ry| = 3 32 [\Nk|3 + |Xk|3} . (14.19)

Taking expectations of Eq. (14.18)) using; Eq. (14.19), EN, =1 = EX}, IEN,? =
1= IEX,? and the fact that Uy is independent of both X and Ng, we find

ELf (Vi) = f (Ve—1)]| = [ERg| <

< M

— 3l.n3/2

Combining this estimate with Eq. (14.14)) shows,

Z ERy| <

<L%
= 3l

This completes the proof of Eq. (14.13)) since % N because,

Fry = [ (5] = (302 ) = e (-x72) = 1w 0.
| |

For more in this direction the reader is advised to look up “Stein’s method.”

< = [INP + Xl

E [|N1| + \Xﬂ .

E [ (Sn/vn) = f (Ta/v/n)]]

> E|Ry|
k=1

E[IMP+1x .
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14.4 A Fourier Transform Inversion Formula

Proposition guarantees the injectivity of the Fourier transform on the
space of probability measures. Our next goal is to find an inversion formula for
the Fourier transform. To motivate the construction below, let us first recall a
few facts about Fourier series. To keep our exposition as simple as possible, we
now restrict ourselves to the one dimensional case.

For L > 0, let e£ (z) := e7'2% and let

1 L

(fvg) ﬂ .

[ () g (z)dx

for f,g € L*([-nL,wL],dz). Then it is well known (and fairly elementary
to prove) that {e% : n € Z} is an orthonormal basis for L? ([—-nL,nL],dz). In
particular, if f € C. (R) with supp(f) C [-wL,wL], then for x € [-nL,nL],

Fla)=)_ (fex) el 2 L Z ( B e'fyd?/> e~ite
neZ ™ —nL
- 27% 27 (Z) e i (14.20)

neEZ

where

= T ) ey,

Letting L — oo in Eq. (14.20) then suggests that

orL Zf( / fO)emrd

and we are lead to expect,

_ 1 <2 —ix
7%/7wf(x)e dA.

Hence if we now think that f(x) is a probability density and let du (z) :=
f () dx so that i (A\) = f(A\), we should expect
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u([a,bD:/:f(x)dx:/: [;T/_Zﬂwe-mdx} d
1 [ . b
5 mu(A) (/ e de> d\

1 e} efi)\a_efi)\b
Sl ) [ )an
[ >( - )

2T

1 c efi)\a _ efi)\b
= lim — 1 (A) | ————— ) d\.
cinc}ozw/c“()( i\ >

This should provide some motivation for Theorem [[4.30] below. The following
lemma is needed in the proof of the inversion Theorem [14.30] below.

Lemma 14.29. For ¢ > 0, let

1 (€ sinA
=— dA. 14.21
s@=5- [ 5 (1421)
Then S (¢) — w boundedly as ¢ — oo and
/ SmAAy d\ = sgn(y)S (cly|) for all y € R. (14.22)
where
1 ify>0
sgn(y) =< —1ify <O0.
0 ify=0

Proof. The first assertion has already been dealt with in Example [10.12]
We will repeat the argument here for the reader’s convenience. By symmetry
and Fubini’s theorem,

S(C):l/ Sm)\d/\:l/ sm)\</ e”dt) d\
™ 0
/ dt/ dAsin Ae™

= 5 + = - /0 T e ' [~ cosc—tsinc|dt, (14.23)

wherein we have used

/ dAsin Ae M :Im/ dhePr e :Im/ dreli=HA
0 o 0

elimt)e _ o .
:Im( = 1) = 1itzlm<{e(z =1 (i)

1
=17 (e *“[—cosc—tsinc] + 1)
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170 14 Characteristic Functions (Fourier Transform)

1/00 Loy ]
7)o 14+t2 2

The the integral in Eq. (14.23) tends to as ¢ — oo by the dominated convergence
theorem. The second assertion in Eq. (14.22)) is a consequence of the change of
variables, z = Ay. [

and

Theorem 14.30 (Fourier Inversion Formula). If i is a probability measure
on (R,Br) and —oo < a < b < oo, then

c 677;/\0, _ efi)\b
i o [ a0 (S ) a = st + 5 (G + e (0D).

—C

Proof. By Fubini’s theorem and Lemma [14.29]

I(c):= /Zg(A) (W) X
= [ ([eae) (F5=) o
- [ duta) _CCWM (“J”’)
_ /]R dpt () [ CCdA (61)(”)1'_;&(“)).
Since

- (e”“‘”ﬁ) - e““’w)) _ <cos (Aa—1z)) —cos (A (b— x)))

A A

is an odd function of X it follows that

I(c)= /R dpa (x) /_ cchRe (e_“(“‘”; e=A0-) )
o) [ (A (e )

= 27r/ du (z) [sgn(z — a)S (c|z — a|) — sgn(x — b)S (c|x — b])].
R

Now letting ¢ — oo in this expression (using the DCT) shows

lim 5T (0) = 5 [ dn(@) benta = @) = senle — 1)

= %/]Rd‘u (l’) [2 : 1(a,b) (JJ) + 1{a} (1,‘) + 1{b} (l‘)]

= () + 5 [ (fa}) + p ({B})].

Page: 170 job: prob

Corollary 14.31. Suppose that p is a probability measure on (R, Br) such that
f € LY (m), then du = pdm where p is a continuous density on R.

Proof. The function,

pla) = 5

[amenar
R

is continuous by the dominated convergence theorem. Moreover,

b 1 b -A
/a p(:z:)dx:%/a d:z:/Rd)\u()\)e
1

b
=— [ d\i(\) / dre=®

2T R
1 e—i)\a _ e—i)\b
=— [ d\i(\) | ————
1 ) c A efi)\a _ efi)\b
=gy dm [ A [)\} dx

= ((a,0) + 5 I ({a)) + (0],

Letting a 1 b over a € R such that 4 ({a}) = 0 in this identity shows p ({b}) =0
for all b € R. Therefore we have shown

b
u((a,b])z/ p(x)dx for all —oo <a <b < 0.

Using one of the multiplicative systems theorems, it is now easy to verify that
p(A) = [, p(x)dx for all A € Bg or [, hdp = [ hpdp for all bounded mea-
surable functions A : R — R. This then implies that p > 0, m — a.e., and the
dp = pdm. [

Example 14.32. Recall from Example that
i 1—cosA
/6)\ (1_|‘T|)+d$:2T
R
Hence it followsﬂ from Corollary |14.31| that

1 [ 1—=cosA _;\,
(1—|z]), = ;/RTe Az, (14.24)

! This identity could also be verified directly using residue calculus techniques from

complex variables.
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Corollary 14.33. For all random variables, X, we have

1E|X|=l MCA (14.25)
™ JR )\

Proof. Evaluating Eq. (14.24)) at £ = 0 implies

1 [ 1—cosA
1=-— ————dA\.
T / A2
Making the change of variables, A — M\, in the above integral then shows

M:l/lfcos()\M)dA'
™ JrR )\2

— 00

Now let M = |X]| in this expression and then take expectations to find
1 1- X 1 [1-
E|X|= f/ELS)‘d/\: f/ Md/\.
™ JrR )\2 ™ JR )\2
[

= Ad\ is 7, we could

1—

Suppose that we did not know the value of ¢ := ffooo
still proceed as above to learn

1 1—Refx (N

We could then evaluate ¢ by making a judicious choice of X. For example if
XLN (0,1), we would have on one hand

E‘Xl 1 / | | _wz/Qd 2 /oo _$2/2d 2
=— [ |z]e r=— ze x=4/—.

Ver Jr Ver Jo ™
On the other hand, fx (A) = e~*"/2 and so

\/z: _%/R (1 _ e_’\2/2> d(\1) = %/Rd (1 _ e—/\2/2> (™)

— l/efﬁ/?d)\ _ Ver
R

c c
from which it follows, again, that ¢ = 7.

Corollary 14.34. Suppose X is a random variable such that u(\) == fx (A)
continuously differentiable for A € (—2¢,2¢) for some e > 0. We further assume

€ !/

A

/ W gy < . (14.26)
O A

Then E|X| < 0o and fx € C* (R,C). (Since u is even, v’ is odd and u' (0) = 0.

Hence if v’ (X\) were a — Hélder continuous for some o > 0, then Eq.

would hold.)
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Proof. Let u(A\) := Refx(A\) = E[cosAX] and assume that u €
C' ((—2¢,2¢),C). Then according to Eq. (14.25))

1—u(N) / 1—u(N) / 1—u(N)
m-E|X :/7(0\: ——d\+ ———2d\.
X1 R A N<e A2 Nse A2

Since 0 <1 —u (A\) <2 and 2/)\? is integrable for |\| > ¢, it suffices to show

oo>/ 1=u®) i 1zuly)
IAl<e

d.
A2 310 Js<|n|<e A2

By an integration by parts we find

[ Ea- (1 —u(N)d(-A")
s<|A<e A S<|NI<e

|2 7/ A7 (X)) dA
A s<IAI<e

u(e) =1 u(-¢g)—1

<IAl<e c —c
_’_u(—_ézs—l - u(5;—1
——m ) Al () dr+ L) +5“(_5) + ' (0) — o' (0)
< /IAgs |“/|£|A)|dA+ u(e) +€U(—€)
:2/06 \u’)(\)\)|d)\+ u(e) —I—Eu(—a) e

Passing the limit as 0 | 0 using the fact that «’ (\) is an odd function, we learn

/ 1= gy = tim
Age A 010 Js<|n<e

< 2/06 |“/§A)|dx+ u(e) ‘;“(_6) < .

/\_11/ (A) d\ + u(e) +U(—€)

14.5 Exercises

Exercise 14.2. For z, A € R, let
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172 14 Characteristic Functions (Fourier Transform)

eikx‘,7
x

e |
o\ x) =
132 jfr=0.

(It is easy to see that ¢ (A,0) = lim, .o (A, z) and in fact that ¢ (A z) is
smooth in (A\,z).) Let {zx},_, C R\ {0}, {Zx};_, U{N} be independent
random variables with N < N (0,1) and Zj being Poisson random variables
with mean a; > 0, i.e. P(Zy =n) = e‘“’“%’j forn =0,1,2.... With Y :=
Sory @k (Zi, — a) + aN, show

Fr )= B[] e ([ o) (o))

where v is the discrete measure on (R, Br) given by

n
v=a%5+ Z apT30y, - (14.27)
k=1

Exercise 14.3. To each finite and compactly supported measure, v, on (R, Bg)
show there exists a sequence {1}, of finitely supported finite measures on
(R, Bg) such that v,, = v. Here we say v is compactly supported if there
exists M < oo such that v ({x : || > M}) = 0 and we say v is finitely supported
if there exists a finite subset, A C R such that v (R\ A) = 0. Please interpret
vy, = Vv to mean,

/ fdv, — / fdv for all f € BC(R).
R R

Exercise 14.4. Show that if v is a finite measure on (R, Bgr), then

FOV = exp ( /R o (A 2) dv (:@) (14.28)

is the characteristic function of a probability measure on (R, Bg). Here is an
outline to follow. (You may find the calculus estimates in Section to be of
help.)

1. Show f (A) is continuous.

2. Now suppose that v is compactly supported. Show, using Exercises [14.2]
and the continuity Theorem that exp ([ ¢ (A, x) dv (x)) is the
characteristic function of a probability measure on (R, Bg) .

3. For the general case, approximate v by a sequence of finite measures with
compact support as in item 2.
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Exercise 14.5 (Exercise 2.3 in [6]). Let u be the probability measure on
(R,Bg), such that u({n}) = p(n) = crzior—1jnj>2 With ¢ chosen so that

n? In|n|

> ez P (n) = 1. Show that i € C! (R, C) even though [ |2|dp (x) = oo. To do

this show,
1 — cosnt
g(t): Y —5—

n2lnn
n>2
is continuously differentiable.

Exercise 14.6 (Polya’s Criterioin [1I, Problem 26.3 on p. 305.] and [2],
p- 104-107.]). Suppose ¢ (A) is a non-negative symmetric continuous function
such that ¢ (0) = 1, ¢ (\) is non-increasing and convex for A > 0. Show ¢ (A) =
U (\) for some probability measure, v, on (R, Bg) .

Solution to Exercise ((14.6]). Because of the continuity theorem and some
simple limiting arguments, it suffices to prove the result for a function ¢ as

pictured in Figure m From Example (14.32, we know that (1 — [A]) | = i (\)

Fig. 14.1. Here is a piecewise linear convex function. We will assume that d,, > 0 for
all n and that ¢ (\) = 0 for A sufficiently large. This last restriction may be removed
later by a limiting argument.

where p is the probability measure,

_ 11—cosz

For a > 0, let p14 (A) = p(ad) in which case pq (f) = p(f (a™*)) for all
bounded measurable f and in particular, ji, (A) = f (a‘l)\). To finish the
proof it suffices to show that ¢ (A\) may be expressed as
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e =3 puia, )= (1 -\
n=1 n=1
for some a,, > 0 and p,, > 0 such that fo:lpn. Indeed, if this is the case we
may take, v := > " | pupla, -
It is pretty clear that we should take a,, = dy + - - - 4+ d,, for all n € N. Since
we are assuming ¢ (A) = 0 for large A, there is a first index, N € N, such that

A
n

) (14.29)
N

N
O=p(an)=1- dnsp. (14.30)
n=1

Notice that s, = 0 for all n > N.
Since

o0
1
o (\)=— an— when ap_1 < \ < ag

n=k n

we must require,

|
S = an— for all k£
n=~k

n

which then implies p’“i = S — Sp41 or equivalently that

Pk = Qg (8K — Sp41) - (14.31)

Since ¢ is convex, we know that —s; < —spi1 or s > sp41 for all k and
therefore pr, > 0 and pi, = 0 for all k£ > N. Moreover,

o0 o0 o0 o0
§ Pr = § ap (s — Sky1) = E arsk — § ap—15k
k=1 k=1 k=1 k=2

oo e}
=ars1+ Y sk (ar —ar-1) =disi+ > sid
k=2 k=2

oo
:Zskdkzl
k=1

where the last equality follows from Eq. (14.30). Working backwards with py
defined as in Eq. (14.31)) it is now easily shown that d%\ > P (1 —|2 ) =
+

¢ () for A ¢ {ay,as,...} and since both functions are equal to 1 at A = 0 we
may conclude that Eq. (14.29)) is indeed valid.
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14.6 Appendix: Bochner’s Theorem

Definition 14.35. A function f € C(R™,C) is said to have rapid decay or
rapid decrease if

sup (1 + |z))NV | f(x)| < 00 for N =1,2,....
zeR™

Equivalently, for each N € N there exists constants Cny < oo such that |f(z)] <
Cn(1+|z|)™ for all x € R™. A function f € C(R",C) is said to have (at
most) polynomial growth if there exists N < 0o such

sup (1 + [2)) ™ [ f(2)] < o0,

i.e. there exists N € N and C < oo such that |f(z)] < C(1 + |z|)V for all
r € R™

Definition 14.36 (Schwartz Test Functions). Let S denote the space of
functions f € C*°(R™) such that f and all of its partial derivatives have rapid
decay and let

1£llnq = sup [(1+[z])¥0% f(2)]
rER™

so that
S = {f € C(R") : || fll .o <00 for all N and a}.

Also let P denote those functions g € C*°(R™) such that g and all of its deriva-
tives have at most polynomial growth, i.e. g € C*(R"™) is in P iff for all multi-
indices ., there exists N, < oo such

—Na |9
sup (1 + |z|) |0%g(x)] < oo.
(Notice that any polynomial function on R™ is in P.)

Definition 14.37. A function x : R — C is said to be positive (semi)
definite iff the matrices A = {x(& — @)}le:l are positive definite for all
m € N and {{;}]2, CR™

Proposition 14.38. Suppose that x : R — C is said to be positive definite
with x (0) = 1. If x is continuous at 0 then in fact x is uniformly continuous
on all of R™.

Proof. Taking & = z, & = y and & = 0 in Definition [I4:37 we conclude
that

1 x(z—y) x(z) 1 x(z—y) x(=)
A= |xy-z) 1 x@|=|x-y 1 x(@)
x(—z) x(-y) 1 X  x 1
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174 14 Characteristic Functions (Fourier Transform)
is positive definite. In particular,
0<detA=1+x(x—y)x )X (@) +x@)x-y)xy)
2 2 2
—Ix@F = Ix@ = Ix@ -yl
Combining this inequality with the identity,

X (@) = x @) =[x @+ Ix @ = x @) x (@) - x @)X @),

gives
0<1l-|x@—ylP+x@-y)x@x@) +x@)xE@E—y) XY
—{Ix @) = x @I+ x @) %)+ x B) X (@)}
=1-|x@-yP - Ix@-x
+x(@—y)x@Wx @) —x@x@) +x@)x@@-y)x) —x@)x{y)
=1—|x(@—y —Ix(@) —x @ +2Re((x (@ —y) — 1) x (v) X ()
<1—|x(@—y)*—Ix@ - x @ +2x@—y) -1

Hence we have

X@) —x@P<1-Ix@—y)?+2x(@—y) -1
=(1-|Ix@@-y)A+Ix@-yl)+2x@—-y) -1
<4l = x(z—vy)|

which completes the proof. ]

Lemma 14.39. If x € C(R™,C) is a positive definite function, then

1. x(0) > 0.

2. x(=€) = x(€) for all € € R™.
3. |x(&)] < x(0) for all € € R™.
4. For all f € S(RY),

/R X ) f(€)f(n)dédn > 0. (14.32)

Proof. Taking m = 1 and & = 0 we learn x(0) |A|* > 0 for all A € C which
proves item 1. Taking m = 2, £ = £ and &; = 7, the matrix

_ [ x(0) x(€—n)
x(m—2¢& x(0)

is positive definite from which we conclude x(¢§ —n) = x(n — &) (since A = A*
by definition) and
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x(0) x(€=m] _ 2 _ (6 — )2
0<det | MOXED] @ - ute -

and hence |x(€)| < x(0) for all £. This proves items 2. and 3. Item 4. follows by
approximating the integral in Eq. (14.32) by Riemann sums,

/ X(€ = ) F (&) Fdedn
R" xR"

= lime™?"
im )

€ne(ezm)n[—e~1,e=1)"

X(E=n)f(&)f(n) > 0.

The details are left to the reader. [ ]

Lemma 14.40. If p is a finite positive measure on Bgn, then x := [ €
C(R",C) is a positive definite function.

Proof. As has already been observed after Definition ?7?, the dominated
convergence theorem implies i € C(R™,C). Since p is a positive measure (and
hence real),

-6 = [ e duta) = [ emrdute) = ).

From this it follows that for any m € N and {¢; };nzl C
{p(& — Q)};nj:l is self-adjoint. Moreover if A € C™,

R™ the matrix A :=

m B m ) ~
Z €k — &) Ak =/ e & =E) e\ N dp(x)
k=1 R™  j=1
= [>T N du(a)
n k7]:1
m 2
:/ Ze‘ig’“x)\k du(x) >0
" k=1
showing A is positive definite. ]

Theorem 14.41 (Bochner’s Theorem). Suppose x € C(R™,C) is positive
definite function, then there exists a unique positive measure y on Brn such
that x = fi.

Proof. If x(§) = ji(€), then for f € S we would have

fin= [ () du= [ proiea

R
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This suggests that we define

1= [ xOF(©de orall f 5.

We will now show I is positive in the sense if f € S and f > 0 then I(f) > 0.
For general f € S we have

101 = [ @ (197) (e = [ xee

= [ x(©r €~ 7 (and =

) (F % fY) (€)deE
XY (€ =) f¥(—n)dnd¢

R™

= [ &= mr @ Tdnds > o (14.33)
For t > 0 let py(z) := t /2~ 1#I/2t € S and define
I, (x) = Tpi() = I(pe(z — ]\/;T]
which is non-negative by Eq. and the fact that \/m € S. Using
[pe(z — )] (&) = /n pe(z —y)eVidy = /npt(y)ei(“:”)'fdy

= e (€) = e,

) ( / ) x(&)e”fe-“”%(m)dg) da

XY (€)e e /2ae

n

/

B / . (/ X I =] (sw(x)dg) da
/
/

which coupled with the dominated convergence theorem shows

A X(©v"(§)dE =1(¥) ast | 0.
Hence if ¢ > 0, then I(¢) = limg (I3, ¥) > 0.

Let K C R be a compact set and ¢ € C.(R,[0,00)) be a function such that
Y =1on K. If f € C(R,R) is a smooth function with supp(f) C K, then
0<||fllo® — f€S and hence

<I*pt7 1/}> -
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0< (L Iflle ¥ = f) = Iflloo (L) = (1, f)

and therefore (I, f) < |fll. (I,%). Replacing f by —f implies, —(I, f) <
I £l (I,%) and hence we have proved

[(L, £)] < Clsupp(f)) [|.f 1] (14.34)

for all f € Dgn := CX(R™,R) where C(K) is a ﬁnite constant for each compact
subset of R™. Because of the estimate in Eq. ( , it follows that I |Dm has a
unique extension I to C.(R™, R) still satlsfymg the estnnates in Eq. (14.34)) and
moreover this extension is still positive. So by the Riesz — Markov Theorem 77,
there exists a unique Radon — measure p on R™ such that such that (I, f) = p(f )
for all f € C.(R™,R).

To finish the proof we must show fi(n) = x(n) for all n € R™ given

u(5) = [ XOF (€€ for al f € C2(R"R) (14.35)

Let f € C°(R™,R,) be a radial function such f(0) =1 and f(z) is decreasing
as |z| increases. Let f.(x) := f(ex), then by Theorem ?7?,

F e @] (© =e ()
and therefore, from Eq. ,
[ e @i = [ x@err S hae )

Because [, f¥(£)d¢ = FfY(0) = f(0) = 1, we may apply the approximate §
— function Theorem 77 to Eq. (14.36) to find

/n e f_(x)dp(x) — x(n) as € | 0. (14.37)

On the the other hand, when n = 0, the monotone convergence theorem implies
u(fe) T () = u(R™) and therefore p(R™) = pu(1) = x(0) < co. Now knowing
the u is a finite measure we may use the dominated convergence theorem to
concluded

p(e™ fe(x)) — p(e™™) = fu(n) as e | O

for all . Combining this equation with Eq. (14.37) shows ji(n) = x(n) for all
n € R™ [
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176 14 Characteristic Functions (Fourier Transform)

14.7 Appendix: A Multi-dimensional Weirstrass
Approximation Theorem

The following theorem is the multi-dimensional generalization of Theorem

Theorem 14.42 (Weierstrass Approximation Theorem). Suppose that
K = [a1,01] X ...[ag,bq] with —co < a; < b; < 00 is a compact rectangle
in R%. Then for every f € C(K,C), there exists polynomials p, on R? such that
Pn — f uniformly on K.

Proof. By a simple scaling and translation of the arguments of f we may
assume with out loss of generality that K = [0, 1]d . By considering the real and
imaginary parts of f separately, it suffices to assume f € C([0, 1], R).

Given z € K, let {Xn = (X}L, .. Xd)} , be Lid. random vectors with

values in R? such that
d
1 i 7
H (1—z;)
i=1

for all € = (e1,...,eq4) € {0,1}". Since each X7 is a Bernoulli random variable
with P (X7 = 1) = z;, we know that

EX, =z and Var (Xﬂl) =z — z?

J :‘Tj(l _xj)'

As usual let S, =S, := X1 +--- + X,, € R?, then

E [Sn] = and
n

2 d . 2 d ,
S5 _ S5
T ] —Z]E(n—xj> —ZV&r(n acj>

Il
M&
=
—
= |
N——
Il
3| =
INg
N
<
VS
et
N—

[

\
&
=

|
8B
I

=~
£

This shows S,,/n — z in L? (P) and hence by Chebyshev’s inequality, S,, /n Lo

in and by a continuity theorem, f (%) Lt f (z) as n — oo. This along with the
dominated convergence theorem shows

pu(z) =E {f (f:)] — f(z) asn — oo, (14.38)
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where
pn(x): Z f(5(1)+ +E(n))P(X1—E<1), ,anfs(n))
e(-)€{0,1}¢
n d
_ Z f(() )HH la(k) Zl(k)
()e{0,1}¢ k=1i=1

is a polynomial of degree nd. In fact more is true.
Suppose € > 0 is given, M = sup {|f(x)| : € K}, and

0c =sup{|fly) — f(x)]:z,y € K and |y —z| <e}.
By uniform continuity of f on K, lim.|¢d. = 0. Therefore,

@)= pato)l = [E (1) - 5

<e|f0) - 1%2)
v |7 - 52
<2MP (||S, — z|| > &) + 6. (14.39)

>)‘ SIE’f(m) e

n

Sn — ]| > 5]

IS — x| < 5}

By Chebyshev’s inequality,

1 2
P (|80 —all > €) < ZE[Sn — 2" =

4ne?’
and therefore, Eq. (14.39) yields the estimate

2dM
sup |f (z) — pn (2)| £ —5 + ¢
reK

ne

and hence
limsup sup |f (z) — pn ()| < 0. — 0 ase | 0.

n—oo x€K

Here is a version of the complex Weirstrass approximation theorem.

Theorem 14.43 (Complex Weierstrass Approximation Theorem).
Suppose that K C C¢ = R? x R? is a compact rectangle. Then there ea-
ists polynomials in (z = x +iy,z =x —1iy), pn(z,2) for z € C¢ such that
Sup,cx |gn(2,2) — f(2)] = 0 as n — oo for every f € C (K,C).
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Proof. The mapping (z,y) € R xR? — z = z+iy € C? is an isomorphism
of vector spaces. Letting Z = = — iy as usual, we have z = %2 and y = —Z.
Therefore under this identification any polynomial p(x,y) on R? x R? may be
written as a polynomial ¢ in (z, Z), namely

Z24+zZ z2—2
2 72

).

Conversely a polynomial ¢ in (z,Z) may be thought of as a polynomial p in
(z,y), namely p(z,y) = g(x + iy,x — iy). Hence the result now follows from
Theorem [[4.42 [

q(z,2) = p(

Example 14.44. Let K = S = {2z € C : |2| = 1} and A be the set of polynomials
in (2, %) restricted to S*. Then A is dense in C(S*). To prove this first observe
if f € C(S') then F(z) = |2| f(ﬁ) for z # 0 and F(0) = 0 defines F' € C(C)
such that F|s1 = f. By applying Theorem to F' restricted to a compact
rectangle containing S' we may find g, (2, %) converging uniformly to F on
K and hence on S'. Since Z = 27! on S!, we have shown polynomials in z
and 27! are dense in C(S'). This example generalizes in an obvious way to

K= (sY)! cce,
Exercise 14.7. Use Example to show that any 27 — periodic continuous
function, g : R — C, may be uniformly approximated by a trigonometric
polynomial of the form

x) = Z arer

where A is a finite subset of Z? and ay € C for all A\ € A. Hint: start by
showing there exists a unique continuous function, f : (Sl)d — C such that
f (e, ... e) = F () for all z = (z1,...,24) € R

Solution to Exercise ((14.7)). I will write out the solution when d = 1. For
z € S, define F(z) := f(e'’) where € R is chosen so that z = €. Since f is 27
— periodic, F is well defined since if § solves e’ = z then all other solutions are of
the form {6 + 2mn : n € Z} . Since the map 6 — ¢% is a local homeomorphism,
i.e. for any J = (a,b) with b—a < 27, the map 6 € J O J = {eie 10 € J} c st
is a homeomorphism, it follows that F(z) = f o ¢~(z) for z € J. This shows
F is continuous when restricted to J. Since such sets cover S!, it follows that
F is continuous. It now follows from Example that polynomials in z and
2z~ ! are dense in C(S'). Hence for any £ > 0 there exists

= E 22" = E A2 2" " = E 2"

such that |F(z) — p(z, 2)| < ¢ for all z. Taking z = € then implies there exists
b, € C and N € N such that
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N
= Y bpe™ (14.40)
n=—N

satisfies -
sgp 1f(0) —p(0)] <e.

Exercise 14.8. Suppose f € C(R,C) is a 27 — periodic function (i.e.
f(xz+27) = f(z) for all z € R) and

2m

f(x)e™*dx =0 for all n € Z,
0

show again that f = 0. Hint: Use Exercise

Solution to Exercise 1' . By assumption, fo% f
and so by the linearity of the Riemann integral,

0) e™?do = 0 for all n

27

0= [ f(0)p.(0)do. (14.41)

0
Choose trigonometric polynomials, p., as in Eq. (14.40) such that p. (6) — f (6)
uniformly in 6 as € | 0. Passing to the limit in Eq. (14.41)) implies

2T

0=tm [ £(0)p:(0)d0 = Wf(ﬁ)f(ﬁ)dez/wlf(H)IQdﬂ-
0 0

|0

From this it follows that f = 0, for if | f (6p)| > 0 for some 0y then |f (8)] > >0
for # in a neighborhood of 6y by continuity of f. It would then follow that

o7 1F @) do > o.

14.8 Appendix: Some Calculus Estimates

We end this section by gathering together a number of calculus estimates that
we will need in the future.

1. Taylor’s theorem with integral remainder states, if f € C* (R) and 2z, A € R
or f be holomorphic in a neighborhood of z € C and A € C be sufficiently
small so that f (z + tA) is defined for ¢ € [0, 1], then

(z+ A) Z £ (2 AFry (2, A) (14.42)
1
= Zf‘”> AR | ) ez )| (1443)
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178 14 Characteristic Functions (Fourier Transform)

where
1 ! -
P (5, 4) = / FE (4 tA) (1 — 1) L (14.44)
(k=1 Jo
1
= ") (2) + e (2, Q) (14.45)
and
1
e(z,A) = ;/ [f(’“) (z4tA) — f® (z)} (1—8)F1dt - 0as A—o0.
(k=1)!Jo
(14.46)
To prove this, use integration by parts to show,
v (2, A) = 1/1f<k> G+t (=) a—pra
A k! Jo dt
1 t=1 A !
— __— |+ _pk = (k+1) Y
. [f (z+tA) (1—t) L:o +5 /0 FEED (24t A) (1 - 1)k at
1
= 5% @) + Ariga (2, 4),
ie. 1
APy (2,4) = o F® (2) A% + AR ey (2, A).
The result now follows by induction.
2. For y € R, siny =y fol cos (ty) dt and hence
lsiny| < [y]. (14.47)

3. For y € R we have

1 1 2
cosy=1+y2/ —cos(ty)(l—t)dt21+y2/ —(l—t)dtzl—%.
0 0
Equivalently putﬂ

2 Alternatively,

y
|siny| = ‘/ cos zdx
0

and for y > 0 we have,

y
< ‘/ |cos x| dz
0

y v
cosy — 1= / —sinzdr > / —xdx = —y2/2.
0 0

<yl

This last inequality may also be proved as a simple calculus exercise following from;
g (£00) = oo and ¢’ (y) = 0 iff siny = y which happens iff y = 0.
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g(y):=cosy—14+%%/2>0 for all y € R. (14.48)

4. Since

e —1—z] =

1 1
22/ e (1—1t) dt’ < |z\2/ etRez (1 —t)dt,
0 0

if Rez <0, then

le* —1—z| < |z*/2 (14.49)
and if Rez > 0 then
le* —1— 2| < efe? |2 /2.
Combining these into one estimate gives,
z OVRe z |Z‘2
le* —1—2z| <e Bt (14.50)
5. Since e¥ — 1 = iy fol e'™dt, |e” — 1| < |y| and hence
|eiy —1| <2y forall y € R. (14.51)

Lemma 14.45. For z = re with —m < 6 < 7 and r > 0, let Inz = Inr + 6.
Then In : C\ (—00,0] — C is a holomorphic function such that e™* = zﬂ and
if |z| <1 then

In (14 2) — 2| < |27 3 5 for |2 < L. (14.52)

b
(1—lzD)

Proof. Clearly e™* = z and Inz is continuous. Therefore by the inverse
function theorem for holomorphic functions, In z is holomorphic and

d
z—Inz=e"*—1Inz=1.
dz dz
3 For the purposes of this lemma it suffices to define In (1 +2) = —32° (—2)" /n
and to then observe: 1)
d - n 1
EmE =3 =

and 2) the functions 1 4+ z and e™*+*) both solve

f(z)= ﬁf(z) with £ (0) =1

and therefore e 2) =1 4 2.
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Therefore, di Inz = % and j—; Inz = —z%. So by Taylor’s theorem,

lm(l—&—z)zz—zQ/Ol(1

1—1t)dt. 14.53
1+ t2)? -9 (14.53)
Ift > 0 and |z| < 1, then
1 > 1 1
| <> " = < .
(I+tz)| ~ = 1—tlz] = 1—|z]
and therefore,
| 1
/ (1 -t)ydt| < ————. (14.54)
o (1+tz2) 2(1—1z)
Eq. (14.52) is now a consequence of Eq. (14.53) and Eq. (14.54)). [ |
Lemma 14.46. For all y € R and n € NU{0},
v e (i) Jy"
W < 14.55
D | S (14.55)
k=0
and in particular,
eV — (141 v < 2/\@ (14.56)
Yoo )| =Y M '

More generally for alln € N we have

-

k=0

k n+1

< vl 2y
~ (n+1)! n!

(14.57)

Proof. By Taylor’s theorem (see Eq. (14.42) with f (y) = €¥, x = 0 and
A =y) we have

n . \k 1
=)y
Y _ n+1 ity _ )\
e Z W T (1 —t)" dt
k=0
n+1 1 n+1
< 1yl /(1_t)ndt: |l
which is Eq. (14.55)). Using Eq. (14.55)) with n = 1 implies
2 2
i . Y i ; Y
e — (1+zy—2!>’ < ]ey—(1+zy)|+’2‘
2 2
Y Y 2
< | == — =
S5 + D) Y
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and using Eq. (14.55)) with n = 2 implies

4 v\
o (a5 )| <

Combining the last two inequalities completes the proof of Eq. (14.56)). Equation
(14.57) is proved similarly and hence will be omitted.

Lemma 14.47. If X is a square integrable random variable, then

) A2
FO) :=E[e] =1+ \EX — STE [+ ()
where \
r(\) == NE [ X2 A IAIzI)jﬂ} =\ (\)
and s
X
e(A\):=E X2/\|)\;|]—>Oas)\—>0.

(14.58)
Proof. Using Eq. (14.56)) with y = AX and taking expectations implies,

A2 ) X?
‘f()\) - <1+i>\]EX oE [X2]>’ <E|e?* - <1+i)\X)\22'>‘
X
<NE | XPAS

3 ] =N (\).

The DCT, with X2 € L' (P) being the dominating function, allows us to con-
clude that lim._,ge (A) = 0.
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15

Weak Convergence of Random Sums

Throughout this chapter, we will assume the following standing notation
unless otherwise stated. For each n € N, let {X,, »},_, be independent random
variables and let

Spi=_ Xnk. (15.1)
k=1

Until further notice we are going to assume E [X,, ;] = 0, afm =FE {Xﬁk} < 00,
and Var (S,) = >)_, 02, = 1. Also let

fak (A) == E [eAXnx] (15.2)
denote the characteristic function of X, j.

Ezample 15.1. Suppose {X,,}_ | are mean zero square integrable random Varl—
ables with of = Var(X,). If we let s2 = Y} Var(Xy) = > ,_, 0%,
or = 0r/sn, and X, . == X /sy, then {ka}Z:l satisfy the above hypothesis
and S, = i Sory Xk

Our main interest in this chapter is to consider the limiting behavior of S,
as n — o00. In order to do this, it will be useful to put conditions on the {X,, 1}

such that no one term dominates sum defining the sum defining S,, in Eq. (15.1))
in the limit as n — oo.

Definition 15.2. We say that {X, r} satisfies the Lindeberg Condition
(LC) iff

lim Y E[X2, :|Xnk| >t] =0 forallt>0. (15.3)
=1
We say {Xn 1} satisfies condition (M) if
D,, := max {cri’k k< n} — 0 as n — oo, (15.4)
and we say { X, 1} is uniformly asymptotic negligibility (UAN) if for all

>0,
lim max P (| X, x| >¢) =0. (15.5)

n—oo k<n

Remark 15.5. The reader should observe that in order for condition (M) to hold
in the setup in Example it is necessary that lim,, ., s2 = co.

Lemma 15.4. Let us continue the notation in FErample |15.1. Then
{ Xk == Xi/sn} satisfies (LC) if either of two conditions hold;

1 {X,}2 are i.i.d.
2. The {X,}.-, satisfy Liapunov condition; there exists some a > 2 such

that "R
lim i BIXG [ = 0. (15.6)

[0
n—oo
STL

More generally, if { X, 1} satisfies the Liapunov condition,

nlgr;OZE e (1Xngl)] =

where ¢ : [0,00) — [0,00) is a non-decreasing function such that ¢ (t) > 0 for
allt > 0, then {X,, 1} satisfies (LC') .

Proof. 1. If {X,,},2 | are iid., then s, = y/no where 0? = EX? and

STEXZ, Xkl >t] = iQ E [X7 1 [ Xk| > snt] (15.7)

1
*72 (X7 0 [X1| > Vnot]

no
1
o2

E[X7 :|X1| > v/not]

which, by DCT, tends to zero as n — oo.
2. Assuming Eq. (15.6)), then for any ¢ > 0,

n n a—2
S E[XZ, Xkl > 1] < ZIE X2, X"~ | Xp| >t
k=1
" 1
E[| X0 = e ZE|Xk —0.

=1 " k=1
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For the last assertion, working as above we have

ZE I:X’I’QL,]C : |Xn,kr‘ > t ZE [X (n)k|) |Xn,k| >1
k=1
1 n
¢ () & X +D)]
as n — oo. [ ]

Lemma 15.5. Let {X,, 1} -, be as above, then (LC) = (M) = (UAN).
Proof. For k < n,
oni =E[X0] = E[X0alix, <] + B (X741 1x, 050]
S t2 + E [X'?l-,kl‘xn,k“>t:| é t2 + Z E [Xz,mllxnm‘>tj|
m=1
and therefore using (LC') we find

lim max an p < t2 for all t > 0.

n—oo k<

This clearly implies (M) holds. The assertion that (M) implies (UAN) follows
by Chebyschev’s inequality,

1
< il
masc P (| X, 4] > €) < max B [ X1 1 [ Xul > €]

1 n
= 2 Z [|Xn,k|2 X k| > 5} — 0.
k=1

In fact the same argument shows that (M) implies

> P (|Xnkl>e)

1 & ,
<) B [|Xn,k| | Xl > s] — 0.
k=1 k=

]
We will need the following lemma for our subsequent applications of the
continuity theorem.

Lemma 15.6. Suppose that a;,b; € C with |a;|,|b;] < 1 fori = 1,2,...,n

Then . . .
i=1 i=1 i=1
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Proof. Let a := [[/; a; and b := [/, b; and observe that |a|,|b| < 1 and
that
lana — bpb| < |ana — anb| + |anb — b,
= lan|[a = b] + |an — bn| [b]
<la—b|l+ |an — by].
The proof is now easily completed by induction on 7. ]

Theorem 15.7 (Lindeberg-Feller CLT (I)). Suppose {X, 1} satisfies
(LC), then
S, = N(0,1). (15.8)

(See Theorem |(15.11) for a converse to this theorem.)

To prove this theorem we must show
E [e“‘S”] — e /2 as n — . (15.9)

Before starting the formal proof, let me give an informal explanation for Eq.
[5.9). Using
)\2
fnk (A) ~1- ?0-721](?7
we might expect

n

E [eiASn} — H fnk: (/\) —c b1 In fr(X)

k=1
— oSy (1 far (V)= 1)

n

) Zry (Fur (V) - ( T V- )
k=1

(B) Ek Ly "nk 7(37%.

The question then becomes under what conditions are these approximations
valid. It turns out that approximation (A), namely that

[T fur (0 — exp (Z (ke (V) - 1)) ‘ =0, (15.10)
k=1

k=1

lim
n—oo

is valid if condition (M) holds, see Lemma below. It is shown in the estimate
Eq. (15.11)) below that the approximation (B) is valid, i.e.

n

nhlr;oz (fnk ()\) — ]_) — _%)\2’

k=1
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if (LC) is satisfied. These observations would then constitute a proof of Theorem
The proof given below of Theorem will not quite follow this route
and will not use Lemma directly. However, this lemma will be used in the

proofs of Theorems [I5.11] and [15.14}

Proof. Now on to the formal proof of Theorem Since

ank

we may use Lemma to conclude,

n

N2 _ He

k=1

2 2
z)\S and e~ - a'n,k/Z7

n

. 2 242
’E [ezksn] - A /2‘ < fnk ( ) ”'k/Q’ Z n,k + Bn k
k=1 k=1
where
A2o2
A= | fur (\) — [1 - 2””“] and
2 2
B = ll — A ;n,k‘| X207 /2

Now, using Lemma [14.47]

IAX Ao IAX "
An,k =|E |e mk ] + ?Xn,k E n.k 1 -+ EXTL,]C

<x2g | xz . p ALKl
- mk 3!
[ A X, A IX.
<NE | X2, A |||37’“| Xkl <e| +NE | X2, % | X k| > ]
LA X
< ME % DXl <e| + NE[X2 0 | Xng| > €]
A2 2 2 2
< SN E [IXn sl 1X0s] < €] + XE[X2, ¢ Xl > €]
e
= H?gofl + \E [Xik | X k| > 8] )
From this estimate and (LC) it follows that
Ne o, e
hmsupZAnk<hmsup ?—l-)\ ZE :|Xn,k|>€] =5
(15.11)
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and since € > 0 is arbitrary, we may conclude that limsup,, .o > r_; Anx = 0.
To estimate >, _, By k, we use the estimate, [e™* — 1 4+ u| < u?/2 valid for
u > 0 (see Eq.[14.49| with z = —u). With this estimate we find,

n 2 2
Z [1 ~ “nk] S

2

I|
3 HM:
=

SZ% l)? ik] :7207”6
k=1

A4 n /\4
< grl?a‘xankzank - g%laxank _>O
k=1 =
wherein we have used (M) (which is implied by (LC)) in taking the limit as
n — oo. |

As an application of Theorem[15.7| we can give half of the proof of Theorem

U2.12

Theorem 15.8 (Converse assertion in Theorem [12.12). If {X,,} 7, are
independent random variables and the random series, 21 X, is almost surely
convergent, then for all ¢ > 0 the following three series converge;

1. Z?=1P(|Xn| > ¢) < 00,
2.3 0y Var (X,1x, <) < 00, and
8. 3 E(X,lx,|<c) converges.

Proof. Since > °7 X, is almost surely convergent, it follows that
X, = 0 a.s. and hence for every ¢ > 0, P ({|X,,| > ¢ i.0. }) = 0. Accord-
ing the Borel zero one law this implies for every ¢ > 0 that > 2 | P (|X,,| > ¢) <
o0. Since X, — 0 a.s., {X,} and {X¢ := X,,1x,|<.} are tail equivalent for all
¢ > 0. In particular Zzo:l X¢ is almost surely convergent for all ¢ > 0.

Fix ¢ > 0, let Y, := X2 —E[XZ] and let

= ZVar () = ZVar (X5)
k=1 k=1

For the sake of contradictions, suppose s2 — oo as n — oo. Since |Y;| < 2¢, it

follows that ;| E [Y]31|Yk\>snt] = 0 for all sufficiently large n and hence

lim,, _, o

n
= ZV&I‘ (Xk1|Xk|§c) .
k=1

= Var (Y1 +

lim —ZIE [YZ1jy,56.t) =0,

ie. {Yo i :=Yy/sn} - satisfies (LC) — see Examples l and Remark |1 -
So by the central limit Theorem [I5.7] it follows that
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184 15 Weak Convergence of Random Sums

1 & Proof. For the first item we estimate,
72 = QZYk:>N(O 1).
k= = |[Ee?X —1| <E[e?¥ — 1| <E[2 A [AX]]
On the other hand we know =ERAINX|:|X]|Ze]+E2A|MX]: |X] < ¢g]
n oo 2 2
.1 2kt Xk <2P[|X| > el +|Ae < SEIX[T+[Ae
nh_)H;QgZX,’,CL:m:OB,S 52
" k=1 n—ee tn

Replacing X by X, ; and in the above inequality shows

2

2 QUn
S—QZE[XR] = S—QZXn— S—QZYk = N(0,1).
n =1 " k=1 " k=1 Therefore,
But it is not possible for constant (i.e. non-random) variables, ¢, = . 2D,,
L5  E[XE], to converge to a non-degenerate limit. (Think about this ei- lim sup thax |‘Pn k (A)] < limsup o2 +[Ale] =[Ale = 0ase | 0.
2 = n— o0 n—o00
ther in terms of characteristic functions or in terms of distribution functions.)
Thus we must conclude that For the second item, observe that Regp k (A) = Re frr (A) —1 < 0 and
hence

e e Qpn,k()‘) e Re APn,k(A) 0 _

ZVM (Xn]-|Xn‘SC) :ZVar(Xfl): lim s? < oo. ‘6 ‘ =e <e’' =1

n=1 n=1 and hence we have from Lemma, and the estimate (14.49)),

An application of Kolmogorov’s convergence criteria (Theorem [12.11)) im- n n
plies that _ H epnk(N| < Z For(N) — ewn,k(/\)‘
Z (X¢ —E[X]]) is convergent a.s. k=1 kz
= :Z‘ew,k(k)_l_@mk (/\)’
Since we already know that fo:l X¢ is convergent almost surely we may now =1
conclude > ° E (an‘X”Sc) is convergent. [ 1
Let us now turn to the converse of Theorem see Theorem [15.11| below. < 3 Z |©nk (
k=1

Lemma 15.9. Suppose that {X, i} satisfies property (M), ie. D, := 1 n
maxgp<np U?L,k} — 0. If we define, < 5 |gpn k(M) - Z |on.k (A)

e N i= far (N =1 =E [e?nr — 1],
ik (A) Fue (N) [6 ] Moreover since EX,, ;, = 0, the estimate in Eq. (14.49) implies

then;

I
M=

1. 1imy, 00 MaX<p |2nk (A)] = 0 and > lenk (V) B [ =1 — i Xy ]|

2. fs, (N) =TTy e“""kA)—>O as n — oo, where

b
I
—

)\2 n ) )\2
S ? O—n,k‘ = 2 .
k=1

NIE

1 2
E|=|)\X,,
{2| &l ]

>
I
—

fs, (A) = E [¢] ank

Thus we have shown,
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n

T i )~ T[ 7+
k=1

)\2
. < 7 pax |onk (N)]

and the latter expression tends to zero by item 1. ]

Lemma 15.10. Let X be a random variable such that EX? < 0o and EX = 0.
Further let f (A) :=E [e"*] and u(X) :=Re (f (\) —1). Then for all ¢ >0,

A? 9 o [A2 2
(/\)+2E[X]21EX T3 X > e (15.12)
or equivalently
A, 5 [A2 2
E cos)\X—l—i—?X >E|X ] DX > el . (15.13)

In particular if we choose |\| > \/6/ |c|, then

A2 1
E [cos AX — 1+ 2)@} > B [X?:|X|> (. (15.14)

Proof. For all A € R, we have (see Eq. (14.48])) cos AX — 1+ §X2 >0 and
cos AX — 1 > —2. Therefore,

A

2 2
u(X) + IE[X2] =E cosAX—1+)\2X2]

)\2
>E COS)\X—1+2X2:X|>C:|

)\2
>FE |2+ X2 |X|>c}

X
>E |- u—&- 2X2 |X>c]

which gives Eq. ((15.12]). ]

Theorem 15.11 (Lindeberg-Feller CLT (II)). Suppose {X, i} satisfies
(M) and also the central limit theorem in Eq. holds, then { X, 1} satisfies

(LC). So under condition (M), S, converges to a normal random variable iff
(LC) holds.

Proof. By assumption we have

lim maxa x=0and hm H Sk (A — N2,

n—oo k<n
k 1
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The second inequality combined with Lemma implies,

lim e2k=1#nsN) = Jim H ePn (V) = ¢=3*/2,

n—oo
=1

Taking the modulus of this equation then implies,

lim eXho1Re@n ) — Jim ezzlewn,km’ — N2

n—oo n—oo

from which we may conclude

lim ZReg@nk( )= —\?/2.

n—oo

=1

We may write this last limit as
o« A2,
nlLII;OZE cos(AXp k) — 1+ ?Xn’k =0
which by Lemma [15.10 implies
nll_)IglOZE g [ Xkl > =0

for all ¢ > 0 which is (LC'). |

15.1 Infinitely Divisible and Stable Symmetric
Distributions

To get some indication as to what we might expect to happen when the Linde-
berg condition is relaxed, we consider the following Poisson limit theorem.

Theorem 15.12 (A Poisson Limit Theorem). For each n € N, let
{Xn,k}zzl be independent Bernoulli random variables with P (X, = 1) = pn .k
and P (Xpr =0) = gn i :=1— pp k. Suppose;

1. 1My o0 Y pey Pk = a € (0,00) and
2. lim;, oo MaxXi<k<n Pnk = 0. (So no one term is dominating the sums in
item 1.)

Then S,, = 22:1 Xy = Z where Z is a Poisson random variable with
mean a. (See Section 2.6 of Durrett[2] for more on this theorem.)
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186 15 Weak Convergence of Random Sums
Proof. Recall from Example that for any a > 0,

E [e“‘z] = exp (a (ei)‘ - 1)) .

H exp (pni (e — H 1+ ppi (€ —1)]

. < -
Since - . " Z |2, k| =9 121,?2( |2nk] Z £
E[e?Fmr] = epog + (1= pog) = 1+ pog (e = 1), =
it follows that <2 max Pn.k an k-

Z)\S H 1+pnk _1)]

Since 1+ py k (e“‘ — 1) lies on the line segment joining 1 to e**, it follows that

Using the assumptions, we may conclude

Lt pp (1)) < 1. IT exp (o (2 — 1) kﬁl + P (€ —1)]‘—>Oasn—>oo.
Since
o [ esp s (2 - ) =0 (o (1)) oo (1),
k=1 k=1
1+ p(e™1) we have shown
L Jim B[] = tim [T [1+ pus (7 1)
U

= lim Hexp pnk( A—l)):exp(a(ei’\—l)).

n— 00
=1

The result now follows by an application of the continuity Theorem [

Hence we may apply Lemma [I5.6] to find
Y appy Remark 15.13. Keeping the notation in Theorem [15.12] we have

H exp (pni (¢ = 1)) = [T [1 4P (™ = 1)] E Xy k] = pn s and Var (X, k) = ppi (1 pos)
k=1
n and
i\ A n n
exp (Pn,k —1))—[1+ppr(e” =1 2 . _
kz:,:| (Prk (e = 1)) = | ( )]| 2= 3 Var (Xon) = 3 o (1= pu).
n k=1 k=1
= Z lexp (zn.k) — [1 4 2n.k]| Under the assumptions of Theorem [15.12] we see that s2 — a as n — oo. Let
k=1 Yo = M so that E[Y,, x] = 0 and o2 o= Var (Yo ) = 2 Var (X, ) =
where S%pnyk (1-— pn,k) which satisfies condition (M). Let us observe that, for large
Znk = Pk (€1 —1). n,

Since Re zp ;= pnk (cos A — 1) < 0, we may use the calculus estimate in Eq.

(14.49) to conclude,
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X —
E[Vik: [Yarl > 1] [Y‘Z ‘mkpnak

g

E
E [Yn k - ‘XTLJC - t]
E Y, s | Xnk — Pugl > 2at]

Y

2 ]-_pn,k 2
= E [Yn,k : Xn,k = 1] :pn,k E——

Sn

from which it follows that
n n 17p i 2
li E|Y:, :|Y, tl = 1 nk | — =) =a.
i S E (2l > = i 3 (1224 <

Therefore {Y;, 1} do not satisfy (LC'). Nevertheless we have

n :
ZYn,k _ k1 Xk = Xk Prk — Z-a

Sn a

where Z is a Poisson random variable with mean a. Notice that the limit is not
a normal random variable.

We wish to characterize the possible limiting distributions of sequences
{Sn}2, when we relax the Lindeberg condition (LC) to condition (M). We
have the following theorem.

Theorem 15.14. Suppose {X,},_, satisfy property (M) and S, :=
ZZ:l Xnr = L for some random variable L. Then the characteristic
function fr,(\) :=E [e”‘L] must be of the form,

e —1 -z
fr (A =exp (/ ———dv (x))
R x
where v — is a finite positive measure on (R, BR) such that v (R) < 1. (Recall

T—1—dA
— 4 mdl/

that you proved in Exercise|14.4| that exp (fR

) is always the

characteristic function of a probability measure.)

Proof. As before, let f,,  (A) = E [¢*X»+] and ¢p  (A) := frr (A) — 1. By
the continuity theorem we are assuming

n— oo

lim fs, (A) = lim [T fux (V) =F)
k=1

where f (\) is continuous at A = 0. We are also assuming property (M), i.e.
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lim maxo?, =
n—oo k<n )

Under condition (M), we expect fy r (A) = 1 for n large. Therefore we expect

fn,k ()\) =€

and hence that

ms H Fue ( H eUns =1 _ oy (i Frg (
k=1 k=1

This is in fact correct, since Lemma [15.9 indeed implies

e [ o (B
k=1

Since E [X,, 1] = 0,

I fu V) — [+ V=D & o(fak(N)=1)

) . (15.15)
ﬂ = 0. (15.16)

fak (A =1 =E [e?¥nk — 1] = E [e?¥mr — 1 —iAX,, ;]

= / (e“‘z —1- i)\x) Apin i ()
R

where i, 1, := P o ng is the law of X, ;. Therefore we have
exp (Z (fne (A) = 1)) = exp (Z/ (e — 1 —iAx) dpin (x))
k=1 k=1"R
= exp </ (e — 1 —iAz) Zd,un,k (x))
R

k=1
= exp </R (e — 1 —iXz) dv}, (x)) (15.17)

= ZZ:1 k- Let us further observe that

/R z2dv} ( Z/ 22 dpi, 1. (z Zank—l

Hence if we define dv* (z) := 2%dv} (z), then v, is a probability measure and

we have from Egs. (15.16)) and Eq. (15.17) that
AT 1—3i)\
Fs. (\) — exp ( / £ ", (x))‘ 0. (15.18)
R

T

E3
where v}
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188 15 Weak Convergence of Random Sums

Since h (x) := emw;%m is a continuous function of R with h (+£00) = 0, there
is a subsequence, {n;} of {n} such that v,, (h) — v (h) for some probability
measure on (]R, BR) . Combining this with Eq. (15.18]) allows us to conclude,

fr(\) = ZILIEO]E [eiASnl] — zhm exp (/R (ei)\w 1

— 00

i)\:cili i\
= exp </ #du (az)) .
R X

Definition 15.15. We say that {X,, 1 },_, has bounded variation (BV') iff

—iAz) dvy, (z))

sup Var (Sy,) = supZU k< 00 (15.19)

Corollary 15.16. Suppose {X, },_, satisfy properties (M) and (BV). If
Sy = Zzzl Xnx = L for some random variable L, then

o () = exp ( /R ol-iw, (:c)) (15.20)

z
where v — is a finite positive measure on (R, Bg) .

Proof. Let s := Var(S,). If lim,, .o s, = 0, then S,, — 0 in L? and
hence weakly, therefore Eq. (15.20) holds with » = 0. So let us now suppose
lim,, 0 Sy, # 0. Since {sn} _, is bounded, we may by passing to a subsequence
if necessary, assume lim, o s, = s > 0. By replacing X, by X, r/sn and
hence S,, by S, /s, we then know by Slutsky’s theorem that S,/s, = L/s.
Hence by an application of Theorem we may conclude

fr (\3) = frye (V) = exp ( /R oloiw, (m))

X

where v — is a finite positive measure on (R, Bg) such that v (R) < 1. Letting
A — s\ in this expression then implies

IAST 1—34
R =ep ([ T )
R X
IAST __ 1 _ ;
= exp / ws%ﬁ/ (l’)
2 ()
e — 11—z
= exp (/R TduS (m))
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where vg is the finite measure on (R, Bg) defined by

vs (A) == s*v (s7'A) for all A € Bp.

The reader should observe that

2 . oo
e — 1 — Az 1

” \

72

o0 -k
,LZ \k k2
2

k=2

AT _q__ .
and hence (\,z) — €—=1=2 is smooth. Moreover,

d e —1— iz ixe™ — iz e ]
—_— = =1
d\ 2 x> T
and . )
d? e —1—i\y  iwe® e
_ =1 = —€ .
d\? x2 x

Using these remarks and the fact that v (R) < oo, it is easy to see that

A= ([ @) o
7 (\) = (/R —eNdy, (z) + (/Rieii_ldl/s (fﬂ))ZD fr(N)

and in particular, f; (0) = 0 and f/ (0) = —v, (R). Therefore the probability
measure, i, on (R, Bgr) such that i (A) = fr (A\) has mean zero and variance,
vs (R) < 0.

and

Definition 15.17. A probability distribution, p, on (R, Br) is infinitely di-
vistble iff for all n € N there exists i.i.d. nondegenerate random variables,
{Xn,k}zzl , such that Xpa+ - +Xnn 4 w. This can be formulated in the follow-
ing two equivalent ways. For alln € N there should exists a non-degenerate prob-
ability measure, ji,, on (R, Br) such that " = p. For alln € N, it(\) = [g (N)]"
for some non-constant characteristic function, g.

Theorem 15.18. The following class of symmetric distributions on (R, Bg) are
equal;

1. C1 — all possible limiting distributions under properties (M) and (BV).
2. Cy — all distributions with characteristic functions of the form given in

Corollary [15.16
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8. C3 — all infinitely divisible distributions with mean zero and finite variance.

Proof. The inclusion, C; C (5, is the content of Corollary [15.16] For Cy C
Cs, observe that if

i = e ([ S M w)

then i (A) = [fi, (A)]" where p,, is the unique probability measure on (R, Bg)
such that N

R e —1 -l
For C5 C Cy, simply define {X,, 1 },_, to be i.i.d with E [¢Xn+] = 4, (A). In

this case S, = > 1_; Xk 4 1. n

15.1.1 Stable Laws

See the file, dynkin-stable-infinitely-divs.pdf, and Dwrrett [2] Example 3.10 on
p. 106 and Section 2.7.].
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Conditional Expectations and Martingales






16

Hilbert Space Basics

Definition 16.1. Let H be a complex vector space. An inner product on H is
a function, {-|-) : H x H — C, such that

1. {ax + by|z) = alx|z) + bly|z) i.e. x — (x|z) is linear.

2. (zly) = (y|z).
3. ||z||? == (z|z) > 0 with equality ||z||* = 0 iff x = 0.

Notice that combining properties (1) and (2) that x — (z|x) is conjugate
linear for fixed z € H, i.e.

(zlaz + by) = a(zla) + bizly).

The following identity will be used frequently in the sequel without further
mention,

lz +yl1* = (@ +ylo +y) = |z + lyl* + (zly) + (ylz)
= [l + [lyl* + 2Re(z[y). (16.1)

Theorem 16.2 (Schwarz Inequality). Let (H,{(:|-)) be an inner product
space, then for all x,y € H

[(@ly)] < [lz]l Iyl
and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0 and observe;
if 2 = ay for some a € C, then (z|y) = a||y||* and hence

2
[(zly)| = ladllylI” = [z ]llyll

Now suppose that x € H is arbitrary, let z := x — |ly||~2(z|y)y. (So z is the
“orthogonal projection” of x onto y, see Figure m) Then

) 1P el o (aly)
os||z||2=Hx— o =1l + Iyl12 - 2Refa 1))
Pk TR P

_ ||xH2 _ |<x|y>|2

2

from which it follows that 0 < [Jy|?||z||* — |{(z|y)|* with equality iff 2 = 0 or
equivalently iff z = ||y|| %(z|y)y. ]

:MZ: X~ (7‘)‘1)5
: llanl

.

3. t {%,9) 9.
llbnl

Fig. 16.1. The picture behind the proof of the Schwarz inequality.

Corollary 16.3. Let (H, (:|-)) be an inner product space and ||x| = +/(z|x).
Then the Hilbertian norm, |||, is a norm on H. Moreover (-|-) is continuous
on H x H, where H is viewed as the normed space (H, ||-]|).

Proof. If x,y € H, then, using Schwarz’s inequality,

Iz +yl* = [l + llyl]* + 2Re(z]y)
<l + llyll* + 2ll=(lllyll = (=] + ly])*-

Taking the square root of this inequality shows ||-|| satisfies the triangle inequal-

1ty.
Checking that ||-|| satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If z, 2’,y,y’ € H, then

[(z + Azly + Ay) — (z|y)| = [(z|Ay) + (Az|y) + (Az|Ay)|
<zl Ayl + [yl Az]| + | Az]||| Ayl
— 0 as Az, Ay — 0,

from which it follows that (-|-) is continuous. |

Definition 16.4. Let (H, (:|-)) be an inner product space, we say x,y € H are
orthogonal and write x L y iff (x|y) = 0. More generally if A C H is a set,
x € H is orthogonal to A (write v L A) iff (x|y) = 0 for ally € A. Let
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At ={x € H:x L A} be the set of vectors orthogonal to A. A subset S C H
is an orthogonal set if x L y for all distinct elements x,y € S. If S further
satisfies, ||z|| =1 for all x € S, then S is said to be an orthonormal set.

Proposition 16.5. Let (H, (:|-)) be an inner product space then
1. (Parallelogram Law)
lz + l” + llz — yl* = 2[j]* + 2]ly|I* (16.2)

forallz,y € H.
2. (Pythagorean Theorem) If S CC H is a finite orthogonal set, then
2

Soal| =l (16.3)

€S zeS

3. If A C H is a set, then A is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;
[+ gl + |z =y
= ||z]|* + lyll* + 2Re(z|y) + [[z]|* + [ly]|* — 2Re(z[y)
= 2| + 2]y,

and
2

Sal| =S =3 (aly)

€S zeS yeS z,y€S
= (alz) = ll=|*
€S zes

Item 3. is a consequence of the continuity of (-|-) and the fact that
AT = Ngea Nul((]z))
where Nul((-|z)) = {y € H : (y|x) = 0} — a closed subspace of H. ]

Definition 16.6. A Hilbert space is an inner product space (H,({-|-)) such
that the induced Hilbertian norm is complete.

Ezample 16.7. For any measure space, (2,8, ), H := L? (u) with inner prod-
uct,

mmzéfwwwmmw

is a Hilbert space — see Theorem [I1.17] for the completeness assertion.
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Definition 16.8. A subset C' of a vector space X is said to be convex if for all
x,y € C the line segment [z,y] == {tx + (1 —t)y : 0 <t < 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 16.9 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M C H is a closed conver subset of H. Then for any x € H
there exists a unique y € M such that

lz = yll = d(w, M) = inf |z - 2.

Moreover, if M is a vector subspace of H, then the point y may also be charac-
terized as the unique point in M such that (x —y) L M.

Proof. Uniqueness. By replacing M by M —z :={m —x : m € M} we
may assume x = 0. Let ¢ := d(0, M) = inf,,,epr ||m|| and y, z € M, see Figure
116.2

Fig. 16.2. The geometry of convex sets.

By the parallelogram law and the convexity of M,

20yl + 2ll2l” = lly + 21* + lly — 2/
2

+ z
Y +lly — 21 > 46% + [ly — 2|1 (16.4)

2

-4

Hence if ||y|| = ||z]| = 4, then 262 + 262 > 452 + ||y — 2|2, so that ||y — z||? = 0.
Therefore, if a minimizer for d(0, -)|ar exists, it is unique.
Existence. Let y, € M be chosen such that |y,| = 4, — ¢ = d(0, M).

Taking y = Y, and z = y,, in Eq. (16.4]) shows

2672n + 267% 2 46° + Hyn - ym||2-
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Passing to the limit m,n — oo in this equation implies,

20% 4+ 26% > 46% + limsup ||yn — Yo |?,

m,n— oo

ie. imsup,, , oo IYn — Ym||> = 0. Therefore, by completeness of H, {yn}r,
is convergent. Because M is closed, y := lim y, € M and because the norm is
n—oo

continuous,
Iyl = lim flyal = & = d(0, M),

So y is the desired point in M which is closest to 0.
Now suppose M is a closed subspace of H and = € H. Let y € M be the
closest point in M to x. Then for w € M, the function

g9(t) = llz — (y + tw)|* = [lz — y|I* - 2tRe(z — ylw) + *[w]]*

has a minimum at ¢t = 0 and therefore 0 = ¢’(0) = —2Re(x — y|w). Since w € M
is arbitrary, this implies that (x —y) L M.

Finally suppose y € M is any point such that (z — y) L M. Then for z € M,
by Pythagorean’s theorem,

lo = 2l* =z —y +y — 2| = |z = yllI* + ly — 21> > l= — o

which shows d(x, M)? > ||z — y||?. That is to say y is the point in M closest to
x. ]

Definition 16.10. Suppose that A : H — H is a bounded operator, i.e.
|A|| :=sup {||Az| : x € H with ||z|| =1} < occ.

The adjoint of A, denoted A*, is the unique operator A* : H — H such that
(Azly) = (z|A*y). (The proof that A* exists and is unique will be given in
Propositz'on below.) A bounded operator A : H — H is self - adjoint or
Hermitian if A = A*.

Definition 16.11. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection of H onto M is the function Py : H — H such that
for x € H, Py(x) is the unique element in M such that (x — Py(x)) L M, i.e.
Py (x) is the unique element in M such that

(x|m) = (Pp(z)|m) for allm € M. (16.5)

Theorem 16.12 (Projection Theorem). Let H be a Hilbert space and M C
H be a closed subspace. The orthogonal projection Py satisfies:

1. Pys is linear and hence we will write Pyrx rather than Py ().
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. P}, = Py (P is a projection).

. P} = Py (Pu is self-adjoint).

. Ran(PM) =M and Nul(P]y[) = ML.

If N C M C H is another closed subspace, the Py Pyy = Py Py = Py
Proof.

1. Let z1,20 € H and a € C, then Pyx1 + aPyzs € M and

SR NEEES

Pyzy + aPyag — (21 + axg) = [Pyxy — 21 + a(Pyay — 22)] € Mt

showing Pyrxq + aPyxa = Py (x1 + axs), i.e. Py is linear.
2. Obviously Ran(Py) = M and Py;x = « for all x € M. Therefore P]%/[ = Pyy;.
3. Let @,y € H, then since (z — Pyx) and (y — Pyry) are in M+,

(Puzly) = (Puz|Puy +y — Puy) = (Puz|Puy)
— (Pua + (¢ — Pya)|Pay) = (2l Pary).

4. We have already seen, Ran(Py;) = M and Pyx =0iff x =2 -0 € Mt

i.e. Nul(Py) = M+.
5 If N ¢ M C H it is clear that PyyPy = Py since Py = Id on

N = Ran(Py) C M. Taking adjoints gives the other identity, namely that
Pn Py = Py. More directly, if x € H and n € N, we have

(Py Pyrz|n) = (Pyrx|Pyn) = (Pyrzin) = (x| Pyn) = (x|n) .
Since this holds for all n we may conclude that Py Py;x = Pyz.
]

Corollary 16.13. If M C H is a proper closed subspace of a Hilbert space H,
then H =M @ M*.

Proof. Given z € H, let y = Py;wsothat x—y € M+. Thenz = y+(z—y) €
M+M~+.Ifz € MNM*, then z L x, ie. ||z]|* = (z]z) = 0. So MNM+ = {0}.
|

Exercise 16.1. Suppose M is a subset of H, then M+ = span(M).

Theorem 16.14 (Riesz Theorem). Let H* be the dual space of H (i.e. that
linear space of continuous linear functionals on H). The map

ce H - (|2) e HY (16.6)
18 a conjugate linea7E| isometric isomorphism.
! Recall that j is conjugate linear if
j(z1+ az2) = jz1 + @jze
for all z1,22 € H and « € C.
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Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x,z € H,

[{(x|z)] < ||| ||z|| for all x € H

with equality when « = z. This implies that ||[jz[ ;. = ||(:|2)|| = = ||2|| . There-
fore j is isometric and this implies j is injective. To finish the proof we must
show that j is surjective. So let f € H* which we assume, with out loss of gen-
erality, is non-zero. Then M =Nul(f) — a closed proper subspace of H. Since, by
Corollary H=MoM*, f: H/M = M+ — F is a linear isomorphism.
This shows that dim(M=) = 1 and hence H = M ®©Fxq where zo € M+ \ {0}
Choose z = Azg € ML such that f(zq) = (x0]2), i.e. A = f(x0)/ ||zol|> . Then
for x = m+ Axg with m € M and A € F,

f(@) = Af(x0) = Mzolz) = (Azolz) = (m + Azo|z) = (x]2)
which shows that f = jz. [

Proposition 16.15 (Adjoints). Let H and K be Hilbert spaces and A : H —
K be a bounded operator. Then there exists a unique bounded operator A* :
K — H such that

(Azly) g = (x|A*y)g for allxz € H and y € K. (16.7)

Moreover, for all A,B € L(H,K) and A € C,

1. (A+AB)" = A* + \B*,

2. A = (A*)* = A,

3. A%l = [|All and

4 1A% Al = |A].

5.If K = H, then (AB)" = B*A*. In particular A € L(H) has a bounded
inverse iff A* has a bounded inverse and (A*)™' = (A’l)* .

Proof. For each y € K, the map x — (Az|y)k is in H* and therefore there
exists, by Theorem a unique vector z € H (we will denote this z by
A* (y)) such that

(Az|y)k = (z|z) g for all x € H.

This shows there is a unique map A* : K — H such that (Az|y)x = (x|A*(y))u
forall x € H and y € K.
To see A* is linear, let y1,y2 € K and A € C, then for any = € H,

2 Alternatively, choose zo € M= \ {0} such that f(zo) = 1. For z € M+ we have
f(z — Azo) = 0 provided that X := f(x). Therefore  — Azo € M N M* = {0}, i.e.
x = Azo. This again shows that M~ is spanned by zo.
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(Az|yr + My2) k= (Azlyr) k- + MAz[y2) i
= (2] A* (1)) ik + M| A* (y2))
= (z[A"(y1) + AA(y2)) 1

and by the uniqueness of A*(y; + A\y2) we find
A (y1 + Ay2) = A%(y1) + AA™(2)-

This shows A* is linear and so we will now write A*y instead of A*(y).
Since

(A*ylo) g = (x|A*y)g = (Azly)k = (y|Az)k

it follows that A** = A. The assertion that (4 + AB)" = A* + AB* is Exercise
Items 3. and 4. Making use of Schwarz’s inequality (Theorem [16.2)), we

have
[A*[ = sup [|AK|
keK:||k||=1
— sp swp |(A"KIRY
keK:|k|=1 he H:|[h||=1
= sup sup  [(k[AR)[ = sup  [lAh[| = [|A]
heH:||h||=1 ke K:||k||=1 heH:|[h||=1
so that ||A*|| = ||A]| . Since
1A= Al < |AT| 1Al = |4l
and
|AI* = sup [AB|* = sup |(AR|AR)]
heH:||h|=1 heH:||h]|=1
= sup [(h|ATAR)| < sup [|ATAR| = ||A™A| (16.8)
heH:||h||=1 heH:||h||=1

we also have ||A*A| < ||A]|* < ||A* A which shows ||A|* = ||A*A]|.
Alternatively, from Eq. (16.8]),

2 * *
[AI" < [[A"A] < [[A]l [|A™]] (16.9)

which then implies ||A|| < ||A*||. Replacing A by A* in this last inequality
shows [|[A*|| < ||A]| and hence that ||A*|| = ||A| . Using this identity back in
Rq. (16.9) proves || A = | 4* A].

Now suppose that K = H. Then

(ABh|k) = (Bh|A*k) = (h|B* A*k)
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which shows (AB)" = B*A*. If A~! exists then

(A A" =(AA™) =" =T and
A4 = (A7) =T =

This shows that A* is invertible and (4*)™' = (A’l)*. Similarly if A* is
invertible then so is A = A**. ]

Exercise 16.2. Let H, K, M be Hilbert spaces, A, B € L(H,K), C € L(K, M)
and \ € C. Show (A + AB)" = A* + AB* and (CA)" = A*C* € L(M, H).

Exercise 16.3. Let H = C" and K = C™ equipped with the usual inner
products, i.e. (z|w)y = z-w for z,w € H. Let A be an m x n matrix thought of
as a linear operator from H to K. Show the matrix associated to A* : K — H
is the conjugate transpose of A.

Lemma 16.16. Suppose A : H — K is a bounded operator, then:

1. Nul(A*) = Ran(A)*.

2. Ran(A) = Nul(4*)*.

3. if K=H and V C H is an A — invariant subspace (i.e. A(V) C V), then
V4 ois A* — invariant.

Proof. An element y € K is in Nul(A*) iff 0 = (A*y|z) = (y|Ax) for all
x € H which happens iff y € Ran(A)+. Because, by Exercise Ran(A) =
Ran(A)++, and so by the first item, Ran(A) = Nul(A*)+. Now suppose A(V) C
V and y € V+, then

(A*y|z) = (y|Az) =0forallz € V

which shows A*y € V. ]
The next elementary theorem (referred to as the bounded linear transfor-
mation theorem, or B.L.T. theorem for short) is often useful.

Theorem 16.17 (B. L. T. Theorem). Suppose that Z is a normed space, X
s a Banac}ﬂ space, and S C Z is a dense linear subspace of Z. If T : S — X isa
bounded linear transformation (i.e. there exists C < oo such that ||Tz| < C||z]]
for all z € S), then T has a unique extension to an element T € L(Z,X) and
this extension still satisfies

|Tz|| < Cllz|| for all z € S.

3 A Banach space is a complete normed space. The main examples for us are Hilbert
spaces.
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Proof. Let z € Z and choose z, € S such that z,, — z. Since
ITzm — Tzn| < Cllzm — 2n|| — 0 as myn — oo,

it follows by the completeness of X that lim,_,oc T2, =: Tz exists. Moreover,
if w,, € S is another sequence converging to z, then

1Tz — Twn|| < Cllzn —wal = Cllz =2 =0

and therefore Tz is well defined. It is now a simple matter to check that T :
Z — X is still linear and that

|Tz]| = lim [Tz, < lim C|lzn| = C|z|| forall z € Z.
n—oo n—oo

Thus T is an extension of T to all of the Z. The uniqueness of this extension is
easy to prove and will be left to the reader. ]

16.1 Compactness Results for LP — Spaces

In this section we are going to identify the sequentially “weak” compact subsets
of LP (§2,B, P) for 1 < p < oo, where ({2, B, P) is a probability space. The key
to our proofs will be the following Hilbert space compactess result.

Theorem 16.18. Suppose {z,},., is a bounded sequence in H (i.e. C :=
sup,, ||zn|| < 00), then there exists a sub-sequence, yx := xn, and an x € H
such that imy_,o0 (yx|h) = (x|h) for all h € H. We say that y, converges to x
weakly in this case and denote this by yj, — .

Proof. Let Hy := span(zy, : k € N). Then Hy is a closed separable Hilbert
subspace of H and {y},-, C Ho. Let {h,},—, be a countable dense subset of
Hy. Since [(zg|hn)| < |z ||l < C ||hy|| < oo, the sequence, {(zk|hn)}re, C
C, is bounded and hence has a convergent sub-sequence for all n € N. By the
Cantor’s diagonalization argument we can find a a sub-sequence, yi := z,, , of
{z,} such that limg_, (yx|hn) exists for all n € N.

We now show ¢ (z) := limy_,o (yx|2) exists for all z € Hy. Indeed, for any
k,l,n € N, we have

(e — uil2)| < e — vilha)| + [y — wilz — ha)
(e = yilhn)| 4 2C ||z = ha || -

[(ykl2) — (wil2)| =
<

Letting k£, — oo in this estimate then shows

limsup |(yx|2) — (uil2)] < 2C [z = hal|.

k,l— o0
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Since we may choose n € N such that ||z — h, | is as small as we please, we may
conclude that limsupy, ;. [{yx|2) — (w]2)], i.e. ¢ (2) := limg oo (yr|2) exists.
The function, @ (z) = limg_ (z|yx) is a bounded linear functional on H
because
3 ()] = liminf (=) < C 2]

Therefore by the Riesz Theorem [16.14] there exists € Hy such that ¢ (2) =
(z|x) for all z € Hy. Thus, for this € Hy we have shown

klim (yx|2) = (x|z) for all z € Hy. (16.10)

To finish the proof we need only observe that Eq. (16.10]) is valid for all
z € H. Indeed if z € H, then z = 2y + z; where 2y = Py,z € Hy and 2z; =
z— Pp,z € HOL. Since yg, © € Hy, we have

lim (yrlz) = lim (yx|z0) = (x|20) = (z|z) for all z € H.
k— o0 k—o00

]

Since unbounded subsets of H are clearly not sequentially weakly compact,

the previous states that a set is sequentially precompact in H iff it is bounded.

Let us now use Theorem to identify the sequentially compact subsets of
L? (£2,B, P) for all 1 < p < co. We begin with the case p = 1.

Theorem 16.19. If {X,}>2, C L'(£2,B,P) is a uniformly integrable subset
of L' (£2,B, P), there exists a subsequence Yy, := X, of {Xn}ro, and X €
L' (02,8, P) such that

klirn E[Yih] =E[Xh] for all h € By. (16.11)
Proof. For each m € N let X" := X, 1,x, |<m- The truncated sequence

{Xm}> | is a bounded subset of the Hilbert space, L? (£2, B, P), for all m € N.
Therefore by Theoremj16.18) {X™}> | has a weakly convergent sub-sequence

for all m € N. By Cantor’s diagonalization argument, we can find V" := X"
w

and X™ € L? ({2, B, P) such that Y™ = X™ as m — oo and in particular

lim E[Y{"h] = E[X™H] for all h € By.

Our next goal is to show X™ — X in L' (2, B, P). To this end, for m < M
and h € B, we have
B[ = X7) ]| = i [B[( = ") 1| < Hminf ([0 " 1]
<Pl ~1ikminfE[|Yk| : M > Y| > m]

< |Ih]l - i inf B (| : [¥i] > m).
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Taking h = sgn(XM™ — X™) in this inequality shows
E[|xM-Xxm] < lim inf B [| Yy - [Yi[ > m]

with the right member of this inequality going to zero as m, M — oo with
M > m by the assumed uniform integrability of the {X,}. Therefore there
exists X € L' (£2, B, P) such that lim,, .., E|X — X™| = 0.
We are now ready to verify Eq. (16.11]) is valid. For h € B,
[E[(X = Yi) ]| < [E[(X™ = Y;") B[ + [E[(X — X™) ][ + [E[(Yi — Y;™) A
SEX™ =Y") Wl + 1Al - (E[IX — X+ E[|Yy] : [Yi| > m])

< BCE = V) AL+ [l - (EIX = X7+ supE (¥ < 5] > ]
Passing to the limit as £ — oo in the above inequality shows

imsup B = ) ] < [l (E X = X"+ supE Vi ] > ] )
Since X™ — X in L! and sup, E[|Y}| : |Y;| > m] — 0 by uniform integrability,
it follows that, limsup,_, . |[E[(X — Y%) h]| = 0. |
Ezample 16.20. Let (12,8, P) = ((0,1), B(g 1), m) where m is Lebesgue measure
and let X, (w) = 2"1p.,<9-n. Then EX,, = 1 for all n and hence {X,} ~, is
bounded in L' (2, B, P) (but is not uniformly integrable). Suppose for sake of
contradiction that there existed X € L' (2, B, P) and subsequence, Y} := X,,,
such that Y — X. Then for h € B, and any € > 0 we would have

E | Xhl = lim E |Y3hl =0.
[Xhley] = lim B [Yihle )] =0
Then by DCT it would follow that E[Xh] = 0 for all h € B}, and hence that
X = 0. On the other hand we would also have
0=E[X-1] :klim E[Y;-1]=1
and we have reached the desired contradiction. Hence we must conclude that

bounded subset of L' (£2,B, P) need not be weakly compact and thus we can
not drop the uniform integrability assumption made in Theorem

When 1 < p < 0o, the situation is simpler.

Theorem 16.21. Let p € (1,00) and ¢ =p(p — 1)_1 € (1,00) be its conjugate
exponent. If {X,} | is a bounded sequence in LP (§2,B,P), there exists X €
LP (2,8, P) and a subsequence Yy := X,,, of {X,,},~, such that

lim E[Yyh] = E[Xh] for all h € L9 (2,8, P). (16.12)

k—o0
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Proof. Let C := sup, ey [[Xnl, < oo and recall that Lemma W guar-
antees that {X,} -, is a uniformly integrable subset of L' ({2, B, P). There-
fore by Theorem there exists X € L' (2,B,P) and a subsequence,
Yy := X,,, such that Eq. (16.11]) holds. We will complete the proof by showing;
a) X € LP (§2,B, P) and b) and Eq. (16.12)) is valid.

a) For h € By we have

[E[XA]| < liminf E[Vyh[) < lmin [, - ], < Al
For M < oo, taking h = sgn(X) | X[P~" 1) x)<n in the previous inequality shows
E[|X]"1x<m] <£C Hsgn(X) x| 1|X\§MHq

_ 1/q
=C (]E [|X|(p 1)q1\X|§MD <C(E[XP 1x<ar]) "
from which it follows that
(X1 Lx<a]) " < (B [IXP 1xa]) T < C

Using the monotone convergence theorem, we may let M — oo in this equation
to find | X[, = (E[X]")"/" < C < oo.

b) Now that we know X € LP(§2,B,P), in make sense to consider
E[(X —Y))h] for all h € LP (2,8, P). For M < oo, let h™ := hl;<as, then

[E[(X = Yi) h]| < [E[(X = Yi) hM]| + |E [(X = Y2) hljnps ] |
< |E[(X = Vi) AM]| + X = Yall,, [|hL s,
< |E[(X - Yi)RM]| +2C Hh1|h|>MHq .
Since h™ € By, we may pass to the limit & — oo in the previous inequality to

find,
limsup [E [(X — Y%) h]| < 2C ||h1\h|>MHq‘

k—o0

This completes the proof, since th\h\>MHq — 0 as M — oo by DCT. [

16.2 Exercises

Exercise 16.4. Suppose that {Mn}ff:1 is an increasing sequence of closed sub-
spaces of a Hilbert space, H. Let M be the closure of My := U M,,. Show
limy,— 00 Prr,x = Py for all x € H. Hint: first prove this for x € M, and then
for x € M. Also consider the case where z € M.
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Solution to Exercise ((16.4). Let P, := Py, and P = Py;. If y € M), then
P,y = y = Py for all n sufficiently large. and therefore, lim,,_.., P,y = Py.
Now suppose that x € M and y € My. Then

| Pz — Pzl < ||Px — Pyl + [Py — Poyll + | Poy — Puz||
<2z —yll + Py — Puyl|

and passing to the limit as n — co then shows

limsup | Pz — Poz| < 2|z — v

n—oo

The left hand side may be made as small as we like by choosing y € M
arbitrarily close to x € M = M.

For the general case, if x € H, then x = Px + y where y = x — Pz € M c
M- for all n. Therefore,

P,x = P,Pr — Pxr asn — o
by what we have just proved.

Exercise 16.5 (The Mean Ergodic Theorem). Let U : H — H be a uni-
tary operator on a Hilbert space H, M = Nul(U — I), P = Py be orthogonal
projection onto M, and S,, = %Zz;é Uk. Show S,, — Py strongly by which
we mean lim,,_, o, Spx = Py for all z € H.

Hints: 1. Show H is the orthogonal direct sum of M and Ran(U — I) by
first showing Nul(U* — I) = Nul(U — I) and then using Lemma[16.16] 2. Verify
the result for € Nul(U — I) and « € Ran(U — I). 3. Use a limiting argument
to verify the result for x € Ran(U — I).

Solution to Exercise ([16.5). Let M = Nul(U — I), then S,z = x for all
x € M. Notice that z € Nul(U* — I) iff z = U*z iff Uz = UU*z = =, iff
x € Nul(U — I) = M. Therefore

Ran(U — I) = Nul(U* — I)* = Nul(U — I)* = M+,

Suppose that = Uy —y € Ran(U — I) for some y € H, then
1
Spr=—(U"y—y) — 0asn— oo.
n
Finally if x € M+ and y € Ran(U — I), we have

[1Snz = Spyll < [l =yl

and hence
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lim sup [|Spz — Spyll < [lz —yl|
n—oo

from which it follows that limsup,,_, . |[Snz| < ||z — y|| . Letting y — = shows
that limsup,, . [|Snz|| = 0 for all # € M~. Therefore if z € H and x =
m+mt e M@ M=, then

lim S,z = lim S,m+ lim S,m*=m+0= Pyuz.

n—oo n—oo n—oo
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The Radon-Nikodym Theorem

Theorem 17.1 (A Baby Radon-Nikodym Theorem). Suppose (X, M) is
a measurable space, X and v are two finite positive measures on M such that
v(A) < A(A) for all A € M. Then there exists a measurable function, p: X —
[0,1] such that dv = pdA.

Proof. If f is a non-negative simple function, then
v(f)=) av(f=a) <Y ar(f=a)= ().
a>0 a>0

In light of Theorem [6.34] and the MCT, this inequality continues to hold for all
non-negative measurable functions. Furthermore if f € L' (\), then v (|f]) <
A(|f]) < oo and hence f € L' (v) and

DI < v D S AU A2 1 F ) -

Therefore, L? (\) > f — v (f) € C is a continuous linear functional on L%(\).
By the Riesz representation Theorem [16.14] there exists a unique p € L?(\)
such that

v(f) = /X fpdX for all f € L*(\).

In particular this equation holds for all bounded measurable functions, f : X —
R and for such a function we have

V(f):Reu(f)zRe/Xfpd)\:/XfRepd/\. (17.1)

Thus by replacing p by Re p if necessary we may assume p is real.

Taking f = 1,<0 in Eq. (17.1)) shows
O§V(p<0)=/ lycop dX <0,
b'e

from which we conclude that 1,.9p =0, A — a.e.,, i.e. A(p < 0) = 0. Therefore
p >0, A —a.e. Similarly for a > 1,

A(p>a)2u(p>a):/ Lpsap dX > aX(p > «)
b's

which is possible iff A (p > «) = 0. Letting « | 1, it follows that A (p > 1) =0
and hence 0 < p <1, X - a.e. [ |

Definition 17.2. Let p and v be two positive measure on a measurable space,
(X, M). Then:

1. p and v are mutually singular (written as p L v) if there exists A € M
such that v (A) = 0 and p(A°) = 0. We say that v lives on A and p lives
on A°.

2. The measure v is absolutely continuous relative to p (written as v <
) provided v(A) = 0 whenever p(A) = 0.

As an example, suppose that u is a positive measure and p > 0 is a measur-

able function. Then the measure, v := pu is absolutely continuous relative to
w. Indeed, if ;1 (A) = 0 then

I/(A):/Apd/,t:O.

We will eventually show that if ;1 and v are o — finite and v < p, then dv = pdu
for some measurable function, p > 0.

Definition 17.3 (Lebesgue Decomposition). Let p and v be two positive
measure on a measurable space, (X, M). Two positive measures v, and vy form
a Lebesgue decomposition of v relative to p if v = vg + vs, Vg < p, and
vs L p.

Lemma 17.4. If u1, po and v are positive measures on (X, M) such that p; L
v and py L v, then (p1 + po) L v. More generally if {p;};—, is a sequence of
positive measures such that p; L v for alli then =3 0, w; is singular relative
to v.

Proof. It suffices to prove the second assertion since we can then take p; = 0
for all j > 3. Choose A; € M such that v (A;) = 0 and p; (A5) = 0 for all 4.
Letting A := U;A; we have v (A) = 0. Moreover, since A® = N;AS C A¢, for
all m, we have p; (A°) = 0 for all ¢ and therefore, pu (A°) = 0. This shows that
ul v [ |

Lemma 17.5. Let v and u be positive measures on (X, M). If there exists a
Lebesgue decomposition, v = vs + v, of the measure v relative to u then this
decomposition is unique. Moreover: if v is a o — finite measure then so are v
and v,.
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Proof. Since v; L f1, there exists A € M such that y(A) = 0 and v, (A°) =0
and because v, < 1, we also know that v, (A) = 0. So for C € M,
v(CNA) =v,(CNA)+1,(CNA)=v,(CNA)=r,(C) (17.2)
and
v(CNA) =v, (CNAS)+ 1, (CNAY) =1, (CNA®) =1, (C). (17.3)

Now suppose we have another Lebesgue decomposition, v = 7, + U5 with
Us L pand v, < u. Working as above, we may choose A € M such that
p(A) = 0 and A is 7, — null. Then B = AU A is still a g — null set and and
B¢ = A¢N A¢ is a null set for both v, and ;. Therefore we may use Eqgs.
and with A being replaced by B to conclude,

vs(C) =v(C N B) =1,(C) and
va(C) = v(C' N B€) = 7,(C) for all C € M.

Lastly if v is a o — finite measure then there exists X,, € M such that
X =" X, and v(X,) < oo for all n. Since 0o > v(X,,) = v (Xy) +vs(X5),
we must have v,(X,) < oo and v4(X,,) < oo, showing v, and v, are o — finite
as well. ]

Lemma 17.6. Suppose u is a positive measure on (X, M) and f,g : X — [0, 00]
are functions such that the measures, fdu and gdup are o — finite and further
satisfy,

/ fdu = / gdp for all A € M. (17.4)
A A
Then f(x) = g(x) for p — a.e. x.

Proof. By assumption there exists X,, € M such that X, T X and
Jx, fdp < oo and an gdp < oo for all n. Replacing A by AN X, in Eq.

(17.4) implies

/1xnfdu=/ fdu=/ gduz/ 1x, gdp
A ANX, ANX, A

for all A € M. Since 1x, f and 1x, g are in L*(p) for all n, this equation implies
1x,f =1x,9, i — a.e. Letting n — oo then shows that f =g, u — a.e. [

Remark 17.7. LemmalI7.0]is in general false without the o — finiteness assump-
tion. A trivial counterexample is to take M = 2% ;i(A) = oo for all non-empty

AeM, f=1x and g =2-1x. Then Eq. (17.4) holds yet f # g.
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Theorem 17.8 (Radon Nikodym Theorem for Positive Measures).
Suppose that 1 and v are o — finite positive measures on (X, M). Then v has
a unique Lebesgue decomposition v = v, + v, relative to p and there exists
a unique (modulo sets of u — measure 0) function p : X — [0,00) such that
dv, = pdu. Moreover, vs =0 iff v < p.

Proof. The uniqueness assertions follow directly from Lemmas [I7.5] and
/.0l

Existence when p and v are both finite measures. (Von-Neumann’s
Proof. See Remark for the motivation for this proof.) First suppose that p
and v are finite measures and let A\ = p + v. By Theorem dv = hd\ with
0 < h <1 and this implies, for all non-negative measurable functions f, that

v(f) = A(fh) = u(fh) +v(fh) (17.5)

or equivalently

v(f(L=h)) = p(fh). (17.6)
Taking f = 1yp—1} in Eq. (17.6]) shows that

p({h=1}) =v(lip=13(1 = h)) =0,

ie. 0<h(z)<1for u-ae z Let

P = <1} -7
_ _1 . .
and then take f = glg,<13(1 —h)~! with ¢ > 0 in Eq. (17.6) to learn
v(glin<ty) = u(glinery(1 —h)'h) = u(pg).
Hence if we define
Vo = lperyv and vg i= 130,

we then have vy L p (since v; “lives” on {h =1} while u(h=1) = 0) and
v, = pp and in particular v, < pu. Hence v = v, + v; is the desired Lebesgue
decomposition of v. If we further assume that v < p, then g (h = 1) = 0 implies
v (h =1) =0 and hence that v, = 0 and we conclude that v = v, = pp.

Existence when p and v are o-finite measures. Write X = > ° | X,
where X,, € M are chosen so that u(X,) < co and v(X,,) < oo for all n. Let
dp, = 1x, dp and dv,, = 1x, dv. Then by what we have just proved there exists
pn € LY(X, pn) C LY(X, ) and measure v¢ such that dv, = p,du, + dvs with
vS L py. Since py, and v “live” on X, there exists 4, € Mx, such that
1 (An) = pn (An) = 0 and
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vo (X \ An) =v (Xn\ An) = 0.

This shows that v L p for all n and so by Lemma [17.4]) vy := > 7 w8 is
singular relative to u. Since

v = Z Vp = Z (Pnttn +vp) = Z (pnlx, p+vy) = pp+ vs, (17.7)
n=1 n=1 n=1

where p := > | 1x, pn, it follows that v = v, + v, with v, = pu. Hence this
is the desired Lebesgue decomposition of v relative to u. ]

Remark 17.9. Here is the motivation for the above construction. Suppose that
dv = dvs + pdu is the Radon-Nikodym decomposition and X = A>" B such
that vs(B) =0 and p(A) = 0. Then we find

v,(£) + npf) = U(F) = M(hf) = v(hf) + u(hf).
Letting f — 14 f then implies that
v(laf) = vs(1af) = v(1ahf)
which show that h =1, v —a.e. on A. Also letting f — 1gf implies that
wplpf) =v(hpf) + p(hlpf) = pphlsf) + p(hls f)
which implies, p = ph + h, 4 — a.e. on B, i.e.
p(1—h)=nh, uy—a.e. on B.

In particular it follows that h < 1, u = v — a.e. on B and that p = ﬁlha,
w — a.e. So up to sets of v — measure zero, A = {h =1} and B = {h < 1} and
therefore,

dv = l{hzl}dl/ + 1{h<1}dl/ = 1{h:1}dV + 1p<1dps.

1—-h
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Conditional Expectation

In this section let (£2,8, P) be a probability space and G C B be a sub —
sigma algebra of B. We will write f € G iff f : {2 — C is bounded and f is
(G, Bc) — measurable. If A € B and P (A) > 0, we will let

(AN B)

E(x|4] = B AL L p(BlA) = E[15]4] = PP(A)

P(4)

for all integrable random variables, X, and B € B. We will often use the fac-
torization Lemma [6.35|in this section. Because of this let us repeat it here.

Lemma 18.1. Suppose that (Y,F) is a measurable space and 'Y 2 —Yisa
map. Then to every (o(Y),Bg) — measurable function, H : 2 — R, there is a
(F,Bg) — measurable function h:Y — R such that H =ho.

Proof. First suppose that H = 14 where A € o(Y) = Y~ 1(F). Let B€ F
such that A = Y~!(B) then 14 = ly-1(5) = 1 oY and hence the lemma
is valid in this case with h = 1. More generally if H = 5 a;14, is a simple
function, then there exists B; € F such that 14, = 15,0Y and hence H = hoY
with h:= " a;1p, — a simple function on R.

For a general (F, Bg) — measurable function, H, from 2 — R, choose simple
functions H,, converging to H. Let h,, : Y — R be simple functions such that
H,, = h, oY. Then it follows that

H = lim H, =limsup H,, =limsuph, oY =hoY

n—oo n— o0 n—oo

where h := limsup h,, — a measurable function from Y to R. [

n—oo

Lemma 18.2 (Integral Comparison). Suppose that F,G : {2 — [0,00] are B
— measurable functions. Then F > G a.s. iff

E[F: A >E[G: 4] forall A€ B. (18.1)

In particular F' = G a.s. iff equality holds in Eq. . Moreover, for F €
L' (2,B,P), F=0 as. iff E[F : A] =0 for all A € B.

Proof. It is clear that F > G a.s. implies Eq. (18.1)). For the converse
assertion, if we take A = {F' = 0} in Eq. (18.1)) we learn that

0=E[F:F=0>E[G: F=0]
and hence that Glp—g =0 a.s., i.e.
G =0as.on {F=0}. (18.2)
Similarly if A :={G > aF} with o > 1 in Eq. (18.1), then
E[F:G>aF]|>E[G:G>aF|>E[aF :G>aF|=cE[F:G> aF].

Since a > 1, the only way this can happen isif E[F : G > aF| = 0. By the MCT
we may now let a | 1 to conclude, 0 =E[F : G > F|. This implies Flgspr =0
a.s. or equivalently

G<Fason {F>0}. (18.3)

Since 2 = {F =0} U {F > 0} and on both sets, by Eqgs. (18.2)) and (18.3)) we
have G < F a.s. we may conclude that G < F a.s. on (2 as well. If equality

holds in Eq. , then we know that G < F and F < G as., i.e. F =G as.

If Fe L' (02,B,P) and E[F : A] = 0 for all A € B, we may conclude by a
simple limiting argument that E [F'h] = 0 for all h € B,. Taking h := sgn(F) :=
%h F|>0 in this identity then implies

0—E[Fh —E [Filw} —E [|F|Lp150) = E[|F]

which implies that F' = 0 a.s. ]

Definition 18.3 (Conditional Expectation). Let Eg : L?(2,B,P) —
L?(2,G, P) denote orthogonal projection of L*(§2,B,P) onto the closed sub-
space L*(2,G, P). For f € L?(£2,B, P), we say that Egf € L*(2,G, P) is the
conditional expectation of f.

Remark 18.4 (Basic Properties of Eg). Let f € L?(£2,B, P). By the orthogonal
projection Theorem [16.12| we know that F' € L?(£2,G, P) is Egf a.s. iff either
of the following two conditions hold;

L|[f=Fly<|If —glyforalge L*(2,G,P) or
2. E[fh] = E[Fh] for all h € L*(£2,G, P).
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Moreover if Go C G1 C B then L?(2,Gy, P) C L*(£2,G1, P) C L*(£2,B, P)
and therefore,

Eg,Eg, f = Eg,Eg, f = Eg, f a.s. for all f € L?(2,B,P). (18.4)
It is also useful to observe that condition 2. above may expressed as
E[f: A|=E[F:A] forall Aeg (18.5)

or
E[fh] =E[Fh] for all h € Gy, (18.6)

Indeed, if Eq. (18.5) holds, then by linearity we have E[fh] = E[Fh] for all
G — measurable simple functions, h and hence by the approximation Theorem

and the DCT for all h € G,. Therefore Eq. (18.5)) implies Eq. (18.6). If Eq.
(18.6) holds and h € L?(£2,G, P), we may use DCT to show

E[fh) "=" lim E [fhlp <] lim E[Fhlp<,] "= E[Fh],

which is condition 2. in Remark [I8:4] Taking h = 14 with A € G in condition
2. or Remark [18.4] we learn that Eq. (18.5)) is satisfied as well.

Theorem 18.5. Let (2, B, P) and G C B be as above and let f,g € L*(£2,B, P).
The operator Eg : L*(2, B, P) — L?(02,G, P) estends uniquely to a linear con-
traction from L'(2,B, P) to L*(£2,G, P). This extension enjoys the following
properties;

Aff >0, P —a.e. then Egf >0, P — a.e.

. Monotonicity. If f > g, P — a.e. there Egf > Egg, P — a.e.

. L — contraction property. |Egf| <Eg|f|, P — a.e.

. Averaging Property. If f € LY (Q2,B,P) then F = Egf iff F €
LY(2,G,P) and

Bl WO DO~

E(Fh) = E(fh) for all h € G,. (18.7)

5. Pull out property or product rule. If g € G, and f € L*(£2,B, P), then

Eg(gf) =g ']nga P -a.e
6. Tower or smoothing property. If Go C G C B. Then

Eg,Eg, f = Eg,Eg, f = Eg, f a.s. for all f € L* (2,8, P). (18.8)
Proof. By the definition of orthogonal projection, f € L?(§2,B, P) and
h e gba
E(fh) = E(f - Egh) = E(Eg/ - h). (18.9)
Taking
——F _ Egf
h = sgn (ng) = @1|ng|>0 (18.10)
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in Eq. shows
E([Eg f]) = E(Eg [ - h) = E(fh) <E(|fh]) < E(|f]). (18.11)

It follows from this equation and the BLT (Theorem that Eg extends
uniquely to a contraction form L (2, B, P) to L'(£2,G, P). Moreover, by a sim-
ple limiting argument, Eq. remains valid for all f € L' (£2,B,P) and
h € Gp. Indeed, (with out reference to Theorem if fn = flip<n €
L?(£2,B,P), then f, — f in L'(£2,B, P) and hence

E[[Egfn —Egfmll = E[|Eg (fo — fm)ll SE[|fn = fml] — 0 as m,n — oo.

By the completness of L'(2,G,P), F = LY(2,G, P)-lim, .., Egf, exists.
Moreover the function F' satisfies,

E(F - h) = B( lim Bgf,-h) = lim E(f,h) =E(f - h) (18.12)

for all h € G, and by Lemmathere is at most one, F' € L'(£2,G, P), which
satisfies Eq. . We will again denote F' by Eg f. This proves the existence
and uniqueness of F' satisfying the defining relation in Eq. of item 4. The
same argument used in Eq. again shows E |F| < E | f| and therefore that
Eg : L (2,8, P) — L' (£2,G, P) is a contraction.

Items 1 and 2. If f € L' (£2, B, P) with f > 0, then

E(Egf - h) = E(fh) > 0V h € G, with h > 0. (18.13)

An application of Lemmathen shows that Egf > 0 a.sE| The proof of item
2. follows by applying item 1. with f repalced by f —¢g > 0.

Ttem 3. If f is real, £f < |f] and so by Item 2., £Egf < Eg|f], i.e.
|Egfl < Eg|f|, P — a.e. For complex f, let h > 0 be a bounded and G —
measurable function. Then

E([Eg /| h] = E [Eqf - sgn (Eg/)h] = E [/ - sgn (B f)h]
<E[f|h] =E[Eg|f|-h].

Since h > 0 is an arbitrary G — measurable function, it follows, by Lemma [18.2
that |Egf| < Eg|f|, P — a.s. Recall the item 4. has already been proved.
Item 5. If h,g € Gy and f € L' (£2, B, P), then

E[(gEgf)h] =E[Egf -hg] =E[f-hg] =E[gf - h] = E[Eg (9f) - h].

Thus Eg (9f) = g-Egf, P — ae.

! This can also easily be proved directly here by taking h = 1gg f<o in Eq. (18.13)).
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Ttem 6., by the item 5. of the projection Theorem [16.12] m Eq. ( - ) holds
on L?(2, B, P). By continuity of conditional expectation on L' (2, B, P) and
the density of L' probability spaces in L? — probability spaces shows that Eq.
(18.8)) continues to hold on L'(§2, B, P).

Second Proof. For h € (Gy), , we have

E[Eg,Eg, f-h] =E[Eg, f-h] =E[f-h] =E[Eg, [ - h]

which shows Eg Eg, f = Eg, f a.s. By the product rule in item 5., it also follows
that

Egl [Egof] = Eg1 []Egof : 1] = ]Egof ! ]Egl [1] = ]Egof a.s.

Notice that Eg, [Eg, f] need only be G; — measurable. What the statement says
there are representatives of Eg, [Eg, f] which is Gy — measurable and any such
representative is also a representative of Eg, f. [ |

Remark 18.6. There is another standard construction of Eg f based on the char-
acterization in Eq. and the Radon Nikodym Theorem It goes as
follows, for 0 < f € L' (P), let Q := fP and observe that Q|g < P|g and
hence there exists 0 < g € L' (£2,G, P) such that dQ|g = gdP|g. This then

implies that
| rap=Qa) -

i.e. g = Egf. For general real valued, f € L' (P), define Egf = Egf, — Egf_
and then for complex f € L' (P) let Egf = Eg Re f + iEg Im f.

/ gdP for all A € G,
A

Notation 18.7 In the future, we will often write Egf as E[f|G]. Moreover,
if (X, M) is a measurable space and X : 2 — X is a measurable map.
We will often simply denote E[flo (X)] simply by E[f|X]. We will further
let P(A|G) := E[14]G] be the conditional probability of A given G, and
P(A|X):= P(A|o (X)) be conditional probability of A given X.

Exercise 18.1. Suppose f € L' (£2,B,P) and f > 0 a.s. Show E[f|G] > 0
a.s. Use this result to conclude if f € (a,b) a.s. for some a,b such that —oo <
a < b < oo, then E[f|G] € (a,b) a.s. More precisely you are to show that any
version, g, of E[f|G] satisfies, g € (a,b) a.s.

18.1 Examples

Ezample 18.8. Suppose G is the trivial o — algebra, i.e. G = {0}, 2} . In this case
Egf =Ef as.

Example 18.9. On the opposite extreme, if G = B, then Egf = f a.s.
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Lemma 18.10. Suppose (X, M) is a measurable space, X : 2 — X is a mea-
surable function, and G is a sub-o-algebra of B. If X is independent of G and
f : X — R is a measurable function such that f(X) € L' (£2,B,P), then
Eg[f(X)] = E[f(X)] a.s.. Conversely if Eg[f (X)] = E[f (X)] a.s. for all
bounded measurable functions, f : X — R, then X is independent of G.

Proof. Suppose that X is independent of G, f : X — R is a measurable
function such that f(X) € L (£2,B,P), p:=E[f(X)], and A € G. Then, by
independence,

E[f(X): A = E[f (X)14] = E[f (X)|E[1a] = E[u1a] = E[u: A].

Therefore Eg [f (X)]=p =E[f(X)] a
Conversely if Eg [f (X)] =E[f (X )}—uandAeg then

Elf (X)1a] =E[f (X): A]=E[p: A] = pE[1a] = E[f (X)]E[14].

Since this last equation is assumed to hold true for all A € G and all bounded
measurable functions, f : X — R, X is independent of G. ]

The following remark is often useful in computing conditional expectations.
The following Exercise should help you gain some more intuition about condi-
tional expectations.

Remark 18.11 (Note well.). According to Lemma E(f|X) = f( ) a
for some measurable function, f : X — R. So computlng E(fIX) = f(X )
equivalent to finding a function, f : X — R, such that

E[f-h(X)] =E[f(X)h(X)] (18.14)
for all bounded and measurable functions, i : X — R.

Exercise 18.2. Suppose (12, B, P) is a probability space and P := {4;};2, C B
is a partition of £2. (Recall this means 2 = Y2, A;.) Let G be the o — algebra
generated by P. Show:

1. Be G iff B=U;cpA; for some A C N.

2.9: 2 — Ris G- measurable iff g = >"°, \;14, for some \; € R.

3. For f € L'(2,B,P), let E[f|Ai] = E[La,f] /P(A;) it P(4;) # 0 and
E [f|Ai] = 0 otherwise. Show

ng = iE [f|AZ] 1Ai a.s. (18.15)

i=1
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208 18 Conditional Expectation

Solution to Exercise ((18.2]). We will only prove part 3. here. To do this,
suppose that Egf = > "2, \;14, for some )\; € R. Then

E [f : A]] =E [ng : AJ] =E [i )\ilA,i : Aj = )\]P (A])
i=1

which holds automatically if P (A;) = 0 no matter how A; is chosen. Therefore,

we must take

_E[f: 4
Aj—W—E[ﬂAj]

which verifies Eq. (18.15)).

Proposition 18.12. Suppose that (2,8, P) is a probability space, (X, M, )
and (Y,N,v) are two o — finite measure spaces, X : 2 — X andY : 2 — Y
are measurable functions, and there exists 0 < p € L*(£2,B,u ® v) such that
P((X,Y)eU) = [,p(x,y)du(z)dv(y) for alU e M@N. Let

p(a) = / p(2,y) dv (1) (18.16)
and x € X and B € N, let

&5 S5 P (@) dv (y) if p(z) € (0,00)
by, (B) if p(x) € {0,00}

where yo is some arbitrary but fized point in' Y. Then for any bounded (or non-
negative) measurable function, f : X x Y — R, we have

Q(z,B):= { (18.17)

E[f (X, Y)[X] = Q(X, f(X,")) =:/Yf(X,y)Q(X,dy)=9(X) a.s. (18.18)

where,
g (x) :=/Yf(m,y)62(sc,dy)=Q(sc,f(sc,-))~

As usual we use the notation,
& v W) p(xy)dv(y) if p(x) € (0,00)
Q (x,v :/vaz,dy{p(I)Y ’ e ’
(o= Wty Sy ()= v(w) i p(x) € 0,00}
for all bounded measurable functions, v:Y — R,

Proof. Our goal is to compute E [f (X,Y") | X]. According to Remark[18.11
we are searching for a bounded measurable function, g : X — R, such that

E[f(X,Y)h(X)] =E[g(X)h(X)] for all h € M. (18.19)
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(Throughout this argument we are going to repeatedly use the Tonelli - Fubini
theorems.) We now explicitly write out both sides of Eq. (18.19);

E[f (X,Y)h(X)] = / h(2) f (2.9) p (@, y) du () dv (y)

XxY

- [r@ | [s@nsenam|ame  as
X Y

=
S
=
>
=

) = / W) g (@) p () dps () do (1)
XxY
- / h(2)g (@) p (@) du (). (18.21)

Since the right sides of Egs. (18.20) and (18.21]) must be equal for all h € My,
we must demand,

/Y f(@9) p () dv () = g () 5 () for p - ace. . (18.22)

There are two possible problems in solving this equation for g (z) at a particular
point x; the first is when p (z) = 0 and the second is when g (z) = oo. Since

L@ = [ | [ paiv) e 1.

we know that p(x) < oo for 1 — a.e. x and therefore

P(X€{p=0)=P(E(X) =0 = [ 1opdu =0

Hence the points where p () = co will not cause any problems.
For the first problem, namely points x where p(x) = 0, we know that
p(z,y) =0 for v — a.e. y and therefore

/Y £ (.y) p (,9) dv () = 0. (18.23)

Hence at such points,  where p(z) = 0, Eq. (18.22]) will be valid no matter
how we choose g (x) . Therefore, if we let yo € Y be an arbitrary but fixed point
and then define

o () = { 5oy Ju F @y p(@y)dv (y) if p(z) € (0,00)

[ (@,90) if p(x) € {0,000}’
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then we have shown E [f (X,Y) | X]
where that when p(x) < oo, p(x,-
definition of g is well defined.)

Just for added security, let us check directly that ¢ (X) = E[f(X,Y)|X]

a.s.. According to Eq. ([18.21])) we have

E[Q(X)h(X)]=/Xh(x)g($)ﬁ(m)du(x)

g(X)=Q (X, f) a.s. as desired. (Observe
€ L' (v) and hence the integral in the

— [ h@e@s@due)
Xn{0<p<oo}

p
[ @@ (e [ f@ ey dv ) dut)
/Xﬁ{0<p<oo} (P(x) Y

- [ 1@ (Af(x,y)p(x7y)dV(y)) dn (x)
_E[f(X,Y)h(X)]  (by Eq. (520).

wherein we have repeatedly used p(p = 00) = 0 and Eq. holds when
p () = 0. This completes the verification that g (X) =E[f(X,Y)|X] a.s.. =
This proposition shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables in the
integrand. Whereas to compute the expectation, one should integrate over all
of the variables. It also gives an example of regular conditional probabilities.

Definition 18.13. Let (X, M) and (Y,N') be measurable spaces. A function,
Q:Xx N —[0,1] is a probability kernel on X x Y iff

1. Q(z,-) : N — [0,1] is a probability measure on (Y,N) for each z € X and
2.Q(-,B): X —[0,1] is M/Bg — measurable for all B € N.

If Q is a probability kernel on X x Y and f : Y — R is a bounded
measurable function or a positive measurable function, then z — Q (=, f) =
Jy f () Q (x,dy) is M/Bg — measurable. This is clear for simple functions and
then for general functions via simple limiting arguments.

Definition 18.14. Let (X, M) and (Y,N') be measurable spaces and X : 2 —
XandY : 2 — Y be measurable functions. A probability kernel, @, on X x Y
is said to be a regular conditional distribution of Y given X iff Q (X, B)
is a version of P(Y € B|X) for each B € N. Equivalently, we should have
QX,f) =E[f(Y)|X] as. for all f € Ny. When X = 2 and M = G is a
sub-o — algebra of B, we say that Q is the regular conditional distribution
of Y given G.
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The probability kernel, @, defined in Eq. is an example of a regular
conditional distribution of Y given X. In general if G is a sub-o-algebra of B.
Letting Pg (A) = P (A|G) := E[14|G] € L?(2,B, P) for all A € B, then Py :
B — L?(£2,G, P) is a map such that whenever A, A, € B with A =3 A,,
we have (by ¢cDCT) that

Pg(A) =Y Pg(Ay) (equality in L (£2,G, P). (18.24)
n=1

Now suppose that we have chosen a representative, Pg(A4) : 2 — [0,1], of
Pg (A) for each A € B. From Eq. (18.24) it follows that

Pg (A) (w) =) _ Py (Ay) (w) for P -ae. w. (18.25)
n=1

However, note well, the exceptional set of w’s depends on the sets A, A, €
B. The goal of regular conditioning is to carefully choose the representative,
Pg (A) : 2 — [0,1], such that Eq. holds for allw € 2 and all A, A4,, € B
with A =3 A,.

Remark 18.15. Unfortunately, regular conditional distributions do not always
exists. However, if we require Y to be a “standard Borel space,” (i.e. Y is iso-
morphic to a Borel subset of R), then a conditional distribution of ¥ given X
will always exists. See Theorem Moreover, it is known that all “reason-
able” measure spaces are standard Borel spaces, see Section [I8.4] below for more
details. So in most instances of interest a regular conditional distribution of Y’
given X will exist.

Exercise 18.3. Suppose that (X, M) and (Y, N) are measurable spaces, X :
2 — Xand Y : 2 — Y are measurable functions, and there exists a regular
conditional distribution, @, of Y given X. Show:

1. For all bounded measurable functions, f: (X x Y, M ® N') — R, the func-
tion X >z — @ (x, f (x,-)) is measurable and

Q (X, f(X,) =E[f (X,Y)|X] as. (18.26)

Hint: let H denote the set of bounded measurable functions, f, on X x Y
such that the two assertions are valid.
2.If Aec M®N and p:= Po X! be the law of X, then

P((X,Y) € A) = / Q (2,14 () dp () = / dyi () / La (2,) Q (. dy)
(18.27)

macro: svmonob.cls date/time: 12-Mar-2007/12:25



210 18 Conditional Expectation

Exercise 18.4. Keeping the same notation as in Exercise and further as-
sume that X and Y are independent. Find a regular conditional distribution of
Y given X and prove

E[f(X,Y)|X]=hs(X) as.V bounded measurable f : X x Y — R,

where
hy(z) :=E[f (z,Y)] forall z € X,
ie.

E[f (X.Y)|X] = E[f (&,Y) |X] l—x as.

Exercise 18.5. Suppose ({2, B, P) and (£, B, P’) are two probability spaces,
(X, M) and (Y,N) are measurable spaces, X : 2 — X, X' : ' - X YV :
2 — Yand Y’ : 2 — Y are measurable functions such that Po (X,Y) ' =
Po (XY, ie (X,Y) 4 (X Y). If f: (XxY,M®N)— R is a bounded
measurable function and f: (X, M) — R is a measurable function such that
f(X)=E[f(X,Y)]|X] P - a.s. then

E'[f (X', Y)|X'] = f(X') P as.

18.2 Additional Properties of Conditional Expectations

Definition 18.16. Suppose that F and G are sub-sigma-fileds of B and A € B.
We say that F = G on A iff A € FNG and Fa = Ga. Recall that Fy =
{BNA:BeF}.

We will need two elementary observations. 1) If 7 =G on A then F =G =
FNGon Aand?2)if F=G on A and X is a F — measurable random variable,
then 14X is F NG measurable. The first assertion is clear. For the second we
have,

{IuAX#0}=AN{X #0} e Fa=Ga=(FNG), CFNG
and so for B € Br we have
{luXeB}=An{X eB}eFsCFNGif0¢B
while if 0 € B,

{1aX € B} ={14X =0}UAN{X € (B\ {0})}
={14X #0}°UAN{X € (B\{0}))} e FnG.
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Lemma 18.17 (Localizing Conditional Expectations). Let (2,8, P) be a
probability space, F and G be sub-sigma-fileds of B, X,Y € L' (2,8, P;R), and
AeFNnG IfF=GonAand X =Y a.s. on A, then Ex X =EgY a.s. on A.

Proof. Let X and Y be representatives of Ex X and EgY respectively. From
above we know that both 14X and 14Y are NG measurable random variables.
Therefore the set B := {1,4)_( > 1A§7} =AnN {)_( > }7} € FNgG. Hence by the
averaging property of conditional expectation,

E[14X :B]=E[X:B]=E[Y :B]=E[V:B] =E[14Y : B].

Since 14X > 14Y on B, we can only have equality above if P (B) = 0, i.e.
P (1AX > 1,4}7) = 0. By symmetry we also have P (1AX < 1,4}7) = 0 and
therefore 14X = 1,4Y a.s.,ie. ExX =EgY a.s. on A. [

The next theorem is devoted to extending the notion of conditional expec-
tations to all non-negative functions and to proving conditional versions of the
MCT, DCT, and Fatou’s lemma.

Theorem 18.18 (Extending Eg). If f : 2 — [0,00] is B — measurable, the
function F :=1 lim, o Eg [f An] exists a.s. and is, up to sets of measure
zero, uniquely determined by as the G — measurable function, F : {2 — [0, 00],
satisfying

E[f: A]=E[F:A] forall Acg. (18.28)

Hence it is consistent to denote F' by Egf. In addition we now have;

1. Properties 2., 5. (with 0 < g € Gy), and 6. of Theorem [18.5 still hold for
any B — measurable functions such that 0 < f < g. Namely;
a) Order Preserving. Egf <Egg a.s. when 0 < f <g,
b) Pull out Property. Eg[hf] = hEg|[f] a.s. for all h > 0 and G -
measurable.
¢) Tower or smoothing property. If Go C G C B. Then

Eg,Eg, f = Eg,Eg, f = Eg, f a.s.

2. Conditional Monotone Convergence (¢cMCT). Suppose that, almost
surely, 0 < f, < fny1 for all n, then then lim,, oo Eg fr, = Eg [limy,— oo fn]
a.s.

3. Conditional Fatou’s Lemma (cFatou). Suppose again that 0 < f,, €
L' (02,B,P) a.s., then

Eg {liminf fn} <liminfEg [f,] a.s (18.29)

n—oo

4. Conditional Dominated Convergence (¢cDCT). If f, — f a.s. and
|ful < g€ LY (£2,B,P), then Egf, — Egf a.s.
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Remark 18.19. Regarding item 4. above. Suppose that f, Eit folfnl < gn €
L' (2,B,P), g Eit g € L' (2,B,P) and Eg, — Eg. Then by the DCT in
Corollary we know that f,, — fin L' (£2,B, P). Since Eg is a contraction,
it follows that Eg f, — Egf in L' (£2, B, P) and hence in probability.

Proof. Since fAn € L' (£2, B, P) and fAn is increasing, it follows that F' :=1
lim,, o Eg [f A n] exists a.s. Moreover, by two applications of the standard
MCT, we have for any A € G, that

E[F:A]l= lim E[Eg[fAn]: A= lim E[fAn:A]= lim E[f:A4].
Thus Eq. (18.28)) holds and this uniquely determines F' follows from Lemma
s.2

Item 1. a) If 0 < f < g, then

Egf = lim Eg[f An] < lim Eglg An] =Egg a.s.

and so Eg still preserves order. We will prove items 1b and 1c at the end of this
proof.

Item 2. Suppose that, almost surely, 0 < f,, < fn41 for all n, then Egf,
is a.s. increasing in n. Hence, again by two applications of the MCT, for any
A € G, we have

E[nlin;Ongn:A} = lim E[Egf,: A] = lim E[f, : 4]

n—oo

:E[lim fn:A} :]E[]Eg [nm fn} :A}
from which it follows that lim, . Egf, = Eg [lim, o fr] a.s.

Item 3. For 0 < f,,, let g; := inf,, >4 fr. Then g < fi for all k& and g; T
liminf, .. f, and hence by cMCT and item 1.,

Eg [lim inf fn] — lim Eggy < liminf Eg fi, as.

Item 4. As usual it suffices to consider the real case. Let f, — f a.s. and
|fn] < g a.s. with g € L (2, B, P) . Then following the proof of the Dominated
convergence theorem, we start with the fact that 0 < g+ f;, a.s. for all n. Hence
by cFatou,

Eg (9 + f) = Eg [liminf (g % f,)|

liminf, . Eg (f,) in + case

= hnnllegf Eg (94 fn) = Egg + { —limsup,,_,., Eg (fn) in — case,

where the above equations hold a.s. Cancelling Egg from both sides of the
equation then implies
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limsupEg (f) < Egf < liminf Eg (f,) a.s.
n—oo

n—oo

Item 1. b) If h > 0 is a G — measurable function and f > 0, then by cMCT,

Eg [hf] =" lim Eg [(hAn)(f An)]

= lim (hAR)Eg[(fAn)] "= hEgf as.

Ttem 1. ¢) Similarly by multiple uses of cMCT,
Eg,Eg, f = Eg, lim Eg, (f An) = lim Eg,Eg, (fAn)
n—oo n—oo
= lim Eg, (f An)=Eg, [
and
Eg Eg,f =Eg, lim Eg, (f An) = lim Eg Eg, [f An]
= lim Eg, (f An) = Eg,f.
|

Theorem 18.20 (Conditional Jensen’s inequality). Let (£2,B,P) be a
probability space, —o00 < a < b < 0o, and ¢ : (a,b) — R be a convex func-
tion. Assume f € L'($2, B, P;R) is a random variable satisfying, f € (a,b) a.s.
and p(f) € LY(2,B, P;R). Then ¢(Egf) € L' (2,G, P),

o(Egf) < Eg [p(f)] a.s. (18.30)

and
E[p(Egf)] < Ep(f)] (18.31)

Proof. Let A := QN (a,b) — a countable dense subset of (a, ). By Theorem

11.38| (also see Lemma [7.31]) and Figure [7.2| when ¢ is C'1)
o(y) > p(z) + ¢ (x)(y — ) for all for all 2,y € (a,b),

where ¢’ (z) is the left hand derivative of ¢ at z. Taking y = f and then taking
conditional expectations imply,

Eg [o(f)] = Eg [p(2) + ¢ (2)(f — 2)] = p(z) + ¢_ (2)(Egf — x) as. (18.32)

Since this is true for all « € (a,b) (and hence all = in the countable set, A) we
may conclude that

Eg [¢(f)] > sup [p(x) + ¢ (2)(Egf — )] as.
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212 18 Conditional Expectation
By Exercise Egf € (a,b), and hence it follows from Corollary [11.39 that

sup [o(z) + ¢ (2)(Egf — z)] = ¢ (Bgf) as.

Combining the last two estimates proves Eq. (18.30]).
From Egs. (18.30) and (18.32]) we infer,

[o(Egf)| < [Eg (]I V |o(@) + ¢ () (Eg f — 2)| € L' (2,G, P)

and hence p(Egf) € L' (£2,G, P). Taking expectations of Eq. (18.30)) is now
allowed and immediately gives Eq. ((18.31]). ]

Corollary 18.21. The conditional expectation operator, Eg maps LP (2, B, P)
into LP (£2,B, P) and the map remains a contraction for all 1 < p < co.

Proof. The case p = co and p = 1 have already been covered in Theorem
So now suppose, 1 < p < 00, and apply Jensen’s inequality with ¢ (z) =
|z|” to find |Egf|” < Eg|f[” a.s. Taking expectations of this inequality gives
the desired result. n

18.3 Regular Conditional Distributions

Lemma 18.22. Suppose that (X, M) is a measurable space and F: X xR — R
is a function such that; 1) F (-,t) : X — R is M/Br — measurable for all t € R,
and 2) F (z,-) : R — R is right continuous for all x € X. Then F is M ® Br/Bg
— measurable.

Proof. For n € N, the function,

Fy ($7t> = Z F ('Tv (k + 1) 2_n) 1(k2—",(k+1)2—"] (t) )

k=—o00

is M ® Bg/Bgr — measurable. Using the right continuity assumption, it follows
that F (z,t) = limy, o0 F), (2,t) for all (z,t) € X x R and therefore F' is also
M ® Bg/Bgr — measurable. [

Theorem 18.23. Suppose that (X, M) is a measurable space, X : 2 — X is a
measurable function and Y : 2 — R is a random variable. Then there ezits a
probability kernel, @, on X X R such that E[f (Y)|X]=Q (X, f), P — a.s., for
all bounded measurable functions, f: R — R.

Proof. For each r € Q, let ¢, : X — [0,1] be a measurable function such
that
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Ely</|X]=¢ (X) as.

Let v := P o X~!. Then using the basic properties of conditional expectation,
gr < qs v —as. for all r < s, limyjo ¢ = 1 and lim, | ¢ = 0, v — a.s. Hence
the set, Xo C X where ¢, (z) < ¢5(z) for all » < s, limyyeo ¢ () = 1, and
lim, | oo gr (x) = 0 satisfies, v (X)) = P (X € Xp) = 1. For t € R, let

F(x,t) := 1x, (v) - inf {q, (¥) : 7 >t} + Ix\x, () - Li>o0

Then F (-,t) : X — R is measurable for each t € R and F'(z,-) is a distribution
function on R for each z € X. Hence an application of Lemma shows
F :X xR —[0,1] is measurable.

For each x € X and B € Bg, let Q (z, B) = jtp(5,.) (B) where i denotes the
probability measure on R determined by a distribution function, F : R — [0, 1].
We claim that @ is the desired probability kernel. To prove this, let H be the
collection of bounded measurable functions, f : R — R, such that X 3 =z —
Q(z, f) € R is measurable and E[f (V) |X] = Q (X, f), P — a.s. It is easily
seen that H is a linear subspace which is closed under bounded convergence.

We will finish the proof by showing that H contains the multiplicative class,
M = {1(,00_’25] 1te ]R} . Notice that Q (;U, 1(700,,5}) = F'(z,t) is measurable. Now
let 7 € Q and g : X — R be a bounded measurable function, then

Efly<, -9 (X)] =E[E[ly<[X]g(X)] =Elg (X)g(X)]
=Efgr (X) 1x, (X) g (X)].
For t € R, we may let | ¢ in the above equality (use DCT) to learn,
Elly<t - g(X)] =E[F(X,t)1x, (X) g (X)] =E[F (X,t) g (X)].
Since g was arbitrary, we may conclude that
Q(X,1Cooy) = F(X,t) =E[ly<|X] as.

This completes the proof. ]
This result leads fairly immediately to the following far reaching generaliza-
tion.

Theorem 18.24. Suppose that (X, M) is a measurable space and (Y,N) is a
standard Borel space, see Appendiz [18.]] below. Suppose that X : 2 — X and
Y : 2 — Y are measurable functions. Then there exits a probability kernel, @,
on XxXY such that E[f (V) |X]=Q (X, f), P — a.s., for all bounded measurable
functions, f:Y — R.

Proof. By definition of a standard Borel space, we may assume that Y € By
and A" = By. In this case Y may also be viewed to be a measurable map form
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2 — R such that Y (£2) C Y. By Theorem [18.23] we may find a probability
kernel, Qg, on X x R such that

E[f(Y)|X]=Qo(X,f), P—a.s., (18.33)

for all bounded measurable functions, f: R — R.

Taking f = 1y in Eq. (18.33)) shows
1=E[ly (V) |X]=Qo(X,Y) as..

Thus if we let Xo := {z € X: Qo (z,Y) =1}, we know that P (X € X;) = 1.
Let us now define

Q (z,B) = 1x, (z) Qo (z, B) + Ix\x, () 0y (B) for (z,B) € X x By,

where y is an arbitrary but fixed point in Y. Then and hence @) is a probability
kernel on X x Y. Moreover if B € By C Bg, then

Q(X,B) = 1x, (X) Qo (X, B) = 1x, (X)E[15 (Y) [X] = E[15 (V) [X] a.s.
This shows that @ is the desired regular conditional probability. ]

Corollary 18.25. Suppose G is a sub-c — algebra, (XY, N) is a standard Borel
space, and Y : 2 — Y is a measurable function. Then there exits a probability
kernel, Q, on (2,G) x (Y, N) such that E[f (Y)|G] =Q (-, f), P - a.s. for all

bounded measurable functions, f: Y — R.

Proof. This is a special case of Theorem [18.24]applied with (X, M) = (£2,G)
and Y : £2 — (2 being the identity map which is B/G — measurable.

18.4 Appendix: Standard Borel Spaces

For more information along the lines of this section, see Royden [5].

Definition 18.26. Two measurable spaces, (X, M) and (Y,N') are said to be
isomorphic if there exists a bijective map, f: X — Y such that f (M) =N
and f=1 (N) = M, i.e. both f and f=1 are measurable. In this case we say f
is a measure theoretic isomorphism and we will write X =Y.

Definition 18.27. A measurable space, (X, M) is said to be a standard Borel
space if (X, M) = (B,Bg) where B is a Borel subset of ((O, 1),8(071)) .

Definition 18.28 (Polish spaces). A Polish space is a separable topological
space (X, T) which admits a complete metric, p, such that T = 7,.
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The main goal of this chapter is to prove every Borel subset of a Polish
space is a standard Borel space, see Corollary below. Along the way we
will show a number of spaces, including [0,1],, (0, 1], [0, l]d, R4, and RV, are
all isomorphic to (0, 1) . Moreover we also will see that the a countable product
of standard Borel spaces is again a standard Borel space, see Corollary

On first reading, you may wish to skip the rest of this
section.

Lemma 18.29. Suppose (X, M) and (Y,N') are measurable spaces such that
X =" XY ="V, withX, € M and Y, € N. If (X,,, Mx,)
is isomorphic to (Y, Ny, ) for all n then X =Y. Moreover, if (X,, M,) and
(Y,,N,,) are isomorphic measure spaces, then (X =[], Xn, @52, M,,) are
(Y =112, Y, ®2,N,,) are isomorphic.

Proof. For each n € N, let f,, : X,, — Y, be a measure theoretic isomor-
phism. Then define f : X — Y by f = f, on X,,. Clearly, f : X — Y is a
bijection and if B € N, then

FHB) =L fTH(BNY,) = Uty f ! (BNY,) € M.

This shows f is measurable and by similar considerations, f~! is measurable
as well. Therefore, f : X — Y is the desired measure theoretic isomorphism.

For the second assertion, let f,, : X,, — Y,, be a measure theoretic isomor-
phism of all n € N and then define

fx)=(f1(x1), fa(x2),...) with x = (21, 22,...) € X.

Again it is clear that f is bijective and measurable, since

f_l (H Bn) = H fn_l (Bn) € ®$Lo:1Nn
n=1 n=1

for all B,, € M,, and n € N. Similar reasoning shows that f~! is measurable as
well. [

Proposition 18.30. Let —c0 < a < b < oo. The following measurable spaces
equipped with there Borel o — algebras are all isomorphic; (0,1), [0,1], (0,1],
[0,1), (a,b), [a,b], (a,b], [a,b), R, and (0,1)UA where A is a finite or countable
subset of R\ (0,1).

Proof. It is easy to see by that any bounded open, closed, or half open
interval is isomorphic to any other such interval using an affine transformation.
Let us now show (—1,1) 2 [—1,1]. To prove this it suffices, by Lemma to
observe that
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214 18 Conditional Expectation
(-1,1) ={0}ud_((-27",-27"Ju2™"" ', 27"))
n=0

and

L1 ={0}u> (-2, -2 Hue 2.
n=0

Similarly (0, 1) is isomorphic to (0, 1] because

i2”12 and ( i2”12

The assertion involving R can be proved using the bijection, tan
(=7/2,7/2) — R.

If A= {1}, then by Lemma and what we have already proved, (0,1)U
{1} = (0,1] = (0,1). Similarly if N € Nwith N >2and A ={2,...,N+1},
then

N-1
(0. huA=(0,]Ud= (0,27 U [Z (2,271 ua
n=1
while
N-1
(0,1) = (0,2—N+1) U [Z (2—n’2—n—1)] U {2—n ‘n=1,2,.. .,N}
n=1

and so again it follows from what we have proved and Lemma|18.29|that (0,1) &
(0,1) U A. Finally if A ={2,3,4,...} is a countable set, we can show (0,1) &
(0,1) U A with the aid of the identities,

[Z (27,27 1]U{2":n€N}

and

(0,1))uA=(0,1]UA = U A.

o)
Z(Q_H’ 2—n—1]
n=1

Notation 18.31 Suppose (X, M) is a measurable space and A is a set. Let
7, : X4 — X denote projection operator onto the a'™ — component of X4 (i.e.
7o (W) = w (a) for all a € A) and let M®4 := o (7, : a € A) be the product o —
algebra on XA.

Lemma 18.32. If ¢ : A — B is a bijection of sets and (X, M) is a measurable
space, then (XA,M®A) % (XB,M®B) .
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Proof. The map f: X® — X4 defined by f (w) =wo for all w € X¥ is
a bijection with f~! (a) = aop™t. Ifa € A and w € X, we have

X o fw) = f (W) (@) =w (9 (a) = 130 @),

XA

o, and 7rb X7 are the projection operators on X4 and X respectively.

where 7

Thus X" o f = WW(G) for all @ € A which shows f is measurable. Similarly,

o f1 _1( ) showing f~! is measurable as well. [ |

Proposition 18.33. Let {2 := {0, 1}N, m; 2 2 — {0,1} be projection onto the
it" component, and B := o (71, 7a,...) be the product o — algebra on £2. Then

(£2,B) 2 ((0,1),Bo,1)) -

Proof. We will begin by using a specific binary digit expansion of a point
x € [0,1) to construct a map from [0,1) — 2. To this end, let r; (z) = z,

7 (2) = 1591 and 73 () ;=2 — 271y (2) € (0, 2*1),

then let v :==1,,59-2 and 73 = 1o — 272y, € (0, 2*2) . Working inductively, we
construct {7y (z), 7k (x)}re, such that v (z) € {0,1}, and

Trr1 (2) = g (@) — 27 %y ( —x—Z? I () € (0,27%) (18.34)

for all k. Let us now define g : [0,1) — 2 by g (z) := (m () ,72 (x),...). Since
each component function, 7mj 0o g =~; : [0,1) — {0,1}, is measurable it follows
that g is measurable.

By construction,

x—z2 7')/] x) + 1511 ()

and ri41 () — 0 as k — oo, therefore

x = Z 277 () and 741 ( Z 277y (@ (18.35)
j= j=k+1

Hence if we define f: 2 — [0,1] by f =372, 2777, then f (g (z)) = z for all
€ [0,1). This shows ¢ is injective, f is surjective, and f in injective on the
range of g.
We now claim that 2y := ¢ ([0,1)), the range of g, consists of those w € 2
such that w; = 0 for infinitely many ¢. Indeed, if there exists an k € N such
that v; (z) = 1 for all j > k, then (by Eq. (18.35)) rx+1 (z) = 27 which
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would contradict Eq. (I8.34). Hence g ([0,1)) C £2y. Conversely if w € {2 and
z = f(w) € [0,1), it is not hard to show inductively that ~; (z) = w; for all
j, i.e. g(x) = w. For example, if w; = 1 then x > 27! and hence v, (z) = 1.
Alternatively, if w; = 0, then

z=Y 27w <y 277 =27"
j=2 j=2
so that v () = 0. Hence it follows that o (z) = Z;iz 27Jw; and by similar
reasoning we learn ro () > 272 iff wy = 1, i.e. 7o (x) = 1 iff wy = 1. The full
induction argument is now left to the reader.
Since single point sets are in B and

A=02\ =2 {weR:w;=1for j>n}

is a countable set, it follows that A € B and therefore 2y = 2\ A € B.
Hence we may now conclude that g : ([0,1),Bj.1)) — ({20, Bg,) is a measurable
bijection with measurable inverse given by f|q,, i.e. ([O, 1), 8[071)) = (2,Bq,) -
An application of Lemma and Proposition now implies

Q=02UA2[0,1)UN2[0,1)=(0,1).
| |

Corollary 18.34. The following spaces are all isomorphic to ((071) 78(071));

(0, l)d and R for any d € N and [0, 1]N and RN where both of these spaces are
equipped with their natural product o — algebras, .

Proof. In light of Lemma ﬂN@l and Proposition [I8:30] we_know that
(0,1) = R? and (0,1)" 2 [0,1] = RY. So, using Proposition [18.33] it suf-
fices to show (0,1)% = 2 = (0,1)" and to do this it suffices to show 2¢ =~ 2
and 2N = .

To reduce the problem further, let us observe that £2¢ = {0,1}

2 2
and 2V = {0,1}N . For example, let g : 2N — {O,l}N be defined by
N
g (W) (i,7) = w(i) (j) for all w € ON = [{0,1}N} . Then g is a bijection and

N2
since W&{l.o;l)} og(w) =y (WfN (w)) , it follows that g is measurable. The in-

Nx{1,2,...,d}

verse, g1 : {0,1}Nz — N to g is given by g7 (a) (4) (j) = a(i,5). To see
2

this map is measurable, we have 7T;QN og7t:{0,1}" — 2 ={0,1}" is given

72 0 g7 (a) =g~ (a) (i) (-) = a(i,-) and hence

K2

N2
7er o T{ZN og(a)=ali,j) = 71'1{2’1} («
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2
from which it follows that ﬂfow;qN og~! = 701" is measurable for all i,7 €N

and hence W{?N o g~ ! is measurable for all i € N and hence g~!

This shows 2% 2 {0, 1}N2 . The proof that £2¢ = {0, 1}NX{1’2""’d} is analogous.

We may now complete the proof with a couple of applications of Lemma
Indeed N, N x {1,2,...,d}, and N? all have the same cardinality and
therefore,

is measurable.

{0,y 02t 2 0,13 = 0,1y =

Corollary 18.35. Suppose that (X,,, M,,) for n € N are standard Borel spaces,
then X = [[.2, X,, equipped with the product o — algebra, M := @22 M,, is
again a standard Borel space.

Proof. Let A, € By be Borel sets on [0, 1] such that there exists a mea-
surable isomorpohism, f,, : X, — A,,. Then f: X — A:=[[ 2, A, defined by
fx1,2e,...) = (f1(z1), fa(x2),...) is easily seen to me a measure theoretic
isomorphism when A is equipped with the product o — algebra, ®:2 84, . So ac-
cording to Corollary [I8:34] to finish the proof it suffice to show @52, B4, = My
where M := ®52,Bjg,1] is the product o — algebra on [0, 1}N .

The o — algebra, @52, B4, , is generated by sets of the form, B :=[[°2 | B,
where B, € Ba, C Bjg,1- On the other hand, the o — algebra, M4 is generated

by sets of the form, AN B where B := I, B,, with B, € Bjp,1j- Since
- oo B (oo}
AnB=T] (BnmAn) - IIB-
n=1 n=1

where B,, = B,, N A,, is the generic element in By, , we see that @9 B4, and
M 4 can both be generated by the same collections of sets, we may conclude
that ®95L B4, = Ma. |

Our next goal is to show that any Polish space with its Borel o — algebra is
a standard Borel space.

Notation 18.36 Let Q := [0,1] denote the (infinite dimensional) unit cube
in RN, Fora,be Q let

o0 o0

1 1

d(a,b) := ; o [an = bn| = ; — |7, (a) — 7 (b)) (18.36)
Exercise 18.6. Show d is a metric and that the Borel o — algebra on (Q, d) is
the same as the product o — algebra.
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216 18 Conditional Expectation

Solution to Exercise ([18.6)). It is easily seen that d is a metric on @ which,
by Eq. is measurable relative to the product o — algebra, M.. There-
fore, M contains all open balls and hence contains the Borel ¢ — algebra, B.
Conversely, since

|7 (@) — 7 (b)] < 2"d (a, ),

each of the projection operators, 7, : @ — [0,1] is continuous. Therefore each
7, is B — measurable and hence M = o ({m,},— ;) C B.

Theorem 18.37. To every separable metric space (X, p), there exists a contin-
uous injective map G : X — @ such that G : X — G(X) C Q is a homeomor-
phism. Moreover if the metric, p, is also complete, then G (X) is a G§ —set, i.e.
the G (X) is the countable intersection of open subsets of (Q,d). In short, any
separable metrizable space X is homeomorphic to a subset of (Q,d) and if X is
a Polish space then X is homeomorphic to a G5 — subset of (Q,d).

Proof. (This proof follows that in Rogers and Williams [4, Theorem 82.5
on p. 106.].) By replacing p by ?pp if necessary, we may assume that 0 < p < 1.

Let D = {an},., be a countable dense subset of X and define

G(:E) = (p(m,al),p(amag),p(x,ag),...) €Q

and

v(z,y) =d(G (x Z p(z,an) = p(y, an)|
for x,y € X. To prove the first assertion, we must show G is injective and -y is
a metric on X which is compatible with the topology determined by p.

If G(z) = G(y), then p(z,a) = p(y,a) for all a € D. Since D is a dense
subset of X, we may choose a; € D such that

l\D‘)_l

0= lim p(z,ar) = lim p(y,0n) = p(y,2)
k—o0 k—o00

and therefore x = y. A simple argument using the dominated convergence

theorem shows y — 7 (z,y) is p — continuous, i.e. v (z,y) is small if p (z,y) is

small. Conversely,

p(x,y) < p(@,an) +p(y,an) = 2p(x,0n) + p(y,an) — p(2,05)
<2p(x,an) + |p(x,an) — p (Y, an)| < 2p(2,an) + 2"y (2,y) .

Hence if € > 0 is given, we may choose n so that 2p(z,a,) < £/2 and so if
v (z,y) < 27("+Ve it will follow that p(x,y) < e. This shows 7., = 7,. Since
G: (X,y) — (Q,d) is isometric, G is a homeomorphism.

Now suppose that (X, p) is a complete metric space. Let S := G (X) and o
be the metric on S defined by o (G (2),G (y)) = p(x,y) for all x,y € X. Then
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(S,0) is a complete metric (being the isometric image of a complete metric
space) and by what we have just prove, 7, = 74,. Consequently, if u € S and & >
0 is given, we may find §’ (¢) such that B, (u,d’ (¢)) C Bq (u,€). Taking 6 (&) =
min (¢’ (€) ,¢), we have diamg (Bg (u,0 (€))) < € and diam, (B (u,d (¢€))) < €
where

diam, (A4) := {supo (u,v) : u,v € A} and
diamg (A) := {supd (u,v) : u,v € A}.

Let S denote the closure of S inside of (Q,d) and for each n € N let
N, :={N € 74 : diam, (N) V diam, (NN S) < 1/n}

and let U, := UN,, € 74. From the previous paragraph, it follows that S C U,
and therefore ScSn(Me,Un).

Conversely if u € SN (N%,U,) and n € N, there exists N,, € N,, such
that w € N,,. Moreover, since Ny N---N N, is an open neighborhood of u € S,
there exists u, € Ny N---N N, NS for each n € N. From the definition of
N, we have lim, oo d (u,u,) = 0 and o (uy, Uyp) < max (n‘l,m_l) — 0 as
m,n — oo. Since (S,0) is complete, it follows that {u,} -, is convergent in
(S o) to some element uy € S. Since (5, dg) has the same topology as (S, o)
it follows that d(un,up) — 0 as well and thus that v = up € S. We have
now shown, S = S N (N%,U,). This completes the proof because we may
write S = (ﬂzozl Sl/n) where Sy, 1= {u €Q:d (u, 5) < 1/n} and therefore,
S= (M1 Un) N (Mg Siyn) is a Gy set. [

n=1

Corollary 18.38. Fvery Polish space, X, with its Borel o — algebra is a stan-
dard Borel space. Consequently and Borel subset of X is also a standard Borel
space.

Proof. Theorem [18.37 shows that X is homeomorphic to a measurable (in
fact a Gs) subset Qg of (Q,d) and hence X = Q. Since @ is a standard Borel
space so is Qg and hence so is X. [
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(Sub and Super) Martingales

Notation 19.1 A filtered probability space is a probability space, (12,8, P)
endowed with a sequence of sub-o -algebras, {By,},~_ such that B, C B,11 C B
foralln =0,1,2.... We further define

Boo 1= VS By 1= 0 (U2, B,) C B. (19.1)

Through out this chapter, we will assume (£2, B, {B,},—,,P) is a filtered
probability space and B, is defined as in Eq. ((19.1)).

Definition 19.2. A sequence of random variables, {Y,} -, are adapted to the
filtration if Y, is B,, — measurable for all n. We say {Z,},, is predictable if
each Z, is B,_1 — measurable for all n € N.

A typical example is when {X,} 2 is a sequence of random variables on
a probability space (£2,B,P) and B,, := o (Xop,...,X,). An application of
Lemmashows that {Y,,} is adapted to the filtration iff there are measurable
functions, f, : R"™ — R such that Y,, = f, (Xo,...,X,) for all n € Ny
and {Zn}ff:l is predictable iff there exists, there are measurable functions,
fn : R™ — R such that Z, = f, (Xo,...,Xn—1) for all n € N.

Definition 19.3. Let X := {X,,} 7, is a be an adapted sequence of integrable
random variables. Then;

1. X is a {Bn},—, - martingale if E[X,1|B,] = X,, a.s. for alln € Ny.

2. X isa {Bn}ffzo - submartingale if E[X,,11|B,] > X, a.s. for alln € Ny.

3. X is a {Bn},—, — supermartingale if E[X,1|B,] < X, a.s. for all
n e No.

By induction one shows that X is a supermartingale, martingale, or sub-
martingale iff

<
E[X,,|B,] = X,, a.s for all m > n, (19.2)
>

to be read from top to bottom respectively. The reader should also note that
E [X,] is decreasing, constant, or increasing respectively. The next lemma shows
that we may shrink the filtration, {B,} -, , within limits and still have X retain
the property of being a supermartingale, martingale, or submartingale.

Lemma 19.4 (Shrinking the filtration). Suppose that X is a {Bn},—, -
. . . . / | OO .
supermartingale, martingale, submartingale respectively and {B;,},"_ is another
filtration such that o (Xo,...,Xn) C Bl, C By, for alln. Then X is a {B},},,

- supermartingale, martingale, submartingale respectively.

Proof. Since {X,,} 7 is adapted to {B,} —, and o (Xo,...,X,) C B}, C

B, for all n,
<
Ep Xnt1 =Ep Ep, Xnt1 = Ep Xpn = X,

when X isa {B,,} -, — supermartingale, martingale, submartingale respectively
— read from top to bottom. [

Enlarging the filtration is another matter all together. In what follows we
will simply say X is a supermartingale, martingale, submartingale if it is a
{B,.},2, — supermartingale, martingale, submartingale.

19.1 (Sub and Super) Martingale Examples

Ezample 19.5. Suppose that (£2,8,{B,},.,P) is a filtered probability space
and X € L' (£2,B,P). Then X,, := E[X|B,] is a martingale. Indeed, by the
tower property of conditional expectations,

E[Xn+1|Bn] = E[E[X|Brt1] |Br] = E[X|B,] = X, a.s.

Ezample 19.6. Suppose that 2 = [0,1], B = Bjp1j, and P = m — Lebesgue
measure. Let P,, = {( k k“]}i:? U {[O, 2%]} and B, := o (P,) for each

on s 9n
n € N. Then M, := 2"1(g2-»] for n € N is a martingale such that E [M,| =1

for all n. However, there is no X € L' (2, B, P) such that M,, = E[X|B,]. To
verify this last assertion, suppose such an X existed. Let . We would then have
for 2" > k > 0 and any m > n, that

E|X: £7k+1 =FE|Eg X: ﬁ,k—i—l
2TL 2n m 2’1’7, 2TL

k k+1
i (5551 o




218 19 (Sub and Super) Martingales

Using E[X:4 = 0 for all A in the ® - system, Q :=
1 {(2"7 k;}] 0<k< 2"}, an application of the m — A theorem shows

X Al =0 for all A € ¢(Q) = B. Therefore X = 0 a.s. by Lemma [18.2] But
thls is impossible since 1 = EM,, = EX.

Moral: not all L' — bounded martingales are of the form in example m
Proposition shows what is missing from this martingale in order for it to
be of the form in Example

Proposition 19.7. Suppose 1 < p < oo and X € LP (2,8, P). Then the col-
lection of random variables, I' := {E[X|G]: G C B} is a bounded subset of
L? (02, B, P) which is also uniformly integrable.

Proof. Since Eg is a contraction on all LP — spaces it follows that I" is
bounded in L? with
sup [[E[X|G]], < X1,
gcn

For the p > 1 the uniform integrability of I" follows directly from Lemma/[l1.35
We now concentrate on the p = 1 case. Recall that |[EgX| < Eg |X| a.s. and
therefore,

E[|EgX|: |[EgX|>a] <E[|X|:|EgX| > a] for all a > 0.

But by Chebyshev’s inequality,
1 1
P(|EgX|>a) < -E|EgX| < -E|X]|.
a a

Since {|X|} is uniformly integrable, it follows from Proposition [11.29| that, by
choosing a sufficiently large, E[|X]|: |EgX| > a] is as small as we please uni-
formly in G C B and therefore,

lim sup E[EgX|: |EgX]| > a] =0.

a— 00
]

Ezample 19.8. This  example  generalizes Example [19.6]  Suppose
(02, B,{B,},>,,P) is a filtered probability space and @ is another probability
measure on ({2, B). Let us assume that Q|p, < P|g, for all n, which by the
Raydon-Nikodym Theorem implies there exists 0 < X,, € L' (2,8, P)
with EX,, = 1 such that dQ|p, = or equivalently put, for any
B € B,, we have

Q(B):/BXndP:]E[Xn:B].

Since B € B, C By,41, we also have E[X,1: B] = Q(B) = E[X,, : B] for
all B € B, and hence E [X,,41|B,] = X,, as., i.e. X = {X,,} 7, is a positive
martingale.
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Example is of this form with @ = d¢. Notice that dy|z, < m|g, for all
n < oo while 69 L m on Bjg 1] = Beo-

The next Example, [19.10| will cover the case when Q|g, is not necessarily
B, - We need the following proposition first.

Proposition 19.9. Suppose that p and v are o — finite positive measures on
(X,M), v = v, + v, is the Lebesque decomposition of v relative to p, and
p: X —[0,00) is a measurable function such that dv, = pdu. If g : X — [0, 00)
is another measurable function such that gdp < dv, (i.e. [, gdp < v (B) for all
B e M), then g <p, u — a..e.

Proof. Let A € M be chosen so that p (A°) = 0 and vs (A) = 0. Then, for
all B e M,

/gdu=/ gduSV(BﬂA)=/ pdu=/pdu-
B BNA BNA B

So by the comparison Lemma [18.2) g < p. ]

Example 19.10. This example generalizes Example Again suppose
(2,B,{Bn},~,,P) is a filtered probability space and @ is any another
probability measure on (£2,8). By the Raydon-Nikodym Theorem for
each n we may write

dQ|g, = X,dP|s, +dR,

where R,, is a measure on (§2,8,) which is singular to P|g, and 0 < X,, €
L' (£2,B,, P) . In this case the best we can say in general is that X := {X,,} -,
is a positive supermartingale. To verify this assertion, for B € B,, we have

Q(B)=E[X,t11:B]+Rpt1(B) >E[X,41: B]|=E[Eg, (Xn+1) : B]

from which it follows that Eg, ( n+1) dP|p, < dQ|g, . So according to Propo-
smonu Eg, (Xn+1) < Xp, P —

It is often fruitful to view X,, as your earnings at time n while playing
some game of chance. In this interpretation, your expected earnings at time
n + 1 given the history of the game up to time n is the same, greater than,
less than your earnings at time n if X = {Xn}zozo is a martingale, submartin-
gale or supermartingale respectively. In this interpretation, martingales are fair
games, submartingales are favorable games, and supermartingales are unfavor-
able games.

Ezxample 19.11. Suppose at each time n, we flip a fair coin and record the value,
X, € {0,1}. Let us suppose that a gambler is going to bet one dollar between
flips that either a 0 or a 1 is going to occur and if she is correct she will be paid
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1 4+ « dollars in return, otherwise she loses his dollar to the house. Let us say
Y41 is the gambler’s prediction for the value of X,,4+1 at time n. Hence if we
let M,, denote the gamblers fortune at time n we have

Mn+1 =M, -1+ (1 + a) 1Yn+1:Xn+1'

Assuming the gambler can not see into the future, his/her prediction at time
n can only depend on the game up to time n, i.e. we should have Y, =
frt1(Xo, ..., Xp) or equivalently, Y, 41 is B, = o (Xo,. .., X,,) measurable. In
this situation {M,} -, is an adapted process and moreover,

E[Myi1|Bp) =E [M, =1+ (1+ ) ly,,,=x,1|Bn)

=M, -1+ (1 + a) E [1Y7L+1:Xn+1 |Bn}

1 1
:Mn—1+(1+a)§:Mn+§(a—l)

wherein we have used Exercise in the last line. Hence we see that {M,,}
is a martingale if & = 1, a sub-martingale of o > 1 and as supermartingale of
o<1

Exercise 19.1. Suppose that {X,,} -, are i.i.d. random functions taking val-
ues in a finite set, S, and let p(s) := P (X, =s) for all s € S and assume
p(s) > 0 for all s. As above let B,, := o (X1,...,X,) with By = {0, 2} and
suppose that a : S — R is a payoff function. Let Y,, be the predictions of a gam-
bler as to the value of X,, based on the values of {X1,...,X,_1},ie. Y, €S
is a B,,—1 — measurable random variable with the convention that By = {0, 2} .
Also let M,, be the gambler’s fortune at time n. Assuming the gambler always
wages one dollar and receives a pay off of 1+« (s) if Y;,41 = s = X,,4+1 for some
s € S, then

M1 =My, —1+ Z (1 +a (5)) 1Yn+1:S:Xn+1'
sES

Show {M,} is a martingale, submartingale, supermartingale, if o = 1;% >

%, or a < lp%p respectively.

Lemma 19.12. Let X := {X,,},~, be an adapted process of integrable random
variables on a filtered probability space, (2,B8,{Bn},~,.P) and let d, :== X,, —
Xn—1 with X_1 := EXy. Then X is a martingale (respectively submartingale
or supermartingale) iff E[dp+1|Brn] = 0 (E[dns1|Bn] > 0 or E[dp41|B,] <0
respectively) for all n € Ny.

! In more detail, o (s) = 1;(’;()5) for all s € S.
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Conversely if {d,},—, is an adapted sequence of integrable random vari-
ables and Xy is a By -measurable integral random wvariable. Then X, =
Xo + Z;;l d; is a martingale (respectively submartingale or supermartingale)
iff Eldn+1|Br] = 0 (E[dp+1|Br] > 0 or Eldn+1]|Bn] < 0 respectively) for all
n € N.

Proof. We prove the assertions for martingales only, the other all being
similar. Clearly X is a martingale iff

0=E[X,11|Br] — Xn =E[Xpnt1 — Xn|Bn] = E[dni1]|Bn] -
The second assertion is an easy consequence of the first assertion. ]

Example 19.13. Suppose that {Xn};'o:O is a sequence of independent random
variables, S, = Xo + -+ + X,,, and B, := 0 (Xo,...,Xn) = 0 (So,...,5n).
Then

E [Sn+1|3n} =E [Sn + Xn+1|Bn] =S, +E [Xn+1‘8n] =S5, +E [Xn+1] .

Therefore {S,,},~, is a martingale respectively submartingale or supermartin-
gale) iff EX,, = 0 (EX,, > 0 or EX,, < 0 respectively) for all n € N.

Ezample 19.14. Suppose that {Z,} ~, is a sequence of independent integrable
random variables, X,, = Zy...Z,, and B, = o0 (Zy,...,Z,). (Observe that
E|X,| = [TieoE|Zk| < o0.) If EZ, = 1 for all n then X is a martingale
while if Z,, > 0 and EZ,, <1 (EZ,, > 1) for all n then X is a supermartingale
(submartingale). Indeed, this follows from the simple identity;

E[Xpi1|Bn] = E X0 Zns1|Bn] = XnE [Zns1|Bn] = X - E [Zngi] as.

Proposition 19.15. Suppose that X = {Xn}zozo is a martingale and ¢ is a
convex function such that ¢ (X,) € L* for alln. Then ¢ (X) = {p (Xn)}oey is
a submartingale. If p is both also assumed to be increasing, it suffices to assume
that X is a submartingale in order to conclude that ¢ (X) is a martingale. (For
example if X is a positive submartingale, p € (1,00), and EX? < oo for all n,
then XP := {XP}> . is another positive submartingale.

Proof. When X is a martingale, by the conditional Jensen’s inequality

[L8.20,

¢ (Xn) = ¢ (Ep, Xni1) <Ep, [ (Xni1)]

which shows ¢ (X) is a submartingale. Similarly, if X is a submartingale and ¢
is convex and increasing, then ¢ preserves the inequality, X,, <Eg_ X, 1, and
hence

0 (Xn) <9 (Ep, Xnt1) <Eg, [p (Xnt1)]

so again ¢ (X) is a submartingale. ]
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220 19 (Sub and Super) Martingales

19.2 Decompositions

Notation 19.16 Given a sequence {Zy}r—, let AyZ == Zy, — Zy_y for k =
1,2,....

Lemma 19.17 (Doob Decomposition). To each adapted sequence,
{Z,},",, of integrable random variables has a unique decomposition,

Zn = M, + A, (19.3)

where {Mn}f;o is a martingale and A, is a predictable process such that Ag =
0. Moreover this decomposition is given by Ay = 0,

Ay = Ep,_, [AcZ] forn>1 (19.4)
k=1
and
n
M, = Z, — A, = Z, — ZEBH [ArZ] (19.5)
k=1
=Zo+ Y (2 —Ep,_,Z1) . (19.6)
k=1

In particular, {Z,},"_, is a submartingale (supermartingale) iff A, is increasing
(decreasing) almost surely.
Proof. Assuming Z, has a decomposition as in Eq. (19.3), then
]EB [An+1Z] == ]EBn [An+1M + An+1A] == An+1A (197)

n

wherein we have used M is a martingale and A is predictable so that
Ep, [Ant1M] = 0 and Ep, [A,114] = A,41A. Hence we must define, for
m>1,

Ap = A A= Ep,_, [ArZ]
k=1 k=1
which is a predictable process. This proves the uniqueness of the decomposition
and the validity of Eq. (19.4)).
For existence, from Eq. (19.4) it follows that
Eg, [Ani12] = Anj1A = Es, [Ani14].
Hence, if we define M,, := Z,, — A,,, then

Eg, [Ant1M] =Ep, [Ani1Z — Api1A] =0

n
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and hence {Mn}zozo is a martingale. Moreover, Eq. (19.6) follows from Eq.
(19.5)) since,

n

M, =2Zy+ Y (AwZ —Ep,_, [Ac2))
k=1

and

AyZ —Ep,_, |[AxZ) = Zk — Zk—1 — Bp,_, [Zk — Zk—1]
=2y — Zy-1— (Epy_, Zk — Zi—1) = Z — Eg,_, Zi.

Remark 19.18. Suppose that X = {X,,} >~ , is a submartingale and X,, = M, +
A, is it Doob decomposition. Then A, =7 lim,,_ A, exists a.s.,

EA, =E[X, — M,] =EX,, —EM, = E[X,, — X¢] (19.8)
and hence by MCT,
EA, =7 lim E[X, — X]. (19.9)

Hence if lim,, o E[X,, — Xo] = sup,, E [X,, — X] < o0, then EA, < oo and so
by DCT, A,, — A in L' (£2, B, P) . In particular if sup,, E | X,,| < co, we may
conclude that {X,} 7, is L (12, B, P) convergent iff {M,} ~ , is L' (12,8, P)
convergent. (We will see below in Corollary that X := lim,_ - X,
and My, := lim, ., M, exist almost surely under the assumption that
sup, E|X,,| < 00.)

Example 19.19. Suppose that N = {Nn}zo=0 is a square integrable martingale,
f.e. EN2 < oo for all n. Then from Proposition [19.15] X := {X,, = N2} 'is
a positive submartingale. In this case

Ep, , AkX =Ep,_, (Nf — Ni_y) =Ep,_, [(Nk — Np—1) (Ni + Ni—1)]
=Ep,_, [(Nr — Ng—1) (N — Ni—1)]
=Ep,_, (Nk — Nj—1)®

wherein the second to last equality we have used
E3k71 [(Nk — Nkfl) Nkfl] = NkflEB,%l (Nk - Nkfl) =0 a.s.

in order to change (Nj + Nj_1) to (N — Ni_1). Hence the increasing pre-
dictable process, A, in the Doob decomposition may be written as

Ap=> Es,_,AcX =) Ep,_, (AN)”. (19.10)

k<n k<n
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For the next result we will use the following remarks.

Remark 19.20. If X is a real valued random variable, then X = X+ — X,
[ X| =Xt + X", XT <|X|=2XT - X, so that

EX* <E|X|=2EX* — EX.
Hence if {X,,},~, is a submartingale then
EXT <E|X,| = 2EX} — EX, < 2EX} — EX,
from which it follows that

supEX, <supE|X,| < 2supEX," — EXj. (19.11)

Theorem 19.21 (Krickeberg Decomposition). Suppose that X is an in-
tegrable submartingale such that C := sup, E[X,]] < oo or equivalently

sup,, E | X,| < o0, see Fq. (19.11). Then
M, =7 lim E [XI'HB,L] exists a.s.,
p—o0
M = {M,} ", is a positive martingale, Y = {Y,} ~_ with Y, := X,, — M, is

a positive supermartingale, and hence X,, = M,, —Y,. So X can be decomposed
into the difference of a positive martingale and a positive supermartingale.

Proof. From Proposition|19.15|we know that X T = { X} is a still a positive
submartingale. Therefore for each n € N, and p > n,

Es, [X;_H] = EBWEBP [X+

Jr
p+1] > Ep, X, as.

Therefore ]EBHX;‘ is increasing in p for p > n and therefore, M, :=
lim, .o Ep, [X,f] exists in [0, 00]. By Fatou’s lemma, we know that

EM, <liminfE [Eg, [X,/]] <liminfE [X[] =C < o0

p—00 pP—0Q

which shows M is integrable. By cMCT and the tower property of conditional
expectation,

]EBn M"""l = EBn pll{Iolo EBH+1 [X]j] = pli)Holo EBnEBnJrI [X;]

= lim Ep, [X;] = M, a.s.,

p—0o0

which shows M = {M,,} is a martingale.
We now define Y,, := M,, — X,,. Using the submartingale property of X+
implies,
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Y, =M, - X, = lim Eg_ [X]ﬂ — X, = lim Eg_ [X]ﬂ —X;f—l—X;
p—00 p—00

= lim Eg, X,/ - Xf]+ X, >0as.

p—00
Moreover,
E [Yn+1|Bn] =E [Mn+1 - Xn+1|Bn] = Mn —E [Xn+1|8n] > Mn - Xn = Yn

wherein we have use M is a martingale in the second equality and X is sub-
martingale the last inequality. [ ]

19.3 Stopping Times

Definition 19.22. Again let {B,.},_ be a filtration on (£2,B) and assume that
B=Bo = ViloBn = 0 (UploBy) . A function, 7: 2 — N := NU{0,00} is
said to be a stopping time if {T <n} € B, for all n € N. Equivalently put,

7 : 82 — N is a stopping time iff the process, n — 1.<, is adapted.

Lemma 19.23. Let {B,}.—, be a filtration on (2,B) and 7 : £ — N be a
function. Then the following are equivalent;

1. 7 15 a stopping time.

2.{r <n} e B, foralln € Ny.
3A{r>n}={r>n+1} € B, for all n € Ny.
4. {T =n} € B, for all n € Ny.

Moreover if any of these conditions hold for n € Ny then they also hold for
n = oo.

Proof. (1. <= 2.) Observe that if {r <n} € B, for all n € Ny, then
{r <oo} = U2, {7 <n} € By and therefore {T =00} = {7 <00}’ € By
and hence {7 < 0o} = {7 < 00} U{T = o0} € B. Hence in order to check that
T is a stopping time, it suffices to show {7 < n} € B, for all n € Ny.

The equivalence of 2., 3., and 4. follows from the identities

{r>n}={r<n},
{T:n}:{Tgn}\{Tgn—l}, and
{r<n}=Ui_o{r =k}
from which we conclude that 2. — 3. = 4. = 1. ]
Clearly any constant function, 7 : {2 — N, is a stopping time. The reader

should also observe that if B, = o (Xo,...,X,), then 7: 2 — N is a stopping
time iff, for each n € Ny there exists a measurable function, f,, : R**! — R such

that 1;—ny = fn (Xo,...,Xy). Here is another common example of a stopping
time.
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222 19 (Sub and Super) Martingales

Ezample 19.24 (First hitting times). Suppose that X := {Xn}zozo is an adapted
process on the filtered space, (£2,B,{B,},.,) and A € Bg. Then the first
hitting time of A,

T:=inf{n € Ng: X, € A},

(with convention that inf () = co0) is a stopping time. To see this, observe that
{r=n}={Xo€ A°,...,X,,_1 € A° X,, € A} € 0 (Xo,...,X,) C B,.
More generally if o is a stopping time, then the first hitting time after o,
T:=inf{k>0: X, €A},
is also a stopping time. Indeed,

{r=n}={c<n}n{X,¢A,...,X,1¢AX,cA}
:Uogkgn{azk‘}ﬂ{Xk¢A,...,Xn,1¢A,Xn€A}

which is in B,, for all n. Here we use the convention that
{Xp ¢ A,.... X, 1 ¢ A X, e A} ={X,, € A} if k=n.

On the other hand the last hitting time, 7 = sup{n € Ny : X,, € A}, of a
set A is typically not a stopping time. Indeed, in this case

{’T = TL} = {Xn € A,XnJrl ¢ A7Xn+2 ¢ A,} S O'(Xn,Xn+1,...)
which typically will not be in B,.

Proposition 19.25 (New Stopping Times from O1d). Let (2,B8,{B,} )
be a filtered measure space and suppose o, T, and {Tn}zozl are all stopping times.
Then

1.7 ANo, TV o, T+ o are all stopping times.
2.If T, T Too OT Tk | Too, then T is a stopping time.

3. In general, sup, T, = limpcomax{m, ...,7%} and infyT, =
limg oo min{7 ..., 7%} are also stopping times.
Proof.

1. Since {rAo>n} ={r>ntnN{oc>n} € By, {rvo<n} = {r<n}n
{0 <n} € B, for all n, and

{t+o=n}=Ul_o{r=ko=n—-k}eB,

for all n, 7 Ao, 7V o, T 4 o are all stopping times.
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2. If 7% 1 Too, then {7oc <n} = Ng{mx <n} € B, and so 7 is a stopping
time. Similarly, if 7 | Teo, then {70 > n} = N {7 > n} € B, and so 7
is a stopping time. (Recall that {7, > n} = {rc > n+1}.)

3. This follows from items 1. and 2.

Lemma 19.26. If 7 is a stopping time, then the processes, fn = l{;<n}, and
fn = l{z=ny are adapted and f, := 1,y is predictable. Moreover, if o and
T are two stopping times, then f, := locn<, s predictable.

Proof. These are all trivial to prove. For example, if f,, := lo<p<-, then f,
is B,,_1 measurable since,

{o<n<ti={o<nin{n<r}={o<ntn{r<n} €B,_1.

Notation 19.27 (Stochastic intervals) Ifo,7: 2 — N, let
(0,7]:={(w,n) € 2xN:o(w)<n<7(w)}
and we will write 1(4 ) for the process, 15<n<s.

Our next goal is to define the “stopped” o — algebra, B,. To motivate the
upcoming definition, suppose X,, : 2 — R are given functions for all n € Ny,
B, =0 (Xo,...,Xn),and 7: 2 — Ny is a B. — stopping time. Recalling that
a function Y : 2 — R is B, measurable iff Y (w) = f,, (Xo (w),... X, (w)) for
some measurable function, f, : R**! — R, it is reasonable to suggest that Y
is B, measurable iff Y (w) = fr) (Xo (W), ... X;@) (w)), where f, : R"™! —
R are measurable random variables. If this is the case, then we would have
1r=nY = fn (Xo,...,X,) is B,, — measurable for all n. Hence we should define
A C 2 to bein B, iff 14 is B, measurable iff 1,_,,14 is I3,, measurable for all
n which happens iff {7 =n} N A € B, for all n.

Definition 19.28 (Stopped o — algebra). Given a stopping time T on a
filtered measure space (£2,B8,{Bn}or) with Boo := V2B, 1= 0 (U3L(B,), let

B ={ACQ:{r=n}NAe€B, foralln < co}. (19.12)

Lemma 19.29. Suppose o and T are stopping times.

1. A set, AC Q2 isin B iff An{r <n} € B, for alln < co.
2. B; is a sub-o-algebra of By.
3. If o <7, then B, C B-.
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Proof. 1. Since

ANn{r <n} =Up<pn [AN{r <k}] and
An{r=n}=An{r<n}\[ANn{r <n-1}],

it easily follows that A C 2 isin B, ifft AN{r <n} € B, for all n < oco.
2. Since 2N {r <n} = {r <n} € B, for all n, it follows that 2 € B;. If
A € B;, then, for all n € Ny,

An{r<n}={r<n}\A={r<n}\[AN{r <n}]| € B,.
This shows A¢ € B,. Similarly if {A4};—, C B, then
{Tr<n}Nn(M1A4r) =N, {7 <n}tnNA;) € B,

and hence N$2 ; Ay, € B;. This completes the proof the B, is a o — algebra. Since
A=An{r < oo}, it also follows that B, C B.

3. Now suppose that o < 7 and A € B,. Since AN{o < n} and {7 < n} are
in B,, for all n < oo, we find

An{r<n}=[An{oc<n}In{r<n}eB,Vn<x
which shows A € B.. [

Proposition 19.30 (B, — measurable random variables). Let
(02, B,{B,},>,) be a filtered measure space. Let T be a stopping time
and Z : {2 — R be a function. Then the following are equivalent;

1. Z is B; — measurable,
2. li7<n)Z is By, — measurable for all n < oo,
3. Lir—n) Z is By, — measurable for all n < oco.
4. There exists, Y, : £2 — R which are B, — measurable for all n < oo such
that
Z=Y, =Y lir—pYa.
neN

Proof. 1. = 2. By definition, if A € B;, then 1{;<,31a = 1{;<nyjna
is B,, — measurable for all n < co. Consequently any simple B, — measurable
function, Z, satisfies 1{;<,1Z is B, — measurable for all n. So by the usual
limiting argument (Theorem , it follows that 1¢,<,,Z is B, — measurable
for all n for any B, — measurable function, Z.

2. = 3. This property follows from the identity,

l{T:n}Z = 1{T§n}Z - 1{T<n}Z

3. = 4. Simply take Y,, = 11 Z.
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4. = 1.Since Z = Y, . 1{r=n} Y, it suffices to show 1.} Y}, is B, —
measurable if Y}, is B,, — measurable. Further, by the usual limiting arguments
using Theorem [6.34] it suffices to assume that Y,, = 14 for some A € B,. In
this case 1{—,}Yn = 1an{r=n}. Hence we must show AN {7 =n} € B, which
indeed is true because

- o 0eB,  ifk#n
Am{T_n}m{T_k}_{Aﬁ{rzn}el’j’kifk:n'

Alternatively proof for 1. =— 2. If Z is B, measurable, then {Z € B}nN
{r <n} eB, forall n < co and B € Bg. Hence if B € Bg with 0 ¢ B, then

{1p<mZzeB}={ZeB}yn{r<n}eB,foraln
and similarly,
{1remZ =0} = {1,y Z #0} ={Z £ 0} N {r < n} € B, for all n.

From these two observations, it follows that { lir<myZ €B } € B, for all B € Bg
and therefore, 1(,<,1Z is B,, — measurable. [

Lemma 19.31 (B, — conditioning). Suppose o is a stopping time and Z €
LY (02,B,P) or Z >0, then

E(Z|Bs] = Y 1o=nE[Z|B.] =Y, (19.13)
n<oo
where -
Y, :=E[Z|B,] for alln € N. (19.14)

Proof. By Proposition [19.30} Y, is B, — measurable. Moreover if Z is inte-
grable, then

> E[lgmny [Val] = Y Elomny [E[Z]B,]|

n<oo n<oo

> E[1{o—nyE[1Z]|Ba]]

n<oo
> E[E 1oy 1211B0]]
n<oo

=Y E[l{o—ny |Z|] =E|Z| < o0 (19.15)

n<oo

IN

and therefore
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E|Yo|=E|) [lo-mYa]

n<oo
<Y E[lfgeny |Yal] E|Z] < o0
n<oo
Furthermore if A € B,, then

E(Z: A=) E[Z:An{oc=n}]= ) E[Y,:AN{o=n}

n<oo n<oo

S E[LommyYn t Al =E | ) LgumyYn: A

n<oo n<oo

=E[Y, : A],

wherein the interchange of the sum and the expectation in the second to last
equality is justified by the estimate in [19.15] or by the fact that everything in
sight is positive when Z > 0. [ ]

Exercise 19.2. Suppose o and 7 are two stopping times. Show;

1.{o <7},{oc=7}, and {o < 7} are all in B, N B,
2. Bopnr = B, N B-,

3. Boyr =By V B, :=
4. (Bg){UST} C Bopr-

Recall that

o (B, UB;), and

(Bo) o<y ={AN{o<7}: A€ Bs}.

Exercise 19.3 (Tower Property II). Let X € L' (2,B,P) or X : 2 —
[0,00] be a B — measurable function. Then given any two stopping times, o
and 7, show

Ep Ep, X =Eg Ep, X =Ep_.. X. (19.16)

oNAT

(Hints: 1. It suffices to consider the case where X > 0. 2. Make use of Exercise
Lemma and the basic properties of conditional expectations. If you
want to be sophisticated you may also want to use the localization Lemma[I8.17]
— but it can be avoided if you choose.)

19.4 Stochastic Integrals, Optional Stopping, and
Switching

Notation 19.32 Suppose that {u,} —, and {z,}., are two sequences of
numbers, let udx denote the sequence of numbers defined by
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(u - A:E Zuj — T 1) Zujij forn > 1.

Jj=1

For a gambling interpretation of (u-Ax), , let x; represent the price of
a stock at time j. Suppose that you, the investor, then buys u;_; shares at
time 7 — 1 and then sells these shares back at time j. With this interpretation,
uj_14A;x represents your profit (or loss if negative) in the time interval form
j—1toj and (u- Az), represents your profit (or loss) from time 0 to time n.
By the way, if you want to buy 5 shares of the stock at time n = 0 and then
sell them all at time n, you would take uy =5 - 1p<p.

Ezample 19.33. Suppose that 0 < ¢ < 7 where 0,7 € Ny and let u,, := lo<n<r
Then

00
U Al‘ Zla<3<7 xj—l) :Zla<j§'r/\n (l'j _1'3‘—1)

= Tran — ToAn-

Proposition 19.34 (The Discrete Stochastic Integral). Let X = {X,,},~,
be an adapted integrable process, i.e. B|X,| < oo for all n. If X is a martin-
gale and {U,},~_, is a predictable sequence of bounded random variables, then
{(U-AX),} 7 is still a martingale. If X := {X,} ~ ) is a submartingale (su-
permartingale) (necessarily real valued) and U, > 0, then {(U - AX) }>° | is a
submartingale (supermartingale).

Conversely if X is an adapted process of integrable functions such that
E[(U-AX),] = 0 for all bounded predictable processes, {Uy,} >~ , then X is
a martingale. Similarly if X is real valued adapted process such that

E[(U-AX),] (19.17)

VAL IA
o

for all n and for all bounded, non-negative predictable processes, U, then X is
a supermartingale, martingale, or submartingale respectively.

Proof. For any adapted process X, we have

E[(U-AX),,, By =E[(U-AX), + Uni1 (Xns1 — X,) |Ba]
= (U AX), + UntrE[(Xog1 — X0) [Ba] . (19.18)

The first assertions easily follow from this identity.

Now suppose that X is an adapted process of integrable functions such
that E [(U - AX), ] = 0 for all bounded predictable processes, {U,} - . Taking
expectations of Eq. then allows us to conclude that
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E[Upt1E [(Xnt1 — Xn) [Ba]] =

for all bounded B, — measurable random variables, U, ;. Taking U,1;1 =
segn(E [(Xnt1 — X») |By]) shows |[E[(Xp41 — Xn) |Br]| = 0 a.s. and hence X is
a martingale. Similarly, if for all non-negative, predictable U, Eq. holds
for all n > 1, and U,, > 0, then taking A € B,, and Uy = i n+114 in Eq. (?7)
allows us to conclude that

E[Xpi1—Xn: A =E [(U - AX)

n+1] 0’

IV IA

i.e. X is a supermartingale, martingale, or submartingale respectively. [

Ezample 19.35. Suppose that {X,,}~ , are mean zero independent integrable
random variables and f, : R™ — R are bounded measurable functions. Then

Yo=Y fu(Xorooos Xuo1) (X — Xoon) (19.19)
j=1

defines a martingale sequence.

Notation 19.36 Given an adapted process, X, and a stopping time T, let
X7 = Xrpn. We call X™:={X]},°, the process X stopped by 7.

Theorem 19.37 (Optional stopping theorem). Suppose X = {X,,},2 is
a supermartingale, martingale, or submartingale and T is a stopping time, then
X" isa {Bn}zozo - supermartingale, martingale, or submartingale respectively.
This valid if either E|X,,| < oo for all n or if X, >0 for all n.

Proof. First proof. Since 1,<, X, = > /_ 1,=,X,, is B, measurable,
{r >n} € B,, and

X‘r/\(n+1) = 17’§an + 17‘>an+17

we have
EBn [XT/\(n+1)] :1T§nXT + 1'r>nEBan+1

ITSTLXT + 1rsnXn = Xonn.

VAl IA

Second proof in case E|X,| < co. Let Uy := lo<p<, for k = 1,2,....
Then U is a bounded predictable process and

(U-AX), =) lockr A X = Y A X = Xonn — Xo.

k<n 0<k<tTAN

Therefore, by Proposition [19.34] X7 = X, 4 (U - AX),, is (respectively) a su-
permartingale, martingale, or submartingale. [ ]
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Theorem 19.38 (Optional sampling theorem I). Suppose that o and T
are two stopping times and T is bounded, i.e. there exists N € N such that
T <N <ooas. If X ={X,},2, is an integrable supermartingale, martingale,
or submartingale, then X, is integrable and

<
E[X,;|Bs] N Xonr a.5. (19.20)

respectively from top to bottom. Moreover, Eq. (19.20) is valid with no integra-
bility assumptions on X provided X,, > 0 a.s. for all n < co.

Proof. Since
Xl = > LX< )0 Lk [Xil < > Xk,
0<k<rt 0<k<r 0<k<N

if X,, € L' (2, B, P) for all n we see that E | X[ < 37 oy E[Xk| < co. Hence
it remains to prove Eq. ( ) in case X,, > 0 or X,, € L* (12, B, P) for all n.
According to Lemma
E[X,|B,] Zla WE[X,|B,]. (19.21)

On the other hand we know X7 is a supermartingale, martingale, or submartin-
gale respectively and therefore, for any n < co and m > max (n, N) we have

E[X-|Bn] = E[X],[Bn]

VI IA

T
X, = TAN:

n
Combining this equation with Eq. (19.21f) shows
X |B Z ]-a n 'r/\n - TNO*
Alternative proof in case for X,, € L' (2,B,P). Let A € B, and U,, :=
14 - 1lo<n<r. Then U is predictable since
An{o<n<t}=(An{o<n})N{n <7} € B,_; for all n.
Let us also observe that

( AX Z 1A 10<k<TAkX Z 1A : 1<7'/\7'<k§'r/\nAk)(
k<n

= 1A (XT/\TL - XO'/\T) for all n 2 1.
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226 19 (Sub and Super) Martingales
By Proposition[19.34} (U - AX) is a supermartingale, martingale, or submartin-
gale respectively and hence

<
E[1a(Xr — Xonr)] =E[1a (Xoan — Xonr)] = E[(U - AX) \] = 0 respectively.

Since A € B, is arbitrary and X,a, is B, — measurable (in fact B, — mea-
surable), Eq. (19.20) has been proved. [ |

Lemma 19.39 (Switching Lemma). Suppose that X and Y are two super-
martingales and v is a stopping time such that X, >Y, on {v < oo}. Then

Xy ifn<v

Zn = 1n<l/Xn + 17LZUYn = { Y. an >
n Z

is again a supermartingale. (In short we can switch from X toY at time, v,
provided Y < X at the switching time, v.) This lemma is valid if X,,,Y, €
L' (2,B,,, P) for all n or if both X,,Y,, > 0 for all n. In the latter case, we
should be using the extended notion of conditional expectations.

Proof. We begin by observing,
Znt+1 = lnt1<coXnt1 + lngi>0Ynt
= lnt1<oXng1 + Lz Ynt1 + Lomns1 Yoqa

S 1n+1<VXn+1 + lnEUYn—&-l + 1V:n+1Xn+1
= 1n<VXn+1 + 1n2vYn+1~

Since {n < v} and {n > v} are B,, — measurable, it now follows from the super-
martingale property of X and Y that

Eg, Zn+1 < Eg, [Incv Xnt1 + LyzoYnqi]
= 1n<uEBn [XnJrl] + ]-nZvEBn [Yn+1}
< 17L<VX7L + 1nZUYn = 4n.

19.5 Maximal Inequalities

For a process, X = {X,,},2, let X% :=max {|Xo|,...,|Xn|}.

Proposition 19.40 (Maximal Inequalities of Bernstein and Lévy). Let
{X,} be a submartingale on a filtered probability space, (2,B,{Bn},—,,P).
Therﬂ for anya >0 and N € N|

2 The first inequality is the most important.
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aP <maXXn > a) <E {XN : max X, > a} <E [XJ'H , (19.22)
n<N n<N
1 < — < : mi —a| — .
aP <Tr%1]1\17 X, < a) <E {XN Ircléljl\lf X > a} E [Xo] (19.23)
<E[X}] —E[Xo], (19.24)
and
aP (X} > a) <2E [ X} ] —E[Xo]. (19.25)

Proof. Initially let X be any integrable adapted process and 7 be the
stopping time defined by, 7 :=inf {n : X,, > a}. Since X; > a on

{r<N}= {m<aJ>V<Xn > a} ) (19.26)

we have

aP (m<a§[<Xn 2@) =E[a:7<N]<E[X,:7<N]
=EXy:7T<N]|-E[Xy—-X;:7<N]
:E[XNITSN]—]E[XN—XT/\N]. (1927)
Let me emphasize again that in deriving Eq. (19.27)), we have not used any
special properties (not even adaptedness) of X.
If X is now assumed to be a submartingale, by the optional sampling Theo-
rem [19.38) Ep_, v XN > X, an and in particular E[Xy — X, An] > 0. Combin-

ing this observation with Eq. (19.27)) and Eq. (19.26]) gives Eq. (19.22]).
[19.27

Secondly we may apply Eq. (19.27) with X,, replaced by —X,, to find
aP (min X, < —a) =aP (— min X,, > a) =aP (max(—Xn) > a>
n<N n<N n<N
S—E[XNZTSN]—FE[XN—XT/\N] (1928)
where now,
T:=inf{n:-X, >a} =inf{n: X, < —a}.
By the optional sampling Theorem [19.38] E [X,,n — Xo] > 0 and adding this
to right side of Eq. ((19.28]) gives the estimate

aP <min Xy < —a) <-E[Xy:7 <N+ E[XN — Xoan] + E[Xoan — Xo

n<N

SE[XN—X()]—E[XNZTSN]
=E[Xy:7>N]—-E[X(]

=E |:XN : ]EIil]I\}Xk > —a —E[Xo]
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which proves Eq. (19.23)) and hence Eq. (19.24]). Adding Egs. (19.22)) and (|19.24))
gives the estimate in Eq. (19.25)). [

Remark 19.41. Tt is of course possible to give a direct proof of Proposition [19.40
For example,

M=

E XN:m<aIz[<Xn2a]: EXy:X1<a,...,Xp-1 <a,Xi>d

k=1

> E[Xk:Xl<a,...,Xk,1<a,XkZa]

Y

M= 1=

E[a:X1<a,...,Xk,1<a,Xk2a]

o
Il
—

aP (maxXn > a)
n<N

which proves Eq. (19.22]).

Ezample 19.42. Let {X,,} be a sequence of independent random variables with
mean zero, S, = X1 + -+ + X,,, and S} = max;<,|S;|. Since {S,} , is
a martingale and {|S,|"} —_, is an (possibly extended) submartingale for any
p € [1,00). Therefore an application of Eq. of Proposition show

* * 1 *
P(Sy=a)=P(5F >aP) < JEHSNF : Sy > al.
When p = 2, this is Kolmogorov’s Inequality, see Theorem [12.28

Lemma 19.43. Suppose that X and Y are two non-negative random variables
such that P(Y > y) < %E [X :Y >y] for ally > 0. Then for all p > 1,

P p
EY? < <p_1> EX?. (19.29)

Proof. We will begin by proving Eq. under the additional assump-
tion that Y € LP (§2, B, P) . Since
EY? = pE /OOO ly<y -y dy = p/ooo Ely<y] y"~'dy
—p/OOOP(YZy)-y”1dy§p/oooll}1E[X:Y2y]-y”1dy
-k | T Xlyer gy = LR XY
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Now apply Hélder’s inequality, with ¢ = p (p — 1)71 , to find
_ _ 1
E[XYP] <X, [P, = 1XI], - [E]y e

Combining thew two inequalities shows and solving for [|Y|[, shows [[Y|, <
527 11X ||, which proves Eq. under the additional restriction of Y being
in LP (£2,B, P).

To remove the integrability restriction on Y, for M > 0let Z :=Y A M and
observe that
1

EX:Y>y=-E[X:Z>y]ify<M

P(Zzy) =P 2y < y

< | =

while 1
P(Z>y)=0=-E[X:Z>y] ify>M.
Y

Since Z is bounded, the special case just proved shows

E[(Y A M)P] =EZ? < (ppl)pﬂ-zxp.

We may now use the MCT to pass to the limit, M T oo, and hence conclude
that Eq. (19.29)) holds in general. ]

Corollary 19.44 (Doob’s Inequality). If X = {X,,} -, be a non-negative
submartingale and 1 < p < oo, then

p
EXY < (pl) EX?,. (19.30)

Proof. Equation follows by applying Lemma [19.43] with the aid of
Proposition [19.40] [
Corollary 19.45 (Doob’s Inequality). If {M, } _ is a martingale, then for
all a > 0,

1 1
P(My > a) < TE[M]y: My > < E[My]  (1931)

and »
EM:P < <p1> E|My|. (19.32)
-

Proof. By the conditional Jensen’s inequality, it follows that X,, := |M,|

is a submartingale. Hence Eq. (|19.31) follows from Eq. (19.22)) and Eq. ((19.32)
follows from Eq. (19.30)). [
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228 19 (Sub and Super) Martingales

Theorem 19.46 (Supermartingale maximal inequality). Let X be a pos-
itive supermartingale (in the extended sense) and a € By with a > 0, then

aP [sup X, > a|BO} <aAXo
and moreover
P {supX = oo|Bo] =0 on {Xg < o0}.
In particular if Xo < 0o a.s. then sup,, X, < 00 a.s.
Proof. Let v :=inf {n : X,, > a} which is a stopping time since,
{v<n}={X, >a} € B, for all n.

Since X, > a on {v < oo} and Y,, := a is a supermartingale, it follows by the
switching Lemma [19.39| that

Zn = lpcyXn + Ip>pa 2 100
is a supermartingale (in the extended sense). In particular it follows that

GEBO ].nZV = ]EBO Zn S Z() = ].0<VX0 =+ 1,,:0(1
= 1x,<aXo + 1x,>0a = a A Xg.

Using cMCT, we may now let n — oo in order to conclude,
aP [suan > aBo] =aP[v < oo|By] <aA Xy.
n

For the last assertion, take a > 0 to be constant in the above equation and then
use the cDCT to let a T co to conclude

X
P {Suan = ooBo] = lim P [suan > a|BO} <lim1A 20 - 1xy=oo-

n afoo n aloo a
Multiplying this equation by 1x,<co and then taking expectations implies

E [lsup71 Xn:oong<oo] =E [1X0:001X0<oo] =0

which implies lsup, X, =c0lXo<c0 = 0 a.s., i.e. sup,, X, < 00 a.s. on {Xy < oo} .
]
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Given a function, Ng3n — X, € Rand —co < a < b < 00, let

70=0, m =inf{n>7: X, <a}
m=inf{n>m:X, >0}, s:=inf{n>mn:X, <a}

Top = inf {n > 191 : X, > b}, Topt1 :=inf{n > myp : X,, <a} (19.33)

with the usual convention that inf () = oo in the definitions above, see Figures
and Observe that 7,41 > 7, + 1 for all n > 1 and hence 7, > n —1
for all n > 1. Further, for each N € N let

U (a,b) = max {k : 7o, < N}
be the number of upcrossings of X across [a, ] in the time interval, [0, N].

Lemma 19.47. Suppose X = {X,,},— is a sequence of extended real numbers
such thatiUO)g (a,b) < oo for all a,b € Q with a < b. Then X = lim, o X,
exists in R.

Proof. If lim,, .. X,, does not exists in R, then there would exists a,b € Q
such that
liminf X,, < a < b < limsup X,

n—oo n—oo

and for this choice of a and b, we must have X,, < a and X,, > b infinitely
often. Therefore, UZX (a,b) = oco. |

Theorem 19.48 (Dubin’s Upcrossing Inequality). Suppose X = {X,,}
is a positive supermartingale and 0 < a < b < co. Then

P (UX (a,b) > k|Bo) < (%)k (1 A )io) Cfork>1 (19.34)

and U (a,b) < 00 a.s. and in fact

E [UX (a,b)] < a

_b/a—lzb—a<oo'

Proof. Since
UX (a,b) = Ux'* (1,b/a)

it suffices to consider the case where a = 1 and b > 1. Let 7,, be the stopping
times defined in Eq. (19.33) with a =1 and b > 1, i.e.
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Positive Martingale Path

To b N Tl

Fig. 19.1. A sample path of a positive martingale with crossing levels, a = 1 and
b = 2 marked off.

T0=0, m=inf{n>71:X, <1}
p=inf{n>m:X,>b}, s:=inf{n>mn:X, <1}

Tor = 1inf{n > mop_1 : X, > b}, Topt1 :=inf{n > mp: X, <1},

see Figure [19.1}

Let £ > 1 and use the switching Lemma [19.39] repeatedly to define a new
positive supermatingale Y;, = v, (see Exercise below) as follows,
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Yék) = ]-n<1'1 + 1T1Sn<‘r2Xn
+ blr2§n<7'3 + bXn173§n<7'4

+ b217—4§n<7'5 + b2Xn1'r5§n<-rG

k—1 k—1
+b 17‘21@72S7‘L<T2k71 +b Xn]‘7'2k—1 <n<T2k

+ 01, <n- (19.35)

Since E [Y,,|Bo] < Yp ass., Y, > bk172k§n7 and
Yo = lo<r, + 1n=0X0 = 1x,>1 + 1x,<1X0 = 1 A Xo,
we may infer that
VP (rar < n|Bo) = E [b¥1,,,<n|Bo] <E[Y,|Bo] < 1A Xp as.

Using cMC'T, we may now let n — oo to conclude
1
bk:

which is Eq. (19.34)). Using ¢cDCT, we may let k 1 oo in this equation to discover
P(UZ (1,b) = 00|By) = 0 a.s. and in particular, UL (1,b) < oo a.s. In fact we
have

P (UX (1,b) > k|By) < P (71, < 00|Boy) < — (1A Xo) as.

=y

E[US(1,0)] = iP(Ui.S (1,b) > k) < iﬂi [ik <1AX0)]

Exercise 19.4. In this exercise you are asked to fill in the details showing
Y, in Eq. (|19.35|) is still a supermartingale. To do this, define Y,Ek) via Eq.
(19.35)) and then show by induction making use of the switching Lemma [19.39)]
twice to show Yékﬂ) is a submartingale under the assumption that Y}Sk) is a
submartingale. Finish off the induction argument by observing that the constant

process, U, :=1 and V,, = 0 are supermartingales such that U,, =1>0= 1V,
on {1 < oo}, and therefore by the switching Lemma [19.39

szl) = 10§n<7'1 Un + ]-7'1 SnVn = 10§n<7'1

is also a supermartingale.
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230 19 (Sub and Super) Martingales

Corollary 19.49 (Positive Supermartingale convergence). Suppose X =
{Xn},2, is a positive supermartingale (possibly in the extended sense), then
Xoo = lim,, o X,, exists a.s. and we have

E [Xo|Bn] < X, for alln € N. (19.36)

In particular,
EX, <EX, <EXq for alln < co. (19.37)

Proof. The set,
Q0 :=N{UZ (a,b) < oco:a,beQ with a < b},

has full measure (P (%) = 1) by Dubin’s upcrossing inequality in Theorem

19.48] So by Lemma [19.47] for w € 2y we have X (w) = lim,— 00 X5 (w)
exists in [0,00]. For definiteness, let Xoo = 0 on 5. Eq. (19.36) is now a
consequence of cFatou;

E[Xs|B,] = E [ lim Xm\Bn} < liminf E [X,,|Bo] < liminf X, = X, as.
m—00 m—0o0 m—00

The supermartingale property guarantees that EX,, <EX for all n < co while

taking expectations of Eq. (19.36) implies EX,, < EX,,. ]

Theorem 19.50 (Doob’s Upcrossing Inequality — buy low sell high).
If{X,}.2, is a submartingale and —co < a < b < oo, then for all N € N,

E[Ux (a,b)] < % [E(Xy —a), —E(Xo—a)

J.
Proof. We first suppose that X,, > 0, a =0 and b > 0. Let

70=0, n =inf{n>71:X, =0}

=inf{n>m:X, >b}, 3:=inf{n>mn:X, =0}

Tor = inf{n > mop_1 : X, > b}, Topq1 :=inf {n > 7 : X,, =0}

a sequence of stopping times. Suppose that N is given and we choose k such
that 2k > N. Then we know that 755, > N. Thus if we let 7/, := 7, A N, we
know that 7,, = N for all n > 2k. Therefore,

2k
XNfXO:Z(X ~ X, 1)
n=1 .
= Z ( Ton T2n—1> + Z (X‘rén 1 XT£71—2)

n=1
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Fig. 19.2. A sample path of a positive submartingale along with stopping times 72;
and 7241, successive hitting times of 2 and 0 respectively.

which upon taking expectations implies

EXy —EX, = zk:E(Xfén - X ) Ek: ( i XTQH)'

n=1

2n—1

By the optional sampling theorem, we know that E (XT/7 — Xféniz) > 0and

by construction,

ZE( Ton Tén—l) ZbUZ)V( (b)
and hence we may conclude that
EXy —EXy > bEUR (b).

If X is a general submartingale and —oo < a < b < oo, we know by Jensen’s
inequality that (X,, —a) is still a sub-martingale and moreover
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U (a,b) = UK+ (0,b— a)
and therefore
(b—a)E [UX (a,b)] = (b— a)E [U<X*a>+ (0,6 — a)}
<E(Xy-—a), —E(Xo—a),

]

It is worth contemplating a bit how is that E (XTZ;%1 — Xfén,fz) > 0 given

that are strategy is to buy high and sell low. On the {72,-1 < N}, X,, |, —
X < 0 — b= —b and therefore,

T2n—2

0 <E (XT/ ~ X, )
2n—1 2n—2

=B (X = Xy i mon 1 SN)+E (X | =Xy 701 > N)

-1 Ton—2

2

<~ bP(Ton1 < N)+E (XN — Xy i Tonn > N) .

Therefore we must have
E (XN — Xrpp_oaN : T2n—1 > N) > bP (T2n—1 < N)

so that X must be sufficiently large sufficiently often on the set where 75, _1 >
N.

Corollary 19.51. Suppose {Xn}ff:o is an integrable submartingale such that
sup, EX;F < oo (or equivalently C := sup, E|X,| < oo, see Remark [19.20),
then Xoo := lim,, o X,, exists in R a.s. and moreover, Xo, € L' (2,8, P).

Proof. For any —o0 < a < b < o0, by Doob’s upcrossing inequality (Theo-

rem [19.50) and the MCT,

1
b—a

E[Ufi(a,b)}g supE (Xy —a), —E(Xo—a), | < oo
N

where
UX (a,b) := lim UZ (a,b)
N—oo

is the total number of upcrossings of X across [a,b]. In particular it follows
that
2 ::ﬂ{Ug (a,b) < c0:a,beQ with a < b}

has probability one. Hence by Lemma [19.47, for w € 2y we have X, (w) :=
lim,, 00 X, (w) exists in R. By Fatou’s lemma we know that
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E[|X|] <E {hminf |Xn\] <liminfE[|X,|] < C < « (19.38)

and therefore that X, € R a.s.

Second Proof. We may also give another proof based on the Krickeberg
Decomposition Theorem [I9.21] and the supermartingale convergence Corollary
Indeed, by Theorem [19.21] X,, = M,, —Y,, where M is a positive martin-
gale and Y is a positive supermartingale. Hence by two applications of Corollary

we may conclude that

Xoo = nl;rr;o X, = nlirr;o M, — nlirr;o Y,
exists in R almost surely. ]
Suppose now that {B,, : n <0} is a reverse filtration so that --- C B_y C
B_1 C By and {Xn};:a is a reverse submartingale, E [X,,, — X,|B,] > 0 for
all m > n. Observe that EX,, > EX,, for m > n, so that EX_,, | as n T also
observe that (X,mX,(n,l)7 . ,X,hXo) isaB_ ., CB_(,_1)C--CB.1C
By submartingale.

Theorem 19.52 (Backwards Submartingale Convergence).  Let
{B, :n <0} be a reverse filtration, {X,}, 2, a backwards submartingale.
Then Xoo = lim,, o X,, exists a.s. in {—oo} UR and XTI, € L*(2,B,P). If
we further assume that

Ci= lim_EX, = inf EX, > —oc, (19.39)
then {X,}, 2, uniformly integrability and hence Xoo € L'(£2,B,P) and
lim, . E|X,, —» Xo|=0.

Proof. The number of upcrossings, U (X=X (o1 X1, Xo0) (a,b) and
U(Xo X1 X1y X—n) (a,b) differ by at most one. Therefore,
(b—a)E [U(Xo,x_l,...,xfwl),x_n) (a,b) — 1} <E(Xg—a), —E(X_,—a),
<E(Xo—a), <oco.

So by MCT we may let n — co to conclude,
(b—a)E[U* (a,b) — 1] <E(Xo—a), <o

and therefore UX (a,b) < oo a.s. Hence it follows that X, = lim, ., o X,
exists in R a.s. We will show that the limit is in {—oco} UR at the end of this
proof.

If C > —o0, then using Jensen’s inequality,
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232 19 (Sub and Super) Martingales
E|X,| =2EX,) —EX, <2EX; —EX,, <2EX —C=K <oco (19.40)

which shows that {X,,} 7, is L' - bounded. For uniform integrability we need
to compute

E[X|:|X|>N=E[X:X>)\N-E[X:X<-)
—E[X:X>\-(EX-E[X:X>-))
=E[X:X>)N+E[X:X>-)-EX.

Taking X = X,, and k£ > n, we find

E[|X,|: X, >N =E[X,: X, >N +E[X,: X, >-)A-EX,
<E[Xp:X, > AN+E[X): X, > -\ -EX; + (EX; —EX,)
=E[Xp: X, > AN -E[Xg: X, <A+ (EX, —EX,,)
=E[|Xx|: [Xn] = Al + (EX), —EX,,).

Given € > 0 we may choose k = k. < 0 such that if n <k, 0 <EX; —EX, <¢
and hence

limsupsup E [| X,| : | Xn| > A] <limsupE[|Xg| : [ Xn| 2 AN +e<e
AToo

Ao n<

wherein we have used Eq. , Chebyschev’s inequality to conclude
P(|X,] > A) < K/X and then the uniform integrability of the singleton set,
{|Xk|} € L' (£2,B, P). From this it now easily follows that {X,},° is a uni-
formly integrable sequence. Therefore X., € L' (£2,B,P) and X,, — X, in
L' (2,B,P) as n — oo.

To finish the proof we must show, with out assumptions on C' > —oo, that
X+ € LY (2,8, P) which will certainly imply P (X = 00) = 0. To prove this,
notice that X7 Y2 = lim,—,_oo X, and that by Jensen’s inequality, {X;F},~ is
a non-negative backwards submartingale. Since inf EX;% > 0 > —oo, it follows
by what we have just proved that X € L' (2,B, P). [

19.7 Closure and Regularity Results

Theorem 19.53. Let M := {Mn}zozo be an L' — bounded martingale, i.e. C :=
supnIE|M | < o0 and let Moo := lim,,_,oo M,, which exists a.s. by Corollary
. Then the following are equwalent

1. There exists X € L' (£2,B, P) such that M, = E[X|B,] for all n.
2. {M,} ", is uniformly integrable.
3. M,, — My, in L' (2,B,P).
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Moreover, if any of the above equivalent conditions hold we may take X =
M.

Proof. 1. = 2. was already proved in Proposition[I9.7} 2. = 3. follows
from Theorem [I1.311

3. — 2.1t M, — M. in L' (2,B,P) and A € B,,, then E[M,, : A] =
E [M,, : A] for all n > m and

E[My : Al = lim E[M,, : A] =E[M,, : A].

Since A € B,,, was arbitrary, it follows that M,, = E [M|B,] . [

Theorem 19.54 (Optional sampling IT — Positive supermartingales).
Suppose that X = {Xn}zozo is a positive supermartingale, X = lim,_ o X,
(which ezists a.s. by Corollary , and o and T are arbitrary stopping
times. Then X := X;an is a positive {B,} ~, — super martingale, X7, =
lim,, 00 X7 d

TAD)

E[X,|Bs] < Xonr a.s. (19.41)
Moreover, if EXo < oo, then E[X;] = E[X]] < oo
Proof. We already know that X7 is a positive supermatingale by optional

stopping Theorem [19.37] Hence an application of Corollary [19.49] implies that
limy, 00 X} = lim,, 00 X7an is convergent and

E [ lim X;|Bm] < X7 = Xram for all m < oo. (19.42)
On the set {r < oo}, lim, oo X;nn = X, and on the set {7 = oo},
limy, oo Xopn = lim, oo X,y = Xoo = X, a.s. Therefore it follows that

lim,, o X = X; and Eq. (19.42) may be expressed as
E X |Bn] < Xam for all m < oo. (19.43)

An application of Lemma [19.31]| now implies

E[X,|B,] Z LoemE [X;|Bo] Z LocmXrnm = Xrno a.S.
m<oo m<oo
]
Theorem 19.55 (Optional sampling IIT — U.I. martingales). Suppose

that X = { X} ° —pisa umformly integrable martingale, o and T are arbitrary
stopping times. Define Xoo := lim, o0 X5, a.8.. Then E|X,| < co and

E[X:|Bs] = Xonr a.s. (19.44)
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Proof. By Theorem [19.53| there exists a Z € L' (2, B, P) such that X,, :=
Eg,Z a.s. for all n < co. By Lemma [19.31

Eg, Z = Z 1,—nEp, Z = Z Lren Xy = X,

n<oo n<oo

Hence we have |X.| = |[Eg . Z| < Eg.|Z| a.s. and E|X;| < E|Z| < oo. An
application of Exercise [19.3] now concludes the proof;

Ep, X, =Ep,Ep. Z =Ep,, Z = Xonr

oNT

To be continued.
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