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Math 280C Homework Problems

-2.1 Homework #1 (Due Friday, April 13, 2007)

Look at the following Exercises from the Lecture Notes:
Look at the following Exercises from Resnick Chapter 10: 19, 22-24,
Hand in the following Exercises from the Lecture Notes: ,[19.7} [19.8 [19.9]

-2.2 Homework #2 (Due Friday, April 20, 2007)

e Look at the following Exercises from the Lecture Notes: [19.12] [19.13
19.141
e Hand in the following Exercises from the Lecture Notes: , [19.6] [19.10]

-2.3 Homework #3 (Due Monday, April 30, 2007)

e Hand in the following Exercises from the Lecture Notes:
2T4

-2.4 Homework #4 (Due Monday, May 7, 2007)

e Look at the following Exercises from the Lecture Notes: [23.1

e Hand in the following Exercises from the Lecture Notes: 243242
244

-2.5 Homework #5 (Due Monday, May 14, 2007)
e Look at the following Exercises from the Lecture Notes:

e Hand in the following Exercises from the Lecture Notes: 22.2] 22.3] 22.4]
24.0)
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Math 280B Homework Problems

-1.1 Homework 1. Due Monday, January 22, 2007

Hand in from p. 114 : 4.27
Hand in from p. 196 : 6.5, 6.7

Hand in from p. 234-246: 7.12, 7.16, 7.33, 7.36 (assume each X, is inte-
grable!), 7.42

Hints and comments.

1. For 6.7, observe that X,, < 0, N (0,1).

2. For 7.12, let {U, : n = 0,1,2,...} be ii.d. random variables uniformly
distributed on (0,1) and take Xy = Uy and then define X,, inductively so
that Xn+1 = Xn . Un+1-

3. For 7.36; use the assumptions to bound E [X,,] in terms of E[X,, : X, < z].
Then use the two series theorem.

-1.2 Homework 2. Due Monday, January 29, 2007

Resnick Chapter 7: Hand in 7.9, 7.13.

Resnick Chapter 7: look at 7.28. (For 28b, assume E[X; X;] < p(i — j) for
1 > j. Also you may find it easier to show % — 0 in L? rather than the
weaker notion of in probability.)

Hand in Exercise [[3.2] from these notes.

Resnick Chapter 8: Hand in 8.4a-d, 8.13 (Assume Var (N,) > 0 for all

-1.3 Homework #3 Due Monday, February 5, 2007

Resnick Chapter 8: Look at: 8.14, 8.20, 8.36
Resnick Chapter 8: Hand in 8.7, 8.17, 8.31, 8.30* (Due 8.31 first), 8.34
*Ignore the part of the question referring to the moment generating func-
tion. Hint: use problem 8.31 and the convergence of types theorem.

e Also hand in Exercise [[3.3] from these notes.
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-1.4 Homework #4 Due Friday, February 16, 2007

e Resnick Chapter 9: Look at: 9.22, 9.33
e Resnick Chapter 9: Hand in 9.5, 9.6, 9.9 a-e., 9.10
e Also hand in Exercise from these notes: [14.2] [14.3] and [14.4]

-1.5 Homework #5 Due Friday, February 23, 2007

e Resnick Chapter 9: Look at: 8
e Resnick Chapter 9: Hand in 11, 28, 34 (assume )., o2 > 0), 35 (hint:
show PI[¢, # 01i.0. ] =0.), 38 (Hint: make use Proposition [7.25})

-1.6 Homework #6 Due Monday, March 5, 2007

Look at Resnick Chapter 10: 11
Hand in the following Exercises from the Lecture Notes: [12.1} [I8.1] [I82]

(8.3} 8.4

e Resnick Chapter 10: Hand in 2f, 5%, 7, 8**

fIn part 2b, please explain what convention you are using when the de-
nominator is 0.

*A Poisson process, {N (t)},~, , with parameter X satisfies (by definition):
(i) N has independent increments, so that N(s) and N(t) — N(s) are inde-
pendent; (ii) if 0 < w < v then N(v) — N(u) has the Poisson distribution with
parameter A(v — u).

**Hint: use Exercise [2.11

-1.7 Homework #7 Due Monday, March 12, 2007

e Hand in the following Exercises from the Lecture Notes:
e Hand in Resnick Chapter 10: 14 (take B,, := o (Yp,Y1,...,Y,) for the
filtration), 16

-1.8 Homework #8 Due Wednesday, March 21, 2007 by
11:00AM!

Look at the following Exercise from the Lecture Notes: [19.5

Hand in the following Exercises from the Lecture Notes: [19.3]

Resnick Chapter 10: Hand in 15, 28, and 33.

For #28, let B,, := o (Y1,...,Y,) define the filtration. Hint: for part b
consider, In X,.
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Math 280A Homework Problems

Unless otherwise noted, all problems are from Resnick, S. A Probability Path,
Birkhauser, 1999.

0.1 Homework 1. Due Friday, September 29, 2006

p. 20-27: Look at: 9, 12, ,19, 27, 30, 36
p. 20-27: Hand in: 5, 17, 18, 23, 40, 41

0.2 Homework 2. Due Friday, October 6, 2006

p. 63-70: Look at: 18
e p. 63-70: Hand in: 3, 6, 7, 11, 13 and the following problem.

Exercise 0.1 (280A-2.1). Referring to the setup in Problem 7 on p. 64 of
Resnick, compute the expected number of different coupons collected after
buying n boxes of cereal.

0.3 Homework 3. Due Friday, October 13, 2006

Look at from p. 63-70: 5, 14, 19
Look at lecture notes: exercise [4.4] and read Section [5.5]
Hand in from p. 63-70: 16

Hand in lecture note exercises: - and

0.4 Homework 4. Due Friday, October 20, 2006

Look at from p. 85-90: 3, 7, 12, 17, 21
Hand in from p. 85-90: 4, 6, 8, 9, 15
Also hand in the following exercise.

Exercise 0.2 (280A-4.1). Suppose {f,},—, is a sequence of Random Vari-
ables on some measurable space. Let B be the set of w such that f, (w) is
convergent as n — o0o. Show the set B is measurable, i.e. B is in the o —
algebra.
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0.5 Homework 5. Due Friday, October 27, 2006

Look at from p. 110-116: 3, 5
Hand in from p. 110-116: 1, 6, 8, 18, 19

0.6 Homework 6. Due Friday, November 3, 2006

Look at from p. 110-116: 3, 5, 28, 29
Look at from p. 155-166: 6, 34

Hand in from p. 110-116: 9, 11, 15, 25
Hand in from p. 155-166: 7

Hand in lecture note exercise: [Z.1l

0.7 Homework 7. Due Monday, November 13, 2006

Look at from p. 155-166: 13, 16, 37
Hand in from p. 155-166: 11, 21, 26

Hand in lecture note exercises:

0.7.1 Corrections and comments on Homework 7 (280A)
Problem 21 in Section 5.10 of Resnick should read,

d S k-1
£P (s) = kaks for s € [0,1] .

k=1

Note that P (s) = > p- prs” is well defined and continuous (by DCT) for
s € [-1,1]. So the derivative makes sense to compute for s € (—1,1) with
no qualifications. When s = 1 you should interpret the derivative as the one
sided derivative

d . PM)-P(1-h

and you will need to allow for this limit to be infinite in case Y o | kpx, = oo.
In computing %hP (s), you may wish to use the fact (draw a picture or give
a calculus proof) that
1—sk
1-s

Hint for Exercise Start by observing that

increases to k as s T 1.



0.9 Homework 9. Due Noon, on Wednesday, December 6, 2006 9

2(5 ) e (1w

k=1

- % Y ElXe—w)(X) — w) (Xt = ) (X, — p)].
k,j,l,p=1

Then analyze for which groups of indices (k, j,, p);

E[(Xk — p)(X;j — p)(Xi — p)(Xp — p)] # 0.

0.8 Homework 8. Due Monday, November 27, 2006

Look at from p. 155-166: 19, 34, 38

Look at from p. 195-201: 19, 24

Hand in from p. 155-166: 14, 18 (Hint: see picture given in class.), 22a-b
Hand in from p. 195-201: 1la,b,d, 12, 13, 33 and 18 (Also assume EX,, =
0)*

e Hand in lecture note exercises: [@.11

* For Problem 18, please add the missing assumption that the random
variables should have mean zero. (The assertion to prove is false without
this assumption.) With this assumption, Var(X) = E[X?]. Also note that
Cov(X,Y) =0 is equivalent to E[XY] = EX - EY.

0.9 Homework 9. Due Noon, on Wednesday, December
6, 2006

Look at from p. 195-201: 3, 4, 14, 16, 17, 27, 30

Hand in from p. 195-201: 15 (Hint: |a — b] = 2(a — b)™ — (a — b). )
Hand in from p. 234-246: 1, 2 (Hint: it is just as easy to prove a.s. con-
vergence), 15
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Background Material






1

Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R := RU{+oc0} , i.e. it
18 R with two new points called co and —oo. We use the following conventions,
+00-0=0, +oo-a =200 ifa € R with a > 0, £oo -a = Foo if a € R with
a <0, £oo+a = oo for any a € R, co+ 00 = 0o and —oo — 0o = —oo while
00 — 0o is not defined. A sequence a,, € R is said to converge to oo (—o0) if
for all M € R there exists m € N such that a,, > M (a, < M) for alln > m.

Lemma 1.2. Suppose {a,},o, and {b,},—, are convergent sequences in R,
then:

1. If a, < b, meI a.a. n then lim,, oo ay, < lim,,_ o0 by
2. If c € R, lim, 00 (cap) = climy, o0 ap.
3. If {an + by }o | is convergent and
lim (a, +b,)= lim a, + lim b, (1.1)

n—oo n—oo n—oo

provided the right side is not of the form co — co.
4. {anby}o2 | is convergent and

lim (apb,) = lim a, - lim b, (1.2)

provided the right hand side is not of the for 00 -0 of 0 - (£00) .

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

o ifa<l
lim (a, + by) = 0 ifa=1
—oifa>1
while
lim a, + lim b,“="0c0 — o0.

n—oo n—oo

This shows that the requirement that the right side of Eq. (1.1)) is not of form
00 — 0o is necessary in Lemma Similarly by considering the examples

! Here we use “a.a. n” as an abreviation for almost all n. So a, < by, a.a. n iff there
exists N < oo such that a, < b, for alln > N.



14 1 Limsups, Liminfs and Extended Limits

an, =n and b, = n~* with a > 0 shows the necessity for assuming right hand
side of Eq. is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (1.1). Let a := lim,,_, o a,, and b = lim,,_, b,,. Case 1., suppose
b = oo in which case we must assume a > —oo. In this case, for every M > 0,
there exists N such that b, > M and a,, > a—1 for all n > N and this implies

ap+b,>M+a—1foralln > N.

Since M is arbitrary it follows that a, + b, — 0o as n — oco. The cases where
b= —o0 or a = £0o are handled similarly. Case 2. If a,b € R, then for every
€ > 0 there exists NV € N such that

la —an| <eand |b—10b,| <eforalln>N.
Therefore,
la+b—(an+by)|=la—an+b—0, <la—a,|+|b—0,| <2

for all n > N. Since n is arbitrary, it follows that lim, . (an + b,) = a + .

Proof of Eq. . It will be left to the reader to prove the case
where lima, and limb, exist in R. I will only consider the case where
a = lim, ,a, # 0 and lim, .., b, = oo here. Let us also suppose that
a > 0 (the case a < 0 is handled similarly) and let o := min (%,1) . Given
any M < oo, there exists N € N such that a,, > a and b, > M for alln > N
and for this choice of N, a,b, > Ma for all n > N. Since o > 0 is fixed and
M is arbitrary it follows that lim, s (anb,) = 0o as desired. [ |

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup A = o
if oo € A or A is not bounded from above and inf A = —occ if —co € A or A is
not bounded from below. We will also use the conventions that sup ) = —oo
and inf ) = +oo.

Notation 1.3 Suppose that {x,} -, C R is a sequence of numbers. Then

liminf 2, = lim inf{zg : k > n} and (1.3)
n—oo n—oo
limsupz, = lim sup{zy : k > n}. (1.4)

We will also write lim for liminf,_. and lim for limsup.

n—oo

Remark 1.4. Notice that if ag := inf{xy : k£ > n} and by := sup{ay : k >
n}, then {a;} is an increasing sequence while {;} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R and

liminf 2, = supinf{zy : K > n} and

n—oo n

limsup =, = inf sup{zy, : k > n}.
n

n—oo
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The following proposition contains some basic properties of liminfs and
limsups.

Proposition 1.5. Let {a,}52; and {b,}52 1 be two sequences of real numbers.
Then

1. liminf, . a, < limsupa, and lim,,_. o a, ezists in R iff
n—oo

liminf a,, = limsup a,, € R.

n—oo N—00

2. There is a subsequence {an, }3>, of {an}Se; such that limy_ o an, =
limsup a,,. Similarly, there is a subsequence {an, }3>, of {an}ne, such

n—oo
that limy_, o0 ap, = liminf,, . ap.

3.
lim sup(a, + b,) < limsup a,, + limsup b, (1.5)

n—oo n—oo n—oo

whenever the right side of this equation is not of the form oo — co.
4. If ap, > 0 and b, > 0 for allm € N, then

lim sup(a,by) < limsup ay, - limsup by, (1.6)

provided the right hand side of @ is not of the form 0 - oo or oo - 0.

Proof. Item 1. will be proved here leaving the remaining items as an
exercise to the reader. Since

inf{ag : k > n} <sup{ax : k > n} Vn,

lim inf a,, < limsup a,,.
n— oo n—00

Now suppose that liminf, ., a, = limsupa, = a € R. Then for all € > 0,
n—oo
there is an integer N such that

a—e<inf{ap:k> N} <sup{ar : k> N} <a+e,

i.e.
a—ec<ap<a-+eforal k> N.

Hence by the definition of the limit, limy .o ax = a. If liminf, .. a, = oo,
then we know for all M € (0, 00) there is an integer N such that

M < inf{ay : k> N}

and hence lim,, .o a, = o0o. The case where limsupa, = —oo is handled
n—oo

similarly.
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Conversely, suppose that lim, . a, = A € R exists. If A € R, then for
every € > 0 there exists N(¢) € N such that |A — a,| < e for all n > N(e),
i.e.

A—e<a, <A+c¢eforalln> N(e).

From this we learn that

A — ¢ <liminfa, <limsupa, < A+ec.

n—00 n—00
Since € > 0 is arbitrary, it follows that

A <liminfa, <limsupa, < A,

n—o0o n—00

i.e. that A = liminf, .. a, = limsupa,. If A = oo, then for all M > 0

there exists N = N(M) such that a, > M for all n > N. This show that
liminf, .. a, > M and since M is arbitrary it follows that

oo < liminf a,, < limsup a,.
n—oo n— o0

The proof for the case A = —o0 is analogous to the A = oo case. ]

Proposition 1.6 (Tonelli’s theorem for sums). If {akn}y ,—; is any se-
quence of mon-negative numbers, then

o0 o0 o0 (o]
DD A=) )
k=1n=1 n=1k=1

Here we allow for one and hence both sides to be infinite.

Proof. Let
K N N K
M = sup{ZZa;m K, N GN} :sup{ZZakn :K,N € N}
k=1n=1 n=1k=1
and o .
L= am
k=1n=1
Since

oo 00 K oo K N
L= g E agp = lim g E agp = lim  lim g E a
kn K—oo kn K—o00 N—oo ken

k=1n=1 k=1n=1 k=1n=1

and Zle ij:l arn < M for all K and N, it follows that L < M. Conversely,

K N K oo oo 0o
Zzakngzzaknézzakn:L

k=1n=1 k=1n=1 k=1n=1
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and therefore taking the supremum of the left side of this inequality over K
and N shows that M < L. Thus we have shown

Z Z Ay, = M.
k=1n=1

By symmetry (or by a similar argument), we also have that > 2 | > ap, =
M and hence the proof is complete. [






2

Basic Probabilistic Notions

Definition 2.1. A sample space §2 is a set which is to represents all possible
outcomes of an “experiment.”

Ezxample 2.2. 1. The sample space for flipping a coin one time could be taken
to be, 2 ={0,1}.
2. The sample space for flipping a coin N -times could be taken to be, 2 =
{0, l}N and for flipping an infinite number of times,

Q={w=(w,ws,...) w; €{0,1}} ={0,1}".
3. If we have a roulette wheel with 40 entries, then we might take
2 ={00,0,1,2,...,36}

for one spin,
2 ={00,0,1,2,...,36}"

for N spins, and
2 =1{00,0,1,2,...,36}"

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

Q2 =Dp:={(z,y) eR*: 2> +y* < R}

for one throw,
Q2 =DY

for N throws, and
2 =Dy

for an infinite number of throws.
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5. Suppose we release a perfume particle at location z € R? and follow its
motion for all time, 0 < ¢ < co. In this case, we might take,

2 ={weC(0,0),R*):w(0)=uz}.
Definition 2.3. An event is a subset of 2.

Ezample 2.4. Suppose that 2 = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here w,, = 1 represents the fact that a head was
thrown on the n*® — toss, while w, = 0 represents a tail on the nt" — toss.

1. A ={w € 2 : w3 = 1} represents the event that the third toss was a head.

2. A=U2, {w € 2 : w; = w41 = 1} represents the event that (at least) two
heads are tossed twice in a row at some time.

3. A=NF_; Up>n {w € 2:w, =1} is the event where there are infinitely
many heads tossed in the sequence.

4. A =UF_; Nu>n {w € 2:w, =1} is the event where heads occurs from
some time onwards, i.e. w € A iff there exists, N = N (w) such that w, =1
for all n > N.

Ideally we would like to assign a probability, P (A), to all events A C (2.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, w(n) € 2 for each
n € N, then try to “define” P (A) by

P(A) = Jim %#{1§k§N:w(/€)€A}. (2.1)

That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {w (k)} ;- -

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we now that B has occurred. Thus we would
like to compute:

. #{k:1<k<nand w, € AN B}
P((A|B)=1
(4]B) s #{k:1<k<nandw, € B} ’

which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

P(A|B) = lim %#f{k:lgkgnandwkeAﬂB}
n—oo  —#{k:1<k<nandw, € B}
_ P(ANB)
- P(B)

Definition 2.5. If B is a non-null event, i.e. P(B) > 0, define the condi-
tional probability of A given B by,

P(ANB)

P (A|B) := )
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There are of course a number of problems with this definition of P in
Eq. including the fact that it is not mathematical nor necessarily well
defined. For example the limit may not exist. But ignoring these technicalities
for the moment, let us point out three key properties that P should have.

1. P(A) €]0,1] for all A C 2.
2. P(0)=1and P () = 1.
3. Additivity. If A and B are disjoint event, i.e. AN B = AB = (), then

P(AUB) = Jim %#{1§k§N:w(k)eAUB}
:A}iinoo%[#{lgk;gN:w(k;)eA}+#{1§k§N:w(k)eB}]
— P(A)+ P(B).

Example 2.6. Let us consider the tossing of a coin IV times with a fair coin. In
this case we would expect that every w € 2 is equally likely, i.e. P ({w}) = 2%
Assuming this we are then forced to define

1

P(4)= 55

(A).

Observe that this probability has the following property. Suppose that o €
{0,1}" is a given sequence, then

1 _ 1
P({W:(wly...,wk):g}):ﬁ,QN k:27.

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k£ times.

Ezample 2.7. The previous example suggests that if we flip a fair coin an
infinite number of times, so that now 2 = {0,1}", then we should define

P{we 2: (wi,...,wp) =0}) = = (2.2)

for any k > 1 and o € {0, l}k . Assuming there exists a probability, P : 2 —
[0,1] such that Eq. holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To
try to compute this, let

A, ={w € 2 :w, =1} = {heads at time n}
By :=U,>nA, = {at least one heads at time N or later}

and
B= m(])voleN = {An 10} = m?\?zl UnZN An

Since



22 2 Basic Probabilistic Notions
BJCV = ﬂnzNAfl C ﬂMznzijfl = {w €EN:wny=-=wy = 1},

we see that 1
P(BY) < = — 0as M — .

Therefore, P (By) = 1 for all N. If we assume that P is continuous under
taking decreasing limits we may conclude, using By | B, that

P(B)= lim P(By)=1.

N—o0
Without this continuity assumption we would not be able to compute P (B).

The unfortunate fact is that we can not always assign a desired probability
function, P (A), for all A C 2. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z € C: |z| =1} be the unit
circle. Then there is no probability function, P : 25 — [0,1] such that P (S) =
1, P is invariant under rotations, and P is continuous under taking decreasing
lomats.

Proof. We are going to use the fact proved below in Lemma , that the
continuity condition on P is equivalent to the o — additivity of P. For z € S
and N C S let

zZN:={zmeS:neN}, (2.3)

that is to say e?N is the set N rotated counter clockwise by angle 6. By
assumption, we are supposing that

P(2N) = P(N) (2.4)

for all z € S and N C S.
Let ‘ A
Ri={z=e?":1tcQ}={2=¢?":1€[0,1)NQ}

— a countable subgroup of S. As above R acts on S by rotations and divides
S up into equivalence classes, where z,w € S are equivalent if z = rw for
some r € R. Choose (using the axiom of choice) one representative point n
from each of these equivalence classes and let N C S be the set of these
representative points. Then every point z € S may be uniquely written as
z=nr with n € N and r € R. That is to say

S=> (rN) (2.5)

reR

where )" A, is used to denote the union of pair-wise disjoint sets {A,} . By

Egs. and ,
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1=P(S)=>_ P(rN)=>_ P(N). (2.6)

reR reR

We have thus arrived at a contradiction, since the right side of Eq. is
either equal to 0 or to co depending on whether P(N)=0or P(N) >0. m

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2. So we are going to only define P
on particular subsets, B C 2. We will developed this below.






Part 11

Formal Development






3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, Ny := NU {0} be the non-negative integers
and Z = Ny U (—=N) — the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use [ to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let Y~ denote the collection of all
functions f : X — Y. If X = N, we will say that f € YN is a sequence
with values in 'Y and often write f, for f(n) and express f as {fn} —; -

If X = {1,2,...,N}, we will write Y~ in place of Yy 2Ny and denote
fEYN byf: (f17f27"'7fN) where fn :f(n)

Notation 3.2 More generally if {X, : a € A} is a collection of non-empty

sets, let X4 = [ Xo and 7o : Xa — X, be the canonical projection map
acA
defined by wo(x) = xo. If If X, = X for some fized space X, then we will

write [] Xo as XA rather than X 4.
acA

Recall that an element x € X 4 is a “choice function,” i.e. an assignment

zo = z(a) € X, for each o € A. The axiom of choice states that X4 # 0
provided that X, # () for each a € A.

Notation 3.3 Given a set X, let 2% denote the power set of X — the col-
lection of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={reX:alz)=1} C X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.
For A € 2% let

A =X\A={zeX:x¢ A}

and more generally if A, B C X let



28 3 Preliminaries
B\A:={zxeB:x¢ A} = An B".
We also define the symmetric difference of A and B by
AAB:=(B\A)U(A\ B).

As usual if {An},; is an indexed collection of subsets of X we define the
union and the intersection of this collection by

Uactdo:={z€eX:Fael >z A,} and
NactAa ={zeX:z € A Vael}.

Notation 3.4 We will also write Zael Ay for UgerAa in the case that
{Aa}aer are pairwise disjoint, i.e. Aq N Ag =0 if o # 3.

Notice that U is closely related to 3 and N is closely related to V. For
example let {4, } 7 | be a sequence of subsets from X and define

inf A, := ﬂanAkH

k>n
sup A, := Up>n Ay,
k>n
limsup 4, :={A, 10} ={zeX :#{n:ze A,} =}

and
liminf A, := {4, a.a.} :={z € X : 2 € A, for all n sufficiently large}.

(One should read {A4,, i.0.} as A, infinitely often and {4,, a.a.} as A,, almost
always.) Then z € {4,, i.0.} iff

VNeNdn>N>zxe€A,
and this may be expressed as

{4, 1.0.} =NF=; Un>n An.
Similarly, x € {4, a.a.} iff

dNeN>sVn>N, z€ A,
which may be written as

{4, a.a.} =UN_1 Np>n Ay,
Definition 3.5. Given a set A C X, let

lifze A
1A(x){0ifx¢A

be the characteristic function of A.
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Lemma 3.6. We have:

{A,, i.0.}° = {A¢ a.a.},

limsup A, ={z € X :> 77 14, (z) = oo},
n—oo

liminf,, oo Ap = {x €X Y 1a (2) < oo} ,

SUPg>n 14, (x) = 1Uk2nAk = lsukan Ans

inf 1Ak (I’) = ]‘ﬁanAk = linkan A

liimsup 4,, = limsup 1,4, , and

n-—oo n—oo

Lliminf, .., A, = liminf, 14, .

IR e

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f: X — N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

1. If A C X is a subset of a countable set X then A is countable.

2. Any infinite subset A C N is in one to one correspondence with N.

3. A non-empty set X is countable iff there exists a surjective map, g : N —
X.

If X and Y are countable then X XY is countable.

. Suppose for each m € N that A,, is a countable subset of a set X, then
A =U_1 Ay, is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2% is uncountable for any infinite set X.

G B

Proof. 1. If f : X — N is an injective map then so is the restriction, f|a,
of f to the subset A. 2. Let f (1) = min A and define f inductively by

fn+1) = min (A\{f(1),..., f(n)}).

Since A is infinite the process continues indefinitely. The function f: N — A
defined this way is a bijection.
3. If g : N — X is a surjective map, let

f(x) =ming™ ({z}) =min{n € N: f(n) = z}.

Then f: X — N is injective which combined with item

2. (taking A = f(X)) shows X is countable. Conversely if f : X — N is
injective let xop € X be a fixed point and define g : N — X by g(n) = f~1(n)
for n € f(X) and g(n) = z¢ otherwise.

4. Let us first construct a bijection, h, from N to N x N. To do this put
the elements of N x N into an array of the form

(1,1) (1,2) (1,3) ...
(2,1) (2,2) (2,3) ...
(3,1) (3,2) (3,3) ...
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and then “count” these elements by counting the sets {(¢,J) : ¢ +j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1,3) and so on. If f: N —X and g : N =Y are
surjective functions, then the function (f x g) oh : N =X x Y is surjective
where (f x g) (m,n) := (f (m),g(n)) for all (m,n) € NxN.

5. If A = () then A is countable by definition so we may assume A # (.
With out loss of generality we may assume A; # () and by replacing A,, by
Ay if necessary we may also assume A, # () for all m. For each m € N let
am : N — A, be a surjective function and then define f : NxN — UX_, A, by
f(m,n) := amy(n). The function f is surjective and hence so is the composition,
foh:N—UX_, A, where h: N — N x N is the bijection defined above.

6. Let us begin by showing 2V = {071}N is uncountable. For sake of
contradiction suppose f : N — {0,1}N is a surjection and write f(n) as
(f1(n), f2(n), fs(n),...). Now define a € {0,1}" by a, := 1 — fu(n). By
construction f, (n) # a, for all n and so a ¢ f(N). This contradicts the
assumption that f is surjective and shows 2V is uncountable. For the general
case, since Y;* C YX for any subset Yy C Y, if Y;* is uncountable then so
is YX. In this way we may assume Yj is a two point set which may as well
be Yy = {0,1}. Moreover, since X is an infinite set we may find an injective
map = : N — X and use this to set up an injection, i : 2% — 2% by setting
i(A) :={z, :n € N} C X for all A C N. If 2% were countable we could find
a surjective map f : 2%X — N in which case foi : 2¥ — N would be surjec-
tive as well. However this is impossible since we have already seed that 2V is
uncountable. [

We end this section with some notation which will be used frequently in
the sequel.

Notation 3.9 If f : X — Y is a function and £ C 2 let
JIE = e = (B E € €.

If G C 2%, let
fG={Ae2V|f7(4) e g}

Definition 3.10. Let £ C 2% be a collection of sets, A C X, iq: A — X be
the inclusion map (is(x) = x for allx € A) and

Ea=i"(&)={ANE:Ec¢&}.

3.2 Exercises

Let f: X — Y be a function and {A;};c; be an indexed family of subsets of
Y, verify the following assertions.

Exercise 3.1. (MjerA4;)¢ = Ujer AS.
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Exercise 3.2. Suppose that B C Y, show that B\ (U;crA4;) = Nier(B\ 4;).
Exercise 3.3. f~1(UjerA;) = Uier f1(A)).
Exercise 3.4. f~1(NierA;) = Nierf 1 (A;).

Exercise 3.5. Find a counterexample which shows that f(CND) = f(C)N
f(D) need not hold.

Ezample 3.11. Let X = {a,b,c} and Y = {1,2} and define f (a) = f(b) =1
and f (c) = 2. Then § = f ({a} N {b}) # f ({a}) N f ({b}) = {1} and {1,2} =
fF{a}) # f({a})" ={2}.

3.3 Algebraic sub-structures of sets

Definition 3.12. A collection of subsets A of a set X is a m — system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.13. A collection of subsets A of a set X is an algebra (Field)
if

1.0, Xe A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if Ay,..., A, € A then AyU---UA, €
A

In view of conditions 1. and 2., 3. is equivalent to
3. A is closed under finite intersections.

Definition 3.14. A collection of subsets B of X is a 0 — algebra (or some-
times called a o — field) if B is an algebra which also closed under countable
unions, i.e. if {A;};2; C B, then U2, A; € B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable in-
tersections.)

Example 3.15. Here are some examples of algebras.

1. B=2% then Bis a ¢ — algebra.

2. B={0,X} is a o — algebra called the trivial o — field.

3. Let X = {1,2,3}, then A = {0, X,{1},{2,3}} is an algebra while, § :=
{0, X,{2,3}} is a not an algebra but is a 7 — system.

Proposition 3.16. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(E) which contains .
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Proof. Simply take

A(E) = ﬂ{A : A is an algebra such that £ C A}

and

o(&):= ﬂ{/\/l : M is a 0 — algebra such that £ C M}.

Ezample 3.17. Suppose X = {1,2,3} and £ = {0, X, {1,2}, {1, 3}}, see Figure
B Then

(o

Fig. 3.1. A collection of subsets.

A(E) =0o(€) =2%.
On the other hand if £ = {{1,2}}, then A (&) = {0, X, {1, 2},{3}}.

Exercise 3.6. Suppose that & C 2% for i = 1,2. Show that A (&) = A (&)
iff & € A(&) and & C A (&7) . Similarly show, o (£1) = 0 (&) iff & C o (&)
and & C o (&) . Give a simple example where A (£1) = A (&) while £ # &;.

Definition 3.18. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union
of the sets in F.

Ezample 3.19. Let X be a set and & = {A;,...,A,} where Ay,..., A, is a
partition of X. In this case

AE) =0(&) ={Ujeadi : AC{1,2,...,n}}
where U;e 1 4; := 0 when A = (). Notice that

#(A©) = g2y = 2
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Example 3.20. Suppose that X is a finite set and that A C 2% is an algebra.
For each x € X let
A, =N{AeA:ze€ A} € A,

wherein we have used A is finite to insure A, € A. Hence A, is the smallest
set in A which contains z. Let C = A, N A, € A. I claim that if C' # 0,
then A, = A,. To see this, let us first consider the case where {z,y} C C. In
this case we must have A, C C and Ay, C C and therefore 4, = A,. Now
suppose either = or y is not in C. For definiteness, say « ¢ C, i.e. ¢ y. Then
z e A, \ Ay € A from which it follows that A, = A, \ 4, i.e. A, NA, =0.

Let us now define {Bi}f;l to be an enumeration of {A;}, .y . It is now a
straightforward exercise to show

A:{Uig/}BiZAC{].,Q,...,k}}.

Proposition 3.21. Suppose that B C 2% is a ¢ — algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F C B and every element B € B is of the form

B=U{AecF:ACB}. (3.1)
In particular B is actually a finite set and # (B) = 2™ for some n € N.
Proof. We proceed as in Example For each x € X let
Az =nN{AeB:ze€ A} € B,

wherein we have used B is a countable o — algebra to insure A, € B. Just as
above either A, N4, = 0 or A, = A, and therefore F = {4, : 2 € X} C B
is a (necessarily countable) partition of X for which Eq. (3.1) holds for all
B eB.

Enumerate the elements of F as F = {P,}_; where N € Nor N = oc.
If N = oo, then the correspondence

ae{0,1}" > A, =U{P,:a,=1}€B

is bijective and therefore, by Lemma[3.8] B is uncountable. Thus any countable
o — algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader. [

Ezample 3.22 (Countable/Co-countable o — Field). Let X = R and & :=
{{z} : 2 € R}. Then o (£) consists of those subsets, A C R, such that A
is countable or A¢ is countable. Similarly, .4 (£) consists of those subsets,
A C R, such that A is finite or A° is finite. More generally we have the
following exercise.
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Exercise 3.7. Let X be a set, I be an infinite index set, and € = {A; }ier
be a partition of X. Prove the algebra, A (£), and that o — algebra, o (£),
generated by & are given by

A(E) = {Useadi : A C I with # (A) < oo or # (A°) < oo}
and
(&) = {U;ead; : A C I with A countable or A° countable}

respectively. Here we are using the convention that U;e 4 A; := @ when A = ().

Proposition 3.23. Let X be a set and €& C 2%. Let £¢:= {A°: A € &} and
E:=EU{X,0}U&° Then

A(E) := {finite unions of finite intersections of elements from E.}. (3.2)

Proof. Let A denote the right member of Eq. . From the definition of
an algebra, it is clear that £ C A C A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
z=UN4y

i=1j=1

where A;; € &. Therefore, writing B;; = Af; € &, we find that

N K K
ZC:ﬂUBij: U (BljlﬂB2jzﬁ"'ﬁBNjN)€A
i=1j=1 Jisein=1

wherein we have used the fact that Bij, N Baj, N---N By, is a finite inter-
section of sets from &,. ]

Remark 3.24. One might think that in general o(&) may be described as the
countable unions of countable intersections of sets in £¢. However this is in

general false, since if
oo o0
Z=J A

i=1j=1
with Aij € &, then

) 00

s~ U (A

4,50
Ji=1j2=1,..jn=1,... \l=1

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe o (&), see Proposition
1.23 on page 39 of Folland for details. Also see Proposition
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Exercise 3.8. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F' NV where F' is closed and V is open.

Solution to Exercise . In this case 7, is the collection of sets which
are either open or closed. Now if V; C, X and F; C X for each j, then
(NP, Vi) N (ﬂ;.”:IFj) is simply a set of the form V N F where V C, X and
F C X. Therefore the result is an immediate consequence of Proposition [3.23

Definition 3.25. The Borel o — field, B = Br = B(R), on R is the smallest
o -field containing all of the open subsets of R.

Exercise 3.9. Verify the o — algebra, By, is generated by any of the following
collection of sets:

1. {(a,0):a €R}, 2. {(a,0):a € Q} or3. {[a,0):acQ}.
Hint: make use of Exercise [3.6

Exercise 3.10. Suppose f : X — Y is a function, F C 2¥ and B C 2. Show
f71F and f.B (see Notation are algebras (o — algebras) provided F and
B are algebras (o — algebras).

Lemma 3.26. Suppose that f : X — Y is a function and £ C 2¥ and ACY
then

o (f71E) = 1 (o(€)) and (3.3)
(0(€)a=0(Ea ), (3.4)

where B4 = {BNA: B e B}. (Similar assertion hold with o (-) being re-
placed by A().)

Proof. By Exercise f1(e(£)) is a o — algebra and since £ C F,
Y& c f~Yo(€)). Tt now follows that

a(fHE)) C fH(a(€)).
For the reverse inclusion, notice that
foo (FFHE) ={BcY:f'(B)ea(f ')}

is a o0 — algebra which contains £ and thus (&) C f.o (f7'(£)) . Hence for
every B € o(€) we know that f~1(B) € o (f71(€)), i.e.

7€) ca (7).

Applying Eq. (3.3) with X = A and f = i4 being the inclusion map
implies

(@(€)a = i3 (0(E)) = a(ix"(£)) = o(Ea)-
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Ezxample 3.27. Let £ = {(a,b] : —00 < a < b < oo} and B = ¢ (£) be the Borel
o — field on R. Then

Eo =1{(a,b]:0<a<b< 1}
and we have
By = o (E0.1) -
In particular, if A € B such that A C (0,1], then A € ¢ (5(071]) .
Definition 3.28. A function, f : 2 — Y is said to be simple if f (£2) CY is
a finite set. If A C 22 is an algebra, we say that a simple function f : 2 —Y
is measurable if {f =y} = f~1({y}) € A for all y € Y. A measurable

simple function, f : 2 — C, is called a stmple random variable relative to

A.

Notation 3.29 Given an algebra, A C 2%, let S(A) denote the collection of
simple random variables from (2 to C. For example if A € A, then 14 € S(A)
is a measurable simple function.

Lemma 3.30. For every algebra A C 22, the set simple random variables,
S(A), forms an algebra.

Proof. Let us observe that 1, =1 and 1y =0 arein S(A). If f,g € S(A)
and ¢ € C\ {0}, then

{f+eg=x= |J {f=aln{g=0b}ecd (3.5)

a,beC:a+cb=X

and
{frg=n= U {f=anig=t)ea (3.6)
a,beC:a-b=A
from which it follows that f + cg and f - g are back in S (A). ]

Definition 3.31. A simple function algebra, S, is a subalgebra of the
bounded complex functions on X such that 1 € S and each function, f €S, is
a simple function. If S is a simple function algebra, let

AS)={ACX:14€8}.
(It is easily checked that A (S) is a sub-algebra of 2%.)

Lemma 3.32. Suppose that S is a simple function algebra, f € S and o €
f(X). Then {f =a} € A(S).

Proof. Let {\;}|_, be an enumeration of f (X) with Ay = o. Then

g:= [H(a—m] [[(r=xnes.

i=1 i=1

Moreover, we see that g =0 on U ; {f = A\;} whileg=1on {f = a}. So we
have shown g = 17—,y € S and therefore that {f = a} € A. ]
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Exercise 3.11. Continuing the notation introduced above:

1. Show A (S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A € {Algebras C 2X} — S(A) € {simple function algebras on X}

is bijective and the map, S — A (S), is the inverse map.

Solution to Exercise (3.11)).

1.

Since 0 = 13,1 = 1x € S, it follows that § and X are in A(S). If A €
A(S), then 14c =1 —14 € S and so A° € A(S). Finally, if A, B € A(S)
then 14ng =14 -1 € S and thus AﬁBEA(S)

.If f,g€S(A) and ¢ € F, then

{(f+eg=X= |J {f=an{g=b}hecd

a,beF:a+cb=A

and

{f-g=M= | {f=anfg=bheA

a,beF:a-b=X\

from which it follows that f 4 cg and f - g are back in S (A) .
If f: 98 — Cis asimple function such that 1;,_yy; € S for all A € C,
then f =3\ .c A=} € S. Conversely, by Lemma if f €S then
Liy=xy € S for all A € C. Therefore, a simple function, f: X — Cisin §
iff 17y—xy € S for all A € C. With this preparation, we are now ready to
complete the verification.
First off,

A AS(A) <= 1,€S(A) < Ac A

which shows that A (S (A)) = A. Similarly,
feES(AN)) << {f=XeAS) VAreC
— 1{f:)\}€SV)\€(C
~— feS

which shows S (A (S)) = S.
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Finitely Additive Measures

Definition 4.1. Suppose that £ C 2% is a collection of subsets of X and
p: € —[0,00] is a function. Then

1. p is monotonic if p(A) < u(B) for all A,B € £ with A C B.
2. p is sub-additive (finitely sub-additive) on & if

n(E) < ZM(EL’)

whenever E =, E; € & withn € NU{cc} (n € N).
3. p is super-additive (finitely super-additive) on & if

p(E) > u(E;) (4.1)
=1

whenever E =Y""" | E; € £ with n € NU{oo} (n € N).
4. i is additive or finitely additive on £ if

ulB) =" u(E) (4.2)

whenever E=Y"" | E; € £ with E; € € fori=1,2,...,n < oco.

5. If € = A is an algebra, 1 (0) = 0, and p is finitely additive on A, then p
is said to be a finitely additive measure.

6. i is o — additive (or countable additive) on & if item 4. holds even
when n = 0.

7. If € = A is an algebra, 1 (0) = 0, and p is o — additive on A then p is
called a premeasure on A.

8. A measure is a premeasure, p : B — [0,00], where B is a o — algebra.
We say that p is a probability measure if p(X) = 1.

4.1 Finitely Additive Measures

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose ju is a finitely additive measure on an algebra, A C 2%, E,F € A with
E C Fand {E;};_, C A, then :
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1. (i is monotone) u(E) < u(F) if E C F.
2. For A, B € A, the following strong additivity formula holds;

H(AUB)+u(ANB) = u(A)+pu(B). (4.3)

3. (u is finitely subbadditive) u(U7_ E;) < >0 u(Ej).
4. 1 is sub-additive on A iff

A) < f: i) for A= Z A (4.4)

where A € A and {A;};2, C A are pairwise disjoint sets.

5. (u is countably superadditive) If A=Y " A; with A;, A € A, then

It <§:Ai> > iu(fl)

6. A finitely additive measure, u, is a premeasure iff p is sub-additve.

1.

2.

3.

4.

5.

Proof.

Since F' is the disjoint union of E and (F\ E) and F\E=FNE°€ A
it follows that

u(F) = p(E) + p(F\ E) = p(E).

Since

AUB=[A\(ANB)]) [B\(ANB)]Y AnB,

w(AUB)=pu(AUB\ (ANB))+u(ANB)
—W(A\(ANB)) + pu(B\ (AN B) + (AN B).
Addmg i1 (AN B) to both sides of this equatlon proves Eq.

Let E = E \(E1 U---UEj_1) so that the E; ’s are pair-wise dlSJOlIlt and
E = Uj_, Ej. Since E C Ej it follows from the monotonicity of y that

E) = w(E;) <> u(Ey)
If A=J;2, B; with A € A and B; € A, then A = >, A; where 4; :=
B;\(B1U...B;_1) € A and By = ). Therefore using the monotonicity of

© and Eq.
<D uA) <Y B
i=1 i=1

Suppose that A = Y .2 A; with A;, A € A, then ) ;" | A; C A for all
n and so by the monotonicity and finite additivity of p, > pu(4;) <
1 (A) . Letting n — oo in this equation shows p is superadditive.
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6. This is a combination of items 5. and 6.

Proposition 4.3. Suppose that P is a finitely additive probability measure on
an algebra, A C 2. Then the following are equivalent:

1. P is o — additive on A.
2. For all A, € A such that A, 1 A€ A, P(A,) T P(4).
3. For all A,, € A such that A, | A€ A, P(A,) | P(A)
4. For all A, € A such that A, T 2, P(A,) T 1.
5. For all A,, € A such that A, | 2, P(A,) | 1.
Proof. We will start by showing 1 <— 2 < 3.
1 = 2. Suppose A, € A such that A, T A€ A. Let A, := A, \ An—1
with Ag := 0. Then {A],} 7, are disjoint, A, = U}_, A} and A = U°  A].
Therefore,

n—oo n—oo

=Y P(A4;) = lim ZP (A}) = lim P(U_,A}) = lim P(A,).
k=1 =

2 = 1.If {4,},2, C A are disjoint and A := U2, A, € A, then
UN_, A, T A. Therefore,

N o
P(A)= lim P(U)LiAn) = lim P (An) =3 P(A
n=1 n=1

2 = 3.If A, € Asuch that A4, | A € A, then AS T A° and therefore,

lim (1 —P(A,)) = lim P(AS) =P (A°) =1- P(A).

n—oo n—oo

3 = 2.If A, € Asuch that A, T A € A, then AS | A° and therefore we
again have,

lim (1 —P(A,)) = lim P(AS) =P (A°) =1- P(A).

n—oo n—oo

It is clear that 2 = 4 and that 3 == 5. To finish the proof we will
show 5 = 2and 5 = 3.
5 = 2.If A, € A such that A,, ] A€ A, then A\ A, | § and therefore

lim [P(A)— P(A,)] = lim P(A\A,) =

n—oo n—oo

5 = 3.1If A, € Asuch that A, | A € A, then A, \ A | 0. Therefore,

lim [P (A,) — P(A)] = lim P(A,\ A) =0.

n—oo n—oo
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Remark 4.4. Observe that the equivalence of items 1. and 2. in the above
proposition hold without the restriction that P (£2) = 1 and in fact P (£2) = oo
may be allowed for this equivalence.

Definition 4.5. Let (£2,B) be a measurable space, i.c. B C 27 is a o -
algebra. A probability measure on (§2,B) is a finitely additive probability
measure, P : B — [0,1] such that any and hence all of the continuity properties
wn Proposition hold. We will call (12,8, P) a probability space.

Lemma 4.6. Suppose that (2, B, P) is a probability space, then P is countably
sub-additive.

Proof. Suppose that A, € B and let A} := A; and for n > 2, let A/, :=
A\ (A1 U... A,,_1) € B. Then

P(UpLiAn) = P (Ui, A4,) = D P(AL) <Y P(4,).

4.2 Examples of Measures

Most o — algebras and ¢ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe
explicitly what is going on.

Ezample 4.7. Suppose that (2 is a finite set, B := 2 and p: 2 — [0,1] is a
function such that
> opw) =1

wes?

Then
P(A):= Zp(w) for all A C {2
weA

defines a measure on 2.
Ezxample 4.8. Suppose that X is any set and « € X is a point. For A C X, let

1if z€ A
§$(A)_{Oifz¢A.

Then p = 6, is a measure on X called the Dirac delta measure at z.

Ezxample 4.9. Suppose that u is a measure on X and A > 0, then A- 1 is also a
measure on X. Moreover, if {j1;};c s are all measures on X, then p = Z;}; [
ie.
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o0
p(A) = p;(A) forall A C X
j=1
is a measure on X. (See Section for the meaning of this sum.) To prove

this we must show that x is countably additive. Suppose that {4;}.;-; is a
collection of pair-wise disjoint subsets of X, then

p(U2 A = p(A) = p(Ay)

i=1 i=1 j=1

= Z ZNj(Ai) = Zﬂj (UiZ14i)
j=11i=1 j=1

= ,U( ;)ilAZ)

wherein the third equality we used Theorem and in the fourth we used
that fact that u; is a measure.

Ezample 4.10. Suppose that X is a set A : X — [0, 00] is a function. Then

W= Z A(z)d,

zeX

is a measure, explicitly
n(A) = M)
€A
for all A C X.

Ezxample 4.11. Suppose that F C 2% is a countable or finite partition of X
and B C 2% is the o — algebra which consists of the collection of sets A C X
such that

A=U{aeF:acCA}. (4.5)

Any measure g : B — [0,00] is determined uniquely by its values on F.
Conversely, if we are given any function A : F — [0, 00] we may define, for

A€ B,
A = Y MNa)= Y AN@)laca

ac€Fd3aCA acF

where 1,c4 is one if @ C A and zero otherwise. We may check that p is a
measure on B. Indeed, if A=Y, A; and a € F, then o C A iff & C A; for
one and hence exactly one A;. Therefore 144 = Zf; laca, and hence

pA) = 37 M@)laca = 3 M@) Y- Laca,

aEF aEF

=33 Ma)laca, = Zu(Ai)

i=1 a€F
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as desired. Thus we have shown that there is a one to one correspondence
between measures p on B and functions A : F — [0, o0].

The following example explains what is going on in a more typical case of
interest to us in the sequel.

Example 4.12. Suppose that 2 = R, A consists of those sets, A C R which
may be written as finite disjoint unions from

S:={(a,))NR: -0 <a<b< o}.
We will show below the following:

1. A is an algebra. (Recall that Bg = o (A).)
2. To every increasing function, F' : R — [0, 1] such that

F(—o00):= lim F(z)=0and

F(+00):= lim F(x)=1

r—00

there exists a finitely additive probability measure, P = Pr on A such
that

P((a,b)NR) = F (b) — F(a) for all —oo <a<b< 0.

3. P is 0 — additive on A iff F' is right continuous.
4. P extends to a probability measure on By iff F' is right continuous.

Let us observe directly that if F' (a+) := limg|, F' (z) # F' (a) , then (a,a+
1/n] | 0 while

P((a,a+1/n])=F(a+1/n)— F(a) | F(a+) — F(a) > 0.

Hence P can not be ¢ — additive on A in this case.

4.3 Simple Integration

Definition 4.13 (Simple Integral). Suppose now that P is a finitely addi-
tive probability measure on an algebra A C 2X. For f € S(A) the integral
or expectation, E(f) = Ep(f), is defined by

Ep(f) =Y yP(f=v). (4.6)

yec
Ezample 4.1/. Suppose that A € A, then

Ely=0-P (A% +1-P(A) =P (A). (4.7)
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Remark 4.15. Let us recall that our intuitive notion of P (A) was given as in

Eq. (2.1) by

P(A):A;iinm%#{lgng:w(k)eA}

where w (k) € 2 was the result of the k*" “independent” experiment. If we
use this interpretation back in Eq. (4.6)), we arrive at

E(f) = Y yP(f=y) = Jim 3"y #{1<k<N: f k) =y}

yeC yeC
1 al 1 &
= Jim 5>y > Lreen=y = Jim 53 > F@H®) L=
yeC k=1 k=1yeC
1 N
= lim = ;f(w (K))

Thus informally, E f should represent the average of the values of f over many
“independent” experiments.

Proposition 4.16. The expectation operator, & = Ep, satisfies:
1.If f € S(A) and X € C, then

E(\f) = A(f). (48)
2. If f,g € S(A), then
E(f +9) = E(9) + E(f). (4.9)
3. E is positive, i.e. E(f) > 0 if f is a non-negative measurable simple
function.
4. For all f € S(A),
Ef| <E|f]. (4.10)

Proof.
1. If X # 0, then

EAf)= Y. yPAf=y)= >  yP(f=y/\

y€CU{oo} y€CU{oo}
= Y Az P(f=2)=AE(f).
z€CU{oo}

The case A = 0 is trivial.
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2. Writing {f = a,g = b} for f~1({a}) Ng=1({b}), then

E(f+g)=> zP(f+g=2)

zeC

=> 2 P(Uatp=z{f=0a, g=1b})

zeC

Yz Y, P{f=a,9=b))

zeC  a+b==z

> @+ P({f=a,g=0b})

2€C a+b==z

=2 PUf = o=t

But
dYaP({f=a,g=b)=> a) P{f=a g=0b})
a,b a b
:ZCLP(Ub{f:aa g=">})
=Y aP({f=a})=Ef

and similarly,

SO ({f=a, g=b}) =E
a,b
Equation (4.9)) is now a consequence of the last three displayed equations.

3. If f >0 then
E(f) =) aP(f =

a>0

1= A L=

AeC

4. First observe that

and therefore,

E|f|=E> [Mlj=x= Y [AElj—x =D [AP(f =) <max|f].

AeC AeC AeC

On the other hand,

D AP(f=))

AeC

IEf| = <SS NP(f=X=E|f].

AeC
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Remark 4.17. Every simple measurable function, f : 2 — C, may be written
as f = Zjvzl Ajly, for some )\; € C and some A; € C. Moreover if f is
represented this way, then

N N N
Ef=E > MNla, | =Y NEla, =) NP (4))
j=1 j=1

j=1

Remark 4.18 (Chebyshev’s Inequality). Suppose that f € S(A), e > 0, and
p >0, then

PS> }) = E [15.] <E[' | 1|f>5] <RSP, (41

Observe that
7= AP Loy

AeC
is a simple random variable and {[f| >} = 37,5 {f = A} € A as well.

Therefore, %1‘ fl>e is still a simple random variable.

Lemma 4.19 (Inclusion Exclusion Formula). If A4, € A for n =
1,2,..., M such that u (UTJ\L/[ZlAn) < 00, then

p (UM An) Z 1)t > p(Ap, NN A, (412)

k=1 1<ni<ng<---<nip <M

Proof. This may be proved inductively from Eq. (4.3). We will give a
different and perhaps more illuminating proof here. Let A := UM | A,,.
Since A¢ = (UM 4,) = NM_ A%, we have

M
1—1A=1AC:H1A”_H1_1A")
n=1

M
DT> day e lay,
k=

0 0<n<ne<---<np <M
M
k
= E (-1) E 14,0 nAn,
k=0 0<ni<na< - <np <M

from which it follows that

M

k+1
1os 4, =1a=) (-1) > 14, 0N A, - (4.13)
=1 1<ni<ngs<--<np <M

x>

Taking expectations of this equation then gives Eq. (4.12)). ]



48 4 Finitely Additive Measures

Remark 4.20. Here is an alternate proof of Eq. . Let w € 2 and by
relabeling the sets {A,} if necessary, we may assume that w € A;N---N A,
and w ¢ A1 U---U Ay for some 0 < m < M. (When m = 0, both sides of
Eq. (4.13)) are zero and so we will only consider the case where 1 < m < M.)
With this notation we have

M

(*l)kH Z LA, nna, (w)

k=1 1<ni<na<---<np <M

m
k+1
Z 1An1ﬂ”'ﬂAnk (w)
m

EEIRE D DR
>y (7)
EONEINE (%)

—1-(1-1)"=1.

This verifies Eq. (4.13) since 1ym 4, (w) = 1.

Ezample 4.21 (Coincidences). Let §2 be the set of permutations (think of card
shuffling), w : {1,2,...,n} — {1,2,...,n}, and define P (A) := # to
be the uniform distribution (Haar measure) on (2. We wish to compute the
probability of the event, B, that a random permutation fixes some index 1.
To do this, let A; := {w € 2 : w (i) = i} and observe that B = U ; 4;. So by
the Inclusion Exclusion Formula, we have

=

n

PB)=> (-n* > P(A,N---NA;).

k=1 1<iy1<ia<izg< - <ip<n
Since
PA,Nn---NA,)=P{weR:w(iy) =i1,...,w(ix) =ir})
=k
B n!
and
#{1 < <ig<izg< - <ip <n}= <Z)7
we find

P(B) = Z (—1)*+ <Z> (n—k)! _ (—1)F+ %

n!
k=1 k=1

For large n this gives,
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P(B) = — zn: (-1)* % ~—(e7!'—1) = 0.632.
k=1 ’

Ezample 4.22. Continue the notation in Example We now wish to com-
pute the expected number of fixed points of a random permutation, w, i.e.
how many cards in the shuffled stack have not moved on average. To this end,
let

X; =14,
and observe that
N@) =) Xiw =) low==#{i:w@)=1i}.
i=1 i=1

denote the number of fixed points of w. Hence we have

EN = f:EXi - iP(Ai) - i (";'1)! = 1.
=1 =1 ’

=1

Let us check the above formula when n = 6. In this case we have

w N(w)
123
132
213
231
312
321

_— O O = = W

and so 4 9
P (3 a fixed point) = =3

while

and
1

EN
6

B+1+14+0+0+1)=1.

4.4 Simple Independence and the Weak Law of Large
Numbers

For the next two problems, let A be a finite set, n € N, 2 = A", and X :
2 — A be defined by X; (w) = w; for w € 2 and i = 1,2,...,n. We further
suppose p : {2 — [0, 1] is a function such that
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> plw) =

wen

and P : 2 — [0, 1] is the probability measure defined by

= Z p(w) for all A € 29 (4.14)
weA
Exercise 4.1 (Simple Independence 1.). Suppose ¢; : A — [0, 1] are func-

tions such that >, ., ¢ (A\) =1fori=1,2,...,n and pr( ) =TI 4 (wi).
Show for any functions, f; : A — R that

n

11+ (Xo} =[IErlfi (x] =[] Ea.fi

Ep

i=1

where Q; (v) = > 5e, ¢ (A) for all v C A

Exercise 4.2 (Simple Independence 2.). Prove the converse of the previ-
ous exercise. Namely, if

Ep

Hfi (Xi)] = HEP [fi (X3)] (4.15)
i=1 i=1

for any functions, f; : A — R, then there exists functions ¢; : A — [0, 1] with
> aea i (A) =1, such that p (w) = [Ti-; ¢ (wi) .

Exercise 4.3 (A Weak Law of Large Numbers). Suppose that 4 C R
is a finite set, n € N, 2 = A", p(w) = H?:l q (w;) where ¢ : A — [0,1] such
that ZAeAq()\) =1, and let P : — [0,1] be the probability measure
defined as in Eq. ( - Further let X (w)=w; fori=1,2,...,n, £ :=EX,,
02 :=E(X; —¢)?, and

1
Sn:ﬁ(X1+---+Xn).

1. Show, £ = > 3o 4 A ¢ () and

?=> (A-¢° =) N\ (4.16)

AeA AeA

2. Show, ES,, = .

E[(Xi — &) (X; —&)] = 6;0°.

4. Using S, — £ may be expressed as, =~ > 1" | (X; — &), show

E (S, — &) = %02. (4.17)
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5. Conclude using Eq. (4.17) and Remark that
L 5
So for large n, S, is concentrated near £ = EX; with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Exercise 4.4 (Bernoulli Random Variables). Let 4 = {0,1},, X : 4 —
R be defined by X (0) = 0 and X (1) = 1, = € [0,1], and define Q = 2§, +
(1 —x)dp,ie. Q({0}) =1—2 and Q ({1}) = x. Verity,

¢(z) =EgX =z and
o?(z)=Eg (X —a2)’=(1—xz)z <1/4.

Theorem 4.23 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f € C([0,1],C) and

pn () := kzn:_o (Z)f (i) (1= ",

Then
lim sup |f(z) —pn (z)] = 0.

00 2€0,1]
(See Theorem for a multi-dimensional generalization of this theorem.)
Proof. Let x € [0,1], A={0,1},¢(0) =1—=2, ¢(1) =z, 2= A", and
Pe({wh) = (@) g (wn) = 2B (L— )t

As above, let S,, = % (X1 4+ X,), where X; (w) = w; and observe that

P, (Sn = :) = (Z) oF (1 —z)" k.

Therefore, writing E,, for Ep_, we have

. 7 (5] = Z_:f (5) (1) o = o).
Hence we find

lpn (z) = f (@) = [Eo f (Sn) — f(2)| = [Ex [f (Sn) — f (2)]]
S Eg|f(Sn) = f (2)]
=B [[f (Sn) = f(2)] S — 2| = €]
+Es [[f (Sn) = f(2)] ¢ [Sn — 2] <g]
<2M - P, (|Sp —z| > &)+ d(e)
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where
M := max |f (y)| and

y€[0,1]
d(e) :=sup{|f(y) — f(2)] : 2,y € [0,1] and |y — =] < &}

is the modulus of continuity of f. Now by the above exercises,

(see Figure

Po(ISh—al > &) <

and hence we may conclude that
M
mn - < 6
i [p (2) = f (@) < 55+

and therefore, that
limsup max |p, () — f (z)] <0 (¢)

n—oo «€[0,1]
This completes the proof, since by uniform continuity of f, § (¢) | 0 as e | 0.

P _x(S=k/n) o’.
017
+
had *
+ *
*
+ * s
0.075T A .
- * "
* *
. * . . +
0057 .
+ * *
* *
+ * *
*
0.025T * . T . . .
. . .
* L]
" . ‘. .. . *
1) * e 0 *
ot ...aa.. . e PO e bad
O T al
0 0.25 05 0.75 1
k/n

Fig. 4.1. Plots of P, (S, = k/n) versus k/n for n = 100 with x = 1/4 (black),

x =1/2 (red), and z = 5/6 (green).

4.5 Constructing Finitely Additive Measures
Definition 4.24. A set S C 2% is said to be an semialgebra or elementary

class provided that
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e eS8

e S is closed under finite intersections

o if £ €S, then E° is a finite disjoint union of sets from S. (In particular
X = 0° is a finite disjoint union of elements from S.)

Ezample 4.25. Let X =R, then

S:={(a,))NR:a,becR}
= {(a,b] : a € [~00,00) and a < b < oo} U {0, R}

is a semi-field

Exercise 4.5. Let A C 2% and B C 2¥ be semi-fields. Show the collection
E={AxB:Ac Aand B € B}

is also a semi-field.

Proposition 4.26. Suppose S C 2% is a semi-field, then A = A(S) consists
of sets which may be written as finite disjoint unions of sets from S.

Proof. Let A denote the collection of sets which may be written as finite
disjoint unions of sets from S. Clearly S C A C A(S) so it suffices to show A is
an algebra since A(S) is the smallest algebra containing S. By the properties
of S, we know that (), X € A. Now suppose that A; = 3 ., F € A where,
for i =1,2,...,n, A; is a finite collection of disjoint sets from S. Then

ﬁAi:ﬁ<ZF>: U (FLNFn---NF,)
=1 i=1 \FeA;

(Fr,,e s Fp)EAL XX Ay,

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections. Similarly, if A = > ., F' with A being a
finite collection of disjoint sets from S, then A = (., F'°. Since by assump-
tion F© € Afor F € A C § and A is closed under finite intersections, it
follows that A¢ € A. ]

Ezxample 4.27. Let X =R and S := {(a, bjNR:a,be }R} be as in Example
Then A(S) may be described as being those sets which are finite disjoint
unions of sets from S.

Proposition 4.28 (Construction of Finitely Additive Measures). Sup-
pose S C 2% is a semi-algebra (see Definition and A = A(S) is the
algebra generated by S. Then every additive function p: S — [0, 00] such that
w(0) = 0 extends uniquely to an additive measure (which we still denote by

) on A.
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Proof. Since (by Proposition 4.26|) every element A € A is of the form
A =", E; for a finite collection of F; € S, it is clear that if 1 extends to a
measure then the extension is unique and must be given by

plA) = 3 (B, (4.19)

To prove existence, the main point is to show that u(A) in Eq. (4.19) is well
defined; i.e. if we also have A = Zj F; with F; € S, then we must show

S nE) = 3 (). (4.20)

But E; = 3, (E; N F}) and the additivity of p on S implies p(E;) = 3, p(E;N
F};) and hence

ZM(Ez‘) = ZZ#(Ez‘ NFy) = ZM(Ez' N Fj).

Similarly,

ZM(FJ‘) = ZN(Ei N Fy)

which combined with the previous equation shows that Eq. (4.20) holds. It
is now easy to verify that p extended to A as in Eq. (4.19) is an additive
measure on A. ]

Proposition 4.29. Let X =R, S be a semi-algebra
S={(a,))NR: -0 <a<b< oo}, (4.21)

and A = A(S) be the algebra formed by taking finite disjoint unions of ele-
ments from S, see Proposition[4.26l To each finitely additive probability mea-
sures ju 2 A — [0,00], there is a unique increasing function F : R — [0, 1] such
that F(—o00) =0, F(c0) =1 and

w((a,b] NR) = F(b) — F(a) Va<binR. (4.22)

Conversely, given an increasing function F : R — [0, 1] such that F(—oc) = 0,
F(o0) =1 there is a unique finitely additive measure i = pp on A such that

the relation in Eq. holds.
Proof. Given a finitely additive probability measure u, let

F(x):=p((—oo,z] NR) for all z € R.
Then F (0) =1, F (—o0) = 0 and for b > a,

F(5) — F (a) = p((~00,8] NR) — st ((~o0,a]) = s ((a,8] N R).
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Conversely, suppose F : R —[0,1] as in the statement of the theorem is
given. Define p on S using the formula in Eq. . The argument will be
completed by showing p is additive on S and hence, by Proposition has
a unique extension to a finitely additive measure on A. Suppose that

n

(aa b] - Z(aia bl]

i=1
By reordering (a;, b;] if necessary, we may assume that
a=a1<by=ay<by=a3<---<b,_1=a, <b, =b.

Therefore, by the telescoping series argument,

n n

u((a,b] NR) = F(b) = Fla) = S [F(b) — F(a)] = 3 ul(ai, bl N R).

i=1 i=1






5

Countably Additive Measures

5.1 Distribution Function for Probability Measures on
(Rv BR)

Definition 5.1. Given a probability measure, P on Bg, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = Fp :
R —[0,1] given as

F(z):= P ((—o0,x]).

Ezxample 5.2. Suppose that
P=pi_1+qd1 + 1,
with p,q,r > 0 and p + ¢ + r = 1. In this case,

0 for z<-1
_ p for-1<z<1
F(z) = ptqgfor 1<xz<m’
1 forr<z<

Lemma 5.3. If F = Fp : R — [0, 1] is a distribution function for a probability
measure, P, on Bgr, then:

1. F(—00) :=lim, o F () =0,
2. F(00) :=limy 00 F (z) =1,

3. F is non-decreasing, and

4. F is right continuous.

Theorem 5.4. To each function F : R — [0, 1] satisfying properties 1. — 4. in
Lemmal[5.3 there exists a unique probability measure, Pg, on Bg such that

Pr ((a,b]) = F (b) — F (a) forall —oco<a<b< oco.

Proof. The uniqueness assertion in the theorem is covered in Exercise
below. The existence portion of the Theorem follows from Proposition and
Theorem below. |

Ezample 5.5 (Uniform Distribution). The function,
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Ofor x<0
F(z):=gzfor 0<z<1,
lforl<z<oo

is the distribution function for a measure, m on Bgr which is concentrated
n (0, 1]. The measure, m is called the uniform distribution or Lebesgue
measure on (0, 1].

Recall from Definition that B C 2% is a o — algebra on X if B is an
algebra which is closed under countable unions and intersections.

5.2 Construction of Premeasures

Proposition 5.6. Suppose that S C 2% is a semi-algebra, A = A(S) and
i A —[0,00] is a finitely additive measure. Then p is a premeasure on A
iff w is sub-additive on S.

Proof. Clearly if i is a premeasure on A then p is o - additive and hence
sub-additive on S. Because of Proposition to prove the converse it suffices
to show that the sub-additivity of u on S implies the sub-additivity of © on
A.

So suppose A = > A, with A € A and each A, € A which we express

n=1

as A=Y" | Ej with E; € S and A, = Y1, By, ; with E,,; € S. Then

0 oo N,
Ej=ANE;=) A,NE; =Y > E.,NE;

n=1 n=11i=1

which is a countable union and hence by assumption,

ZZ“ (EniNE;).

Summing this equation on j and using the finite additivity of u shows

k k oo Ny,
wA) = wE) <Y NS w(Bai N Ey)
J=1 j=1ln=1i=1
o N, k oo N, fe'e)
M IUCHLAEDHIUCHEDICHE
n=11i=1 j=1 n=11=1 n=1
which proves (using Proposition the sub-additivity of pu on A. ]

Now suppose that F' : R — R be an increasing function, F (+oo) :=
lim, .40 F (x) and g = pp be the finitely additive measure on (R,.A4) de-
scribed in Proposition If 4 happens to be a premeasure on A, then,
letting A,, = (a,b,] with b, | b as n — oo, implies
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F(bn) — F(a) = p((a,bn]) | p((a,b]) = F(b) — F(a).

Since {b,} -, was an arbitrary sequence such that b, | b, we have shown
lim,, F(y) = F(b), i.e. F is right continuous. The next proposition shows the
converse is true as well. Hence premeasures on A which are finite on bounded
sets are in one to one correspondences with right continuous increasing func-
tions which vanish at 0.

Proposition 5.7. To each right continuous increasing function F : R - R
there exists a unique premeasure g = g on A such that

wr((a,b]) = F(b)— Fla)V —oco<a<b< .

Proof. As above, let F(+o0) := lim, 4o F(z) and g = pup be as in
Proposition [.29] Because of Proposition to finish the proof it suffices to
show p is sub-additive on S.

First suppose that —oco < a < b < 00, J = (a,b], J, = (an,by,] such that

o0

J= > J, We wish to show

w(7) < 37 i), (5.1)

To do this choose numbers @ > a, b, > by, in which case I := (a,b] C J,

Iy = (an,gn] D) JN,‘Z = (an,gn) o J,.

Since I = [a, b] is compact and I ¢ J € |J J? there existN < oo such that

n=1

33

N N
rciclJJggcl Jn

n=1 n=1
Hence by finite sub-additivity of p,

F(b) - F(a) = u(l)

IN

N oo

Z p(Jn) < Z w(JIn)-

n=1 n=1

Using the right continuity of F' and letting a | a in the above inequality,

L To see this, let ¢ := sup {x <b: [a,x] is finitely covered by {jﬁ}oo } Ife<b,
n=1

then ¢ € Jg, for some m and there exists = € JS, such that [a,z] is finitely covered
~ oo ~ N .y max(m,N)
by {Jﬁ} , say by {JTOL} . We would then have that {Jﬁ} finitely
n=1 n=1 n=1
covers [a, c'] for all ¢ € J5,. But this contradicts the definition of c.
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p () = pl(a.b)) = F() = F(a) < > p ()

n=1
= Z,LL(Jn)+ZU(jn\Jn)' (5.2)

Given € > 0, we may use the right continuity of F' to choose by, so that
w(Jp \ Jp) = F(by) — F(b,) <e2™™ ¥VneN.
Using this in Eq. (5.2 shows

u(J) = pl(ab) <Y p(da) +e
n=1

which verifies Eq. (5.1) since € > 0 was arbitrary.
The hard work is now done but we still have to check the cases where
a = —oo or b = co. For example, suppose that b = oo so that

J = (a,00) = i In
n=1
with J, = (an, b,] NR. Then
Inpi=(a,M]=J NIy = i]nﬂIM
n=1
and so by what we have already proved,
FOM) = Fla) = uln) £ 3 4l N Tar) < 3 i)
n=1 n=1
Now let M — oo in this last inequality to find that
(0, 5)) = F(o) — Fla) < 3" (7).
n=1

The other cases where a = —oo and b € R and ¢ = —o0 and b = oo are
handled similarly. ]

Before continuing our development of the existence of measures, we will
pause to show that measures are often uniquely determined by their values
on a generating sub-algebra. This detour will also have the added benefit of
motivating Carathoedory’s existence proof to be given below.
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5.3 Regularity and Uniqueness Results

Definition 5.8. Given a collection of subsets, £, of X, let £, denote the col-
lection of subsets of X which are finite or countable unions of sets from &.
Similarly let Es denote the collection of subsets of X which are finite or count-
able intersections of sets from £. We also write E,5 = (E5)5 and Eso = (5),
etc.

Lemma 5.9. Suppose that A C 2% is an algebra. Then:

1. A, is closed under taking countable unions and finite intersections.
2. As is closed under taking countable intersections and finite unions.

3.{AAe A} = A5 and {A°: Ae As} = A,.
Proof. By construction A, is closed under countable unions. Moreover if
A=U2,A; and B = U2, B with A;, B; € A, then

ANB=U_1AiNB; € Ay,

which shows that A, is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3. ]

Theorem 5.10 (Finite Regularity Result). Suppose A C 2% is an al-
gebra, B = o (A) and p : B — [0,00) is a finite measure, i.e. p(X) < oo.
Then for every e > 0 and B € B there exists A € As and C € A, such that
ACBCCand u(C\A) <e.

Proof. Let By denote the collection of B € B such that for every ¢ > 0
there here exists A € As and C € A, suchthat AC B C Cand u(C\ A) < e.
It is now clear that A C By and that By is closed under complementation. Now
suppose that B; € By for i =1,2,... and € > 0 is given. By assumption there
exists A; € As and C; € A, such that A; C B; C C; and p (C; \ 4;) < 27 %.

Let A := U2, A;, AN = U{ilAi € A;, B:=UX,B;, and C :=UX,C; €
Ay. Then AN ¢ AC B c C and

C\A=[UZ,C]\A=UZ [C;\ A C U2, [Ci \ Ay

Therefore,

EAVIEMTNCAVIED SCAVIES SMCAVHES

Since C'\ AN | C'\ 4, it also follows that p (C'\ AY) < ¢ for sufficiently large
N and this shows B = U2, B; € By. Hence By is a sub-o-algebra of B = o (\A)
which contains A which shows By = B. [

Many theorems in the sequel will require some control on the size of a
measure p. The relevant notion for our purposes (and most purposes) is that
of a ¢ — finite measure defined next.
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Definition 5.11. Suppose X is a set, € CB C 2% and p: B — [0,00] is a
function. The function p is 0 — finite on &€ if there exists E,, € £ such that
w(Ey) < oo and X =UX E,. If B is a 0 — algebra and p is a measure on B
which is o — finite on B we will say (X, B, 1) is a 0 — finite measure space.

The reader should check that if p is a finitely additive measure on an
algebra, B, then p is o — finite on B iff there exists X,, € B such that X,, T X
and p(X,) < oo.

Corollary 5.12 (0 — Finite Regularity Result). Theorem continues
to hold under the weaker assumption that u : B — [0,00] is a measure which
is o — finite on A.

Proof. Let X,, € Asuch that U322, X,, = X and pu(X,,) < oo for all n.Since
A€ B—py(A) = pu(X,NA)is a finite measure on A € B for each n, by
Theorem for every B € B there exists C,, € A, such that B C C,, and
(X, N[Cp\ B]) = pun (Cp, \ B) <27 "e. Now let C := U2, [X,,NCy] € A,
and observe that B C C and

p(C\ B) = (U ([Xn N Cu] \ B))

giu([X NCy]\ B) :i (X, N[Cp\ B]) <
n=1 n=1
Applying this result to B¢ shows there exists D € A, such that B¢ C D and
w(B\ DY) = (D \ B) < =.
So if we let A := D¢ € As, then A C B C C and
(C\A) = p(B\AJUIC\ B)\ A)) < (B\ A) + u(C\ B) < 22
and the result is proved. [

Exercise 5.1. Suppose A C 2% is an algebra and i and v are two measures

on B=o(A).

a. Suppose that pu and v are finite measures such that p = v on A. Show
uw=v.

b. Generalize the previous assertion to the case where you only assume that
1 and v are o — finite on A.

Corollary 5.13. Suppose A C 2% is an algebra and ji : B = o (A) — [0, 00] is
a measure which is o — finite on A. Then for all B € B, there exists A € Aso
and C € Ays such that AC B C C and p(C'\ A) =0.

Proof. By Theorem [5.10} given B € B, we may choose A, € As and
C,, € A, such that A,, C B C C,, and u(C, \B)<1/nandu(B\A ) < 1/n.
By replacing Ay by UY_; A,, and Cy by NY_,C,,, we may assume that A,, 1
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and C,, | as n increases. Let A = UA,, € As, and C = NC,, € A,s, then
AC B cCC and

w(C\A) =pu(C\B)+u(B\A) <pu(Cr\ B) +u(B\ Ay)
<2/n—0asn— 0.

Exercise 5.2. Let B = Bg» = o ({open subsets of R"}) be the Borel o —
algebra on R™ and p be a probability measure on 5. Further, let By denote
those sets B € B such that for every € > 0 there exists F* C B C V such that
F is closed, V is open, and p (V' \ F') < e. Show:

1. By contains all closed subsets of B. Hint: given a closed subset,
F c R" and k € N, let Vi := UzerpB(z,1/k), where B(z,d) :=
{yeR": |y — x| <d}. Show, V}, | F as k — <.

2. Show By is a o — algebra and use this along with the first part of this
exercise to conclude B = By. Hint: follow closely the method used in the
first step of the proof of Theorem [5.10]

3. Show for every ¢ > 0 and B € B, there exist a compact subset,
K C R", such that K C B and pu(B\K) < e. Hint: take K :=
Fn{zeR":|z| <n} for some sufficiently large n.

5.4 Construction of Measures

Remark 5.14. Let us recall from Proposition[4.3]and Remark [{.4] that a finitely
additive measure p : A — [0,00] is a premeasure on A iff p(A4,) T u(A4) for
all {A,}>7, C Asuch that A4, 1 A € A. Furthermore if p1 (X) < oo, then p is
a premeasure on A iff u(A4,) | 0 for all {A,},7, C A such that A4, | 0.

Proposition 5.15. Let p be a premeasure on an algebra A, then pu has a
unique extension (still called p) to a function on A, satisfying the following
properties.

1. (Continuity) If A, € A and A, T A € A, then u(A4,) T n(A) as
n — oo.

2. (Monotonicity) If A, B € A, with A C B then p(A) < u(B).

3. (Strong Additivity) If A, B € A,, then

p(AUB) +pu(ANB) =pu(A)+pu(B). (5.3)
4. (Sub-Additivity on A,) The function p is sub-additive on A,, i.e. if
{A,}02, C A,, then

P01 AL) < 3 (A (5.4)

n=1
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5. (o - Additivity on A, ) The function p is countably additive on A, .

Proof. Let A, B be sets in A, such that A C B and suppose {4, },-,
and {B,}.., are sequences in A such that 4, 1 A and B, | B as n — 0.
Since B,, N A, T A, as m — oo, the continuity of u on A implies,

p(A4,) = lim pu(BnNnA,) < lim p(By).

m—00 m— 00

We may let n — oo in this inequality to find,

lim p(4,) < lm u(By). (5.5)
Using this equation when B = A, implies, lim, oo gt (Ay) = limy,— 00 4 (Bi)
whenever A, 1 A and B,, T A. Therefore it is unambiguous to define p (A)
by;
i (4) = Tim p(A,)
n—oo

for any sequence {A4,} 7, C A such that A, 1 A. With this definition, the
continuity of u is clear and the monotonicity of u follows from Eq. .

Suppose that A,B € A, and {A,},2, and {B,} -, are sequences in A
such that A, T A and B, T B as n — oco. Then passing to the limit as n — oo
in the identity,

(A UBp) + p (A N By) = p(An) + 1 (Bn)

proves Eq. (5.3). In particular, it follows that p is finitely additive on A,.
Let {A,},~, be any sequence in A, and choose {4, ;};~, C A such that
A 1T Ay as i — co. Then we have,

N N oo
w (UﬁleAn,N) < Z 1 (An,N) < Z 1(Ay) < Z w(Ap) . (5.6)

Since A > UN_ A, n TUZ A, € Ay, we may let N — oo in Eq. to
conclude Eq. holds.

If we further assume that {A4,} ~, C A, is a disjoint sequence, by the
finite additivity and monotonicity of u on A,, we have

0o N
. . N
Zl p(A) = lim D7 p(An) = Jim g (U303 An) < (UpLAn)
n— =
The previous two inequalities show p is o — additive on A, . [

Suppose p is a finite premeasure on an algebra, A C 2%, and A € AsNA,.
Since A, A° € A, and X = AU A°, it follows that pu(X) = p(A) + u(A4°).
From this observation we may extend u to a function on As U A, by defining

w(A) = pu(X)—p(A°) for all A € As. (5.7)
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Lemma 5.16. Suppose ju is a finite premeasure on an algebra, A C 2%, and
1t has been extended to AsUA, as described in Pmpositz'on and FEq.
above.

1. If Ae As and A, € A such that A, | A, then p(A) =lim,, o 1 (Ay) .
2. 1 is additive when restricted to As.
3. IfAe As and C € A, such that A C C, then u(C\ A) = p(C) — p(4).

Proof.

1. Since A¢ 1 A° € A,, by the definition of u (A) and Proposition it
follows that

p(A) = p(X) = p(A°) = p(X) = lim p(A7)

= lim [u(X) = p(A7)] = lim p(A4).

2. Suppose A, B € Aj are disjoint sets and A,,, B, € A such that A,, | A
and B, | B, then A, UB,, | AU B and therefore,

p(AUB) = nlingo.u (A, UB,) = 7}520 (1 (An) + 1 (Bn) — p(An N By)]
=p(A)+pu(B)

wherein the last equality we have used Proposition |4.3
3. By assumption, X = A¢U C. So applying the strong additivity of p on
Ay in Eq. (5.3) with A — A¢ € A, and B — C € A, shows

p(X) +p(C\NA)=p(A°UC) +p(A°NC)
=p(A%) +p(C) = pn(X) —p(A) +pn(0).
| ]

Definition 5.17 (Measurable Sets). Suppose u is a finite premeasure on
an algebra A C 2X. We say that B C X is measurable if for all ¢ > 0 there
exists A € As and C € A, such that AC B C C and p(C\ A) <e. We will
denote the collection of measurable subsets of X by B = B (u). We also define
fi: B—[0,p(X)] by

[i(B)=inf{u(C): BCCe Ay} (5.8)

Remark 5.18. 1t Be B, e >0, A€ As and C € A, are such that AC BC C
and 4 (C\ A) <e, then p(A) < i (B) < pu(C) and in particular,

0<ia(B)—p(A)<e, and 0< pu(C)—p(B) <e. (5.9)
Indeed, if C" € A, with B C C’, then A C C’ and so by Lemma [5.16}
1 (A) < p(C"\A) + p(A) = p(C)

from which it follows that p(A) < i (B). The fact that i (B) < u(C) follows
directly from Eq. (5.8]).
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Theorem 5.19 (Finite Premeasure Extension Theorem). Suppose p is
a finite premeasure on an algebra A C 2X. Then B is a o — algebra on X
which contains A and i is a o — additive measure on B. Moreover, [i is the
unique measure on B such that | 4 = .

Proof. It is clear that A C B and that B is closed under complementation.
Now suppose that B; € B for ¢ = 1,2 and ¢ > 0 is given. We may then
choose A; C B; C C; such that A; € As, C; € Ay, and p(C; \ A;) < € for
1 =1,2. Then with A = A1 U Ay, B = By UDBy and C = Cy U5, we have
As > AC BcCC e A,. Since

C\NA=(C1\A)U(C2\A4) C(Cr\A)U(C2\ A2),
it follows from the sub-additivity of p that with
p(C\NA) < p(Cr\ A +p(C2\ Az) < 2e.

Since € > 0 was arbitrary, we have shown that B € B. Hence we now know
that B is an algebra.

Because B is an algebra, to verify that B is a ¢ — algebra it suffices to
show that B = °° | B, € B whenever {B,},., is a disjoint sequence in
B. To prove B € B, let ¢ > 0 be given and choose A; C B; C C; such that
A; € A5, Ci € Ay, and p(C;\ A;) < e27¢ for all 4. Since the {4;};~, are
pairwise disjoint we may use Lemma to show,

D on(C) = (u(A) +pu(Ci\ Ai))
i=1 i=1

— n(ULA) + D p(CNA) S p () + Y e

i=1

Passing to the limit, n — oo, in this equation then shows

ZM(Ci)SM(X)+€<OO. (5.10)
i=1
Let B=UX,B;, C:=U2,C; € A, and for n € Nlet A" :=>"" | A €
As. Then As; 5 A" CBCCeA,, C\A" € A, and
C\A" = Uz, (C\ A") C ULy (G \ AU [URE,, 141 Ci] € A,
Therefore, using the sub-additivity of 4 on A, and the estimate (5.10)),

p(C\AY) <D p(Ci\A)+ > pu(Cy)
i=1 i=n+1

<e+ Z 1 (Ci) = € asn— oo.
1=n+1



5.4 Construction of Measures 67

Since € > 0 is arbitrary, it follows that B € B. Moreover by repeated use of
Remark [5.18] we find

[ (B) — (A" <e+ D p(Cy) and
i=n—+1

S A (By) - p(Am)

i=1

n

= > [1(Bi) = n(A)]

i=1

Combining these estimates shows

B(B) =Y (B <2e+ Y p(Cy)
i=1 i=n-+1

which upon letting n — oo gives,

=Y (B <
=1

Since ¢ > 0 is arbitrary, we have shown i (B) = >_.2, ii(B;). This completes
the proof that B is a o - algebra and that f is a measure on B. [

Theorem 5.20. Suppose that p is a o — finite premeasure on an algebra A.
Then

g(B) =inf{u(C):BcCeA,} YVBeo(A) (5.11)
defines a measure on o (A) and this measure is the unique extension of 1 on
A to a measure on o (A).

Proof. Let {X,},~, C A be chosen so that x(X,) < oo for all n and
X, T X asn — oo and let

tn (A) = p, (AN X,) for all A€ A.

Each p, is a premeasure (as is easily verified) on .4 and hence by Theorem
each p, has an extension, fi,, to a measure on o (A) . Since the measure
[i, are increasing, i := lim, . fi, is @ measure which extends pu.

The proof will be completed by verifying that Eq. (5.11)) holds. Let B €
c(A), B, = X,, N B and € > 0 be given. By Theor there exists
Cpm € A, such that By, C C,, C X,, and i(Ci\ Bin) = firn (Crn \Bi) < €27
Then C :=Ux_,Cp, € A, and

u(C\B)Su(U (Crn \B) > WCn\B) <> jiC \ B)

Thus

fi(B) <p(C)=p(B)+u(C\B)<p(B)+e
which, since € > 0 is arbitrary, shows f satisfies Eq. . The uniqueness
of the extension [ is proved in Exercise ]
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Ezample 5.21. If F (z) = z for all z € R, we denote pur by m and call m
Lebesgue measure on (R, Bg) .

Theorem 5.22. Lebesgue measure m s invariant under translations, i.e. for
B € By and x € R,

m(x + B) = m(B). (5.12)
Moreover, m is the unique measure on Bgr such that m((0,1]) = 1 and Eq.
holds for B € Bg and x € R. Moreover, m has the scaling property

m(AB) = |A\|m(B) (5.13)
where A € R, B € Bg and AB := {\zx : x € B}.
Proof. Let m,(B) := m(z + B), then one easily shows that m, is a

measure on Bgr such that m,((a,b]) = b — a for all a < b. Therefore, m, =m
by the uniqueness assertion in Exercise [5.1] For the converse, suppose that m
is translation invariant and m((0,1]) = 1. Given n € N, we have
k-1 k k-1 1
0,1 = (——, =] =U; | —+(0,=] ).
o =uin (S - (B v 0. )

n n

Therefore,

1=m((0,1]) = y m<k_1+<0’:ﬂ)

k=

=

= S m(©. 1) = n-m(0. ).
That is to say

1
0,—])=1/n.
(0, ) =1/
Similarly, m((0, £]) = I/n for all ,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,, b, € Q such that b, | b and
an, 1 a, then (ay,by,] | (a,b] and thus

m((a,b]) = lim m((an,by]) = lim (b, —a,) =b—a,

i.e. m is Lebesgue measure. To prove Eq. (5.13) we may assume that A # 0
since this case is trivial to prove. Now let my(B) := [A|”" m(AB). It is casily
checked that m) is again a measure on Bg which satisfies

ma((a, b)) = A tm (Aa, \b)) = A1 (Ab— Xa) = b —a
if A >0 and
ma((a,b]) = (A" " m (A6, Aa)) = — AP (Ab—Xa) =b—a

if A < 0. Hence my = m. [
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5.5 Completions of Measure Spaces

Definition 5.23. A set E C X is a null set if E € B and u(E) =0. If P is
some “property” which is either true or false for each x € X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E:={x € X : P is false for x}

is a null set. For example if f and g are two measurable functions on (X, B, ),
f =g a.e. means that u(f # g) = 0.

Definition 5.24. A measure space (X, B, u) is complete if every subset of
a null set is in B, i.e. for all F C X such that F C E € B with u(E) =0
implies that F € B.

Proposition 5.25 (Completion of a Measure). Let (X, B, 1) be a measure
space. Set

N=NHt:={NCX:3F € Bsuch that N C F and u(F) =0},
B=B":={AUN:A€Band N € N} and
G(AUN) := u(A) for A€ B and N e N,
see Fig. . Then B is a o — algebra, i is a well defined measure on B, i
is the unique measure on B which extends p on B, and (X, B, i) is complete

measure space. The o-algebra, B, is called the completion of B relative to
and fi, is called the completion of u.

Proof. Clearly X, € B. Let A € B and N € N and choose F € B such

Fig. 5.1. Completing a o — algebra.

that N C F and p(F) = 0. Since N¢ = (F'\ N) U F*°,

(AUN)® = AN N° = A°N (F\ NUF°)
= [A°N (F\ N)]U[A° N F¥|



70 5 Countably Additive Measures

where [A°N (F\ N)] € N and [A° N F¢] € B. Thus B is closed under
complements. If A; € B and N; C F; € B such that u(F;) = 0 then
U(4; U N;) = (UA;) U (UN;) € B since UA; € B and UN; C UF; and
p(UF;) <57 u(F;) = 0. Therefore, B is a o — algebra. Suppose AUN; = BUN,
with A, B € B and Ny, Na,€ N. Then Ac AUN, C AUN, UF, = BU F,
which shows that

u(A) < w(B) + u(F) = p(B).

Similarly, we show that p(B) < p(A) so that pu(A) = p(B) and hence (A U
N) := p(A) is well defined. It is left as an exercise to show [ is a measure,
i.e. that it is countable additive. ]

5.6 A Baby Version of Kolmogorov’s Extension Theorem

For this section, let A be a finite set, 2 := A := AV, and let A denote the
collection of cylinder subsets of (2, where A C 2 is a cylinder set iff there
exists n € N and B C A™ such that

A=BxA® ={we NR: (w,...,w,) € B}.

Observe that we may also write A as A = B’ x A where B’ = Bx A¥ C A"
for any k > 0.

Exercise 5.3. Show A is an algebra.

Lemma 5.26. Suppose {A,},_, C A is a decreasing sequence of non-empty
cylinder sets, then N2, A, # 0.

Proof. Since A, € A, we may find N, € N and B,, C AY* such that
A, = B, x A%. Using the observation just prior to this Lemma, we may
assume that {N,} | is a strictly increasing sequence.

By assumption, there exists w(n) = (w1 (n), w2 (n),...) € 2 such that
w (n) € A, for all n. Moreover, since w (n) € A,, C A, for all k < n, it follows
that

(w1 (n),ws (n),...,wnN, (n)) € By for all k <mn. (5.14)

Since A is a finite set, we may find a A\; € A and an infinite subset, I C N
such that wy (n) = Ay for all n € I, Similarly, there exists Ay € A and an
infinite set, Is C I7, such that we (n) = A2 for all n € I'y. Continuing this
procedure inductively, there exists (for all j € N) infinite subsets, I; C N and
points A; € A such that It DI D I3 D ... and w; (n) = A; for all n € I,

We are now going to complete the proof by showing that A := (A1, Aa,...)
is in N9, A,,. By the construction above, for all N € N we have

(wi(n),...,on (n)=(N\1,...,Ay) foralln e I'y.

Taking N = Ny and n € I'y, with n > k, we learn from Eq. (5.14) that
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()\1, . ,)\Nk) = (wl (n) ye e s WNY (’I’L)) € Bg.

But this is equivalent to showing A € Ay. Since k € N was arbitrary it follows
that A\ € N2, A,,. "

Theorem 5.27 (Kolmogorov’s Extension Theorem 1.). Continuing the
notation above, every finitely additive probability measure, P : A — [0,1], has
a unique extension to a probability measure on o (A).

Proof. From Theorem it suffices to show lim,, . P (A;) = 0 when-
ever {A4,},2, C A with A,, | 0. However, by Lemma if A, € A and
A, | 0, we must have that A,, = () for a.a. n and in particular P (4,,) = 0 for
a.a. n. This certainly implies lim,, .., P (4,) = 0. n

Given a probability measure, P : o(A) — [0,1] and n € N and
A,y An) € A™) let

Pn( Ay M) =PHwe R w1 =A,...,wn =M }). (5.15)

Exercise 5.4 (Consistency Conditions). If p,, is defined as above, show:

L) heap1(A) =1and
2. for all n € Nand (A1,...,\,) € A7,

Po Aty An) = prgt (M-, A, A
A€EA

Exercise 5.5 (Converse to . Suppose for each n € N we are given
functions, p, : A™ — [0,1] such that the consistency conditions in Exercise
hold. Then there exists a unique probability measure, P on o (A) such
that Eq. holds for all n € N and (Aq,...,\,) € A™.

Ezample 5.28 (Existence of #id simple R.V.s). Suppose now that g : A — [0, 1]
is a function such that ), , ¢ (A) = 1. Then there exists a unique probability
measure P on o (A) such that, for all n € N and (Ay,...,A,) € A™, we have

PHweR:wi=A,...;wun=A})=q(N\)...q(\n).

This is a special case of Exercise with p, (A1, ..., ) == q¢ (A1) ...qa (M)
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Random Variables

6.1 Measurable Functions

Definition 6.1. A measurable space is a pair (X, M), where X is a set
and M is a 0 — algebra on X.

To motivate the notion of a measurable function, suppose (X, M, u) is a
measure space and f : X — R, is a function. Roughly speaking, we are going
to define [ fdu as a certain limit of sums of the form,

X

o0

> aip(f~ (ai, aita]).

0<a;<az<az<...

For this to make sense we will need to require f~'((a,b]) € M for all a <
b. Because of Corollary [6.7] below, this last condition is equivalent to the
condition f~1(Bg) C M.

Definition 6.2. Let (X, M) and (Y, F) be measurable spaces. A function f :
X — Y is measurable of more precisely, M/F — measurable or (M,F) —
measurable, if f~H(F) C M, i.e. if f71(A) € M forall A€ F.

Remark 6.3. Let f : X — Y be a function. Given a o — algebra F C 2Y, the
o — algebra M := f~(F) is the smallest ¢ — algebra on X such that f is
(M, F) - measurable . Similarly, if M is a o - algebra on X then

F=fM={Ac2Y|f1(A) e M}
is the largest o — algebra on Y such that f is (M, F) - measurable.

Ezample 6.4 (Characteristic Functions). Let (X, M) be a measurable space
and A C X. Then 14 is (M, Bg) — measurable iff A € M. Indeed, 1, (W) is
either ), X, A or A® for any W C R with 1, ({1}) = A.

Example 6.5. Suppose f : X — Y with Y being a finite set and F = 2. Then
f is measurable iff f~! ({y}) € M for ally € Y.

Proposition 6.6. Suppose that (X, M) and (Y, F) are measurable spaces and
further assume € C F generates F, i.e. F = o (£). Then a map, f: X - Y
is measurable iff f~1(£) C M.
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Proof. If f is M/F measurable, then f=1 (£) C f~! (F) c M. Conversely
if f=1(£) C M, then, using Lemma [3.26]

FEHFE) =0 @E) =0 (fH(E) c M.

Corollary 6.7. Suppose that (X, M) is a measurable space. Then the follow-
ing conditions on a function f: X — R are equivalent:

1. f is (M, Bgr) — measurable,

2. f7((a,00)) € M for all a € R,

3. f~Y((a,00)) € M for alla € Q,

4. fH((—00,a]) € M for all a € R.

Exercise 6.1. Prove Corollary Hint: See Exercise

Exercise 6.2. If M is the o — algebra generated by £ C 2%, then M is the
union of the o — algebras generated by countable subsets F C £.

Exercise 6.3. Let (X, M) be a measure space and f,, : X — R be a sequence
of measurable functions on X. Show that {z :lim, . fn(z) exists in R} €

M.

Exercise 6.4. Show that every monotone function f : R — R is (Bg, Br) —
measurable.

Definition 6.8. Given measurable spaces (X, M) and (Y,F) and a subset
A C X. We say a function f : A — Y is measurable iff [ is Ma/F -
measurable.

Proposition 6.9 (Localizing Measurability). Let (X, M) and (Y,F) be
measurable spaces and f: X —Y be a function.

1. If f is measurable and A C X then f|a: A —Y is measurable.
2. Suppose there exist A, € M such that X = U5, A, and f|A, is Ma,
measurable for all n, then f is M — measurable.

Proof. 1. If f : X — Y is measurable, f~}(B) € M for all B € F and
therefore
f‘,?\l (B)=ANfYB) e My forall Bc F.

2. If Be F, then
F7HB) = Uty (fFHB)NAy) = U2y fl4, (B).
Since each A,, € M, M4, C M and so the previous displayed equation shows

f~1(B) e M. [

The proof of the following exercise is routine and will be left to the reader.



6.1 Measurable Functions 75

Proposition 6.10. Let (X, M, 1) be a measure space, (Y, F) be a measurable
space and f: X — Y be a measurable map. Define a function v : F — [0, 00]
by v(A) = u(f~(A)) for all A€ F. Then v is a measure on (Y, F). (In the
future we will denote v by fou or o f~1 and call f.u the push-forward of
uw by f or the law of f under pu.

Theorem 6.11. Given a distribution function, F : R—][0,1] let G
(0,1) = R be defined (see Figure[6.1]) by,

G(y) :=inf{x: F(x) >y}.
Then G : (0,1) = R 4s Borel measurable and G.m = pp where pp is the

unique measure on (R, Br) such that pr ((a,b]) = F (b) — F (a) for all —oo <
a < b < oo.

'.L E‘

/ S CER %
Gy 6 )

Fig. 6.1. A pictorial definition of G.

Proof. Since G : (0,1) — R is a non-decreasing function, G is measurable.
We also claim that, for all zg € R, that

GTH((0,20)) = {y : G (y) < w0} = (0, F (x0)] NR, (6.1)

see Figure[6.2]

To give a formal proof of Eq. (6.1), G (y) = inf {z : F (z) > y} < z(, there
exists x, > xo with z,, | ¢ such that F (x,) > y. By the right continuity of
F, it follows that F' (zg) > y. Thus we have shown

(G < 20} € (0,F (20)] N (0,1).

For the converse, if y < F (zg) then G (y) = inf{z: F (z) > y} < m, ie.
y € {G < xo}. Indeed, y € G~ ((—o0, z0]) iff G (y) < zp. Observe that

G (F (x9)) =inf{z: F(x) > F (x0)} < x9
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Fig. 6.2. As can be seen from this picture, G (y) < zo iff y < F' (z0) and similalry,
Gy) <z iffy <z

and hence G (y) < xy whenever y < F (x¢) . This shows that
(0, F (z0)] N (0,1) € G™1((0, z0]) -

As a consequence we have G,m = pup. Indeed,

(Gam) ((—Oo,iv]) =m (G~} va])) =m({y € (0,1): G(y) < z})
m ((0, F( )] (0,1)) F(x).
See section 2.5.2 on p. 61 of Resnick for more details. [

Theorem 6.12 (Durret’s Version). Given a distribution function, F :
R —[0,1] let Y : (0,1) — R be defined (see Figure by,

Y (z) :=sup{y: F(y) < z}.

Then Y : (0,1) — R is Borel measurable and Y.m = pp where up is the
unique measure on (R, Bgr) such that pr ((a,b]) = F (b) — F (a) for all —oo <
a <b< oo.

Proof. Since Y : (0,1) — R is a non-decreasing function, Y is measurable.
Also observe, if y <Y (x), then F'(y) < = and hence,

F(Y (z)-) = y%%)F(y) <z

For y > Y (x), we have F' (y) > = and therefore,

FOY @) =F(Y@)4)= lim F(y)>a

and so we have shown
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AT

Fig. 6.3. A pictorial definition of Y ().

eV

‘We will now show

{z€(0,1):Y () <yo} = (0,F ()] N (0,1). (6.2)

For the inclusion “C,” if x € (0,1) and Y (x) < yo, then z < F (Y (z)) <
F (yp), i.e. z € (0, F (yo)]N(0,1). Conversely if x € (0,1) and « < F' (yp) then
(by definition of Y (2)) yo > Y ().

From the identity in Eq. , it follows that Y is measurable and

(Yem) (=00, 40)) = m (Y~ (=00,40)) = m ((0, F (y0)] N (0,1)) = F (yo)-
Therefore, Law (Y) = up as desired. ]

Lemma 6.13 (Composing Measurable Functions). Suppose that (X, M), (Y, F)
and (Z,G) are measurable spaces. If f : (X,M) — (Y, F) and g : (Y,F) —

(Z,G) are measurable functions then go f : (X, M) — (Z,G) is measurable as

well.

Proof. By assumption ¢g~!(G) C F and f~! (F) C M so that
(9o )G =F" (g1 @) c I F) M.
[

Definition 6.14 (¢ — Algebras Generated by Functions). Let X be a
set and suppose there is a collection of measurable spaces {(Ya,Fa) : v € A}
and functions fo : X — Y, for all @ € A. Let o(fs : a € A) denote the
smallest o — algebra on X such that each f, is measurable, i.e.

o(fo € A) = o(Uafs ' (Fa)).
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Example 6.15. Suppose that Y is a finite set, F = 2¥, and X = YV for some
N € N. Let m; : Y¥ — Y be the projection maps, m; (1, ...,yn) = yi- Then,
as the reader should check,

a(m,...,ﬂ'n):{AXAN_”:ACA"}.

Proposition 6.16. Assuming the notation in Definition [0.14] and addition-
ally let (Z, M) be a measurable space and g : Z — X be a function. Then g
is M,0(fa : a € A)) — measurable iff fo 0 g is (M, Fq)—measurable for all
a € A

Proof. (=) If gis (M, 0(f, : @ € A)) — measurable, then the composition
fa0gis (M, F,) — measurable by Lemma (<) Let

G=0(fa:ax€A) =0 (UaeAfojl(]:a)) .
If fo0gis (M,F,) — measurable for all o, then
g U F) Cc MYac A
and therefore

971 (UaeAfojl(}-a)) = UaeAgilfojl(}-a) cM.

Hence
971G =97 (0 (Vacafa ' (Fa))) = 0(97" (Vaeafs ' (Fa)) € M
which shows that g is (M, G) — measurable. |

Definition 6.17. A function f : X — Y between two topological spaces is
Borel measurable if f~'(By) C Bx.

Proposition 6.18. Let X and Y be two topological spaces and f: X —Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma [3.26) and By = o(7y),
71 By) = fHo(ry) = o(f 7 (1v)) C o(rx) = Bx.
[

Ezample 6.19. For i = 1,2,...,n, let m; : R — R be defined by m; () = ;.
Then each ; is continuous and therefore Bgn /Bgr — measurable.

Lemma 6.20. Let £ denote the collection of open rectangle in R™, then
Brn = o (). We also have that Brn = o (m1,...,7,) and in particular,
Ay X -+ X A, € Bgrn whenever A; € Bg fori = 1,2,...,n. Therefore Bgn
may be described as the o algebra generated by {A; x --- x A, : A; € Br}.
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Proof. Assertion 1. Since £ C Bgn, it follows that o (£) C Bgn. Let
& :={(a,b):a,be Q" 5 a < b},
where, for a,b € R", we write a < b iff a; < b; for i =1,2,...,n and let
(a,b) = (a1,b1) X -+ X (an,bp) . (6.3)

Since every open set, V' C R™, may be written as a (necessarily) countable
union of elements from &, we have

Veo(&) Cco(),

i.e. 0 (&) and hence o (£) contains all open subsets of R™. Hence we may
conclude that

Br» = o (open sets) C 0 (&) C o (E) C Brn.

Assertion 2. Since each m; is Bgn/Br — measurable, it follows that
o (m,..., ) C Bgrn. Moreover, if (a,b) is as in Eq. (6.3]), then

(a,b) = ﬂ?:ﬂri_l ((a;, b;)) € o (w1, .., T0) -

Therefore, £ C o (71,...,m,) and Brn =0 () C o (71,..., 7).
Assertion 3. If A; € Bg for i =1,2,...,n, then

Ay x - xAn:ﬁ?'zlwi_l(Ai) €o(m,...,Tn) = Bgn.

Corollary 6.21. If (X, M) is a measurable space, then

fz(flvaa"'?fn):X_)Rn

is (M, Bgrn) — measurable iff f; : X — R is (M, Bg) — measurable for each
i. In particular, a function f : X — C is (M, Bc) — measurable iff Re f and
Im f are (M, Br) — measurable.

Proof. This is an application of Lemma and Proposition [6.16) ]

Corollary 6.22. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f + g and f - g are also (M,Bc) —
measurable.

Proof. Define FF: X - CxC, AL :CxC—-Cand M :CxC —C
by F(z) = (f(x),g9(z)), Ax(w,2) = w + z and M(w,z) = wz. Then Ay
and M are continuous and hence (Bez, Bc) — measurable. Also F' is (M, Bez)
— measurable since m o F' = f and m 0o F' = g are (M, B¢) — measurable.
Therefore A o F = f+ g and Mo F = f-g, being the composition of
measurable functions, are also measurable. [
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Lemma 6.23. Let a € C, (X, M) be a measurable space and f: X — C be a
(M, Bc) — measurable function. Then

[ if fle) #£0
F = {701 107
is measurable.

Proof. Define i : C — C by

, Lif 240
Z(Z)_{()if 2=0.

For any open set V C C we have
N V) = (VA {o) vt (V n{o})

Because i is continuous except at z = 0, i~ (V' \ {0}) is an open set and hence
in Bc. Moreover, i~ 1(V N {0}) € Bc since i~1(V N {0}) is either the empty
set or the one point set {0} . Therefore i~!(7¢) C Be and hence i~!(Bc) =
i~Y(o(rc)) = o(i~t(7¢c)) C Bc which shows that i is Borel measurable. Since
F =io f is the composition of measurable functions, F' is also measurable. m

Remark 6.24. For the real case of Lemma define i as above but now take
z to real. From the plot of 4, Figure the reader may easily verify that
i~ ((—00, a]) is an infinite half interval for all @ and therefore i is measurable.%

y 50T

-50"

We will often deal with functions f : X — R = RU{+o0o}. When talking
about measurability in this context we will refer to the o — algebra on R
defined by

Bz := 0 ({la,00] : a € R}). (6.4)

Proposition 6.25 (The Structure of Bg). Let Br and Bg be as above, then
Bg={ACR:ANR €Bg}. (6.5)

In particular {oo},{—o0} € Bz and Br C Bg.
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Proof. Let us first observe that

{—o0} =MoL [—o0, —n) = N2, [—n, 00| € Bg,
{00} = N2, [n, 0] € Bg and R = R\ {0} € Bz.

Letting i : R — R be the inclusion map,

i (Bg) =0 (i7" ({[a,00] : a €R})) =0 ({i7! ([a,]) : a € R})
=0 ({la,0]NR:a eR}) =0 ({[a,0) : a € R}) = Br.

Thus we have shown
Br = it (Bg) ={ANR: A€ Bg}.
This implies:

1. Ae Bg = ANReBr and

2. if A C R is such that ANR €Bg there exists B € B such that ANR =
BNR. Because AAB C {£o0} and {00} ,{—00} € Bz we may conclude
that A € Bg as well.

This proves Eq. (6.5). ]
The proofs of the next two corollaries are left to the reader, see Exercises

6.5 and [6.6]

Corollary 6.26. Let (X, M) be a measurable space and f : X — R be a
function. Then the following are equivalent

is (M, Bg) - measurable,

Y((a,00]) € M for all a € R,

Y((—o0,a]) € M for all a € R,

Y{-o00}) e M, f71({o0}) € M and f°: X — R defined by

fO(z) = 1r (f (2)) = {féx) szf (JsZ)(Ie) {eﬁo}

1. f
2. f~
3. f~
4 f~

1s measurable.

Corollary 6.27. Let (X, M) be a measurable space, f,g: X — R be functions
and define f-g: X — R and (f + g) : X — R using the conventions, 0-00 = 0
and (f+g)(x) =0 if f(x) = 00 and g(x) = —o0 or f(x) = —oco and
g(x) =o00. Then f-g and f+ g are measurable functions on X if both [ and
g are measurable.

Exercise 6.5. Prove Corollary [6.26] noting that the equivalence of items 1. —
3. is a direct analogue of Corollary [6.7] Use Proposition to handle item
4.

Exercise 6.6. Prove Corollary [6.27}
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Proposition 6.28 (Closure under sups, infs and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R for j € N is a sequence
of M/Bg — measurable functions. Then

sup; f;, inf;f;, liﬁgp fj and lij_j)rolf fi

are all M/Bg — measurable functions. (Note that this result is in generally
false when (X, M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define g () := sup; f;(x), then

{z:94(2) <a} ={z: f;(z) <aVj}
=nNj{z: fj(z) <a} e M

so that g4 is measurable. Similarly if g_(z) = inf; f;(z) then

{w:9-(2) > a} = Ny{z: fi(x) = a} € M.

Since
limsup f; =infsup{f;:j > n} and
=00 n
liminf f; =supinf{f;:j >n}
j—oo n
we are done by what we have already proved. [

Definition 6.29. Given a function f : X — R let fi(z) := max{f(x),0}
and f_ (z) := max (—f(x),0) = —min (f(z),0). Notice that f = f1 — f_.

Corollary 6.30. Suppose (X, M) is a measurable space and f: X — R is a
function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition [6.28| implies fi are measur-
able. Conversely if fi are measurable then sois f = fy — f_. ]

Definition 6.31. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — By
measurable and p(X) contains only finitely many elements.

Any such simple functions can be written as

o= Aila, with A; € M and ); € F. (6.6)
i=1
Indeed, take A1, Ag,..., A, to be an enumeration of the range of ¢ and A; =

¢ Y({\:}). Note that this argument shows that any simple function may be
written intrinsically as
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P =yl (6.7)
yeF

The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

83

Theorem 6.32 (Approximation Theorem). Let f : X — [0,00] be mea-
surable and define, see Figure[6.),

k
> L (e

ginazin]) (‘T) + nlfil((nQTLvoo]) (:I;)

on 1{2%<f§u}($) + nl{f>n2"}(x)

then @, < f for all n, p,(x) 1 f(x) for allz € X and ¢, T f uniformly on
the sets Xpr:={z € X : f(x) < M} with M < 0.

Moreover, if f: X — C is a measurable function, then there exists simple
functions @, such that lim, . on(x) = f(x) for all  and |p,| T |f| as
n — oo.

av e e W e

e

»r

Fig. 6.4. Constructing simple functions approximating a function, f : X — [0, co].

Proof. Since

kE k+1 2k 2k+1 2k+1 2k+2
(277 on ] = (2n+1’ on+1 ] U ( ogn+l ' 9n+l ]7
if © € f71 (( 2k 2k+1

s, 3E]) then ¢, (z) = ppii(z) = 5 and if = €
FL (2L, 2430 hen o (z) = g2y < 2682

on+1 on+l — <,0n+1(l‘) Slmllarly
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(2",00] = (2", 2" U (2", 0],

and so for z € f7H((2"", o)), pn(x) = 2" < 2"t = o, 1(x) and for
r € f7H(2",2"M), pari(z) > 2" = p,(x). Therefore ¢, < @, for all
n. It is clear by construction that ¢,(z) < f(z) for all  and that 0 <
f(x) —pn(x) <27 if £ € Xon. Hence we have shown that ¢, (z) T f(z) for
all z € X and ¢, T f uniformly on bounded sets. For the second assertion,
first assume that f : X — R is a measurable function and choose ¢ to be
simple functions such that o 1 fi as n — oo and define ¢, = ¢} — ¢ .
Then

lonl = @ +0n <O+ Onpr = lon41]

and clearly || = off +o; T fo+f- =|fland o = 5 —, — fr—f-=f
as n — 0o0. Now suppose that f: X — C is measurable. We may now choose
simple function w, and v, such that |u,| 1 |[Re f|, |[vn| T [Im f|, u,, — Re f
and v, — Im f as n — oco. Let ¢,, = u, + iv,, then

lonl” =42 + 02 1 |Re fI> + [T f|* = | ]

and ¢, = up + v, = Ref+ilmf = f asn — oo. u

6.2 Factoring Random Variables

Lemma 6.33. Suppose that (Y, F) is a measurable space and 'Y 12 =Y is
a map. Then to every (o(Y'), Bg) — measurable function, H : 2 — R, there is
a (F,Bg) — measurable function h: Y — R such that H=hoY.

Proof. First suppose that H = 14 where A € o(Y) =Y 1(F). Let B€ F
such that A = Y ~!(B) then 14 = 1ly-1() = 1p oY and hence the lemma
is valid in this case with h = 1p. More generally if H = Y a;14, is a simple
function, then there exists B; € F such that 14, = 1p,0Y and hence H = hoY
with h:= Y a;1p, — a simple function on R.

For a general (F,Bg) — measurable function, H, from 2 — R, choose
simple functions H,, converging to H. Let h, : Y — R be simple functions
such that H,, = h,, o Y. Then it follows that

H = lim H, =limsup H,, =limsuph, oY =hoY

n—0oo n—oo n—oo

where h := limsup h,, — a measurable function from Y to R. ]
n—oo

The following is an immediate corollary of Proposition [6.16] and Lemma
0.0

Corollary 6.34. Let X and A be sets, and suppose for a € A we are give a
measurable space (Yo, Fo) and a function fo : X — Y4 Let Y := ] ca Ya,
F = QacaFa be the product o — algebra on'Y and M = o(f, : a € A)
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be the smallest o — algebra on X such that each f, is measurable. Then the
function F': X — Y defined by [F(x)], = fa(z) for each a € A is (M, F)
— measurable and a function H : X — R is (M, Bg) — measurable iff there

exists a (F,Bg) — measurable function h from'Y to R such that H = ho F.
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Independence

7.1 w — X and Monotone Class Theorems

Definition 7.1. Let C C 2% be a collection of sets.

1. C is a monotone class if it is closed under countable increasing unions
and countable decreasing intersections,

2.C is a ™ — class if it is closed under finite intersections and

3. C is a A—class if C satisfies the following properties:

a) X €C

b)If A/B € C and A C B, then B\ A € C. (Closed under proper
differences.)

c)IfA, €Cand A, T A, then A € C. (Closed under countable increasing
unions.)

Remark 7.2. If C is a collection of subsets of {2 which is both a A — class and
a 7 — system then C is a o — algebra. Indeed, since A° = X \ A, we see that
any A - system is closed under complementation. If C is also a m — system,
it is closed under intersections and therefore C is an algebra. Since C is also
closed under increasing unions, C is a o — algebra.

Lemma 7.3 (Alternate Axioms for a A\ — System*). Suppose that L C
2 is a collection of subsets £2. Then L is a X — class iff X satisfies the following
postulates:

1.Xel

2. A € L implies A® € L. (Closed under complementation.)

3. If {A,},2, C L are disjoint, then Y .~ | A, € L. (Closed under disjoint
unions.)

Proof. Suppose that £ satisfies a. — c. above. Clearly then postulates 1.
and 2. hold. Suppose that A, B € £ such that AN B = (), then A C B¢ and

A°NB°=B°\ Ae L.

Taking compliments of this result shows AU B € £ as well. So by induction,
By, =Y | A, € L. Since By, 1 Y07, A, it follows from postulate c. that
Yo A, L.

Now suppose that £ satisfies postulates 1. — 3. above. Notice that §) € £ and
by postulate 3., £ is closed under finite disjoint unions. Therefore if A, B € £
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with A C B, then B¢ € £ and AN B¢ = () allows us to conclude that
AU B¢ € L. Taking complements of this result shows B\ A= A°NB € L as
well, i.e. postulate b. holds. If A,, € £ with A,, T A, then B,, := A,\A,_1 € L
for all n, where by convention Ay = (). Hence it follows by postulate 3 that
U A, =3 B, eL. ]

Theorem 7.4 (Dynkin’s 7 — XA Theorem). If L is a A class which contains
a contains a ™ — class, P, then o(P) C L.

Proof. We start by proving the following assertion; for any element C' € L,
the collection of sets,

LC:={DeL:CnDecL},

is a A — system. To prove this claim, observe that: a. X € £, b. if A C B
with A, B € LY, then ANC, BNC € L with ANC C B\ C and

(B\A)NC =[BNC]\A=[BNC]\[ANC] € L.

Therefore £¢ is closed under proper differences. Finally, c. if A4, € £° with
A, T A, then 4,NC e Land A, NC TANC € L, ie. A€ L. Hence we
have verified £ is still a A — system.

For the rest of the proof, we may assume without loss of generality that £
is the smallest A — class containing P — if not just replace £ by the intersection
of all A\ — classes containing P. Then for C' € P we know that L& C L is a
X - class containing P and hence £¢ = L. Since C € P was arbitrary, we
have shown, CND € L for all C € P and D € £. We may now conclude
that if C € £, then P C £® C L and hence again £¢ = L. Since C € L is
arbitrary, we have shown CND € L for all C,D € L, i.e. £ is a m — system.
So by Remark L is a o algebra. Since o (P) is the smallest o — algebra
containing P it follows that o (P) C L. [

As an immediate corollary, we have the following uniqueness result.

Proposition 7.5. Suppose that P C 29 is a m — system. If P and Q are two
probabilit@ﬂ measures on o (P) such that P = @Q on P, then P = Q on o (P).

Proof. Let L:={A€ o (P): P(A) =Q(A)}. One easily shows L is a A
— class which contains P by assumption. Indeed, 2 € P C L, if A, B € L with
A C B, then

P(B\A)=P(B)-P(4)=Q(B)-Q(4) =Q(B\4)

sothat B\ A € £, and if A,, € £ with A,, T A, then P (A) = lim,,_,oc P (A4,) =
lim, 00 Q (An) = Q (A) which shows A € L. Therefore o (P) C L = o (P
and the proof is complete. [

! More generally, P and @Q could be two measures such that P (£2) = Q (£2) < oo.
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Ezample 7.6. Let §2 := {a,b,c,d} and let p and v be the probability measure
on 2 determined by, p({z}) = § for all € 2 and v ({a}) = v({d}) = &
and v ({b}) = v ({¢}) = 3/8. In this example,

L:={Ae2?:P(A)=Q(A)}

is A — system which is not an algebra. Indeed, A = {a,b} and B = {a,c} are
in Lbut ANB ¢ L.

Exercise 7.1. Suppose that u and v are two measure on a measure space,
(12, B) such that y = v on a m — system, P. Further assume B = ¢ (P) and
there exists (2, € P such that; i) u(£2,) = v(£2,) < oo for all n and ii)
02,1 2asn7T oo Show p=v on B.

Hint: Consider the measures, p, (4) = p(AN{2,) and v, (A) =
v(ANQ,).

Solution to Exercise (7.1)). Let p,(4) = p(AN{§,) and v, (4) =
v(AN{2,) for all A € B. Then p, and v, are finite measure such p, (£2) =
v, (£2) and p,, = v, on P. Therefore by Proposition ln = Vp, on B. So by
the continuity properties of u and v, it follows that

p(A) = lim p(AN§,) = lim p, (4) = lim v, (A) = lim v(ANR,) =v(4)

n—oo n—oo n—oo n—o0

for all A € B.

Corollary 7.7. A probability measure, P, on (R, Bgr) is uniquely determined
by its distribution function,

F (z) := P ((—o0,x]).

Definition 7.8. Suppose that {Xi}?zl is a sequence of random variables on
a probability space, (2,8, P). The measure, p = Po (Xy,... 7Xn)_1 on Bgn
is called the joint distribution of (X1,...,X,). To be more explicit,

pw(B):=P(X1,....X,)€B)=P{{we:(X;(w),...,X,(w)) € B})
for all B € Bgn.

Corollary 7.9. The joint distribution, p is uniquely determined from the
knowledge of

P((Xy,...,Xn) €A x---x Ay) forall A; € Br
or from the knowledge of
P(X; <xy,....,X, <uz,) foral A; € B

for all x = (x1,...,2,) € R™
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Proof. Apply Proposition with P being the m — systems defined by
P:={A; x---x A, € Bgn : A; € Br}
for the first case and
P = {(—00,z1] X - -+ X (=00, x,] € Brn : x; € R}
for the second case. L]

Definition 7.10. Suppose that {X;}!_, and {Y;};_, are two finite sequences
of random variables on two probability spaces, (2,8, P) and (X, F, Q) respec-
tively. We write (X1,...,Xn) 2 (Y1,...,Y,) if (X1,..., X)) and (Y1,...,Y})
have the same distribution, i.e. if

P((X1,...,Xn)€B)=Q((Y1,...,Y,) € B) for all B € Bg~.

More generally, if {X;};~, and {Y;};2, are two sequences of random variables
on two probability spaces, (12,8, P) and (X, F, Q) we write {X,};°, 2 {vi}2,
iff (Xq,...,X5) 4 (Y1,...,Y,) for alln € N.

Exercise 7.2. Let {X;};2, and {Y;}.-, be two sequences of random variables
such that {X;}:°, 4 {Yi}:2, . Let {S,}~, and {7}, },~, be defined by, S,, :=

n=1

Xi+---+X,and T, :=Y; +---+Y,. Prove the following assertions.

1. Suppose that f : R® — R* is a Bgn/Bgs — measurable function, then
d

Xy, ., Xn)=f(M,....Y,).

2. Use your result in item 1. to show {S,} 4 {1}, -
Hint: apply item 1. with & = n and a judiciously chosen function, f :
R™ — R™.

3. Show limsup X, 4 limsupY,, and similarly that liminf, .. X,
liminf,, . Y.
Hint: with the aid of the set identity,

4

{limsuan > x} ={X, >z io.},

n—oo

show

P (limsup X, > x) = lim lim P (UL, {Xix >2}).

n—00 n— 00 M—00
To use this identity you will also need to find B € Bg= such that
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7.1.1 The Monotone Class Theorem
This subsection may be safely skipped!

Lemma 7.11 (Monotone Class Theorem*). Suppose A C 2% is an alge-
bra and C is the smallest monotone class containing A. Then C = o(A).

Proof. For C € C let
C(C)={BeC:CNB,CNB°,BNC°eC},

then C(C) is a monotone class. Indeed, if B, € C(C) and B,, 1 B, then
B¢ | B¢ and so

C>CnB,1CNB
C>CnNB; | CNB°and
C>B,NC°1TBNC".

Since C is a monotone class, it follows that C N B,C N B¢, BN C° € C,
i.e. B € C(C). This shows that C(C) is closed under increasing limits and
a similar argument shows that C(C) is closed under decreasing limits. Thus
we have shown that C(C) is a monotone class for all C € C. If A € A C C,
then ANB,ANB¢,BNA° € A C C for all B € A and hence it follows
that A C C(A) C C. Since C is the smallest monotone class containing A and
C(A) is a monotone class containing A, we conclude that C(A) = C for any
A € A. Let B € C and notice that A € C(B) happens iff B € C(A). This
observation and the fact that C(A) = C for all A € A implies A C C(B) CC
for all B € C. Again since C is the smallest monotone class containing 4 and
C(B) is a monotone class we conclude that C(B) = C for all B € C. That is
to say, if A, B € C then A € C =C(B) and hence AN B, AN B¢, A°NB €.
So C is closed under complements (since X € A C C) and finite intersections
and increasing unions from which it easily follows that C is a ¢ — algebra. =

Exercise 7.3. Suppose that A C 2 is an algebra, B := 0 (A), and P is
a probability measure on B. Show, using the m — A theorem, that for every
B € B there exists A € A such that that P (A A B) < e. Here

AAB:=(A\B)U(B\ A)

is the symmetric difference of A and B.
Hints:

1. It may be useful to observe that

laag = |14 — 15|

so that P(AAB)=E|l4 — 15].
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2. Also observe that if B = UB; and A = U;A;, then
B\ACUl(BZ\Al) C U;A; A B; and
so that
3. We also have
(B2\ B1) \ (A2 \ A1) = Bo N B N (A2 \ Ay)°

:BQQBfﬂ(AgﬂAi)
=By N BN (A5U Ay)
= [By N BN A5] U [Bs N Bf N Aj]
C (Ba\ A2) U (41 \ By)

c

and similarly,
(A2 \ A1) \ (B2 \ B1) C (A2 \ B2) U (B1\ A1)
so that
(A2 \ A1) A (B2 \ B1) C (B2 \ A2) U (A1 \ B1) U (A2 \ B2) U (B1\ A1)
— (A1 A B1)U(As A By).
4. Observe that A, € B and A, T A, then
P(BA A,) = P(B\ A,)+P (A, \ B) — P(B\ A)+P (A\ B) = P(A A B).

5. Let £ be the collection of sets B for which the assertion of the theorem
holds. Show L is a A — system which contains A.

Solution to Exercise . Since £ contains the 7 — system, A it suffices
by the m — A\ theorem to show L is a A — system. Clearly, 2 € L since
e ACL.If By C By with B; € £ and ¢ > 0, there exists A; € A such that
P(B; ANA;) =E|la, —1p,| < /2 and therefore,
P((B2\ B1) A (A2 \ A1) < P((A1 & B1) U (A2 A By))
< P((A1 A Bl)) + P((Ag A BQ)) < €.

Also if B, 1 B with B,, € L, there exists A,, € A such that P (B, A A,) <
27" and therefore,

P ([UnBn] A [UnAy]) < i P(B,AA,) <e.

n=1
Moreover, if we let B := U, B,, and AV := UY_, A,,, then
P(BAAN) =P (B\AN)+P (AN\B) - P(B\ A)+P(A\B) =P (B A A)
where A := U, A,,. Hence it follows for NV large enough that P (B A AN) <e.
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7.2 Basic Properties of Independence

For this section we will suppose that ({2, B, P) is a probability space.

Definition 7.12. We say that A is independent of B is P (A|B) = P (A) or
equivalently that
P(AnB)=P(A)P(B).
We further say a finite sequence of collection of sets, {C;}!_, , are independent
if
P(Njes4;) =[] P(4)
jeJ

forall A; € C; and J C {1,2,...,n}.

Observe that if {C;}._, , are independent classes then so are {C; U{X }}_, .
Moreover, if we assume that X € C; for each i, then {C;};__, , are independent
iff

P(Mj_1A;) = [ P(4;) forall (Ay,...,A) €Cyx - xCp.
j=1

Theorem 7.13. Suppose that {C;};_, is a finite sequence of independent m —
classes. Then {o (C;)}._, are also independent.

Proof. As mentioned above, we may always assume without loss of gen-
erality that X € C;. Fix, A; € C; for j = 2,3,...,n. We will begin by showing
that

P(ANAsN--NA,) =P(A)P(Ay)...P(A,) forall Ac o (Cy). (7.1)

Since it is clear that this identity holds if P (A4;) = 0 for some j = 2,...,n,
we may assume that P (A;) > 0 for j > 2. In this case we may define,

Q(A)_P(AﬂAQrw---mAn)_P(AmAgm-~-mAn)
- P(Ay)...P(A,)  P(4A:n---NnA,)
=P(AlA3N---NA,) forall Aco(Cy).

Then equation Eq. is equivalent to P (A) = Q (A) on o (C1) . But this is
true by Proposition [7.5] using the fact that @ = P on the 7 — system, C;.

Since (Ag,...,A,) € Ca X +-+ x C,, were arbitrary we may now conclude
that o (C1),Ca,...,C, are independent.

By applying the result we have just proved to the sequence, Ca, . ..,Cp, 0 (C1)
shows that o (C2),Cs, . ..,Cp, 0 (C1) are independent. Similarly we show induc-
tively that

g (CJ) ,Cj+1, e ,Cn,U (Cl) geees O (Cj—l)

are independent for each j = 1,2,...,n. The desired result occurs at j =n. =
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Definition 7.14. A collection of subsets of B, {Ct},cp is said to be indepen-
dent iff {Ct},c 4 are independent for all finite subsets, A C T. More explicitly,
we are requiring

P (Nieady) = H P(Ay)

teA
whenever A is a finite subset of T and Ay € Cy for all t € A.

Corollary 7.15. If {Ci},cp is a collection of independent classes such that
each Cy is a m — system, then {o (Ct)},cp are independent as well.

Ezample 7.16. Suppose that 2 = A™ where A is a finite set, B = 29,
P({w}) = Ilj-1 9 (wj) where ¢; : A — [0,1] are functions such that
Saead (A) = 1. Let G == {A7 x Ax A"™": AC A}. Then {C;}]_, are
independent. Indeed, if B; := A"~! x A; x A", then

ﬁBZ‘:A1XA2X'--XAn
and we have
peoB)= > Jla@)=IT > af
WEALXAg X+ XAy, 1=1 i=1 A€A;

while

P(Bz): Z HQl Wz = Z Qz

weEATTIXA; x An—ti=1 AEA;

Definition 7.17. A collections of random variables, {X;:t € T} are inde-
pendent iff {o (X;) :t € T} are independent.

Theorem 7.18. Let X := {X; :t € T} be a collection of random variables.
Then the following are equivalent:

1. The collection X,

2.
P(Niea{Xi € A}) = H P(X; € Ay)
teA
for all finite subsets, A C T, and all A; € By fort € A.
3.

P(Miea{Xe <)) = H P(X; <uxy)
teA

for all finite subsets, A CT, and all z; € R fort € A.

Proof. The equivalence of 1. and 2. follows almost immediately form the
definition of independence and the fact that o (X;) = {{X; € A} : A € Br}.
Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary
with C; := {{X; < a} : a € R} and making use the observations that C;
is a m — system for all ¢ and that o (C;) = o (X¢). ]
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Ezample 7.19. Continue the notation of Example[7.16]and further assume that
A C R and let X; : 2 — A be defined by, X; (w) = w;. Then {X;}! | are
independent random variables. Indeed, o (X;) = C; with C; as in Example
.10l

Alternatively, from Exercise we know that

Ep

117 (XZ-)] =[] Er[f: (X))
i=1 =1

for all f; : A — R. Taking A; C A and f; := 14, in the above identity shows
that

P(X1€A17...,Xn€An):EP

14 (X»] ~ [[Er 4 (X0

i=1

1

n

?

as desired.

Corollary 7.20. A sequence of random variables, {Xj}§:1 with countable
ranges are independent iff

k

P (N {X; =x;}) = H P(X; = ;) (7.2)

for all x; € R.

Proof. Observe that both sides of Eq. are zero unless x; is in the
range of X; for all j. Hence it suffices to verify Eq. for those z; €
Ran(X;) =: R; for all j. Now if {Xj}§:1 are independent, then {X; = z;} €
o (X;) for all z; € R and therefore Eq. holds.

Conversely if Eq. and Vj; € Bg, then
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P {X;evih)y=P(nis, | Y {X;=u;}

z;€EV;NR;

=P > [F_ (X5 = 25}]

(1’1 ----- xk)€H§:1 ijRJ'

- > P ([ {X; = 25}])

(Z1yeees zk)enle Vi;NR;

I
N
—
=
s
|
Q&

Definition 7.21. As sequences of random variables, {Xn}ff:l, on a proba-
bility space, (2,B,P), are i.i.d. (= independent and identically dis-
tributed) if they are independent and (X,), P = (Xy), P for all k,n. That
is we should have

P(X,€A)=P(Xr€A) forall k,ne N and A € Bg.

Observe that {X,}, - are i.i.d. random variables iff

P(X1€Ay,... . Xpedy)=][P(Xied)=]][P(X1€A)=]]n4)
j=1 j=1 j=1

(7.3)
where pp = (X1), P. The identity in Eq. (7.3]) is to hold for all n € N and all
A; € Bg.

Theorem 7.22 (Existence of i.i.d simple R.V.’s). Suppose that {¢;}"
is a sequence of positive numbers such that > . ,q; = 1. Then there ex-

ists a sequence { Xy}, of simple random variables taking values in A =
{0,1,2...,n} on ((0,1],B,m) such that

m({X1 :ila---7Xk:ii}):qi1~-~qik

for all iy ia,...,4; € {0,1,2,...,n} and all k € N. (See Theorem below
for the general case of this theorem.)

Proof. For ¢ = 0,1,...,n, let o_; = 0 and o; := ZZ;O ¢; and for any
interval, (a,b], let
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T; ((a,b]) :==(a+0i—1 (b—a),a+0; (b—a)].
Given 41,i2,...,ix € {0,1,2,...,n}, let
Jil»i27~~7ik = Tik (Ek—l ( Ty ((0’ 1])))
and define {X},-, on (0,1] by
Xy = Z Ly iy
12,08k €40,1,2,00m}

see Figure Repeated applications of Corollary shows the functions,
Xk : (0,1] — R are measurable.

L |
. 3

[ Jo | Ay
~ fxiw /_l _'X.ﬁ_:]
S 2/3
zz =24
v -

j0,0 - 30)\. \ :rlO - 3—;“]

pLL

] 2
s L= -

Fig. 7.1. Here we suppose that po = 2/3 and p1 = 1/3 and then we construct J;
and J; i for I,k € {0,1}.

Observe that
m (T ((a,0])) = qi (b — a) = gim ((a, b]), (7.4)
and so by induction,

M (Jiyig,in) = QigQir—y - - - i -
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The reader should convince herself/himself that
{Xi=i1,... Xk =t} = iy sig,...in
and therefore, we have
m{{X1 =d1,.... X =%}) =m(Jiyin,in) = GQixin_y - - - @i

as desired. =
Corollary 7.23 (Independent variables on product spaces). Suppose
A={0,1,2....n}, ¢ > 0 with 31 yq; = 1, 2 = A = A", and fori €
N, let Y; : 2 — R be defined by Y; (w) = w; for all w € (2. Further let

B :=o0(Y1,Y2,...,Y,,...). Then there exists a unique probability measure,
P: B —|0,1] such that

P({Yl :ila“-aYk:ii}):qi1~-~qik~
Proof. Let {X;}_, be as in Theorem and define T : (0,1] — 2 by
T(z)=(X1(z), X2 (z),..., Xk (z),...).

Observe that T is measurable since Y; o T' = X; is measurable for all i. We
now define, P := T,m. Then we have

=m (T ({Y1=1i1,...,Y% =14;}))
=m{Y10T =4y,...,Y, 0T =1i;})
:m({Xlzzl,,Xk:zz}):q“qlk

P({Yl :il,...,Yk:ii})

Theorem 7.24. Given a finite subset, A C R and a function q : A — [0,1]
such that ., q(X) = 1, there exists a probability space, (2,8, P) and an
independent sequence of random variables, {X,} ~, such that P (X, = \) =
q(N) for all X € A.

Proof. Use Corollary [7.20] to shows that random variables constructed in
Example [5.28]| or Theorem fit the bill. [ |

Proposition 7.25. Suppose that {X,}.. | is a sequence of i.i.d. random
variables with distribution, P(X, =0) = P (X, =1) = L. If we let U :=
Yo 127" X, then P(U <xz) = (0V )AL, i.e. U has the uniform distribu-
tion on [0,1].

Proof. Let us recall that P(X, =0a.a.) = P(X, =1 a.a.). Hence
we may, by shrinking (2 if necessary, assume that {X, =0a.a.} = § =
{X, =1 a.a.} . With this simplification, we have
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{U<;}{X10},
1
{U<4}={X1=07X2:0} and
1 3
{2§U<4}:{X1:1,X2:0}

and hence that
3 1 1 3
P - < e
{U<4} {U<2}U{2_U<4}
={X; =0}U{X; =1,X, =0}.

From these identities, it follows that

1 1 1 1 3 3
P(U<O)O,P<U<4)4,P(U<2>2, andP<U<4>4.

More generally, we claim that if x = Z?:l ;277 with €; € {0,1}, then
PU<z)=ux. (7.5)

The proof is by induction on n. Indeed, we have already verified (|7.5) when
n = 1,2. Suppose we have verified ((7.5) up to some n € N and let = =
> 514277 and consider

P(U <x+2*<"+1>) :P(U<x)+P(x < U<x+2—<n+1>)
=x+P<x§U<x+2‘(”+1>).
Since
{x sU<z+ 2_(n+1)} = [Ny {X; = &;}] N {Xnt1 = 0}
we see that
P (x <U<z+ 2*("“)) — 9—(n+1)

and hence
P (U <z+ 2*(”“)) =z + 27 (D)

which completes the induction argument.

Since + — P (U < z) is left continuous we may now conclude that
P({U<z) =z for all z € (0,1) and since * — x is continuous we may
also deduce that P (U <z) = «x for all z € (0,1). Hence we may conclude
that

PU<z)=(0Vz)ALl
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Lemma 7.26. Suppose that {B;:t €T} is an independent family of o —
fields. And further assume that T = ZSES T, and let
Br, = Vier,Bs = 0 (Uer, Bs) -
Then {Br,},cg is an independent family of o fields.
Proof. Let
Cs = {NackBa : By € By, K CC Ts}.

It is now easily checked that {C,}, g is an independent family of 7 — systems.
Therefore {Br, = 0 (Cs)},cg is an independent family of o — algebras. [

We may now show the existence of independent random variables with
arbitrary distributions.

Theorem 7.27. Suppose that {u,}.., are a sequence of probability measures
on (R,Bgr). Then there exists a probability space, (2,8, P) and a sequence
{Y,}:2 | independent random variables with Law (Y,) := P oY, ' = p, for
all n.

Proof. By Theorem there exists a sequence of i.i.d. random variables,
{Z.},",, such that P(Z, =1) = P(Z, =0) = . These random variables
may be put into a two dimensional array, {X; ; : 4, € N}, see the proof of

Lemma 3.8, For each i, let U; := 3272, 27X, j — 0 ({Xz]};;) — measurable

random variable. According to Proposition [7.25] U; is uniformly distributed
on [0,1]. Moreover by the grouping Lemma [7.26 {a ({X”};iJ} are
=/ )i=1
independent o — algebras and hence {Ui}fil is a sequence of i.i.d.. random
variables with the uniform distribution.
Finally, let F;(z) = p((—oo,z]) for all 2 € R and let G;(y) =
inf {z : F; (x) > y} . Then according to Theorem Y; .= G; (U;) has p; as

its distribution. Moreover each Y; is o ({Xz j };’il) — measurable and therefore

the {Y;}:2, are independent random variables. ]

7.2.1 An Example of Ranks

Let {X,} ~, be i.i.d. with common continuous distribution function, F. In
this case we have, for any i # j, that

P(Xi=X;)=pr®pr ({(z,2) 12 €R}) =0.

This may be proved directly with some work or will be an easy consequence
of Fubini’s theorem to be considered later, see Example [10.11] below. For the
direct proof, let {al}fi_oo be a sequence such that, a; < a;41 for all [ € Z,
lim;_, o a; = 0o and lim;_, _ o, a; = —oco. Then
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{(z,2z) : € R} C Ujez [(ar, ar41] x (ar, ar41]]

and therefore,

P(Xi=X;) <> P(X; € (a,a111), X € (a, ai1]) = Y [F (ar1) = F ()]

leZ leZ
< sup [F (ar41) = F (@)] Y [F (a41) = F (@)] = sup [F (a41) — F (@)
lez I1€Z IEZ

Since F is continuous and F (co+) = 1 and F (co—) = 0, it is easily seen that

F' is uniformly continuous on R. Therefore, if we choose a; = %, we have

. l—i—l) (l)]
P(X;, =X, <limsupsup |[F| — | — F | —= =0.
( j) N—>oopl€§|: ( N N

Let R,, denote the “rank” of X,, in the list (X1,...,X,), i.e.
R, :=lej>xn = #{j Sn:Xj >Xn}.
j=1

For example if (X7, X2, X3, X4, X5,...) =(9,-8,3,7,23,...), we have Ry =
1, Ro = 2, R3 = 2, and Ry = 2, Rs = 1. Observe that rank order, from
lowest to highest, of (X7, Xs, X3, X4, X5) is (Xa, X3, X4, X1, X5). This can
be determined by the values of R; for i =1,2,...,5 as follows. Since R5 = 1,
we must have X5 in the last slot, i.e. (*,*,%, %, X5). Since Ry = 2, we know
out of the remaining slots, X4 must be in the second from the far most right,
ie. (x,%, Xy,*% X5). Since R3 = 2, we know that X3 is again the second
from the right of the remaining slots, i.e. we now know, (x, X3, X4, *, X5) .
Similarly, Ry = 2 implies (X5, X3, X4,*, X5) and finally Ry = 1 gives,
(X2, X35, X4, X1, X5). As another example, if R; =i for i = 1,2,...,n, then
Xn < Xpo1 < < Xy,

Theorem 7.28 (Renyi Theorem). Let {X,},—, be i.i.d. and assume that
F (z) := P (X, < x) is continuous. The {R,}, | is an independent sequence,

1
P(R,=k)= = fork=1,2,...,n,
n

and the events, A, = {X, is a record} = {R,, =1} are independent as n
varies and 1
P(A)=P(R,=1)= e

Proof. By Problem 6 on p. 110 of Resnick, (X1,...,X,) and (Xs1,..., Xon)
have the same distribution for any permutation o.
Since F' is continuous, it now follows that up to a set of measure zero,

Q:Z{X01<X02<"'<Xan}
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and therefore

1=P(2)=> P({Xo1 < Xo2 < < Xon}).

Since P ({X,1 < X2 < -+ < Xyp}) is independent of o we may now conclude

that )
P({Xgl < Xgg < -+ <Xan}) = ﬁ

for all 0. As observed before the statement of the theorem, to each realization
(€1,...,¢n), (here g; € N with g; < i) of (Ry,..., R,) there is a permutation,
o =o0(e1,...,&,) such that X,;1 < Xy2 < -+ < Xyp. From this it follows
that

{(Rh”an) = (51,...7En)} = {Xo'l < Xga <o < Xg'n}

and therefore,

1

P({(Rl,,Rn) = (61,...,€n)}) :P(Xo'l < Xgo < --- <Xo'n) = ﬁ

Since

P({Ru=c)= D, PU[R....,Ba) = (e1,-.0s0)})

(e1,---En—1)

we have shown that

PH{(Ry,...,Ry) = (e1,...,6n)}) = = =

7.3 Borel-Cantelli Lemmas

Lemma 7.29 (First Borel Cantelli-Lemma). Suppose that {A,},. | are
measurable sets. If

i P (A,) < 0, (7.6)

then
P ({A, io})=0.
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Proof. First Proof. We have
P({Ani0.}) = P (M2 Upsn Ar) = lim P (Upzndy) < lim > P(A) =0.

n—oo

k>n
(7.7)
Second Proof. (Warning: this proof require integration theory which is
developed below.) Equation is equivalent to

E lz 1An‘| < 0
n=1
from which it follows that

o0
Z 14, < o0 as.
n=1

which is equivalent to P ({4, i.0.}) = 0. |

Ezample 7.30. Suppose that {X,} are Bernoulli random variables with
P(X,=1)=p,and P(X,=0)=1—p,. If

> pa <

P(X,=1i0)=0

then

and hence

P(X,=0a.a.)=1
In particular,

P(1im X, =0)=1.

Figure below serves as motivation for the following elementary lemma
on convex functions.

Lemma 7.31 (Convex Functions). Suppose that ¢ € PC? ((a,b) — R
with ¢ (x) > 0 for almost all x € (a,b). Then ¢ satisfies;

1. for all g,z € (a,b),

¢ (o) + ¢ (20) (x — 20) < ¢ (2)
and

2 PC? denotes the space of piecewise C? — functions, i.e. ¢ € PC?((a,b) — R)
means the ¢ is C' and there are a finite number of points,

{a=a0<a1<az < <an-1<an=">b},

such that g0|[aj isC?forallj=1,2,...,n.

,l,aj]ﬂ(a,b)
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Fig. 7.2. A convex function, ¢, along with a cord and a tangent line. Notice that
the tangent line is always below ¢ and the cord lies above ¢ between the points of
intersection of the cord with the graph of .

2. for all u < v with u,v € (a,b),

putt(v—u)) <e)+tle)—p) vitc(01].

(This lemma applies to the functions, e’ for all X € R, |z|* for a > 1,
and —Inx to name a few examples. See Appendiz[11.7 below for much more
on convez functions.)

Proof. 1. Let

(@) = () = [ (z0) + ¢ (w0) (z — x0)] -

Then f(x0) = f' (z9) = 0 while f” () > 0 a.e. and so by the fundamental
theorem of calculus,

x

)= ¢ (x) = ¢ (20) =/ ©" (y) dy.

0

Hence it follows that f'(x) > 0 for > ¢ and f'(x) < 0 for z < zy and
therefore, f (x) > 0 for all z € (a,b) .
2. Let

f@) =@+t @) —¢@)—pu+ttv—u).

Then f(0) = f(1) = 0 with f(t) = —(v—u)’¢" (u+t(v—u)) < 0 for
almost all t. By the mean value theorem, there exists, tp € (0,1) such that

f (to) = 0 and then by the fundamental theorem of calculus it follows that

fwzlfmw
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In particular, f(t) < 0 for ¢ > to and f(t) > 0 for ¢ < to and hence f () >
f(@1)=0fort>tyand f(t) > f(0) =0 for t <tg,ie. f(t)>0. |

Ezample 7.32. Taking ¢ () := e~%, we learn (see Figure [7.3),
l—z<e®forallzeR (7.8)

2z

and taking ¢ (z) = e=** we learn that

l—z>e *for0<z<1/2 (7.9)

Fig. 7.3. A graph of 1 — z and e™” showing that 1 —z < e~ for all x.

Fig. 7.4. A graph of 1 — x and e~ 2" showing that 1 —z > ¢ 2* for all z € [0,1/2].
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Exercise 7.4. For {a,} -, C [0,1], let

N

ﬁ 1—a,):= hm H (1—-ay).

(The limit exists since, Hﬁle (1—ay) | as N 7 .) Show that if {a,},-, C

[0,1), then
o0
H 1—a,)=0iff Zan—

Solution to Exercise (7.4]). On one hand we have

N N N
H (1—-ay) < H e %" =exp <— Z an>

n=1
which upon passing to the limit as N — co gives

o0 o0
H (1—ay) <exp<2an).
n=1 n=1
Hence if >°>° | a,, = oo then [[)2, (1 — a,) = 0.
Conversely, suppose that Zn 1 Gn < 00. In this case a, — 0 as n — oo

and so there exists an m € N such that a,, € [0,1/2] for all n > m. With this
notation we then have for N > m that

N m N

—~~
—_
I
S
3
~
|
—
—_
|
S
3
~
—~
—_
|
S
3
~—

3
I
-
3
Il
A
3
3
+
A

\V;
=k
=

\

£
=
o

\
s
=

\

£

g

Lo}
VN
o
] =
£
N———

n=m+1 n=1
9]
(1 —ay)-exp (—2 Z an> .

So again letting N — oo shows,

H(l—an) > H(l—an)-exp (—2 Z an> > 0.
n=1 n=1

n=m-+1

3
Il
_

v
b

3
Il
-

Lemma 7.33 (Second Borel-Cantelli Lemma). Suppose that {A,} -
are independent sets. If

n=1

i = (7.10)

then
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P({A, i0}) = 1. (7.11)

Combining this with the first Borel Cantelli Lemma gives the (Borel) Zero-One

law,
oy = {0 P (An) < o0
Pitio)= {1 A ST

Proof. We are going to prove Eq. (7.11)) by showing,
0=P ({4, 10.}9)=P{AS aa}) = P (U2, Ni>n A5).
Since Ng>nAf, T Uply NMe>n Af, as n — oo and N AY | N5y Upsn Ag as
m — 00,

P(U;.Lozl Nk>n Az) = lim P(ﬂanA(é) = lim lim P(ﬁmZanAi).

n—oo n—oo Mm—00

Making use of the independence of {Ay},-, and hence the independence of
{Ag}7 |, we have

P(Nmsrendf) = [ PA5) = J[ 1-P(AL). (7.12)

m>k>n m>k>n

Using the simple inequality in Eq. (7.8)) along with Eq. (7.12)) shows

P(Nmzrondf) < [ e 7™ =exp (- > P(Ak)> .
k=n

m>k>n

Using Eq. (7.10), we find from the above inequality that lim,,, oo P (Nm>r>nAf%) =
0 and hence

P(U?zl Nk>n Az) = lim lim P(mmZkZHAZ) = lim 0=0

n—oo Mm—0o0 n—o0

as desired. ]

Example 7.5/ (Example continued). Suppose that { X, } are now indepen-
dent Bernoulli random variables with P (X, =1) = p, and P (X,, =0) =1—
Pr. Then P (limy, 00 X, =0) = 1iff Y p, < 00. Indeed, P (lim,,—,o X, = 0) =
1iff P(X, =0aa)=1if P(X,=11i0)=0if Sp, =P (X, =1) <

Q.

Proposition 7.35 (Extremal behaviour of iid random variables). Sup-
pose that {X,} 7, is a sequence of i.i.d. random variables and ¢, is an in-
creasing sequence of positive real numbers such that for all « > 1 we have

Z P(Xi>ate,) =00 (7.13)
n=1

while
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NE

P (X1 > ac,) < o0. (7.14)

n=1

Then
. Xn
limsup — =1 a.s. (7.15)

n—oo C’I'L

Proof. By the second Borel-Cantelli Lemma, Eq. (7.13) implies
P (Xn > a~te, io. n) =1
from which it follows that

X
limsup — > a ! as..

n—oo C'n,

Taking o = oy, = 1 + 1/k, we find

X X 1
P (hmsup” > 1) =P (ﬁzo_l {limsup” > }) =1.
n—oo Cn n—oo Cn 073
Similarly, by the first Borel-Cantelli lemma, Eq. (7.14) implies
P (X, > ac,i0.n)=0

or equivalently,
P (X, <ac, a.a.n) =1.

That is to say,

. Xn
limsup — < « a.s.
n—oo Cp

and hence working as above,

P (Hmsup)c(n < 1) =P (ﬂzo_l {Hmsup)c(n < ak}) =1.
Hence,
P <limsup)c(n = 1> =P <{limsup)§" > 1} N {limsup)c(n < 1}) =1
]

Ezample 7.36. Let {E,} -, be a sequence of independent random variables
with exponential distributions determined by

P(E,>z)=e @Y or P(E, <z)=1-e V0,

(Observe that P (E, <0) = 0) so that E,, > 0 a.s.) Then for ¢, > 0 and
a > 0, we have
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oo (o) o0
Z P(E, > ac,) = Z e = Z (e_c")a .
n=1 n=1

n=1

Hence if we choose ¢, = Inn so that e~¢» = 1/n, then we have

o0 o 1 (e
P —3 (=
S P(B,>aln) =Y (n)
n=1 n=1
which is convergent iff &« > 1. So by Proposition it follows that
E,
limsup— =1 a.s.
n—oco 1NN

Ezample 7.37. Suppose now that {X,,},° | are i.i.d. distributed by the Poisson
distribution with intensity, A, i.e.

In this case we have

k' — n!
k=n
and
OO)\k_,\ )\n—xoo” k—n
Do = e Y A
k=n k=n
DN D L D X
=— A< Ze Y k= 2
| E: | - | | |
n = (k+n)! n =k n
Thus we have shown that
)\TL A’I’L

Zer<P(X1>n) < =
n!

Thus in terms of convergence issues, we may assume that
AT A*®

PXg>a)~ —~ —

( ) z! A\ 2nze—tgr

wherein we have used Stirling’s formula,
x! ~V2mxe 2",
Now suppose that we wish to choose ¢, so that

P (X1 >cp) ~1/n.
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This suggests that we need to solve the equation, * = n. Taking logarithms
of this equation implies that

_nn
 Inz
and upon iteration we find,
Inn Inn Inn
Tr = = =
In (22)  Llo(n) —Lla(z) Ly (n) — b (1)
_ Inn
b (n) — L3 (n) + L5 ()

k - times

——
where £ = Inolno---oln. Since, x < In(n), it follows that ¢3 (x) < ¢3(n)
and hence that

= ot b (0 (6m))

Thus we are lead to take ¢, := ZEZ% We then have, for a € (0,00) that

(acy)™™ = exp (ac, [Ina +Inc,))
=ex aln(n) no n) —4f3(n
—exp (- na+ 6 (1) — ta (u)])
on (o[t () Ty
=exw (o |2 1 )
— na(1+sn(a))
where | ts ()
L noa —«£3(n
Hence we have
A&en (A/e) 1

P(X, > n) ~ ac, ~ ’
= aen) ~ e (e, ™™ ™ 2mae, na e @)

Since

Inn In(\/e)

In(\/e) =Inn® =m0 |
g 0/e)

In(A\/e)*" = ac,In(Ne) = a

it follows that

ac OLln(k/e)
(Ae)* ™ =n" R,

Therefore,

In(\/e)

(ONEZIC) 1 Uy (n) 1

\/W no(ten(@) ~ \/ In (n) na(+d.(e))
22(77,)

P(Xy > acy) ~
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where §,, (o) — 0 as n — oo. From this observation, we may show,

M8

P (X1 > ac,) <ooif a>1and

n=1

M8

P(X;>ac,)=xifa<]l

n=1

and so by Proposition [7.35| we may conclude that

lim sup1 =1 a.s.
n

X
n—oo In(n) /42 (n)

7.4 Kolmogorov and Hewitt-Savage Zero-One Laws

Let { X}~ , be asequence of random variables on a measurable space, ({2, B) .
Let Bn = O'(Xl,...,Xn) ;Boc = O'(Xl,XQ,. ..), 7;1 = U(Xn+17Xn+2;-~-)7
and 7 := N9 7T, C Bs. We call T the tail o — field and events, A € T, are
called tail events.

Ezample 7.38. Let S, := X1 + -+ + X,, and {b,},—; C (0,00) such that
b, T oco. Here are some example of tail events and tail measurable random
variables:

L {>,°, X, converges} € 7. Indeed,

{Z X5 converges} = { Z X converges} e T,

k=1 k=n+1
for all n € N.
2. both limsup X,, and lim inf,_,.. X,, are 7 — measurable as are lim sup f—:
and liminf,,_ fﬂ
3. {lim X, exists in ]R} = {lim sup X,, = liminf,, . Xn} € 7 and simi-
larly,
{lim % exists in R} = {limsup % = lim inf S”} cT
and

{limsn exists in R} = {—oo < limsup& = liminf& < oo} e”T.

bn n—00 bn n—oo bn
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4. {limnﬂoo g—" = 0} € 7. Indeed, for any k € N,

TR G s )

n—oo b, n— o0 bn

from which it follows that {limn_,Oo % = } € 7y, for all k.

Definition 7.39. Let (2,8, P) be a probability space. A o — field, F C B is
almost trivial iff P (F) ={0,1}, i.e. P(A) € {0,1} for all A€ F.

Lemma 7.40. Suppose that X : 2 — R is a random variable which is F
measurable, where F C B is almost trivial. Then there exists ¢ € R such that
X =c a.s.

Proof. Since {X = o0} and {X = —oo} are in F, if P(X =00) > 0
or P(X =-00) > 0, then P(X =00) = 1 or P(X =—o00) = 1 respec-
tively. Hence, it suffices to finish the proof under the added condition that
P(X€R)=1.

For each z € R, {X <z} € F and therefore, P (X < z) is either 0 or
1. Since the function, F' (z) := P (X < z) € {0,1} is right continuous, non-
decreasing and F' (—oo) = 0 and F (+00) = 1, there is a unique point ¢ € R
where F'(¢) =1 and F (¢c—) = 0. At this point, we have P (X =¢) = 1. |

Proposition 7.41 (Kolmogorov’s Zero-One Law). Suppose that P is a
probability measure on (£2,B) such that {X,},- | are independent random
variables. Then T is almost trivial, i.e. P (A) € {0,1} for all A€ T.

Proof. Let A € T C By. Since A € 7, for all n and 7,, is independent of
B, it follows that A is independent of U2 B,, for all n. Since the latter set
is a multiplicative set, it follows that A is independent of By, = o (UB,) =
Vo, B,,. But A € B and hence A is independent of itself, i.e.

P(A)=P(ANnA)=P(A)P(A).
2

Since the only x € R, such that x = z¢ is x = 0 or = 1, the result is proved.
In particular the tail events in Example have probability either O or 1. m

Corollary 7.42. Keeping the assumptions in Proposition|7.41 and let {b, } -,
(0,00) such that b, 1 oo. Then limsup X, liminf, . X,, limsup =

n—oo n—oo

and liminf, . ‘Z': are all constant almost surely. In particular, either

P ({ lim “2’" e:m'sts}) =0 or P ({ lim f” exists}) = 1 and in the latter

n—oo “n n—oo “n

case lim 22 = ¢ a.s for some ¢ € R.

n=oo bn

Let us now suppose that 2 := R® = RN, X, (w) = w, for all w € £,
and B := 0(X1,Xs,...). We say a permutation (i.e. a bijective map on
N), 7 : N— N is finite if 7 (n) = n for a.a. n. Define T, : 2 — 2 by
Tﬂ— (OJ) = (wﬂl,wﬂ-g, . ) .



7.4 Kolmogorov and Hewitt-Savage Zero-One Laws 113

Definition 7.43. The permutation invariant o — field, S C B, is the col-
lection of sets, A € B such that T (A) = A for all finite permutations .

In the proof below we will use the identities,
laap=1|1la—1p| and P(AA B) =E|14 — 15|.

Proposition 7.44 (Hewitt-Savage Zero-One Law). Let P be a probability
measure on (£2,B) such that {X,,}.—, is an i.i.d. sequence. Then S is almost
trivial.

Proof. Let By := U 0 (X1,Xs,...,X,). Then By is an algebra and
o (By) = B. By the regularity Theorem for any B € B and € > 0, there
exists A, € By such that A,, 1 C € (By),, B C C, and P(C\ B) < €. Since

P(A,AB) = P ([A,\ BJU[B\ 4,]) = P (A, \ B) + P(B\ 4,)
— P(C\B)+P(B\C)<e,

for sufficiently large n, we have P (AAB) < € where A = A,, € By.

Now suppose that B € S, e > 0, and A € o (X1, X2,...,X,,) C By such
that P (AAB) < e. Let 7 : N — N be the permutation defined by 7 (j) = j+n,
m(j+n)=jforj=1,2,...,n,and 7 (j + 2n) = j + 2n for all j € N. Since

B={(Xi,....,.X,)€B}={w: (wi,...,wn) € B'}
for some B’ € Brn, we have
T (B) ={w: (Tx @)1, (Tr (w)),,) € B'}
={w: (Wr1y...,wrn) € B’}

={w: (Wnt1y---Wnin) € B'}
= {(Xn+17aXn+n) € B/} € O'(Xn+17~-~aXn+n)a

it follows that B and T, ' (B) are independent with P (B) = P (T ' (B)).

)
Therefore P (BNT,'B) P (B)2 . Combining this observation with the
identity, P (A) = P(ANA)=P(ANT,;'A), we find

P(A) = P(B| = [P(ANT;'4) = P (BT B)| = [E [Lypioa — Ly |
<E ‘1AmT;1A - 1BOT;13’
—E|laly s~ el
—E|[la = 1p]lg 14+ 18 [Ip14 — g1 |

SE|[la = 18]+ E[lya, = 1p
= P(AAB) + P (T;"AAT'B) < 2e.
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Since |P (A) — P (B)| < P(AAB) < ¢, it follows that
P(A) = [P(A)+0 () <e.

Since £ > 0 was arbitrary, we may conclude that P (A) = P (A)* forall A€ S.
[

Ezxample 7.45 (Some Random Walk 0—1 Law Results). Continue the notation
in Proposition [7.44]

1. As above, if S, = X1 + -+ + X,,, then P(S,, € Bio.) € {0,1} for all
B € Bg. Indeed, if 7 is a finite permutation,

T-1({S, € Bio})={S, 0T, € Bio.} ={S, € Bio.}.

Hence {S, € B i.o.} is in the permutation invariant o — field. The same
goes for {S, € B a.a.}
2.If P(X1#0) > 0, then limsupS,, = oo a.s. or limsupS,, = —o0 a.s.

n—oo n—oo
Indeed,

n—oo n—oo n—oo

T;l {limsup Sn < J;} = {limsup SpoT, < x} = {limsupSn < m}

which shows that limsup S,, is S — measurable. Therefore, limsup S,, = ¢

n—oo n—oo

a.s. for some ¢ € R. Since, a.s.,

¢ = limsup S,,+1 = limsup (S, + X;1) = limsup S,, + X; = ¢+ X1,

n—oo n—o0 n—oo

we must have either ¢ € {£oo} or X; = 0 a.s. Since the latter is not
allowed, lim sup S,, = oo or limsup S, = —c0 a.s.

3. Now assume that P(X; #0) > 0 and X; 4 —X1, ie. P(X1€A) =
P(—X; € A) for all A € Bg. From item 2. we know that and from what
we have already proved, we know limsup S,, = ¢ a.s. with ¢ € {£oo}.

n—oo

Since {X,} ~, and {—X,} -, are iid. and —X, 4 X, it follows

that {X,}°2, £ {~X,}°°, .The results of Exercise [7.2] then imply that
limsup S, 4 limsup (—S5,) and in particular limsup (—S,) = ¢ a.s. as

n—oo n—oo

Wygl).oo Thus we have

¢ = limsup (-S5,) = —liminf S,, > —limsup S,, = —c.
n—oo n—oo n—oo
Since the ¢ = —oo does not satisfy, ¢ > —c, we must ¢ = co. Hence in this

symmetric case we have shown,
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limsup S, = oo and limsup (—S5,,) = oo a.s.

n—oo n—o0

or equivalently that

limsup S,, = oo and liminf S;,, = —oco a.s.

n—oo n—oo
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8

Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section above. Recall there that if (£2, B, ) was
measurable space and f : {2 — [0, o] was a measurable simple function, then
we let

E.fi= > Mu(f=)).

A€[0,00]

8.1 A Quick Introduction to Lebesgue Integration
Theory

Theorem 8.1 (Extension to positive functions). For a positive measur-
able function, f : 2 — [0,00], the integral of f with respect to p is defined
by

/ f(z)dp (z) :=sup{E,¢ : ¢ is simple and ¢ < f}.
X
This integral has the following properties.

1. This integral is linear in the sense that

/Q(f+kg)du=/ﬂfdu+A/diu

whenever f,g > 0 are measurable functions and A € [0, 00).
2. The integral is continuous under increasing limits, i.e. if 0 < f, T f, then

/f d/,L:/ lim f, du = lim fn dp.
0 N n—oo n—0oo (9]
See the monotone convergence Theorem [8.15 below.

Remark 8.2. Given f : {2 — [0, oo] measurable, we know from the approxima-
tion Theorem [6.32] ¢,, T f where

n2™—1

k
Pn = Z 271{2%<f§%} +nlgfsnony-
k=0

Therefore by the monotone convergence theorem,
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/ fdu=tim | pudp
0 (]

n2"—1
k k k41
= 1i — —_ < 2™y .
n;ﬂ;@lkg_o 2nu<2n<f_ 5 >+nu(f>n )]

We call a function, f : 2 — R, integrable if it is measurable and
Jo |f]di < 0o. We will denote the space of y —integrable functions by L' (u)

Theorem 8.3 (Extension to integrable functions). The integral extends
to a linear function from L' (u) — R. Moreover this extension is continuous
under dominated convergence (see Theorem m That is if f, € L' (u) and
there exists g € L () such that |fn| < g and f :=lim,, .o f. ewists pointwise,

then
/fduz/ lim f,, dp = lim fn/ dp.
,Q QTL—>OO n—oo Q

Notation 8.4 We write fA fdu = fQ laf dup for all A € B where f is a
measurable function such that 14 f is either non-negative or integrable.

Notation 8.5 If m is Lebesque measure on Bgr, f is a non-negative Borel
measurable function and a < b with a,b € R, we will often write f; f(z)dzx

or f; fdm for f(a,b]ﬂR fdm.

Ezample 8.6. Suppose —oco < a < b < oo, f € C([a,b],R) and m be Lebesgue
measure on R. Given a partition,

T={a=ap<a <---<a,=>},

let
mesh(7) := max{|a; —a;_1|:j=1,...,n}
and .
Jx (17) = Z f (al) 1(a17a1+1]($)'
1=0
Then
b n—1 n—1
[t dm =3 @)m (o) = Y- 1 (@) (ars - a)
@ =0 =0

is a Riemann sum. Therefore if {m;};-, is a sequence of partitions with
limy, . oo mesh () = 0, we know that

lim /abfm dm:/abf(x)dx (8.1)

k—o0

where the latter integral is the Riemann integral. Using the (uniform) con-
tinuity of f on [a,b], it easily follows that limg o0 fr, () = f(x) and
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that [fr, ()] < g(x) = Ml (z) for all 2 € (a,b] where M :=
max,e(q] | f (#)] < co. Since [, gdm = M (b — a) < oo, we may apply D.C.T.
to conclude,

b b b
klim/ S dm:/ klim fri dm:/ f dm.

This equation with Eq. (8.1) shows

/abfdm_/abf(:c)d:z:

whenever f € C([a,b],R), i.e. the Lebesgue and the Riemann integral agree on
continuous functions. See Theorem below for a more general statement
along these lines.

Theorem 8.7 (The Fundamental Theorem of Calculus). Suppose
—00 <a<b<oo, f€C((a,b),R)INL ((a,b),m) and F(z) := [T f(y)dm(y).
Then

1. F € C([a,b],R) N C*((a,b),R).

2. F'(z) = f(x) for all x € (a,b).

3. If G € C([a,b],R) N CY((a,b),R) is an anti-derivative of f on (a,b) (i.e.
f = G/|(a,b)) then

/ F@)dm(z) = G(b) — Gla).

Proof. Since F(x) := fR Lia,z) (y)f(y)dm(y), lim,_,, Lia,z) (y) = 1(a’z)(y)
for m — a.e. y and |14 ) f(¥)] < Lap () |f(y)| is an L' — function, it
follows from the dominated convergence Theorem that F' is continuous
on [a,b]. Simple manipulations show,

1 [ W) - s@)dmiy) itk > 0
BE |2 L) = F@) dm(y)| i < 0
o LLETME) — @) dmy) ith > 0
ST\ S 1) = F@) dm(y) i h <0
<sup{If(y) ~ f@)] y € [ — |h], = + |A]}

F(x+h) — F(x)
=) o)

and the latter expression, by the continuity of f, goes to zero as h — 0 . This
shows F’ = f on (a,b).

For the converse direction, we have by assumption that G'(x) = F’(x) for
x € (a,b). Therefore by the mean value theorem, F'—G = C for some constant
C. Hence
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b
/ f(@)dm(x) = F(b) = F(b) — F(a)
— (G(b) + C) — (G(a) + C) = G(b) — G(a).
| |

We can use the above results to integrate some non-Riemann integrable
functions:

Ezample 8.8. For all A > 0,

o0 1
— Az _y—1 _
/0 e dm(x) = A" and /]R T2 dm(z) = 7.

The proof of these identities are similar. By the monotone convergence the-
orem, Example [8.6] and the fundamental theorem of calculus for Riemann
integrals (or Theorem below),

oo N N
/ e Mdm(z) = lim e Mdm(x) = lim e Mdg
0 N—oo Jy N—oo Jg

.1 _
=— lim —e )‘z|é\[:)\ 1
N—o0

and

Nliin00 [tan™"(N) — tan™" (—=N)] = .

1 , Moo , Moo
——dm(z) = lim ——dm(z) = lim ——dx
r 1+ 22 N—oco J_n 14 22 N—oo J_n 14 22

Let us also consider the functions 77,

/( L dm(z) = lim Ly (g;)idm(a:)

071] xP n—oo 0 n? xP
: ! gt
= lim —dr = lim
n—oo [1 P n—oo 1 —p l/n
1 .
o ifp>1

If p=1 we find

1 "1
—d = li Zdr = lim 1 1 — ~.
/(071] o m(zx) Jim R w = lim n(z)ly /,, = 00

Exercise 8.1. Show

> 1 ~ ifp<1
/1 xpdm(m)_{pllifp>1'
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Ezample 8.9. The following limit holds,

n

nh_)rr;o ; (1 - %)ndm(m) =1.

To verify this, let f,(z) == (1 — z)n 110, (). Then limy, o0 fn(x) = e™* for

n

all z > 0 and by taking logarithms of Eq. (7.§]),
In(l—-2)<—zforz<l.
Therefore, for z < n, we have

(1 . E)n _ enln(lfﬁ) S e—n(%) — e
n
from which it follows that

0< fu(z) <e *forall z >0.

From Example we know
/ e Tdm(z) =1 < oo,
0

so that e™® is an integrable function on [0, 00). Hence by the dominated con-
vergence theorem,

n oo

lim ; (l—g) dm(z) = lim frn(x)dm(x)

n— oo n n—oo 0

n—oo

_ /0 T lim o (2)dm(z) = /0 " etdm(z) = 1.

The limit in the above example may also be computed using the monotone
convergence theorem. To do this we must show that n — f, (z) is increasing
in n for each x and for this it suffices to consider n > x. But for n > =z,

@ = g (-0 =m (- D)+

zln(1_%)+1i = h(z/n)

n

where, for 0 <y < 1,

it follows that h > 0. Thus we have shown, f, (z) T e~ as n — oo as claimed.
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Ezample 8.10 (Jordan’s Lemma). In this example, let us consider the limit;

T 0 )
lim cos (sin ) e~ s gp.
O n

n—oo

Let ;
fn (9) = 1(0’7‘_] (0) CcoS (sin n) e—nsin(e).
Then
[fnul < Lo, € ot (m)
and

Therefore by the D.C.T.,

lim cos (sin 9) e s gy = / Lizy (0)dm (0) = m ({m}) = 0.
0 n R

n—oo

Exercise 8.2 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

1. lim fo Sm(%) dz.

n—0o0 1+ )TL

1 1+nz
2. lim
A Jo et d

3. lim fOOO nsin(x/n) dx

00 z(14+x2)

4. For all a € R compute,

o0

f(a) := lim n(1 4 n’z?)"ldz.

Now that we have an overview of the Lebesgue integral, let us proceed to
the formal development of the facts stated above.

8.2 Integrals of positive functions

Definition 8.11. Let LT = LT (B) = {f : X — [0,00] : f is measurable}.
Define

/ f(x)dp(x / fdp = sup{E,p : ¢ is simple and ¢ < f}.

We say the f € LT is integrable if [, fdu < co. If A€ B, let

/f ) dpt (z /fdu—/lAfdu
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Remark 8.12. Because of item 3. of Proposition if ¢ is a non-negative
simple function, [, @dpu = E,¢ so that [, is an extension of E,.

Lemma 8.13. Let f,g € L™ (B). Then:

/XAfdM:A/deu

wherein X [y fdp =0 if X\=0, even if [y fdu = oco.

2.4f0< f <g, then
[ saus [ gan (.2)
X X

1. if A >0, then

3. For all e > 0 and p > 0,
(f>5)<i/fp1 d <i/fpd (8.3)
1% = = ep x {st}/“Lfep x H :

The inequality in Eq. 1s called Chebyshev’s Inequality for p =1 and
Markov’s inequality for p = 2.

4. 1f [ fdp < oo then u(f = 00) =0 (i.e. f < oo a.e.) and the set {f > 0}
is o — finite.

Proof. 1. We may assume A\ > 0 in which case,

/ Afdp = sup{E,p : ¢ is simple and ¢ < Af}
b's

= sup {EH(‘D : ¢ is simple and A1y < f}
=sup {E, [\)] : ¢ is simple and ¢ < f}
=sup{AE, [¢/] : ¥ is simple and ¢ < f}

= A/deu.

{¢ is simple and ¢ < f} C {¢ is simple and ¢ < g},

2. Since

Eq. (8.2)) follows from the definition of the integral.
3. Since Iif>ey < 1{f25}§f < %f we have

1\ /1 )\
Lip>ey < Lyp>ey <5f) < (€f>

and by monotonicity and the multiplicative property of the integral,

1\” 1\?
“(fZE)Z/Xl{sz}dMS (5) /Xl{fze}f”dué (6) /Xf”du-
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4. If pu (f = 00) > 0, then @, := nl{y_y is a simple function such that
wn < f for all n and hence

p(f =00) =E, (n) S/deu

for all n. Letting n — oo shows [y fdu = oco. Thus if [, fdu < oo then

p(f =00)=0.
Moreover,
{f >0} =UiZ {f > 1/n}
with o (f > 1/n) <n [y fdu < oo for each n. [

Lemma 8.14 (Sums as Integrals). Let X be a set and p : X — [0, 00] be a
function, let p =3,y p(x)d, on B=2% ie.

z€A

If f : X — [0,00] is a function (which is necessarily measurable), then

/X fan =3 1o

Proof. Suppose that ¢ : X — [0,00) is a simple function, then ¢ =
ZzE[O,oo) 21{<P=Z} and

ZW—Z 2) Y zlpmag(@) = Y 2 Y p(@)] ey (@)

zeX z€[0,00) z€[0,00) xEX
= Y wlle=2))= / i
z€[0,00) X

So if ¢ : X — [0,00) is a simple function such that ¢ < f, then

/ edp =Y op< > fp.
X X X

Taking the sup over ¢ in this last equation then shows that

/X i <3 1o

For the reverse inequality, let A CC X be a finite set and N € (0, 00).
Set fN(x) = min{N, f(z)} and let pn 4 be the simple function given by
on.a(x) == 14(z) fN (). Because oy a(x) < f(z),

ZfNPZZQON,AP:/ @N,Adﬂﬁ/ fdp.
3 ~ X X
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Since fV 1 f as N — oo, we may let N — oo in this last equation to concluded

XA:fp < /deu-

Since A is arbitrary, this implies

zxjfp < /deu-

Theorem 8.15 (Monotone Convergence Theorem). Suppose f, € L
is a sequence of functions such that f, T f (f is necessarily in L") then

[t [£asnc

Proof. Since f, < fi, < f, forall n < m < oo,

JEEY R

from which if follows [ f,, is increasing in n and

lim [ f, < / £ (8.4)

n—oo

For the opposite inequality, let ¢ : X — [0,00) be a simple function such
that 0 < ¢ < f, @ € (0,1) and X,, := {f,, > ap}. Notice that X,, T X and
fn > alx, ¢ and so by definition of [ f,,

[ 22 Bulatx, ol = aBulix, ol (5.5)
Then using the continuity of p under increasing unions,

lim E, [1x,¢] = lim 1x, > ylipmy

n—oo

y>0
= lim > yp(Xan{p =y})
y>0
TSN Ty lim (X 0 {p = y})
y>0
=y lim u({p =y}) =E,[¢]

y>0

This identity allows us to let n — oo in Eq. (8.5)) to conclude lim, . [ f5
aE, [¢] and since a € (0,1) was arbitrary we may further conclude,E, [¢]

IN IV
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lim, . | fn. The latter inequality being true for all simple functions ¢ with
@ < f then implies that

which combined with Eq. (8.4]) proves the theorem. [

Corollary 8.16. If f, € L™ is a sequence of functions then

In particular, if Y07, [ fn < o0 then Y07 | fn < 00 a.c.

Proof. First off we show that

Jtrvp= [+ [

by choosing non-negative simple function ¢,, and 1, such that ¢, T f1 and
Yn T fa. Then (¢, + 1y,) is simple as well and (@, +¥,) T (f1 + f2) so by the

monotone convergence theorem,

Jiti+ =i [t =t ( [+ [v.)
i fore i fo= e ]

N 00

Now to the general case. Let gy := Y fn, and g = fp, then gy T ¢ and so
n=1 1

again by monotone convergence theorem and the additivity just proved,

i/f - A}@mi/fn:]g@m/ifn

Nliinoo/gzv/g:/ifn-

n=1

Remark 8.17. It is in the proof of this corollary (i.e. the linearity of the in-
tegral) that we really make use of the assumption that all of our functions
are measurable. In fact the definition [ fdu makes sense for all functions
f: X — [0, 00] not just measurable functions. Moreover the monotone conver-
gence theorem holds in this generality with no change in the proof. However,
in the proof of Corollary we use the approximation Theorem [6.32] which
relies heavily on the measurability of the functions to be approximated.
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Example 8.18. Suppose, 2 =N, B := 2N and p (A) = # (A) for A C 2 is the
counting measure on B. Then for f: N — [0, 00), the function

N
n=1

is a simple function with fy T f as N — co. So by the monotone convergence
theorem,

N
l@ﬂw=§§;4fmm=A@;g;fmﬂMMD

= i S ) =3 F ().

Exercise 8.3. Suppose that u, : B — [0,00] are measures on B for n € N.
Also suppose that p,(A) is increasing in n for all A € B. Prove that p :
B — [0,00] defined by pu(A) := lim, oo pin(A) is also a measure. Hint: use
Example [8.18 and the monotone convergence theorem.

Proposition 8.19. Suppose that f > 0 is a measurable function. Then
fX fdu=04ff f =0 a.e. Also if f,g > 0 are measurable functions such that

[ <gae. then [ fdu < [ gdu. In particular if f = g a.e. then [ fdu = [ gdpu.

Proof. If f = 0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e.
This implies that p(p~'({y})) = 0 for all y > 0 and hence [, pdu = 0 and
therefore [ fdu = 0. Conversely, if [ fdu =0, then by (Lemma ,

w(f >1/n) Sn/fdu:()for all n.

Therefore, pu(f > 0) < >, pu(f > 1/n) =0, ie. f =0 a.e. For the second
assertion let E be the exceptional set where f > g, i.e. E:={x € X : f(x) >
g(x)}. By assumption E is a null set and 1gcf < 1gcg everywhere. Because
g=1pgcg+ 1gg and 1gg =0 a.e.,

/gdu:/lEcgdu+/lE9du: /1Ecgdu

and similarly [ fdp = [1ge fdp. Since 1ge f < 1geg everywhere,
[ fdn= [ tesdu< [1pgdu= [ gan

Corollary 8.20. Suppose that {f,} is a sequence of non-negative measurable
functions and f is a measurable function such that f, T f off a null set, then

[t [£asnc
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Proof. Let E C X be a null set such that f,1gc T flge as n — co. Then
by the monotone convergence theorem and Proposition [8.19]

/fn:/fnlECT/flEC:/faSn—M)o.

Lemma 8.21 (Fatou’s Lemma). If f, : X — [0,00] is a sequence of mea-
surable functions then

/lim inf f,, <lim inf/fn
n—oo n—oo

Proof. Define g := H;fk fn so that g T liminf, .. fn, as k — oo. Since

gr < fn for all kK <n,
/gké/fnforallnzk

/gk <lim inf /fn for all k.

We may now use the monotone convergence theorem to let k& — oo to find
/lim inf f, = / lim g MET i /gk <lim inf /fn
n—oo k—o0 k—oo n—oo
[

The following Lemma and the next Corollary are simple applications of

Corollary

Lemma 8.22 (The First Borell — Carntelli Lemma). Let (X, B, u) be a
measure space, A, € B, and set

and therefore

{4, i.0.} ={z € X : x € A, for infinitely many n’s} = ﬂ U Ap.
N=1n>N

If >0 L w(Ay) < oo then p({A, i.0.}) =0.
Proof. (First Proof.) Let us first observe that

{4, i.0.} = {xeX:ilAn(a@) :oo}.

Hence if Y | ju(A,) < co then

oo>Z:l,u(An):ZI/XlAndu:/Xz:llAndu
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implies that Z 1a,(z) < oo for p - a.e. x. That is to say u({4, i.o.}) =0.

(Second Proof ) Of course we may give a strictly measure theoretic proof of
this fact:

and the last limit is zero since >~ | pu(A,) < oo. [

Corollary 8.23. Suppose that (X, B, j1) is a measure space and {A,},~, C B
is a collection of sets such that p(A; N A;) =0 for all i # j, then

- ua
n=1
Proof. Since
w(Use A, = / Tuse 4, dp and
X

oo

A,) = d
) /an_:llAnM

it suffices to show

> da, =1um a, p- (8.6)
n=1

Now Z:O:l la, > 1y= 4, and EZO:1 1a,(z) # Luse 4, (x) iff z € A;N A, for
some i # j, that is

{ ZlAn ) # luz 4, (@ )}:UiinﬂAa‘

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. and hence the corollary. [

Ezample 8.24. Let {r,}>2, be an enumeration of the points in Q N[0, 1] and
define

22_ V‘x_rn|

with the convention that

1

Ve =

=b5ifx=r,.
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Since, By Theorem [8.7]

1 1 T
1 1 n 1
—— dx :/ 7dx+/ ——dx
/0 V|£C—7"n| rn VI = Tn 0 VTn — &
=2z — rn|},n =2V —zlyr =2 (V1 —1rn — /1)

<4,

we find

deZQ_"4:4<oo.

o) . #
fx)dm(z) = ; 2 /[071] Vi]z —ra] n=1

In particular, m(f = oo0) = 0, i.e. that f < oo for almost every x € [0, 1] and
this implies that

[0,1]

- 1
22*"7 < oo for a.e. x € [0,1].
n=1

Ve =7l

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0, 1].

8.3 Integrals of Complex Valued Functions

Definition 8.25. A measurable function f : X — R is integrable if f, =
flis>0y and f— = —f 1(y<0y are integrable. We write L' (u;R) for the space
of real valued integrable functions. For f € L' (u;R), let

[ tdn= [ edu~ [ 1-an

Convention: If f,g : X — R are two measurable functions, let f + ¢
denote the collection of measurable functions h : X — R such that h(z) =
f(z)+g(x) whenever f(z)+g(x) is well defined, i.e. is not of the form co—oo or
—00+ 00. We use a similar convention for f — g. Notice that if f, g € L' (u; R)
and hy, he € f + g, then hy = hg a.e. because |f| < co and |g| < oo a.e.

Notation 8.26 (Abuse of notation) We will sometimes denote the inte-
gral [ fdp by pu(f). With this notation we have p (A) = pu(14) for all A € B.

Remark 8.27. Since
fi S |f| Sf++f—7

a measurable function f is integrable iff [ |f| dp < co. Hence

L' (1;R) := {f:X—>R: f is measurable and /X|f| d,u<oo}.
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If f,g € L' (u;R) and f = g a.e. then fi = g4 a.e. and so it follows from
Proposition that [ fdu = [ gdp. In particular if f,g € L' (u; R) we may

define
/X(f+g)du=/thu

where h is any element of f + g.

Proposition 8.28. The map
feltur) — [ fipcr
b'e

is linear and has the monotonicity property: [ fdu < [gdu for all f,g €
LY (u;R) such that f < g a.e.

Proof. Let f,g € L' (;R) and a,b € R. By modifying f and g on a null
set, we may assume that f, g are real valued functions. We have af 4 bg €
L' (1; R) because

laf +bgl < lal |f] + [bl]g] € L' (11 R).

If a < 0, then
(af)+ = —af- and (af)- = —afy

Jor=-afrsaft=afsi-[rr=a]r

A similar calculation works for a > 0 and the case a = 0 is trivial so we have

shown that
Jar=afs

Now set h = f + g. Since h = hy — h_,

so that

hy —ho=fr—f-+9+—9g-

or
hy+f-+9-=h_+ f4 + 94
Therefore,
Jres [roe o= [ [rov [ o
and hence

oefro-fuom f oo for [ foom [ o

Finally if f — f- = f <g=g94+ —g- then fi +g_ < g4+ + f- which implies
that
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/f++/g—§/9++/f—
or equivalently that
/f=/f+—/f7§/g+—/gf=/g.

The monotonicity property is also a consequence of the linearity of the in-
tegral, the fact that f < g a.e. implies 0 < g — f a.e. and Proposition [3.19
]

Definition 8.29. A measurable function f : X — C is integrable if
Jx |f] dp < oo. Analogously to the real case, let

Ll(u;C):{f:XH(C: f is measurable and/ |f] du<oo}.
b's

denote the complex valued integrable functions. Because, max (|Re f], [Im f]) <

I < V2max ([Re f|.[Im f]), [|f| du < oo iff
/\Ref|d,u+/|1mf|d,u<oo.

For f € L' (u;C) define

/fd,u:/Refdqui/Imfdu.

It is routine to show the integral is still linear on L' (115 C) (prove!). In the
remainder of this section, let L! (1) be either L' (u;C) or L! (1;R). If A € B
and f € L' (u;C) or f: X — [0,00] is a measurable function, let

/A fdp = /X 1afdp.

Proposition 8.30. Suppose that f € L' (u;C), then

\ /. fdu]s J 151 (8.7)

Proof. Start by writing fX f dp = Re* with R > 0. We may assume that
R= UX fdu| > 0 since otherwise there is nothing to prove. Since

R:e*“’/xfdﬂ:/x(fwf du:/XRe(e’wf)d;H—i/ Im (e~ f) dp,

X

it must be that fX Im [e_wf] dp = 0. Using the monotonicity in Proposition

‘/deﬂ'_/XRe(eigf)d”</X|Re(ewf)|d,u</x|f|du.
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Proposition 8.31. Let f,g € L' (i), then
1. The set {f # 0} is o — finite, in fact {|f| > 2} 1T {f # 0} and p(|f| >

L)y < oo for all n.
2. The following are equivalent

a) [ f=[gg foral EcB
b)){lf—g|=0

c) f=g ae
Proof. 1. By Chebyshev’s inequality, Lemma [8:13]

1= 1y < [ 1fldn <o

for all n.
2. (a) = (c) Notice that

/Ef:/Eg@/EU—g):o

for all E € B. Taking E = {Re(f — ¢g) > 0} and using 1z Re(f — g) > 0, we
learn that

0:Re/E(f—g)du:/1ERe(f—g):>1ERe(f—g):0a.e.

This implies that 15 = 0 a.e. which happens iff

p({Re(f —g) > 0}) = u(E) = 0.

Similar u(Re(f—g) < 0) = 0so that Re(f—g) = 0 a.e. Similarly, Im(f—g) =0
a.e and hence f — g =0 a.e., i.e. f =g a.e. (¢) = (b) is clear and so is (b)

= (a) since
[i=[a<[ir-a=0

Definition 8.32. Let (X, B, ) be a measure space and L*(u) = LY (X, B, i)
denote the set of L' (1) functions modulo the equivalence relation; f ~ g iff
f =g a.e. We make this into a normed space using the norm

1 =gl =/\f—g|du

and into a metric space using p1(f,9) =1f — 9l -

Warning: in the future we will often not make much of a distinction
between L!(u) and L! () . On occasion this can be dangerous and this danger
will be pointed out when necessary.
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Remark 8.33. More generally we may define LP(u) = LP(X,B,u) for p €
[1,00) as the set of measurable functions f such that

/ |fIP dp < o0
X

modulo the equivalence relation; f ~ g iff f =g a.e.

We will see in later that

1/p
1= ([ 16700)  for £ < 220

is a norm and (L”(u), ||-||;») is a Banach space in this norm.

Theorem 8.34 (Dominated Convergence Theorem). Suppose f,, gn, g €
L' (1), fo — f ace, [fol S gn €L (1), gn — g ace. and [y gndp — [ gdp.

Then f € L (1) and
/ fdp = lim / frndu.
b's h—eo Jx

(In most typical applications of this theorem g, = g € L' (u) for all n.)

Proof. Notice that |f| = limp— oo |fn] < limp oo [gn] < ¢ a.e. so that
f € LY (u). By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,

/(gif)du=/ liminf(gnifn)duSliminf/ (gn £ fn) dp
= lim gndp + lim inf (j:/ fndy>

:/ gdp + lim inf (:t/ fndu)
X n—oo X

Since lim inf,,_ o (—ay,) = — limsup a,,, we have shown,
n—oo

liminf, .o [y frdp
dp + du < d :
/Xgu /Xf uf/Xg ﬂ+{_hﬂsipfxfndu

and therefore

limsup/ fnd,ug/ fdu Sliminf/ fndu.

n—oo

This shows that lim [, fndu exists and is equal to [ fdp. [
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Exercise 8.4. Give another proof of Proposition [B:30] by first proving Eq.
with f being a simple function in which case the triangle inequality for
complex numbers will do the trick. Then use the approximation Theorem [6.32
along with the dominated convergence Theorem to handle the general
case.

Proposition 8.35. Suppose that (2,8, P) is a probability space and {Z; };L:1
are independent integrable random variables. Then H?Zl Z; is also integrable

and
E|[]%|=]]E%-
j=1 j=1

Proof. By definition, {Z;}_, are independent iff {o(Z;)}]_, are inde-
pendent. Then as we have seen in a homework problem,

Ela,...14,]=E[la,]...E[l4,] when A; € 0 (Z;) for each .
By multi-linearity it follows that

Elpr-..on] =E[p1]...E[pn]

whenever ¢; are bounded o (Z;) — measurable simple functions. By approx-
imation by simple functions and the monotone and dominated convergence
theorem,

EY:... Y] =E[Y1]...E[Y,]

whenever Y; is 0 (Z;) — measurable and either ¥; > 0 or Y; is bounded. Taking
Y; = |Z;| then implies that

n n
E 11zl = [[EIZ] <
j=1 j=1

so that H?zl Z; is integrable. Moreover, for K > 0, let ZE = Zil|z, <K, then

E| ] Zz1<x | = [1E[Zi112,1<k] -
j=1

j=1

Now apply the dominated convergence theorem, n + 1 — times, to conclude
n n n n

E E Zj| = lim E jl;[l Zilizy1<K | = ]1;[1 Aim B [Z51)7, <] = jl;[lEZj-

The dominating functions used here are [7_, |Z;|, and {|Z; |};l:1 respectively.
[
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Corollary 8.36. Let {f,},—, C L' (1) be a sequence such thaty ., [l <
o0, then Y7, fn is convergent a.e. and

/. (i fn> = i |

Proof. The condition Y~ , [ fnllri() < oo is equivalent to S | fnl €
L' (n). Hence Y 07, fn is almost everywhere convergent and if Sy :=
ZnN:1 fn, then
S| < Z 1l < Sl €L ().
n=1
So by the dominated convergence theorem,
oo
fn | du :/ lim Sydy = lim Sndp
N o]
— tim S [ =Y [ fudn
A2 b= 2
]

Ezample 8.37 (Integration of Power Series). Suppose R > 0 and {an},_, is a
sequence of complex numbers such that Y  |a,|r™ < oo for all r € (0, R).
Then

[ (S amir= S [ ramir= S0

for all —R < a < 8 < R. Indeed this follows from Corollary since

o |B] [
(/ (@l 2] dr(z) + / @l 2] dm<z>>

0 I}
S / |an||:c\"dm<x>s2
n=0"¢%
n+1 | |n+1

n+1

n=0

where 7 = max(|3|, |«a]).

o0
<27*Z|an|r" < 00

n=0

Corollary 8.38 (Differentiation Under the Integral). Suppose that J C
R is an open interval and f : J x X — C is a function such that

— f(t,x) is measurable for each t € J.
(to,*) € L*(p) for some ty € J.
f(t,:c) exists for all (t,x).

Q\H

1.
2.
3.
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4. There is a function g € L (1)

%(tﬁ‘ < g for each t € J.

Then f(t,-) € L' (n) for all t € J (ie. [y |f(t,2)du(z) < o), t —
fX f(t,x)du(x) is a differentiable function on J and

G | feadute) = [ St oina).

Proof. By considering the real and imaginary parts of f separately, we
may assume that f is real. Also notice that

0
O (1,2) = tim n(f(t+n"\2) - f(t,2)
ot n—00
and therefore, for x — 8—{(75, x) is a sequential limit of measurable functions
and hence is measurable for all t € J. By the mean value theorem,
[f(t,z) — f(to,z)| < g(z) |t —to| forallt € J (8.8)
and hence
|f(t2)] < [f(t,z) — f(to, 2)| + [ f(to, z)| < g(fv) [t —to| + | f(to, )]
This shows f(t,-) € L' (1) for all t € J. Let G(t) := [ f(t,z)du(x), then
t) — t t — f(t
G() G 0 _ f ,(E f( O7x)d,u(x)
t—to t—to

By assumption,

im L0 = Sow) O, oy aze x
t—to t— tO at

and by Eq. (8.8),

f(t,x)—f(t07.’17) <

g(z) for allt € J and z € X.
t—to

Therefore, we may apply the dominated convergence theorem to conclude

lim G(tn) — G(fo) — lim / f(tnax) — f(t07x) du(a:)
n—oo X

n—oo tn - to tn - to
tna B i ’
Xnﬂoo tn —tO

=Agwmww

for all sequences t, € J \ {to} such that t, — to. Therefore, G(to) =

GM=Gto) ayists and
t—to

mmzﬂgwwww

limt_,to
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Ezample 8.39. Recall from Example [8-§| that

A= / e~ dm(z) for all A > 0.
[0,00)

Let € > 0. For A > 2¢ > 0 and n € N there exists C,,(¢) < oo such that

d\" _, Y -
< _ xr — n xT < 81'.
0< ( d)\> e z"e < Cle)e

Using this fact, Corollary [8:38 and induction gives

a\" d\"
Il = -1 _ _ Az
n!\ ( d)\> A /[O,oo) ( d>\> e~ *dm(x)

= / e M dm(x).
[0,00)

That is n! = \" "¢~ dm(z). Recall that
[0700)
)= / '~ te™dx for t > 0.
[0,00)

(The reader should check that I'(t) < oo for all ¢ > 0.) We have just shown
that I'(n 4+ 1) =n! for all n € N.

Remark 8.40. Corollary may be generalized by allowing the hypothesis
to hold for x € X \ E where E € B is a fixed null set, i.e. £ must be
independent of ¢. Consider what happens if we formally apply Corollary
0 g(t) = i Locsdm(a),

d [ 7 [0
= %/o ly<idm(z) :/0 alxgtdm(@-

The last integral is zero since %cht = 0 unless ¢ = x in which case it is
not defined. On the other hand g(¢) = ¢ so that ¢(t) = 1. (The reader should
decide which hypothesis of Corollary has been violated in this example.)

9(t)

8.4 Densities and Change of Variables Theorems

Exercise 8.5. Let (X, M, 1) be a measure space and p : X — [0,00] be a
measurable function. For A € M, set v(A) := [, pdp.

1. Show v : M — [0, 0] is a measure.
2. Let f: X — [0, 00] be a measurable function, show

/X fdv = /X fpdp. (8.9)

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.
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3. Show that a measurable function f : X — Cis in L'(v) iff |f|p € L'(u)
and if f € L*(v) then Eq. still holds.

Solution to Exercise (8.5]). The fact that v is a measure follows easily from
Corollary Clearly Eq. (8.9) holds when f = 14 by definition of v. It then
holds for positive simple functions, f, by linearity. Finally for general f € LT,

choose simple functions, ,,, such that 0 < ¢, T f. Then using MCT twice we
find

/fdz/: lim ppdv = lim / gonpd,u:/ lim cpnpdu:/ fpdu.

By what we have just proved, for all f: X — C we have

/leldv=/xlf\pdu

so that f € L' (u) iff |f|p € LY (). If f € L' (u) and f is real,

Josar= [ fodv— [ pav= [ fooau— [ fopan

:/X[fw*f—p] du:/Xde#-

The complex case easily follows from this identity.

Notation 8.41 It is customary to informally describe v defined in Ezercise
[8-5 by writing dv = pdp.

Exercise 8.6. Let (X, M, ) be a measure space, (Y,F) be a measurable
space and f: X — Y be a measurable map. Define a function v : F — [0, o0]
by v(A) := pu(f~1(A)) for all A € F.

1. Show v is a measure. (We will write v = f.p or v =po f=1)
2. Show

/Ygdv=/X(90f)du (8.10)

for all measurable functions g : ¥ — [0,00]. Hint: see the hint from
Exercise [B.H
3. Show a measurable function g : Y — C is in L*(v) iff go f € L*(u) and

that Eq. (8.10) holds for all g € L(v).

Solution to Exercise ({8.6). The fact that v is a measure is a direct check
which will be left to the reader. The key computation is to observe that if
A€ F and g = 14, then

/Ygdz/:/ylAdV:u(A):u(ffl(A)):/lefl(A)du.
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Moreover, 1;-1(4)(z) = 1 1ff x € f~1(A) which happens iff f(z) € A and
hence 15-1(4) () =14 (f (z)) = g (f (z)) for all x € X. Therefore we have

/gdl/_/ gof

whenever g is a characteristic function. This identity now extends to non-
negative simple functions by linearity and then to all non-negative measurable
functions by MCT. The statements involving complex functions follows as in
the solution to Exercise

Remark 8.42. If X is a random variable on a probability space, ({2, B, P), and
F(z):=P(X <z). Then

= / f(z)dF () (8.11)
R

where dF' (z) is shorthand for dup () and pp is the unique probability mea-
sure on (R, Br) such that up ((—oo,z]) = F (z) for all x € R. Moreover if
F :R — [0,1] happens to be C*-function, then

durp (z) = F' () dm (z) (8.12)
and Eq. (8.11)) may be written as

= /Rf (x) F' (z)dm (). (8.13)

To verify Eq. (8.12) it suffices to observe, by the fundamental theorem of
calculus, that

b
F((a,b}):F(b)—F(a):/ F’(x)dx:/ F'dm.
a (a,b]
From this equation we may deduce that pp (A) = [, F'dm for all A € Bg.

Exercise 8.7. Let F' : R — R be a C'-function such that F'(z) > 0 for all
x € R and lim,_, 4o F(z) = £oo. (Notice that F is strictly increasing so that
F~!1:R — R exists and moreover, by the inverse function theorem that F~!
is a C! — function.) Let m be Lebesgue measure on Bg and

v(A) =m(F(A)) =m((F~1) " (4) = (F.'m) (4)

for all A € Bg. Show dv = F’dm. Use this result to prove the change of
variable formula,

-1

/hoF~F'dm:/hdm (8.14)
R R

which is valid for all Borel measurable functions h : R — [0, 00].

Hint: Start by showing dv = F’'dm on sets of the form A = (a,b] with
a,b € R and a < b. Then use the uniqueness assertions in Exercise to
conclude dv = F'dm on all of Bg. To prove Eq. apply Exercise With
g=hoF and f=F~L
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Solution to Exercise (8.7)). Let du = F'dm and A = (a, b], then
v((a,b]) = m(F((a,b])) = m((F(a), F(b)]) = F(b) — F(a)
while

b
i((a, b)) = /(  Fm = / F'(2)de = F(b) — F(a).

It follows that both 4 = v = pup — where up is the measure described in
Proposition By Exercise with g=ho F and f = F~!, we find

/hoF-F’dmz/hoquz/hoFd(F,:lm):/(hoF)oF—ldm
R R R

R
= / hdm.
R

This result is also valid for all h € L!(m).

Lemma 8.43. Suppose that X is a standard normal random variable, i.e.

P(X € A)= \/127_/146“"2/2dx for all A € Ba,

then L1
P(X>z)<~ —=/2 8.15
(Xz0)< i (5.15)
andl] P(X > )
. '
T /2

Proof. We begin by observing that

1 s 1 oy .2 1 1 2,
P(X >7) = = Y24 </ = 24y — T myt/2)m0
( _x) A \/271'6 v = x \/ﬂl‘e Yy /271_1:6 T

from which Eq. (8.15] follows. To prove Eq. (8.16)), let o > 1, then

<1 2 I | 2
P(X>z)= / eV 2dy > ——e Y 2dy
o vV “Js V27

z 2w

axT 1 y 2 .
> L eV 2y = ——— 7V /20w
_/x Vor ax 4 Vor ax E
1 1
[6712/2 - 67042932/2:| )

V2T ax

! See, Gordon, Robert D. Values of Mills’ ratio of area to bounding ordinate and
of the normal probability integral for large values of the argument. Ann. Math.
Statistics 12, (1941). 364-366. (Reviewer: Z. W. Birnbaum) 62.0X
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Hence

—x2/2 — 1_1 e—z2/2

P(X>a) Ly [e—ﬂfz/? - e—wzwz/ﬂ
1 1
T «

1
\/271'6 T /21

From this equation it follows that

>
lim inf P(X > x) 21.
xr— l 1 67122/2 o
V2

. P(X > )
lim inf 75— =7 =
T /21
Since Eq. (8.15)) implies that
Lo P(X2a)

we are done.
Additional information: Suppose that we now take
1 +aP

_ -p
a=14+2"7= o

Then
(a2 - 1) 2% = (x_zp + 2x_P) o (:E2—2p + 2x2_p) .

Hence if p = 2 — 4, we find

(042 — 1) 7?2 = (332(_1+6) + 2x6) < 30

so that P(X ) )
>z 5
> — > _ —3x /2:|
= %%6*9”2/2 T 14229 [1 ¢
for x sufficiently large. [

Ezample 8.44. Let {X,,},-, be i.i.d. standard normal random variables. Then

1
P(Xn Z OéCn) ~ Ie—azci/Q-
n

Now, suppose that we take ¢, so that

_e2 C
2z Y
n
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or equivalently,
/2 =1n(n/C)

or

¢n =+/2In(n) — 2In (C).
(We now take C' = 1.) It then follows that

1 1 1
e—a2 In(n) _

ay/21n (n) av?lu@z)ﬁ

P (X, > acy,) ~

and therefore

o0
ZP(anozcn)zooifoz<1
n=1

and

ZP(anacn)<ooifoz>1.

n=1

Hence an application of Proposition shows

lim sup =1 as..

Xn
n—oo 2Inn

8.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 8.45. Suppose that (X, B, 1) is a complete measure spaceE| and
f+ X — R is measurable.

1.If g: X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2.If f, + X — R are measurable and f : X — R is a function such that
limy, oo fo = f, 1t - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) # g(x)} which is assumed to be in B and
w(E) =0. Then g = 1gcf + 1pg since f = g on E°. Now 1gef is measurable
so g will be measurable if we show 1gg is measurable. For this consider,

EcU(lgg)~t(A\{0})if0oe A

(1E9)71(A) = { (1Eg)_1(A) if 0 ¢ A (8~17)

Since (1gg)"'(B) C E if 0 ¢ B and u(E) = 0, it follow by completeness
of B that (1gg)~*(B) € B if 0 ¢ B. Therefore Eq. (8.17) shows that 1gg is

2 Recall this means that if N C X is a set such that N C A € M and u(A) = 0,
then N € M as well.
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measurable. 2. Let £ = {z : lim f,(z) # f(x)} by assumption E € B and

p(E) =0. Since g := 1gf = lim, o0 1ge fn, ¢ is measurable. Because f = g
on E¢ and pu(F) =0, f = g a.e. so by part 1. f is also measurable. ]

The above results are in general false if (X, B, u) is not complete. For
example, let X = {0,1,2}, B = {{0}, {1,2}, X, ¢} and p = Jp. Take g(0) =
0, g(1) =1, g(2) =2, then g = 0 a.e. yet g is not measurable.

Lemma 8.46. Suppose that (X, M, ) is a measure space and M is the com-
pletion of M relative to pu and fi is the extension of i to M. Then a function
f:X —Ris (M,B=Bgr) - measurable iff there exists a function g: X — R
that is (M, B) — measurable such E = {x : f(x) # g(z)} € M and ji (E) = 0,
i.e. f(x) = g(x) for i — a.e. x. Moreover for such a pair f and g, f € L*(ji)
iff g € L*(n) and in which case

/deﬂ=/xgdu-

Proof. Suppose first that such a function g exists so that i(E) = 0. Since
g is also (M, B) — measurable, we see from Proposition that f is (M, B)
— measurable. Conversely if f is (M, B) — measurable, by considering fi we
may assume that f > 0. Choose (M, B) — measurable simple function ¢,, > 0
such that ¢, T f as n — oo. Writing

Pn = ZaklAk

with A;, € M, we may choose Bj, € M such that By, C Ay, and ji( A\ By) = 0.

Letting
IRES Z arlp,

we have produced a (M, B) — measurable simple function ¢, > 0 such that
E, :={¢n # ¢n} has zero i — measure. Since o (U, E,) < > [ (E,), there
exists F' € M such that U, E,, C F and u(F) = 0. It now follows that

lp-ppn=1p-pn T g:=1pf asn — oco.

This shows that g = 1pf is (M, B) — measurable and that {f # g} C F has i
— measure zero. Since f =g, i — a.e., [y fdi = [ gdfi so to prove Eq. (8.18)

it suffices to prove
/ gdp = / gdjt. (8.18)
X X

Because i = p on M, Eq. is easily verified for non-negative M —
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem [6.32] it holds for all M — measurable functions
g : X — [0,00]. The rest of the assertions follow in the standard way by
considering (Reg), and (Img), . |
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8.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let —0o < a < b < co and f : [a,b] — R be a
bounded function. A partition of [a, b] is a finite subset 7 C [a, b] containing
{a,b}. To each partition

m={a=ty <t <---<t,=>} (8.19)
of [a,b] let
mesh(7) == max{|t; —t;,_1|:j=1,...,n},

Mj=sup{f(z):t; <z <t;_1}, my=inf{f(z):t; <a<t; 1}

Gr= f(a)l{a} + Z Mjl(t]‘—htj]? 9r = f(a)l{a} + ijl(tjflﬁtj] and
1 1

Spf = ZM tj—1) and s, f = Zm] tj—1).
Notice that
b b
S,rf:/ G.dm and s,rf:/ grdm.

The upper and lower Riemann integrals are defined respectively by
T b a
/ f(z)dx = inf S, f and / f(z)dx = sup sqf.
a 4 < b ™

Definition 8.47. The function f is Riemann integrable zﬁ‘fjf = fbf eR

and which case the Riemann integral f: f is defined to be the common value:

/ab fla)dx = /abf(x)dx = /“bf(;v)dx

The proof of the following Lemma is left to the reader as Exercise [8.18
Lemma 8.48. If 7/ and 7 are two partitions of [a,b] and © C 7’ then

GﬂzGﬂ'/ZfZgﬂ'/ Zgﬂ' and
SwaSw/fZSWIfZSwf-

There exists an increasing sequence of partitions {my}ro, such that mesh(my) |
0 and

kafl/abf andsﬂka/bf as k — oc.
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If we let
G := klim G, and g := klim Gy (8.20)
then by the dominated convergence theorem,

b
/ gdm = lim Gm, = lim sq, f :/ f(x)dx (8.21)

[a.0) ko0 Jla b hoo Ja_

and

)
/ Gdm = lim Gr, = lim S; f :/ f(z)dz. (8.22)

[a,b] k—oo [a,b] k—oo a

Notation 8.49 For x € [a,b], let

H(z) =limsup f(y) := 151%1 sup{f(y) : ly—z| <e, y € [a,b]} and

y—x

h(z) = liminf f(y) := 151%1 inf {f(y):|ly—2x|<e, y€la,b]}.

y—w
Lemma 8.50. The functions H,h : [a,b] — R satisfy:

1. h(z) < f(z) < H(z) for all x € [a,b] and h(x) = H(z) iff f is continuous
at x.
2. If {m}1—, is any increasing sequence of partitions such that mesh(my) | 0

and G and g are defined as in FEq. , then
G(z)=H(z) > f(x) > h(z) =g(x) Vaé¢r:=U Tk (8.23)

(Note 7 is a countable set.)
3. H and h are Borel measurable.

Proof. Let G, := G, | G and gx :== g, T 9.
1. It is clear that h(z) < f(z) < H(z) for all z and H(x) = h(z) iff lim f(y)
y—zx

exists and is equal to f(z). That is H(z) = h(z) iff f is continuous at x.
2. For z ¢ m,
Gr(z) > H(z) > f(x) 2 h(z) = gk () V k

and letting £ — oo in this equation implies
G(x) = H(z) > f(a) = hiz) = g(2) Yz ¢ . (8.24)
Moreover, given € > 0 and z ¢ T,
sup{f(y) : ly —z[ <&, y € [a,0]} = Gi(x)

for all k large enough, since eventually G (z) is the supremum of f(y)
over some interval contained in [z —e, z +¢]. Again letting k — oo implies

sup  f(y) > G(z) and therefore, that
ly—=|<e
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H(z) = limsup £(y) > G(x)

Yy—x
for all z ¢ 7. Combining this equation with Eq. (8.24)) then implies H(z) =
G(z) if © ¢ 7. A similar argument shows that h(z) = g(z) if ¢ 7 and
hence Eq. (8.23) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set ,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 8.51. Let f : [a,b] — R be a bounded function. Then

b b
/ f= Hdm and/ f :/ hdm (8.25)
a [a,b] va [@,b]

and the following statements are equivalent:

1. H(z) = h(zx) for m -a.e. z,
2. the set
E :={z € a,b] : f is discontinuous at x}

is an m — null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measumbltﬂ ie. fisL/B -
measurable where L is the Lebesgue o — algebra and B is the Borel o — algebra
on [a,b]. Moreover if we let m denote the completion of m, then

b
/ Hdm:/ f(:c)dacz/ fdm:/ hdm. (8.26)
la,b] a la,b] [a,b]

Proof. Let {m;};-, be an increasing sequence of partitions of [a,b] as
described in Lemma [8.48] and let G and g be defined as in Lemma Since

m(m) =0, H=G a.e., Eq. (8.25)) is a consequence of Egs. (8.21) and (8.22)).
From Eq. (8.25), f is Riemann integrable iff

/ Hdm = hdm
la,b] [a,b]

and because h < f < H this happens iff h(z) = H(z) for m - a.e. z. Since
E ={x: H(x) # h(z)}, this last condition is equivalent to E being a m — null
set. In light of these results and Eq. , the remaining assertions including
Eq. are now consequences of Lemma m ]

Notation 8.52 In view of this theorem we will often write f: f(z)dz for
b
[, fdm.

3 f need not be Borel measurable.
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8.7 Exercises

Exercise 8.8. Let z be a measure on an algebra A C 2%, then pu(A)+u(B) =
uw(AUB)+ u(ANB) for all A, B € A.

Exercise 8.9 (From problem 12 on p. 27 of Folland.). Let (X, M, )
be a finite measure space and for A, B € M let p(A, B) = u(AAB) where
AAB = (A\B)U(B\ A). It is clear that p (A, B) = p(B, A). Show:

1. p satisfies the triangle inequality:
p(A,C)<p(A,B)+p(B,C) for all A,B,C € M.

2. Define A ~ B iff u(AAB) = 0 and notice that p(A,B) = 0 iff A ~ B.
Show “~ ” is an equivalence relation.

3. Let M/ ~ denote M modulo the equivalence relation, ~, and let
[A] := {Be M : B~ A}. Show that p([4],[B]) := p(4,B) is gives a
well defined metric on M/ ~ .

4. Similarly show fi ([A]) = p(A) is a well defined function on M/ ~ and
show fi: (M/ ~) — R4 is p — continuous.

Exercise 8.10. Suppose that p, : M — [0, 00| are measures on M for n €
N. Also suppose that p,(A) is increasing in n for all A € M. Prove that
p: M — [0, 00] defined by p(A) := lim, . f1n(4) is also a measure.

Exercise 8.11. Now suppose that A is some index set and for each A\ € A,
py : M — [0,00] is a measure on M. Define p : M — [0,00] by u(A) =
> xea Ma(A) for each A € M. Show that u is also a measure.

Exercise 8.12. Let (X, M, 1) be a measure space and {4, },~; C M, show
w({A, a.a.}) <liminf u (A,)

and if p (Upy>nAm) < 0o for some n, then

w({Ay, i.0.}) > limsup p (4,) .

n—oo

Exercise 8.13 (Folland 2.13 on p. 52.). Suppose that {f,} -, is a se-
quence of non-negative measurable functions such that f,, — f pointwise and

lim fn:/f<oo.

Then
/ f= lim fn
E n—oo E

for all measurable sets E € M. The conclusion need not hold if lim,,_, oo f fn=
J f. Hint: “Fatou times two.”
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Exercise 8.14. Give examples of measurable functions {f,} on R such that
fn decreases to 0 uniformly yet f fndm = oo for all n. Also give an example
of a sequence of measurable functions {g,} on [0,1] such that g, — 0 while
J gndm =1 for all n.

Exercise 8.15. Suppose {a,},- . C C is a summable sequence (i.e.
S lan] < o0), then f(0) := 3> a,e™ is a continuous function
for € R and
1 " .
an =5 | fO)e nfdp.

—T

Exercise 8.16. For any function f € L! (m),showz € R — f(foo ot (t) dm (t)
is continuous in z. Also find a finite measure, g, on Bg such that z —
f(_oo 2] f(t)du (t) is not continuous.

Exercise 8.17. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is
wrong by a factor of —1 and the sum is on & = 1 to co. In part (e), s should
be taken to be a. You may also freely use the Taylor series expansion

_ = (2n— 1) = (2n)!
(1-2)"2= = ————2" for |z| < 1.
Lo T

Exercise 8.18. Prove Lemma [R.48]

8.7.1 Laws of Large Numbers Exercises
For the rest of the problems of this section, let (£2,B, P) be a probability
space, {X,,} -, be a sequence if i.i.d. random variables, and S,, := >, _; Xj.
KFE|X,| =E|X;1| < oo let
=KX, — be the mean of X,
if E [\Xnﬂ —E [|X1|2] < 0, let
o :=E [(Xn — ,u)ﬂ =E [XZ] — 112 — be the standard deviation of X,

and if E [|Xn|4} < 00, let

v i=E || X, - ']

Exercise 8.19 (A simple form of the Weak Law of Large Numbers).
Assume E [|X1|2} < 00. Show
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3]

n

2
IE(SH—M> U—, and
n

n
Sh o2
— —p|>e) < —

€

[}

3

for all e > 0 and n € N.

Exercise 8.20 (A simple form of the Strong Law of Large Numbers).
Suppose now that E [|X1|4} < 00. Show for all € > 0 and n € N that

(5 M)] — L (4 3n(n — 1))

n

= % [n_17 +3 (1 — n_l) 04]

and use this along with Chebyshev’s inequality to show
n~ty+3(1-n"1)o?
P( ‘ > 5) < 2 ( ) .

edn?
Conclude from the last estimate and the first Borel Cantelli Lemma [8.22] that
lim,, oo % = [ a.s.

Sn
M
n
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Functional Forms of the m — A Theorem

Notation 9.1 Let 2 be a set and H be a subset of the bounded real valued
functions on H. We say that H is closed under bounded convergence if;
for every sequence, {fn} -, C H, satisfying:

1. there exists M < oo such that |f, (w)| < M for allw € 2 and n € N,
2. f(w):=lim,— oo fr (W) exists for all w € (2,

then f € H. Similarly we say that H is closed under monotone con-
vergence if; for every sequence, {fn}ff:l C H, satisfying:

1. there exists M < oo such that 0 < f,, (w) < M for allw € 2 and n € N,
2. fn(w) is increasing in n for all w € (2,

then f :=lim, .o fn € H.

Clearly if H is closed under bounded convergence then it is also closed
under monotone convergence.

Proposition 9.2. Let {2 be a set. Suppose that H is a vector subspace of
bounded real valued functions from §2 to R which is closed under mono-
tone convergence. Then H is closed under uniform convergence. as well, i.e.
{fn}oo, CH with sup, ey Sup,cq | fn (w)| < 00 and f,, — f, then f € H.

Proof. Let us first assume that {f,} ., C H such that f, converges
uniformly to a bounded function, f : 2 — R. Let ||| := sup,cqo |f (w)].
Let € > 0 be given. By passing to a subsequence if necessary, we may assume
If = falloo < 27D Let

gn 5:fn_6n+M
with &, and M constants to be determined shortly. We then have
Gnt1 — Gn = fut1 — fu +0n — Ony1 > —27 D 45, — 5,04,

Taking 6,, := €2~™, then &, — 0,41 = 27" (1 — 1/2) = £2~(®*+1 in which case
gn+1 — gn > 0 for all n. By choosing M sufficiently large, we will also have
gn > 0 for all n. Since H is a vector space containing the constant functions,
gn € H and since g, T f+ M, it follows that f = f+ M — M € H. So we have
shown that H is closed under uniform convergence. ]
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Theorem 9.3 (Dynkin’s Multiplicative System Theorem). Suppose
that H is a vector subspace of bounded functions from (2 to R which con-
tains the constant functions and is closed under monotone convergence. If M
is multiplicative system (i.e. M is a subset of H which is closed under
pointwise multiplication), then H contains all bounded o (M) — measurable
functions.

Proof. Let
L:={AC:14€H}.

We then have 2 € Lsince 1l =1 € H,if A, B € L with A C Bthen B\A € L
since 1p\ a4 = 1p — 14 € H, and if 4,, € £ with A,, T A, then A € L because
14, e Hand 14, T 14 € H. Therefore £ is A — system.

Let ¢, (z) = 0V [(nz) A 1] (see Figure below) so that ¢, () T 1z>0.
Given f1, fo,..., fx € M and aq,...,a; € R, let

and let
Mi= sup suplfi(w)—ai.
i=1,..,k w
By the Weierstrass approximation Theorem we may find polynomial
functions, p; (x) such that p; — ¢,, uniformly on [—M, M] .Since p; is a poly-
nomial it is easily seen that Hle pro (fi — a;) € H. Moreover,

k
le o (fi —a;) — F, uniformly as | — oo,
i=1

from with it follows that F,, € H for all n. Since,

k
Fnl H Hfi>ay = 10?:1{fi>ai}

i=1

it follows that 1ox (7, € H or equivalently that NE_ {fi>ai} € L.
Therefore £ contains the m — system, P, consisting of finite intersections of
sets of the form, {f > a} with f € M and a € R.

As a consequence of the above paragraphs and the = — A Theorem [7.4] £
contains ¢ (P) = o (M) . In particular it follows that 14 € H for all A € o (M).
Since any positive o (M) — measurable function may be written as a increasing
limit of simple functions, it follows that H contains all non-negative bounded
o (M) — measurable functions. Finally, since any bounded o (M) — measurable
functions may be written as the difference of two such non-negative simple
functions, it follows that H contains all bounded ¢ (M) — measurable functions.
]
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05T i/

Fig. 9.1. Plots of @1, w2 and 3.

Corollary 9.4. Suppose that H is a vector subspace of bounded functions from
2 to R which contains the constant functions and is closed under bounded con-
vergence. If Ml is a subset of H which is closed under pointwise multiplication,
then H contains all bounded o (M) — measurable functions.

Proof. This is of course a direct consequence of Theorem Moreover,
under the assumptions here, the proof of Theorem [9.3]simplifies in that Propo-
sition [9.2]is no longer needed. For fun, let us give another self-contained proof
of this corollary which does not even refer to the m — A theorem.

In this proof, we will assume that H is the smallest subspace of bounded
functions on {2 which contains the constant functions, contains M, and is
closed under bounded convergence. (As usual such a space exists by taking
the intersection of all such spaces.)

For f € H, let H/ := {g € H: gf € H}. The reader will now easily verify
that HY is a linear subspace of H, 1 € Hf, and H' is closed under bounded
convergence. Moreover if f € M, then M C H/ and so by the definition of
H, H=H’, ie. fgeHforal feM and g € H. Having proved this it now
follows for any f € H that M C H/ and therefore fg € H whenever f,g € H,
i.e. H is now an algebra of functions.

We will now show that B:= {A C 2:14 € H} is 0 — algebra. Using the
fact that H is an algebra containing constants, the reader will easily verify that
B is closed under complementation, finite intersections, and contains {2, i.e.
B is an algebra. Using the fact that H is closed under bounded convergence,
it follows that B is closed under increasing unions and hence that B is o —
algebra.

Since H is a vector space, H contains all B — measurable simple functions.
Since every bounded B — measurable function may be written as a bounded
limit of such simple functions, it follows that H contains all bounded B —
measurable functions. The proof is now completed by showing B contains
o (M) as was done in second paragraph of the proof of Theorem [9.3 ]
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Exercise 9.1. Let ({2, B, P) be a probability space and X,Y : 2 — R be a
pair of random variables such that

E[f(X)g (V)] =E[f(X)g(X)]

for every pair of bounded measurable functions, f,g : R — R. Show
P(X =Y) = 1. Hint: Let H denote the bounded Borel measurable func-
tions, h : R? — R such that

E[h(X,Y)] =E[h(X,X)].

Use Corollary 0.4] to show H is the vector space of all bounded Borel measur-
able functions. Then take h (x,y) = 1iz—y}-

Corollary 9.5. Suppose H is a real subspace of bounded functions such that
1 € H and H is closed under bounded convergence. If P C 2 is a multiplica-
tive class such that 14 € H for all A € P, then H contains all bounded o(P)
— measurable functions.

Proof. Let M = {1} U{14: A€ P}. Then M C H is a multiplicative
system and the proof is completed with an application of Theorem [0.3] [

Ezample 9.6. Suppose p and v are two probability measure on ({2, 8) such

that
/Qfdu:/gfdy (9.1)

for all f in a multiplicative subset, M, of bounded measurable functions on
2. Then g = v on o (M). Indeed, apply Theorem with H being the
bounded measurable functions on 2 such that Eq. holds. In particular
it M= {1} U{l4: A€ P} with P being a multiplicative class we learn that
p=vono(M)=0c(P).

Corollary 9.7. The smallest subspace of real valued functions, H, on R which
contains C. (R,R) (the space of continuous functions on R with compact sup-
port) is the collection of bounded Borel measurable function on R.

Proof. By a homework problem, for —oco < a < b < 00, 1(,p may be
written as a bounded limit of continuous functions with compact support
from which it follows that o (C.(R,R)) = Bg. It is also easy to see that 1
is a bounded limit of functions in C.(R,R) and hence 1 € H. The corollary
now follows by an application of The result now follows by an application of
Theorem with M := C.(R,R). ]

For the rest of this chapter, recall for p € [1, 00) that LP(u) = LP(X, B, u) is
the set of measurable functions f : 2 — R such that || f|| ., == ([ |f|” du)l/p <
oo. It is easy to see that [|Af]|, = |A[[|f]|, for all A € R and we will show below
that

I +gll, < Wf1l, + llgll, forall f,g € LP (u),

Le. [|-[|, satisfies the triangle inequality.
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Theorem 9.8 (Density Theorem). Let p € [1,00), (§2,B, 1) be a measure
space and M be an algebra of bounded R — valued measurable functions such
that

1.McC L? (u,R) and o (M) = B.
2. There exists Yy, € M such that ¥, — 1 boundedly.

Then to every function f € LP(u,R), there exist ¢, € M such that
lim, o || f — <pn||Lp(M) =0, i.e. M is dense in LP (u,R).

Proof. Fix k£ € N for the moment and let H denote those bounded B —
measurable functions, f : 2 — R, for which there exists {¢,},-; C M such
that lim, o ||¢kf — <anLp(u) = 0. A routine check shows H is a subspace of
the bounded measurable R — valued functions on 2, 1 € H, M C H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn € Hand f,, — f boundedly. Then, by the dominated convergence theorem,
iy, oo [[Y6 (f = fa)ll Loy = O[| (Take the dominating function to be g =
[2C |9 |]” where C is a constant bounding all of the {|f,|} —, .) We may now
choose ¢;, € M such that [on — Yk full 1o < 1 then

lim sup ||7/1kf* ‘Pn”m(u) <lim sup Hd’k (f - fn)”Lp(M)

n—oo

+lim sup [[Yrfn — nllpogy =0 (9.2)

which implies f € H.

An application of Dynkin’s Multiplicative System Theorem 0.3 now shows
H contains all bounded measurable functions on 2. Let f € L? () be given.
The dominated convergence theorem implies limg_, o Hﬂ’kl{mgk}f — fHLp(#) =
0. (Take the dominating function to be g = [2C'|f|]” where C is a bound on
all of the || .) Using this and what we have just proved, there exists o € M
such that

Enl

[or s f = 0xll 1o <

The same line of reasoning used in Eq. 1} now implies limg_, o || f — <pk||Lp(M) =
0. ]

Ezample 9.9. Let 1 be a measure on (R, Bg) such that u ([—M, M]) < oo for
all M < oo. Then, C. (R,R) (the space of continuous functions on R with
compact support) is dense in LP (u) for all 1 < p < co. To see this, apply
Theorem With M = C. (R,R) and 9y, := 1| -

Theorem 9.10. Suppose p € [1,00), A C B C 2 is an algebra such that
o(A) =B and p is o - finite on A. Let S(A, 1) denote the measurable simple
functions, ¢ : 2 — R such {p =y} € A for ally € R and p({¢ # 0}) < oo.
Then S(A, 1) is dense subspace of LP(u).

! Tt is at this point that the proof would break down if p = oco.
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Proof. Let M := S(A, u). By assumption there exists {2, € A such that
() < ooand 2 T 2 ask — oo. If A € A, then 2, N A € A and
(2N A) < oo so that 1, na € M. Therefore 14 = limy_,00 1,04 is o (M)
— measurable for every A € A. So we have shown that A C ¢ (M) C B and
therefore B = o (A) C o (M) C B, i.e. ¢ (M) = B. The theorem now follows
from Theorem after observing ¢y, := 1, € M and ¢, — 1 boundedly. =

Theorem 9.11 (Separability of L? — Spaces). Suppose, p € [1,00), A C B
is a countable algebra such that o(A) = B and p is o — finite on A. Then LP ()
18 separable and

D= {Zalej ta; € Q+1iQ, Aj € A with p(Aj) < oo}
is a countable dense subset.

Proof. It is left to reader to check D is dense in S(A, u) relative to the
LP? (1) — norm. Once this is done, the proof is then complete since S(A, p) is
a dense subspace of L? (1) by Theorem |

Notation 9.12 Given a collection of bounded functions, M, from a set, §2,
to R, let M; (M) denote the the bounded monotone increasing (decreasing)
limits of functions from M. More explicitly a bounded function, f : 2 — R
is in My respectively M| iff there exists f, € M such that f, T f respectively

fu L S

Theorem 9.13 (Bounded Approximation Theorem). Let (2,5, 11) be a
finite measure space and M be an algebra of bounded R — valued measurable
functions such that:

1.0 (M) = B,
2.1eM, and
3. |f| €M for all f € M.

Then for every bounded o (M) measurable function, g : 2 — R, and every
e > 0, there exists f € M| and h € My such that f < g<h and p(h— f) <e.

Proof. Let us begin with a few simple observations.

1. M is a “lattice” —if f,g € M then
1
fvg=5F+g+if—g)eM
and 1
frg=5(f+g—If—gl) M.
2. If f,ge M or f,g € M then f+ g & M or f+ g € M| respectively.
3. IfA>0and feM; (f € M), then Af € My (A\f e M).
4. If f € My then —f € M and visa versa.
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5. If f, € My and f,, T f where f : 2 — R is a bounded function, then
f € M. Indeed, by assumption there exists f,, ; € M such that f,; T fn
as ¢ — 0o0. By observation (1), g, := max{f;; : 4,j < n} € M. Moreover
it is clear that g, < max{fy:k<n} = f, < f and hence g, T g =
lim;, oo gn < f. Since f;; < g for all 4, j, it follows that f, = lim; . fn; <

g and consequently that f =lim, . f, < g < f. So we have shown that
9n T f € MT'

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M C H and in fact it is also
easy to see that M; and M, are contained in H as well. For example, if
f € My, by definition, there exists f, € M C M, such that f, T f. Since
M, > f, < f<feM;and u(f — fr) — 0 by the dominated convergence
theorem, it follows that f € H. As similar argument shows M| C H. We will
now show H is a vector sub-space of the bounded B = ¢ (M) — measurable
functions.

H is closed under addition. If g; € H for ¢ = 1,2, and € > 0 is given, we
may find f; € M| and h; € M; such that f; < g; < h; and p(h; — fi) < e/2
fori=1,2.Sinceh=hi+hy €My, f:=fi+foeM], f<g1+g2<h,and

p(h—f)=phs— f1) +p(he — f2) <e,

it follows that g1 + go € H.

H is closed under scalar multiplication. If ¢ € H then A\g € H for all
A € R. Indeed suppose that € > 0 is given and f € M| and h € M} such that
f<g<hand p(h—f) <e. Thenfor A >0, M| 5 A\f < Ag < Ah € M; and

w(AR=Af)=Au(h—f) < Ae.

Since € > 0 was arbitrary, if follows that Ag € H for A > 0. Similarly, M| >
—h<—g< —feM;and

p(=f=(=h)=ph-f)<e

which shows —g € H as well.

Because of Theorem to complete this proof, it suffices to show H is
closed under monotone convergence. So suppose that g, € H and g, T g,
where g : 2 — R is a bounded function. Since H is a vector space, it follows
that 0 < 6, := gnt1 — gn € H for all n € N. So if € > 0 is given, we can
find, M| > u,, < 0, < v, € M; such that p (v, —u,) < 27 "¢ for all n. By
replacing u, by u, V0 € M, (by observation 1.), we may further assume that
un > 0. Let

0 N
vi= z:l vy, =1 J\}gnoo z:l vp, € My (using observations 2. and 5.)
n= n=

and for N € N, let
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N
u = Z u, € M (using observation 2).
n=1
Then
9] N
2% = Nliinoozl% = Jim (gvp—g)=9-a
n= n=

and u?Y < g— g1 < v. Moreover,

N 0o N ')
N(U*UN) = ZU(Un —un) + Z p(vn) < 2527n+ Z i (vn)
n=1 n=N+1 n=1 n=N+1
<et+ Y p(vn)
n=N+1
However, since
ST rn) €Y i (Eate2) =3 w(ba) +en ()
n=1 n=1 n=1
=> (g —g1) +ep(£2) < oo,

it follows that for N' € N sufficiently large that 7 \ .| pu (v,) < . Therefore,
for this N, we have p (v — uN) < 2¢ and since € > 0 is arbitrary, if follows
that g — g1 € H. Since g; € H and H is a vector space, we may conclude that
g=(9—g1)+g €M I

Theorem 9.14 (Complex Multiplicative System Theorem). Suppose
H is a complex linear subspace of the bounded complex functions on §2, 1 € H,
H is closed under complex conjugation, and H is closed under bounded conver-
gence. If M C H s multiplicative system which is closed under conjugation,
then H contains all bounded complex valued o(M)-measurable functions.

Proof. Let My = spans(M U {1}) be the complex span of M. As the
reader should verify, My is an algebra, My C H, M is closed under complex
conjugation and o (M) = o (M) . Let

HF .= {f € H: f is real valued} and

ME := {f € M : f is real valued} .
Then HF is a real linear space of bounded real valued functions 1 which is
closed under bounded convergence and M§ C HE. Moreover, M is a multi-

plicative system (as the reader should check) and therefore by Theorem
H® contains all bounded o (Mf) — measurable real valued functions. Since H
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and M are complex linear spaces closed under complex conjugation, for any
f €Hor f € My, the functions Re f = 1 (f + f) and Im f = - (f — f) arein
H or My respectively. Therefore My = M + MG, o (M§) = o (M) = o (M),
and H = H® + H®. Hence if f : 2 — C is a bounded o (M) — measurable
function, then f = Re f +4iIm f € H since Re f and Im f are in H¥. [






10

Multiple and Iterated Integrals

10.1 Tterated Integrals

Notation 10.1 (Iterated Integrals) If (X, M,pu) and (Y,N,v) are two
measure spaces and f : X xY — C is a M @ N — measurable function,
the iterated integrals of f (when they make sense) are:

[ nto) [ avrsen) = | [ / f(w)du(y)} ()

[t [ an@rsea= [ | [ i) ao

Notation 10.2 Suppose that f: X — C and g : Y — C are functions, let
f ® g denote the function on X XY given by

f@g(z,y) = f(z)g(y).

Notice that if f, g are measurable, then f®g is (M ® N, B¢) — measurable.
To prove this let F(x,y) = f(z) and G(z,y) = ¢g(y) so that f® g = F -G will
be measurable provided that F' and G are measurable. Now F' = f o where
m : X XY — X is the projection map. This shows that F' is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

and

10.2 Tonelli’s Theorem and Product Measure

Theorem 10.3. Suppose (X, M, u) and (Y,N,v) are o-finite measure spaces
and f is a nonnegative (M @ N, Br) — measurable function, then for each
yey,

x — f(x,y) is M — Bjg o] measurable, (10.1)

for each z € X,

y — f(z,y) is N — Bjg,oc] measurable, (10.2)
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v /Y F(x,y)du(y) is M — Big ey measurable, (10.3)
y— /X F(@,y)du(z) is N ~ Bio ) measurable, (10.4)

and
[ aut@) [ avs = [ avt) [ duta)sie. (10.5)

Proof. Suppose that E=Ax B€ £ := M x N and f = 1g. Then

f(@,y) =laxp(z,y) =1a(x)1p(y)
and one sees that Egs. (10.1)) and (10.2)) hold. Moreover

/Y f(,y)du(y) = /Y 14(@)1p(0)dv(y) = La(@)v(B),

so that Eq. (10.3]) holds and we have

[ aut) [ avt)e.0) = v(Buta) (10.6)
X Y
Similarly,
/X f(, y)du(z) = p(A)15(y) and
[ avt) [ au@rsta.y) = viBua)
Y X

from which it follows that Eqs. and hold in this case as well.

For the moment let us now further assume that p(X) < oo and v(Y) < oo
and let H be the collection of all bounded (M ® N, Bg) — measurable functions
on X x Y such that Egs. - hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence
theorem (the dominating function always being a constant), one easily shows
that H closed under bounded convergence. Since we have just verified that
1g € H for all E in the m — class, &£, it follows by Corollary that H is
the space of all bounded (M ® N, Br) — measurable functions on X x Y.
Moreover, if f: X xY — [0,00] is a (M ® N, Bg) — measurable function, let
far =M A f sothat fyr T f as M — oo. Then Egs. - hold with
f replaced by fys for all M € N. Repeated use of the monotone convergence
theorem allows us to pass to the limit M — oo in these equations to deduce
the theorem in the case p and v are finite measures.

For the o — finite case, choose X,, € M, Y, € N such that X,, 1 X,
Y, 1Y, u(X,) < oo and v(Y,) < oo for all m,n € N. Then define p,,(A) =
w(XmNA)and v, (B) = v(Y, NB) for all A € M and B € N or equivalently
dpm = 1x, dp and dv, = ly, dv. By what we have just proved Egs. -
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with u replaced by g, and v by v, for all (M @ N, Bz) — measurable
functions, f : X xY — [0, 0o]. The validity of Egs. - then follows
by passing to the limits m — oo and then n — oo making use of the monotone
convergence theorem in the following context. For all u € LT (X, M),

/ud,um:/ ulxmduT/uduasmHoo,
X X X
and for all and v € LT (Y, N),

/vd/;n:/vlynd,uT/vdy as n — 0o.
Y Y Y
]

Corollary 10.4. Suppose (X, M, ) and (Y,N,v) are o — finite measure
spaces. Then there exists a unique measure ™ on M QN such that 71(Ax B) =
w(A)w(B) for all A € M and B € N'. Moreover  is given by

n(E) = /X dpu(x) /Y dv(y)L(z,y) = /Y v (y) /X (@) lg(e,y)  (10.7)

forall E€ M QN and 7 is o — finite.

Proof. Notice that any measure 7 such that 7(A x B) = u(A)v(B) for
all A € M and B € N is necessarily o — finite. Indeed, let X,, € M and
Y,, € N be chosen so that u(X,) < oo, v(Y,) < oo, X, 1 X and Y,, 1Y,
then X, x Y, e M@ N, X, xY, 1 X xY and 7(X,, X Y,,) < oo for all n.
The uniqueness assertion is a consequence of the combination of Exercises [4.5
and Proposition with £ = M x N. For the existence, it suffices to
observe, using the monotone convergence theorem, that 7 defined in Eq.
is a measure on M ®N . Moreover this measure satisfies (A x B) = p(A)v(B)
for all A € M and B € N from Eq. (10.6). n

Notation 10.5 The measure 7 is called the product measure of p and v and
will be denoted by p Q v.

Theorem 10.6 (Tonelli’s Theorem). Suppose (X, M, u) and (Y,N,v) are
o — finite measure spaces and ™ = pu @ v is the product measure on M @ N.
Iffe LN X xY,M®N), then f(-,y) € LT(X,M) for ally €Y, f(x,") €
LY(Y,N) forall x € X,

/ e w)duly) € LHX, M), / f(@, Ydu(x) € L (Y, N)
Y X

and

/Xxyf d”:/xd#(iﬂ)/YdV(y)f(x,y) (10.8)
Z/YdV(y)/Xdu(w)f(w,y)- (10.9)
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Proof. By Theorem [10.3] and Corollary the theorem holds when
f = 1g with E € M ® N. Using the linearity of all of the statements, the
theorem is also true for non-negative simple functions. Then using the mono-

tone convergence theorem repeatedly along with the approximation Theorem
one deduces the theorem for general f € LT(X x Y, M @ N). [

Ezample 10.7. In this example we are going to show, I := [; e~ 2dm (z) =
v2m. To this end we observe, using Tonelli’s theorem, that

where m? = m ® m is “Lebesgue measure” on (RQ, Brz = Br ® BR) . From

the monotone convergence theorem,

where D = {(z,y) : * + y* < R?} . Using the change of variables theorem
described in Section below[T] we find

/ e (1) 200 (2 y) = / e 2rdrdo
Dr (0,R) % (0,2m)

R
= 27r/ e~ 2rdr = 21 (1 — e_R2/2) .
0

From this we learn that

12 = lim 2 (1 . 6—32/2) — o

R—o0

as desired.

10.3 Fubini’s Theorem

The following convention will be in force for the rest of this section.

Convention: If (X, M, i) is a measure space and f : X — C is a measur-
able but non-integrable function, i.e. [ « |fldp = oo, by convention we will de-
fine [ fdu := 0. However if f is a non-negative function (i.e. f: X — [0, oc])
is a non-integrable function we will still write | ¢ fdp = oo.

L Alternatively, you can easily show that the integral I Dr fdm? agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.



10.3 Fubini’s Theorem 165

Theorem 10.8 (Fubini’s Theorem). Suppose (X, M, u) and (Y,N,v) are
o — finite measure spaces, T = pu @ v 1s the product measure on M QN and
f: X xY —>CisaM®N - measurable function. Then the following three
conditions are equivalent:

/ |f|dr < oo, d.e. f € L(m), (10.10)
XxXY
/ (/ If(rc,y)Idu(y)> du(z) < 0o and (10.11)
x \Jy
/ (/ |f(z, )l du(x)) dv(y) < oo. (10.12)
vy \Jx
If any one (and hence all) of these condition hold, then f(z,-) € L*(v) for u-
a.e. r, f(7y) € Ll( ) fOTV a.e. ya fy dU( ) € Ll(:u‘)a fX f(ZL',)d/L(.Z) €

L'(v) and Egs. and are stzll valzd.

Proof. The equivalence of Egs. is a direct consequence
of Tonelli’s Theorem [10.6) _ Now suppose f € Ll(w) is a real valued function
and let

E = {:EGX:/Y|f(x,y)|d1/(y)—oo}. (10.13)

Then by Tonelli’s theorem, = — [ |f (z,y)|dv (y) is measurable and hence
E € M. Moreover Tonelli’s theorem implies

/X{/Y|f($,y)|du(y)} du(sc):/xxy|f|d7r<oo

which implies that p (E) = 0. Let fi be the positive and negative parts of f,
then using the above convention we have

[ tenarw)= [ 10 @ f i
Y Y
~ [ 15 @ ) - I @) v )
= [t @) e @)= [ 10 @ 1 @ ).
(10.14)
Noting that 1ge (z) f+ (x,y) = (1ge ® ly - f+) (x,y) is a positive M @ N —
measurable function, it follows from another application of Tonelli’s theorem

that « — [, f (2,y)dv (y) is M — measurable, being the difference of two
measurable functions. Moreover

[ s@narw|ame < [ ][ 1feniao]|ame <
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which shows [, f(,y)dv(y) € L*(p). Integrating Eq. (10.14) on x and using
Tonelli’s theorem repeatedly implies,

/X [/Yf(a:,y) dv (y)] dp ()

:/Xdu(x)/ydz/ (y) 15 (z) [y (m,y)—/Xdu(x)/YdV(y) Lge (2) f- (2,9)
~ [ [ an@1e @) fi e = [ ) [ dute)1s @1 @)

:/Ydu(y)/xdu(x)]ﬁr(x,y)—/Ydl/(y)/xdﬂ(m)ff(%y)

:/Xxyf+d7r—/xxyf,d7r:/Xxy(er—f,)dw:/Xxyfdw (10.15)

which proves Eq. (10.8)) holds.
Now suppose that f = u + iv is complex valued and again let F be as

in Eq. (10.13). Just as above we still have E € M and p(E) = 0. By our

convention,

/ £ (@,y) dv (y) = / 1 (2) f (2,y) dv (y) = / 1pe (&) [u (2, ) + iv (2, )] dv (3)
Y Y

Y

- [t @undr @)+ [ 16 @) i)
which is measurable in = by what we have just proved. Similarly one shows
[y f(,y)dv(y) € L' (1) and Eq. (10.8) still holds by a computation similar
to that done in Eq. (|10.15]). The assertions pertaining to Eq. may be
proved in the same way. [

The previous theorems have obvious generalizations to products of any

finite number of o — finite measure spaces. For example the following theorem
holds.

Theorem 10.9. Suppose {(X;, M;, )}, are o — finite measure spaces
and X = X1 X --- x X,,. Then there exists a unique measure, m, 0N
(X,M;®-+-®My,) such that

(A X - X Ap) = p1(A1) .. pn(Ay) for all A; € M;.

(This measure and its completion will be denoted by 1 ® -+ S puy.) If f : X —
[0,00] is a M1 ® -+ - @ M,, — measurable function then

[ tar= | duaylom) s [ oo Fane ) (10.16)
X Xo(1) Xo(n)

where o is any permutation of {1,2,...,n}. This equation also holds for any
f € LY (x) and moreover, f € L*(r) iff
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/X dua(l)(‘ra(l))"'/ d:ua(n)(xo(n)) |f(x1aaxn)| < oo
(1)

Xo(n)
for some (and hence all) permutations, o.

This theorem can be proved by the same methods as in the two factor case,
see Exercise Alternatively, one can use the theorems already proved and
induction on n, see Exercise in this regard.

Proposition 10.10. Suppose that {X},_, are random variables on a prob-
ability space (2,B,P) and w, = P o X, ' is the distribution for X}, for
k=12,....,n, and 7 := Po (Xl,...,Xn)f1 is the joint distribution of
(X1,...,Xn). Then the following are equivalent,

1. {Xy},_, are independent,
2. for all bounded measurable functions, f : (R™ Bgn) — (R, Br),

Ef (le cee 7Xn) = f (1’13 cee axn) dlu’l (1'1) ce d;u'n (xn) ) (taken mn any
RTL
(10.17)
and
S T=p1 QU2 Q Un.

Proof. (1 = 2) Suppose that {X},_, are independent and let H de-
note the set of bounded measurable functions, f : (R™, Bgn) — (R, Bg) such
that Eq. holds. Then it is easily checked that H is a vector space
which contains the constant functions and is closed under bounded conver-
gence. Moreover, if f =14, x...x 4, where A; € Bg, we have

Ef(Xl,...,Xn)ZP((Xl,...,Xn)€A1 X'--XAn)

HP(XJ‘ €4A;) = HMJ (4;)

= /”f(x1,...,xn)du1 (1) ... dpn (Tn) .

Therefore, H contains the multiplicative system, M := {14, x...x4, : 4; € Br}
and so by the multiplicative systems theorem, H contains all bounded o (M) =
Br» — measurable functions.

(2 = 3) Let A € Bgn and f =14 in Eq. to conclude that

7(A) =P ((X1,...,Xn) € A) = El4 (X1, ..., X»)

:/n la(zr, .. yxn)dus (1) .o dpy (2n) = (11 @ -+ - @ ) (A) .

(3 = 1) This follows from the identity,

order)
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P((Xl,...,Xn)EAlX--'XAn)ZTF(AlX"-XAn)Zﬁ,uj(Aj)

j=1

n

=[[Px;€4),

j=1
which is valid for all A; € Bg. ]
Ezample 10.11 (No Ties). Suppose that X and Y are independent random
variables on a probability space (£2,8,P). If F(z) := P(X <) is con-
tinuous, then P (X =Y) = 0. To prove this, let p(A4) := P(X € A) and

v(A) =P (Y € A). Because F is continuous, p ({y}) = F (y) — F (y—) = 0,
and hence

P(X=Y)=E [lpxoyy] = / emyd (5@ ) (2,9)

~ [ [an@1mn = [t v )

:/ROdl/(y)zo.

Ezample 10.12. In this example we will show

. M gin g
lim
M — oo 0 X

de =m/2. (10.18)

To see this write % = fooo e ' dt and use Fubini-Tonelli to conclude that

M . M [e%S)
/ Smxd:r = / {/ e T ging dt} dx
0 T 0 0
o M
:/ / e ging de| dt
0 0

oo
1
:/ m(1—te_MtSinM—e_MtcosM)dt
0

>~ 1
—>/ dt:IaSM—>oo,
o 1+1¢2 2

wherein we have used the dominated convergence theorem (for instance, take
g(t) = 3= (L+te~" + 7)) to pass to the limit.

The next example is a refinement of this result.

FEzxample 10.13. We have

oo : 1
/ SJ%@_Azdx =57 arctan A for all A > 0 (10.19)
0
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and forA, M € [0, 00),

—-MA
e
<C

M -
sinz 1
/ ST Az gy 57 + arctan A
0

; (10.20)

where C' = max;>g fj‘—;’z = 2\/%72 =~ 1.2. In particular Eq. (10.18) is valid.

To verify these assertions, first notice that by the fundamental theorem of

calculus,
x x x
|sinz| = ‘/ cosydy‘ < ‘/ |cosy|dy‘ < ‘/ 1dy’ = |z|
0 0 0

SO ‘%’ < 1 for all x # 0. Making use of the identity

oo
/ e dt = 1/x
0
and Fubini’s theorem,

M . M s}
/ %efAmdx:/ dxsinxeiAx/ et
0 X
/ dt/ dx sin x e~ (AT

_/001— (cos M + (A +t)sinM)e M(AH)dt
0 (A+t)+1
:/oo 12 dt—/ cosM+(A+t)SlnM —M(A+D) gy
o (A+t)"+1 0 (A+1)°+1
= %7‘(’ —arctan A — e(M, A) (10.21)
where -
- [
0 (/H—t)
Since
cos M + (A+t)sin M < 1+ (A+1) <
(A+1)°+1 T A+t +1 T

e—MA

(M, A)| < / M@+ gy _ ¢
0

This estimate along with Eq. (10.21)) proves Eq. (10.20]) from which Eq. (10.18))
follows by taking A — oo and Eq. ((10.19) follows (using the dominated con-
vergence theorem again) by letting M — oo.

Note: you may skip the rest of this chapter!
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10.4 Fubini’s Theorem and Completions

Notation 10.14 Given E C X XY and z € X, let
Ei={yeY:(z,y) € E}.
Similarly if y € Y is given let
E,:={zeX:(z,y) € E}.

If f : X XY — C is a function let f, = f(x,:) and fY := f(-,y) so that
fz: Y =Cand f¥: X — C.

Theorem 10.15. Suppose (X, M, ) and (Y,N,v) are complete o - finite
measure spaces. Let (X XY, L, \) be the completion of (X XY, MQN, p@v). If
f is L — measurable and (a) f > 0 or (b) f € L*()\) then f, is N' — measurable
for i a.e. x and fY is M — measurable for v a.e. y and in case (b) f. € L*(v)
and fY € L'(u) for p a.e. x and v a.e. y respectively. Moreover,

(xﬁ/i/fxdu)eLl(u) and (y—>/Xfyd,u>€Ll(V)
/}(nydkz/ydv/)(duf:/)(du/yduf.

Proof. f Fe M®N isa p® v null set (i.e. (u®v)(E) =0), then

and

0= (e )(E) = [ vGE)du) = [ u(E,)dvly)
X X

This shows that

u({z: v(.B) #0}) = 0 and v({y : u(E,) # 0}) =0,

ie. v(yE) =0 for pa.e. x and u(E,) =0 for v a.e. y. If h is £ measurable and
h =0 for A — a.e., then there exists £ € M ® N such that {(z,y) : h(z,y) #
0} C F and (u®v)(E) = 0. Therefore |h(z,y)| < 1g(z,y) and (n@v)(E) = 0.
Since

{hs #0} ={y €Y : h(z,y) #0} C . F and

{hy #0} ={x € X : h(z,y) # 0} C E,
we learn that for p a.e. z and v a.e. y that {h, #0} € M, {h, #0} € N,
v({hs # 0}) = 0 and a.e. and pu({hy # 0}) = 0. This implies [, h(x,y)dv(y)

exists and equals 0 for y a.e. x and similarly that [ h(z,y)dp(x) exists and
equals 0 for v a.e. y. Therefore



10.5 Lebesgue Measure on R? and the Change of Variables Theorem 171

o= [ = () o= ()

For general f € L'()\), we may choose g € L'(M ® N, ® v) such that
f(z,y) = g(z,y) for A\— a.e. (z,y). Define h := f — g. Then h = 0, \— a.e.
Hence by what we have just proved and Theorem f = g + h has the
following properties:

1. For p ae. z,y — f(z,y) = g(z,y) + h(x,y) is in L' (v) and

lﬁﬂnwwwriﬁmmmw@»

2. For v ae. y, v — f(x,y) = g(x,y) + h(x,y) is in L' (u) and

Aﬂawwm=igwwwu>

From these assertions and Theorem it follows that

[ aut@) [ avran) = [ duto) [ avtwgten)

:Lw@ﬁwmmw
:/‘ g(z, y)d(p @ v)(z,y)
XxXY

= / f(:c,y)d)\(sc,y)
XXY

Similarly it is shown that

/YdV(y)/Xdu(w)f(:ay)=/Xxyf(w7y)dk(w,y>-

10.5 Lebesgue Measure on R? and the Change of
Variables Theorem

Notation 10.16 Let

d times d times

—_——~ —tN—
méb=me ---Qm onBri =Br® - @ Br

be the d — fold product of Lebesgue measure m on Br. We will also use m?

to denote its completion and let Lq be the completion of Bga relative to m?.
A subset A € Lg is called a Lebesque measurable set and m® is called d —
dimensional Lebesgue measure, or just Lebesque measure for short.
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Definition 10.17. A function f : R? — R is Lebesgue measurable if
f1(Br) C Ly.

Notation 10.18 I will often be sloppy in the sequel and write m for m® and
dz for dm(z) = dm?(z), i.e.

f(x)dx = / fdm = [ fdm®.
Rd Rd Rd

Hopefully the reader will understand the meaning from the context.

Theorem 10.19. Lebesque measure m® is translation invariant. Moreover m®

is the unique translation invariant measure on Bga such that m?((0,1]%) = 1.
Proof. Let A=J; x --- x J; with J; € Bg and = € R?%. Then
r+A=(x1+J1) X (w2 + J2) X -+ X (g + Jg)
and therefore by translation invariance of m on Br we find that
mé(x+ A) =m(x, + 1) ... m(zqg + Jg) = m(J1) ... m(Jq) = m4(A)

and hence m?(z + A) = m9(A) for all A € Bga since it holds for A in a
multiplicative system which generates Bga. From this fact we see that the
measure m?(x + -) and m?(-) have the same null sets. Using this it is easily
seen that m(z + A) = m(A) for all A € L4. The proof of the second assertion
is Exercise n

Exercise 10.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on By which is invariant under translations
and satisfies, m(By(g)) > 0 for all € > 0. Show m(V') = oo for all non-empty
open subsets V C H.

Theorem 10.20 (Change of Variables Theorem). Let 2 C, RY be an
open set and T : 2 — T(2) Co RY be a C' ~ diﬁeomorphism see Figure
10.1. Then for any Borel measurable function, f :T(£2) — [0, o],

[r@@ et @la= [ . (10.22)
2 T(2)
where T'(z) is the linear transformation on R? defined by T'(z)v := %|0T(x+

tv). More explicitly, viewing vectors in R? as columns, T' (x) may be repre-
sented by the matrix

2 That is T : 2 — T(£2) Co, R? is a continuously differentiable bijection and the
inverse map T : T(§2) — £2 is also continuously differentiable.
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(91T1 (1‘) e 8dT1 (LU)

T (x) = : : , (10.23)
81Td (.’E) PN 8de ((E)

i.e. the i - j — matriz entry of T'(x) is given by T'(x);; = 0;T;(x) where
T(x) = (Ty(x),...,Ty(x))" and 0; = 8/0x;.

18

A

Ti=y=¢

(O /
i >
Y - Spoce
d
5

Y- JdaT'on) dx

K- speacle

Fig. 10.1. The geometric setup of Theorem [10.20

Remark 10.21. Theorem [[0.20 is best remembered as the statement: if we
make the change of variables y = T (z), then dy = |detT” (x) |dx. As usual,
you must also change the limits of integration appropriately, i.e. if = ranges
through (2 then y must range through 7' (£2).

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise Nevertheless, for the sake of completeness let us give a
proof here. Suppose d = 1, a < o < 8 < b such that [a,b] is a compact
subinterval of 2. Then |detT’| = |T"| and

[, e @@ @)= [

[a,

8
L (@) |T' ()] de = / T (2)] da.
If T'(x) > 0 on [a,b], then
15 153
[ @lde= [ 7 @de=1(5) T ()
— (T (o B)) = / Lo () dy

T([a,b])
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while if 77 (x) < 0 on [a,b], then

B B
[ @lde=- [ 1@de =T (@) -1(9)

m (T (o, B)) = / L (o)) (4) dy-

T([a,b]

Combining the previous three equations shows

£ (T (@) [T (2)] d = / f () dy (10.24)

[a,b] T([a,b])

whenever f is of the form f = 17((4,g) With a < a < 8 < b. An application
of Dynkin’s multiplicative system Theorem then implies that Eq.
holds for every bounded measurable function f : T ([a,b]) — R. (Observe that
|T" ()| is continuous and hence bounded for z in the compact interval, [a, b] .)
Recall that 2 = Zﬁf:l (an, by) where ap, b, € RU{£oc} forn=1,2,--- < N
with NV = oo possible. Hence if f : T'(§2) — R 4 is a Borel measurable function
and a, < a < Ok < b, with af | a, and G; T b,, then by what we have
already proved and the monotone convergence theorem

/1(an7bn) . (f ¢} T) . \T’|dm = / (1T((anybn)) . f) oT - |T’|dm
2 2
= lim (1T([ak,ﬁk]) . f) ol - |T/| dm

k—o0

i)

= lim 1T([0¢kvﬁk]) - dm

k—o0

T(£2)

= / Lr((an,ba)) - | dm.
T(0)

Summing this equality on n, then shows Eq. holds.

To carry out the induction step, we now suppose d > 1 and suppose the
theorem is valid with d being replaced by d—1. For notational compactness, let
us write vectors in R? as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, 7" (z), will always be taken to be
given as in Eq. .

Case 1. Suppose T (x) has the form

T(z) = (2, T2 (x),...,Ta(x)) (10.25)

or
T(z)=(T1(2),....Ta1 (), @) (10.26)
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for some i € {1,...,d} . For definiteness we will assume T is as in Eq. (10.25)),
the case of T in Eq. (10.26)) may be handled similarly. For ¢ € R, let 4; :
R?1 — R? be the inclusion map defined by

i (W) == wy = (W, .o Wi, b Wik 1,y -, Wa—1)
§2; be the (possibly empty) open subset of R?~! defined by
2 = {w e R (Wi, .oy Wi—1, b, Wit 1, o, Wa—1) € Q}
and T} : 2, — R be defined by
T (w) = (Ty (wi) ..., Ta (wy)),

see Figure[10.2] Expanding det 7" (w;) along the first row of the matrix 7" (w)

)=(t, T(w))

yt

Fig. 10.2. In this picture d = i = 3 and {2 is an egg-shaped region with an egg-
shaped hole. The picture indicates the geometry associated with the map 7' and
slicing the set {2 along planes where xs = t.

shows
|det T (wy)| = |det T} (w)] .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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/foT|detT’\dm:/19-foT|detT’|dm
R4

= /19 (we) (f o T) (wy) | det T (wy) |dwdt
Rd

:/ /(foT)(wt)|detT’(wt)\dw dt
R Lf2

= / /f (t, Ty (w)) | det T} (w) |dw | dt
® L(2:

T+ (£2:) d—1

|
—
~
—
NP
U
<

wherein the last two equalities we have used Fubini-Tonelli along with the

identity;
— ZT(it () = Z{(t,z) 12 € Ty ($20)}.

teR teR

Case 2. (Eq. (10.22) is true locally.) Suppose that 7' : £2 — R is a general
map as in the statement of the theorem and xg € {2 is an arbitrary point. We
will now show there exists an open neighborhood W C {2 of xg such that

/f0T|detT'\dm:/ fdm
o T(W)

holds for all Borel measurable function, f : T(W) — [0, cc]. Let M; be the 1-¢
minor of 7" (x), i.e. the determinant of 7" (zy) with the first row and i*h —
column removed. Since

D'y (o) - M;,

M@

O;édetT xo =

=1
there must be some i such that M; # 0. Fix an ¢ such that M; # 0 and let,
S(x) = (z;, T2 (z),..., Ty (x)). (10.27)

Observe that |det S” (zo)| = |M;| # 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of xg such that W C, 2 and S (W) C,
R?and S: W — S (W) is a C! - diffeomorphism. Let R : S (W) — T (W) C,
R? to be the C' — diffeomorphism defined by
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R(z):=ToS ' (2) forall z € S(W).
Because
(Th (z),...,Tqg(x)) =T (x) = R(S(z)) = R((xs, T2 (x),..., Ty (x)))
for all x € W, if
(21,22, .,24) = S (z) = (x5, T2 (z),..., Ty (x))

then
R(z) = (Th (S’_l (2)) 225, 2d) - (10.28)

Observe that S is a map of the form in Eq. (10.25)), R is a map of the form
in Eq. (10.26]), T’ () = R’ (S (z)) S’ (z) (by the chain rule) and (by the mul-
tiplicative property of the determinant)

|det T (z)] = |det R' (S (z)) | |det S" (z)| V z € W.

So if f: T(W) — [0,00] is a Borel measurable function, two applications of
the results in Case 1. shows,

/fOT-|detT’|dm:/(f0R-|detR'\)OS~|detS'| dm
W W

:/foR-|detR’\dm: / fdm

S(W) R(S(W))

= / fdm
T(W)

and Case 2. is proved.
Case 3. (General Case.) Let f : £2 — [0,00] be a general non-negative
Borel measurable function and let

K, :={z e 2 :dist(z,2°) > 1/n and |z| < n}.

Then each K, is a compact subset of {2 and K,, T {2 as n — oo. Using the
compactness of K,, and case 2, for each n € N, there is a finite open cover
W, of K, such that W C {2 and Eq. holds with (2 replaced by W for
each W € W,,. Let {W;}:2, be an enumeration of U2, W, and set Wy, =W,
and W; := W; \ (W, U---UW;_4) for all 4 > 2. Then 2 = >.5°, W; and by
repeated use of case 2.,
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/fOT|detT’|dm Z/1~ ) - |det T"|dm

i= 19
= / (W) T} - |det T'|dm

n

W
i/ ) S dm = Z/IT(~i)~fdm
=lrw,)

=lr(2)

= / fdm.
T(£2)

Remark 10.22. When d = 1, one often learns the change of variables formula
as )
[ re@rwa= [ gy (10.29)
T(a)
where f : [a,b] — R is a continuous function and 7" is C! — function defined
in a neighborhood of [a,b]. If T/ > 0 on (a,b) then T ((a,b)) = (T (a),T (b))
and Eq. (10.29) is implies Eq. (10.22)) with £ = (a,b). On the other hand if
T" <0 on (a,b) then T ((a,b)) = (T (b),T (a)) and Eq. (10.29) is equivalent
to

Fa@ @i == Crwa=-[ - swa

(a;b) T(b)

which is again implies Eq. (10.22)). On the other hand Eq. (10.29) is more
general than Eq. (10.22)) since it does not require 7' to be injective. The
standard proof of Eq. (10.29) is as follows. For z € T ([a, b]) , let

F(z):= / f(y)dy.

T(a)

Then by the chain rule and the fundamental theorem of calculus,

b
/f DT (& dx—/ T (x)dx:/ %[F(T(m))]dw
) T(b) ‘
=F (T (x = dy.
(T @) /m) 7 ) dy

An application of Dynkin’s multiplicative systems theorem now shows that
Eq. holds for all bounded measurable functions f on (a,b). Then
by the usual truncation argument, it also holds for all positive measurable
functions on (a,b) .
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Ezample 10.23. Continuing the setup in Theorem if A € B, then

(T (A) = [t @y = [ tan (o) e T @) de

- / La (z)|det T" ()| dz
Rd

wherein the second equality we have made the change of variables, y = T () .
Hence we have shown

d(moT)=|detT" (-)|dm.

In particular if T € GL(d, R) = GL(R?) — the space of dxd invertible matrices,
then mo T = |det T| m, i.e.

m (T (A)) = |det T|m (A) for allA € Bga. (10.30)

This equation also shows that m oT and m have the same null sets and hence
the equality in Eq. ((10.30)) is valid for any A € Ly.

Exercise 10.2. Show that f € L' (T (£2),m?) iff

/|foT||detT’|dm<oo
2

and if f € L' (T (£2),m?), then Eq. holds.

Example 10.24 (Polar Coordinates). Suppose T : (0,00) x (0,27) — R? is
defined by
x=T(r,0) = (rcosf,rsinf),

i.e. we are making the change of variable,

x1 =rcosf and 2o = rsinf for 0 <r < oo and 0 < 6 < 27.

T'(r,0) = (cos0 rsin0>

In this case

sinf rcosf

and therefore
dx = |det T (r,0)| drdf = rdrde.

Observing that
R?\ T ((0,00) x (0,27)) = £ := {(z,0) : © > 0}

has m?

that

— measure zero, it follows from the change of variables Theorem |10.20

2m e8]
dx = dé drr- 6,sin 6 :
. f(z)dx /0 /0 rr- f(r(cosf,sing)) (10.31)

for any Borel measurable function f : R? — [0, c].
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Ezample 10.25 (Holomorphic Change of Variables). Suppose that f : 2 C,
C = R?— C is an injective holomorphic function such that f’(z) # 0 for all
z € 2. We may express f as

fletiy) =U(z,y) +iV (2,y)
for all z =z + iy € (2. Hence if we make the change of variables,

w=u+iv=f(z+iy) =U(z,y)+iV (z,9)

U, Uy
det |:Vx Vy]

Recalling that U and V satisfy the Cauchy Riemann equations, U, = V, and
Uy, = =V, with ' = U, + iV, we learn

then
dudv =

dedy = |U,Vy — U, V| dady.

Uwa - vax = Ux2 + V$2 = |f/|2-

Therefore
dudv = | (z + iy)|* dady.

Ezample 10.26. In this example we will evaluate the integral

I:= //Q (m4 — y4) dxdy

Q:{(r,y):1<x2fy2<2, ()<9:y<1},
see Figure We are going to do this by making the change of variables,

where

N \_

2\\)\1 | /ff

N

Fig. 10.3. The region (2 consists of the two curved rectangular regions shown.
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(u,v) =T (z,y) = (2* =y, 2y) ,

in which case
2 —2
dudv = ’det [ ; xy] ‘ dedy = 2 (2% + y?) dedy
Notice that
(@ =1") = (=) (2 +4) = u &+ 97) = qudud.

The function T is not injective on {2 but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
2=-DUD and T (D) = (1,2) x (0,1). The change of variables theorem
then implies

1 1u?
Iy ::// (m4fy4)dxdy:f// ualudv:fu—ﬁlz§
+D 2 JJa2)x0,1) 22 4

and therefore I = I, +1_=2-(3/4) = 3/2.

Exercise 10.3 (Spherical Coordinates). Let T : (0, 00) x (0, 7) x (0, 27) —
R3 be defined by

T (r,¢,0) = (rsinpcosd, rsinesin b, r cos )

= r (sin p cos 0, sin @ sin 0, cos ¢) ,

see Figure [10.4] By making the change of variables z = T (r, ¢, ) , show

Fig. 10.4. The relation of x to (r, ¢, ) in spherical coordinates.
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T 27 o]
_ 2 q .
. f(x)dx—/o dcp/o dH/O dr resing - f(T (r,¢,0))

for any Borel measurable function, f : R® — [0, 00].

Lemma 10.27. Let a > 0 and

Ii(a) :== /e‘“lx‘zdm(x).
R4
Then Iy(a) = (7/a)??.
Proof. By Tonelli’s theorem and induction,
I4(a) :/ efaw‘?e*aﬁmd_l(dy) dt
R4-1xR
= Iy 1(a)i(a) = Ia). (10.32)

So it suffices to compute:

Ir(a) = /e‘“'z‘Qdm(x) = / e_“(”’%""r%)dxldxg.

R? B2\ {0}

Using polar coordinates, see Eq. (10.31)), we find,

o 27 R oo 5
Ir(a) :/ dr r/ df e™" = 277/ re” " dr
0 0 0
M

—ar M

. a2 . e 2m

=27 lim re " dr =27 lim = — =n7/a.
M—oo [ M—oo —2a 0

This shows that Is(a) = m/a and the result now follows from Eq. (10.32). m

10.6 The Polar Decomposition of Lebesgue Measure

Let
St = fr e RY: |z = Z:c? =1}

be the unit sphere in R? equipped with its Borel o — algebra, Bga—: and
@ : R4\ {0} — (0,00) x §%1 be defined by ®(z) := (|z|,|z| " z). The inverse
map, 71 : (0,00) x S9! — R4\ {0}, is given by &~ 1(r,w) = rw. Since
and &~ ! are continuous, they are both Borel measurable. For E € Bga—: and
a >0, let

E,:={rw:r€(0,a and w € E} = & ((0,a] x E) € Bga.
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Definition 10.28. For E € Bga-1, let o(E) := d - m(Ey). We call o the
surface measure on S,

It is easy to check that o is a measure. Indeed if F € Bga-1, then
E; = &71((0,1] x E) € Bga so that m(E;) is well defined. Moreover if
E=%7" E;, then E; =% 2, (E;), and

o(B) = d-m(E) = Y m((E),) = Y o(E).

The intuition behind this definition is as follows. If £ C S9! is a set and
€ > 0 is a small number, then the volume of

(I,1+¢]-E={rw:re(l,14+¢] and w € E}

should be approximately given by m ((1,1+¢] - E) = o(E)e, see Figure [10.5]
below. On the other hand

Fig. 10.5. Motivating the definition of surface measure for a sphere.

m((1,1+¢€lE) =m (E11: \ F1) = {(1 +e)d - 1} m(Ey).
Therefore we expect the area of E should be given by

o(E) = tig L0 =1 m(EY)
€l0 €

The following theorem is motivated by Example and Exercise [10.3
Theorem 10.29 (Polar Coordinates). If f : R? — [0,00] is a (Bga, B)-

measurable function then

/ F(@)dm(z) = / Frw)r®=L drdo(w). (10.33)
Rd

(0,00) x §4—1
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In particular if f: Ry — Ry is measurable then

/f(|o:|)dx = /00 f(rdv(r) (10.34)
R 0

where V(r) =m (B(0,r)) = r*m (B(0,1)) = d~to (5971 rd.
Proof. By Exercise [8.6]
/fdm - / (fodY)od dm = / (fod1) d(@.m) (10.35)
R4 R4\ {0} (0,00) x S4=1

and therefore to prove Eq. (10.33) we must work out the measure @,m on
B(O,oo) ® Bga-1 defined by

&.m(A) :=m (@71(/1)) vV Ae B(O,oo) ® Bga-1. (10.36)
If A= (a,b] x E with 0 <a <band E € Bga-1, then
& HA) ={rw:rc(a,b] and w € B} =bE; \ aF;

wherein we have used E, = aF; in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(P.m) ((a,b] x E) =m (bEy \ aF1) = m(bE1) — m(aEy)
b
= bim(Ey) — a'm(Ey) =d - m(El)/ rd=ldr.  (10.37)

a

Letting dp(r) = r¢~dr, i.c.
p(J) = / rldr ¥ J € Bo,00), (10.38)
J

Eq. may be written as
(@.m) ((a,6] x E) = p((a,b]) - 0(E) = (p@ o) ((a,b] x B).  (10.39)

Since
E={(a,b]x E:0<a<band F € Bga-1},

is a 7 class (in fact it is an elementary class) such that (&) = B(o,oc) ® Bga-1,
it follows from the m — A Theorem and Eq. (10.39) that &,m = p ® 0. Using

this result in Eq. (10.35)) gives

fdm = / (fod™) d(p®o)

Rd (0,00) x S4—1

which combined with Tonelli’s Theorem proves Eq. (10.35)). ]
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Corollary 10.30. The surface area o(S9~1) of the unit sphere S¥~1 C RY is

27Td/2
§4=1y = 10.40
where I' is the gamma function given by
I'(z) ::/ u” e du (10.41)
0

Moreover, I'(1/2) = /m, I'(1) =1 and I'(x + 1) = zI'(z) for x > 0.

Proof. Using Theorem [10.29| we find
I,(1) = / dr ri-le="" / do = O'(Sd_l)/ ri=le=""dp.
0 0
Sd—l

We simplify this last integral by making the change of variables u = r2 so

that r = u/? and dr = u=1/2du. The result is

o0 2 o0 d—1 ].
/ pdle™m dr:/ uT e v a2y
0 0 2

= 1/ wile=vqu = Lpaya). (10.42)
2/, 2

Combing the the last two equations with Lemma which states that
I4(1) = 72 we conclude that

72 = 1,(1) = %a(sdfl)r(d/z)
which proves Eq. . Exampleimplies I'(1) = 1 and from Eq. ,
I1/2) = 2/000 e dr = /00 e dr
=Ii(1) = V.

The relation, I'(x+1) = xI'(z) is the consequence of the following integration
by parts argument:

I'(z+1) z/ e Uyt du :/ u® (—d e‘“) du
0 U 0 du

zx/ u" "t e du = ().

0
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10.7 More Spherical Coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals
on spheres. As usual when n = 2 define spherical coordinates (r,0) € (0, 00) X

[0, 27) so that
x1\ [rcosf\
($2> N <Tsin9> =Ta(0,7).

For n = 3 we let x3 = r cos ; and then

<x1) = T5(0,rsin 1),

€2

as can be seen from Figure [10.6] so that

Fig. 10.6. Setting up polar coordinates in two and three dimensions.

T . rsin ¢ cos
o _ <T2(9,7‘bln<)01)> — ’I"Sin<,01 Sine = T3(9,(p177"7).
. T COS (1

3 7 COS (1

We continue to work inductively this way to define

Z1
_ Tn(978015"'78077,72776511’13077,717) _
. - ( T COS QP _1 _TnJrl(eaSOlv‘"79077,72;@77,7177#)'
n
Tn+41

So for example,

21 = 7sin g sin 1 cos
o = 7 sin g sin ¢ sin 6
T3 = 7 sin @y cos Y

T4 = T COS (P2
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and more generally,

T1 = Trsing,_2...sin p;sin @ cos
ZTo =7SiNY,_o...sin @y sinp; sin

T3 =TSN Y,_2...8N @y COS 1

Tp—2 = TSin Pn—2 sin Pn—3 COSPn—4q
Tp—1 = TSN ;2 COSYnp_3

Ty, = T COS Pr—2. (10.43)

By the change of variables formula,

f(x)dm(z)

Rn

° A (0,01, ... on_2,T)
= dr/ dpi ...dp,_od0 TR ’
/0 0<p; <m,0<0<271 7 o2 Xf<Tn<97 P15 Pn—2, ’I“))

(10.44)
where
An(0,01, .. on_o,r) = |det T (0,01, .., 0n_2,7)]|.
Proposition 10.31. The Jacobian, A, is given by
An(0,01,.. . pn_o,r)=1""1 sin" 2 g, _o...sin% @, sin 1. (10.45)

If f is a function on rS™ ' — the sphere of radius r centered at 0 inside of
R", then

/T oo, J@do(@) =1 /S o)

f(Tn(97 @1y Pn—2, ’r))An(ea @1y Pn—2, ’I")dgﬁl cee dgpn—2d9
(10.46)

/0S¢iéﬂ70§9§2ﬂ

Proof. We are going to compute 4,, inductively. Letting p := rsin,_;
and writing 88% for 38%(0, D1y -5 Pn—2,p) we have

An+1(97¢17 ey Pn—2,Pn—1, ’I")

T, OT T, 9T, ) Ty o
H 5 Go Doy BT COS Pno1 B smgon_l”

0O 0 ... O —rsinp,_1 COS Y1

=r (c052 On_1 + sin? On-1) An(,0,01,. .., Pn2,p)
=7rA,(0,01,...,0n_2,78INQ,_1),

i.e.
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Api1(0,01, s on—2,0n—1,7) = 1A,(0,01, ..., 0n_2,rsinp,_1). (10.47)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with Ay (0, r) = r already derived in Example [10.24] Eq. (10.47)
implies,

As(0,01,7) =rAy(f,rsing;) = 2 sin ¢y
Ay(0, 01, 02,7) =1A3(0, p1,75in00) = 13 sin? g sin @1

n—2 c 2 :
Pp—2...SIN" P2 SIN Y1

which proves Eq. (10.45)). Equation (|10.46|) now follows from Egs. (10.33),
(10.44)) and (10.45]). ]

As a simple application, Eq. (10.46)) implies

An(0,01, ..., ono,7) = " Lgin

o(S" ) = / sin" 2, _o...sin% @osin p1dpy . .. dp,_odf
0<p; <m,0<0<27
n—2
=27 H e = 0(S" ) Y2 (10.48)
k=1

where v 1= fow sin® wdp. If k> 1, we have by integration by parts that,

Vi = / sin® pdp = —/ sin" "t dcosp = 20,1 + (k — 1)/ sin® =2 ¢ cos? @dyp
0 0 0
=201+ (k— 1)/ sin* =2 ¢ (1 —sin® @) dp = 2651 + (k — 1) [yh—2 — Wl
0

and hence 7y, satisfies 79 = 7, 71 = 2 and the recursion relation

k—1
M = Yr—2 for k > 2.
Hence we may conclude
_ _ 9 1 _22 31 _422 531
70_71-371_772_27'[';73—3774_4277775_53776_64277

and more generally by induction that

@k L@k
Y2k = TG and Yop41 = QW
Indeed,
2k +2 2%k+2, (@M [2(k+ D)

T T o R T ok 3 2k - ) T2k + 1) + D!
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and
2k +1 2k+1 (2k—1)N (2k+ 1)
f— p— 7r

T2 T o 2R T o 2" (2! 2k + 2)II"
The recursion relation in Eq. (10.48) may be written as

o(S™") =0 (5" Y1 (10.49)

which combined with ¢ (S') = 27 implies

o (Sl) =2,
0(S%) =2 -y =272,
1 2272
3 f— . . f . . o—_ e —
o(8°)=2m-2 -y, =2mw-2 5T = o
22 2 22 2 2 23 2
0(54)2 u CY3 = Tt 22
21! 211 3 3!

1 231 2343

5 —9r.2.-q.292.220=2"_
() =2m-2-gm- 32 qom= T

31 42 2ig

'3°742" 537 5N

2 (27)" (2m)"
2n 2n—+1
(5°") Gn D and o(S ) @) (10.50)
which is verified inductively using Eq. (10.49)). Indeed,
202m)"  (2n—-D!I  @2m)"H
2n4+1y __ 2n _ —
o) = oS e = B T @ @a)n
and
n+1 " 2(2 n+1
(n+1)y _ 2n+2y _ 2n+1 _ (2m) (2n)l! _ (2m)
() = o (57 = o(ST 20 (2n)!! 2(2n—|—1)!! (2n + 1)
Using

2l =2n(2(n—1))...(2-1) =2"n!

we may write o(S?" 1) = Q’TnL,H which shows that Egs. (]10.33[) and (]10.50| are
in agreement. We may also write the formula in Eq. (10.50) as

. % for n even
U(S ) = (27) n~2}»1
=TT for n odd.




190 10 Multiple and Iterated Integrals
10.8 Exercises

Exercise 10.4. Prove Theorem Suggestion, to get started define

7 (A) :—/dep(:cl).../X dp () la(z1,. .., 20)

n

and then show Eq. (10.16) holds. Use the case of two factors as the model of
your proof.

Exercise 10.5. Let (X, M, ;) for j = 1,2,3 be o — finite measure spaces.
Let F': (X7 x X2) x X3 — X1 X X5 x X3 be defined by

F((CE1,(E2),(E3) = ($17x27m3)'

1. Show F is (M7 ® M) ® M3, M; ® My ® M3) — measurable and F~1
is (M1 @ Ma @ M3, (M1 ® M3) ® M3) — measurable. That is

F: ((Xl X XQ)XXS, (M1 ® M2)®M3) — (Xl X Xo ><X3,M1®M2®M3)

is a “measure theoretic isomorphism.”

2. Let m:= F, [(u1 ® p2) ® p3], ie. m(A) = [(u1 ® p2) @ 3] (F~1(A)) for all
A e M ® Mo ® Ms. Then 7 is the unique measure on M1 ® My @ M3
such that

m(Ar x Az x Az) = p1(Ar)p2(A2)ps(As)
for all A; € M;. We will write 7 := p1 ® 2 ® us.

3. Let f: X3 X Xo x X3 — [0,00] be a (M1 ® Mz ® Ms, Bg) — measurable
function. Verify the identity,

/ fdm = du3($3)/ dpg(z2) | dpa(wy) f(zy, 22, 73),
X1><X2><X3 X3 X2 Xl

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six
possible orderings of the iterated integrals.

Exercise 10.6. Prove the second assertion of Theorem [10.19] That is show
m is the unique translation invariant measure on Bga such that m?((0, 1]¢) =
1. Hint: Look at the proof of Theorem [5.22

Exercise 10.7. (Part of Folland Problem 2.46 on p. 69.) Let X = [0,1],
M = Byg,1) be the Borel ¢ — field on X, m be Lebesgue measure on [0, 1] and
v be counting measure, v(A) = #(A). Finally let D = {(z,z) € X?: 2 € X}
be the diagonal in X2. Show

[ [ 1ot amar # [ [ [ toteamio)] avio

by explicitly computing both sides of this equation.
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Exercise 10.8. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 10.9. Folland Problem 2.50 on p. 69 pertaining to area under a
curve. (Note the M x Bg should be M ® Bg in this problem.)

Exercise 10.10. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 10.11. Folland Problem 2.56 on p. 77. Let f € L'((0,a),dm),
g(x) = [" IO gt for x € (0,a), show g € L*((0,a),dm) and

/Oag(x)dx = /Oaf(t)dt.

Exercise 10.12. Show [ |22 | dm(z) = co. So #22 ¢ L'([0,00),m) and
Jo° 222 dm(x) is not defined as a Lebesgue integral.

x

Exercise 10.13. Folland Problem 2.57 on p. 77.
Exercise 10.14. Folland Problem 2.58 on p. 77.

Exercise 10.15. Folland Problem 2.60 on p. 77. Properties of the I' — func-
tion.

Exercise 10.16. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 10.17. Folland Problem 2.62 on p. 80. Rotation invariance of sur-
face measure on S™1.

Exercise 10.18. Folland Problem 2.64 on p. 80. On the integrability of
|z|* |log |z||” for & near 0 and z near oo in R™.

Exercise 10.19. Show, using Problem [10.17] that
1
/ wiw;do (w) = =6;;0 (S471).
gd—1 d

Hint: show [g,_, w;do (w) is independent of ¢ and therefore

d
1
2 2
/Sdilwida (w) = EZ/Sd,leda (w).
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LP — spaces

Let (£2, B, i) be a measure space and for 0 < p < oo and a measurable function

f:02—Clet
1/p
151 i= ([ 171 (1)
0
and when p = oo, let

[flloc = inf {a > 0: u(|f] > a) = 0} (11.2)
For 0 < p < o0, let
LP(2,B,p) ={f: 2 — C: f is measurable and ||f]|, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g|, =0iff f ~gandif f~yg
then || f]|, = |lgllp- In general we will (by abuse of notation) use f to denote
both the function f and the equivalence class containing f.

Remark 11.1. Suppose that || f|lec < M, then for all a > M, u(|f| > a) =0
and therefore p(|f] > M) = lim, oo p(|f| > M +1/n) =0, ie. [f(w)] < M
for u - a.e. w. Conversely, if |f| < M a.e. and a > M then pu(|f| > a) = 0 and
hence || f]|lcoc < M. This leads to the identity:

[flloo =inf{a>0:|f(w)| <afor u—ae w}.

11.1 Modes of Convergence

Let {fn},—, U{f} be a collection of complex valued measurable functions on
2. We have the following notions of convergence and Cauchy sequences.

Definition 11.2. 1. f,, — f a.e. if there is a set E € B such that u(E) =0
and limy, o0 Lge fr, = 1ge f.
2. fn — [ in u — measure if lim, oo pu(|fn— f| >¢) =0 for alle > 0. We
will abbreviate this by saying f, — f in L° or by fn 2 f.
3. fu— finLP iff f € LP and f,, € LP for alln, and lim,,_, || fr, — f||p =0.

Definition 11.3. 1. {f,} is a.e. Cauchy if there is a set E € B such that
w(E) =0 and{1lg. f,} is a pointwise Cauchy sequences.
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2.{fn} is Cauchy in p — measure (or L° — Cauchy) if limy, n—oo (| fr —
fm| >¢€) =0 for alle > 0.
8. {fn} is Cauchy in LP if limy, oo || fr — fill, = 0.

When p is a probability measure, we describe, f, £ f as f, converging
to f in probability. If a sequence {f,} - is LP — convergent, then it is L?
— Cauchy. For example, when p € [1,00] and f, — f in LP, we have

[ = Fnlly < 1 = Fll + 1 = Fnll, — 0 85 17,7 — co.
The case where p = 0 will be handled in Theorem below.

Lemma 11.4 (L? — convergence implies convergence in probability).
Let p € [1,00). If {fn} C LP is LP — convergent (Cauchy) then {fn} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (8.3)),

1 1
pf1 22 = wllfP = o) < 5 [ 1P du= S0

and therefore if {f,} is L? — Cauchy, then

| —

p(fn = fnl > ) < =|lfa = fmllh) — 0 as m,n — oo

=

£

showing {f,,} is L’ — Cauchy. A similar argument holds for the L? — convergent
case. ]

0 1 } 1 1
0 125 25 375 5

X

. . . m
Here is a sequence of functions where f,, — 0 a.e., f, - 0in L', f, =5 0.
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y 15 y
15
125
125
e
L —_
075 0.75
05 0s
025 025
0 t * or !
0 125 25 3.75 0 125 25 375 5
x
y 15 y 15
125 125
1 e 1 E—
075 0.75
05 05
025 025
ot + t o+
0 125 25 375 0 125 25 375 5

Above is a sequence of functions where f, — 0 a.e., yet f, - 0 in L'. or in

measure.

1257

Here is a sequence of functions where f, — 0 a.e., f,, — 0 but f,

m

- 0in L1,
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Above is a sequence of functions where f,, — 0 in L', f, - 0 a.e., and
fn 250

Theorem 11.5 (Egoroff’s Theorem: almost sure convergence implies
convergence in probability).

Suppose u(2) =1 and f, — [ a.s. Then for all € > 0 there erists E =
E. € B such that u(FE) < ¢ and f, — f uniformly on E°. In particular
fn 5 Fasn — .

Proof. Let f,, — f a.e. Then for all € > 0,
0= u({|fn — f1 > £ 0. n})

= Jim | U f—fl>e) (11.3)

n>N

> 111{[11jupu({|fzv — fl>e€})

from which it follows that f, -~ f as n — co. To get the uniform convergence
off a small exceptional set, the equality in Eq. (11.3) allows us to choose an
increasing sequence { Ny}, , such that, if

Ey = U {|fn—f|>;}, then u(Ey) < 27",

n>Ny

The set, E := U2 Ej, then satisfies the estimate, u(E) < >, e27% = e.
Moreover, for w ¢ E, we have |f, (w) — f (w)| < f for all n > N, and all k.
That is f,, — f uniformly on E°. ]

oo
Lemma 11.6. Suppose a,, € C and |apy1 —an| < e, and > €, < oco. Then
=1
0 n
lim a, =a € C exists and |a — ap| < §, := > &
n—oo =



11.1 Modes of Convergence 197

Proof. Let m > n then

m—1 m—1 00
lam —an] = > (ar+1 —ag)| < > |aks1 —ag] < D e i=6,.  (11.4)
k=n k=n k=n

S0 |am — an| < dmin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo
in (11.4) to find |a — ay,| < 6,. [

Theorem 11.7. Let (2,8, 1) be a measure space and {f,},-, be a sequence
of measurable functions on (2.

1. If f and g are measurable functions and f, % f and fn 2 g then f =g
a.e.

2. If fo 25 f then {fu}oy is Cauchy in measure.

S Af {fn}or, is Cauchy in measure, there exists a measurable function, f,
and a subsequence g; = fn, of {fn} such that lim; . g; := f exists a.e.

If{fn}o—, is Cauchy in measure and f is as in item 3. then f, L7

. Let us now further assume that 1 (§2) < oo. In this case, a sequence of
functions, {f,},—, converges to f in probability iff every subsequence,
{fL3o, of {fa}rey has a further subsequence, {f//},>_,, which is almost
surely convergent to f.

Proof.

Wy B

1. Suppose that f and g are measurable functions such that f, - ¢ and
fn s fasn — oo and £ > 0 is given. Since

{|f_g|>5}:{|f_fn+fn_g‘>€}C{‘f_fn‘+|fn_g|>€}
C{lf_fnl>5/2}U{|g_fn|>5/2}7

w(lf =gl >¢e) <p(lf = fal >€/2) + p(lg — ful >€/2) — 0asn — oo.

Hence

s =g >0 = (U {ir —al> o) < S u(if-al > 5 ) <o
n=1

ie. f=gae.

2. Suppose f, & f, e > 0 and m,n € N and w € 2 are such that
|fn (@) = fm (w)| > €. Then

€ <|fu (W) = fin (W)| < [fn (W) = (W) + | (W) = fm ()]

from which it follows that either | f, (w) — f (w)| > /2 or |f (W) — fm (W)| >
/2. Therefore we have shown,

{fn = fml >} C{lfn = 1 > /2L U{|fm — fI > €/2}

and hence

([ fn = fml > &) <p(fn = fI>/2) 40 (| fm = f1 > €/2) = 0 as m,n — oo
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o0
3. Suppose {fn} is LY (1) — Cauchy and let €, > 0 such that &, <

n=1

(en = 27" would do) and set 6, = ) ex. Choose g; = f,,, where {n;} is
k=n

a subsequence of N such that
n({lgj+1 — g1 > €5}) <ej.
Let Fiy = Uj>n {lgj+1 — 9;1 > €;} and
E =031 Fn = {lgj+1 —gi| > g5 10}
and observe that p (Fiv) < 0y < 0o. Since
(oo} oo
> n{lgir1 — g5l > 5} <D e < oo,
j=1 j=1
it follows from the first Borel-Cantelli lemma that
0=p(E)= lim pu(Fy).
N—o0
For w ¢ E, |gj+1 (w) — gj (w)] < ¢; for a.a. j and so by Lemma
f(w) = lim g;(w) exists. For w € E we may define f (w) =0.
J—00
4. Next we will show gy & f as N — oo where f and gy are as above. If
w € Fy = Nj=n {lgj+1 —g; <&},

then
|9j+1 (w) — g5 (w)| < ¢gj for all j > N.

Another application of Lemma shows |f(w) — gj(w)| < 4; for all
7> N, ie.
Fy cnisny{w e 2:|f(w) —gj(w)] < 6;}.

Taking complements of this equation shows
{If —gn|>0n} CUjanAlf = g;] > 0;} C F.
and therefore,

w(lf —gn| > 0n) < u(Fn) <oy —0as N — o

and in particular, gy LN fas N — co.
With this in hand, it is straightforward to show f, L f. Indeed, since

Ufa=fl>et={lf—gi+g; — fal > ¢}
CH{lf =gl +1g9; — ful > ¢}
CAlf —gil >¢e/2yU{lg; — ful > /2},
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we have

p{lfn = fI > e}) < p({lf — g5l > €/2}) + ullg; — ful > €/2).

Therefore, letting j — oo in this inequality gives,

u({|fn = fI > €}) < limsup p(lg; — ful > €/2) — 0 asn — oo

j—o0

because {f,} —, was Cauchy in measure.

5. If {fn},— is convergent and hence Cauchy in probability then any sub-

sequence, {f},} -, is also Cauchy in probability. Hence by item 3. there
is a further subsequence, {f//}.~, of {f}} ~, which is convergent almost
surely.
Conversely if {f,} -, does not converge to f in probability, then there
exists an € > 0 and a subsequence, {ny} such that infy p (|f — fn,| =€) >
0. Any subsequence of { f,, } would have the same property and hence can
not be almost surely convergent because of Theorem [11.5

Corollary 11.8 (Dominated Convergence Theorem). Let (12,8, 1) be a
measure space. Suppose {fn}, {gn}, and g are in L' and f € L° are functions
such that

‘fn|§gn a.e., fnL}fa gni’gv and /gn_)/g as n — oo.

Then f € L' and lim,—o0 ||f — full, = 0, d.e. fr, — f in L'. In particular
lim, oo [ fn=[F.

Proof. First notice that |f| < g a.e. and hence f € L! since g € L'. To
see that |f| < g, use Theorem to find subsequences {f,,} and {gn, } of
{fn} and {gn} respectively which are almost everywhere convergent. Then

Ifl = Jim || < Jim_gn, = g ae.

If (for sake of contradiction) lim, . ||f — fnll; # O there exists € > 0 and a
subsequence { fy,, } of {f,} such that

/\f = fn| = € for all k. (11.5)

Using Theorem again, we may assume (by passing to a further subse-
quences if necessary) that f,, — f and g,, — g almost everywhere. Noting,
lf = fonl < 9+ 90, — 29 and [ (9+gn,) — [ 29, an application of the
dominated convergence Theorem implies limy_.o [ |f — fnr| = 0 which

contradicts Eq. (11.5)). ]
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Exercise 11.1 (Fatou’s Lemma). Let ({2, B, 1) be a measure space. If f,, >
0 and f, — f in measure, then [, fdu < liminf, .o [, fudp.

Exercise 11.2. Let ({2, B, 1) be a measure space, p € [1,00), {fn} C L? (1)
and f € L7 (). Then fu — [ in LP () Iff fu > f and [ |fal? — [|f]".

Solution to Exercise (|11.2)). By the triangle inequality,

11, = 1ally| <
If = full, which shows [[f.[" — [|f[" if f. — f in LP. Moreover
Chebyschev’s inequality implies f, —— f if f,, — f in LP.

For the converse, let F,, := |f — fn|" and G,, := 2P71[|f|” + |fn|"] . Then
F, %0, F, <G, € L', and [G, — [G where G := 2°|f]" € L.
Therefore, by Corollary JIf=fulf=[F,— [0=0.

Corollary 11.9. Suppose (2, B, i) is a probability space, f, £ fand g, 5
g and o :R — R and ¢ : R? — R are continuous functions. Then

Lo (fn) =0 (f),
2.9 (fn>gn) L?/J(f,g),
3. fu+gn = f+g, and
4 fn'gni’f'g-

Proof. Item 1., 3. and 4. all follow from item 2. by taking ¢ (z,y) = ¢ (z),
Y (z,y) =x+y, and ¢ (z,y) = = - y respectively. So it suffices to prove item
2. To do this we will make repeated use of Theorem [I1.

Given a subsequence, {ny}, of N there is a subsequence, {n}} of {n;}
such that f,, — f a.s. and yet a further subsequence {nj} of {nj} such that
gny — g a.s. Hence, by the continuity of 1, it now follows that

Um0 (fugogny ) =% (f.9) as.

which completes the proof. [

11.2 Jensen’s, Holder’s and Minikowski’s Inequalities

Theorem 11.10 (Jensen’s Inequality). Suppose that (£2,B,u) is a prob-
ability space, i.e. p is a positive measure and p(f2) = 1. Also suppose that
feLtp), f: 02— (ab), and ¢ : (a,b) — R is a convex function, (i.e.
©" (x) >0 on (a,b).) Then

<p< /Qfdu) < [ ethian

where if o f & L' (u), then p o f is integrable in the extended sense and
fg (p(f)d/,& = 0.
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Proof. Let t = [, fdu € (a,b) and let 3 € R (8 = ¢ () when ¢ (t) exists),
be such that ¢(s) — p(t) > [(s —t) for all s € (a,b). (See Lemma and
Figure when ¢ is C! and Theorem below for the existence of such a
B in the general case.) Then integrating the inequality, o(f) —@(t) > B(f —1),
implies that

OS/QSO(f)du—so(t)=/Qs0(f)dﬂ—so(/9fdu)-

Moreover, if ¢(f) is not integrable, then o(f) > ¢(t) + B(f — ¢) which shows
that negative part of ¢(f) is integrable. Therefore, [, ¢(f)dp = oo in this
case. [

FEzxzample 11.11. Since e” for x € R, —Inz for x > 0, and xP for z > 0 and
p > 1 are all convex functions, we have the following inequalities

exp </Qfdu) §/Qefdu, (11.6)
/Qlog(lfl)dﬂ < log (/Q I du)

‘/Qfd,up<</g|f|du)p</ﬂf|pd,u.

Ahs a special case of Eq. 1' ifpj,s; >0fori=1,2,....,nand > ., p% =1,
then

. n n_ .pi

" Ilns; n Lins? 1 In sPi Si1
S1...8p = e&i=1 N8 = gavi=lpg BT g —el% = E = (11.7)

— Di — Di

and for p > 1,

Indeed, we have applied Eq. li with 2 ={1,2,....n},n=>1", iéi and

f (i) :=Ins?. As a special case of Eq. (11.7), suppose that s,¢,p,q € (1,00)
with ¢ = p% (i.e. % + % =1) then

1 1
st < —sP 4 =t (11.8)
p q

(When p = ¢ = 1/2, the inequality in Eq. (11.8]) follows from the inequality,
0<(s—t)?2))

As another special case of Eq. 1 , take p; = n and s; = az/ " with
a; > 0, then we get the arithmetic geometric mean inequality,

1 n
Vara, < -3 a (11.9)
=1
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Theorem 11.12 (Hélder’s inequality). Suppose that 1 < p < oo and q :=
or equivalently p~' +q~ ' = 1. If f and g are measurable functions then

gl < 1 f1lp - llgllq- (11.10)

Assuming p € (1,00) and || fllp - lg9llq < 00, equality holds in Eq. (11.10) iff
|fI? and |g|* are linearly dependent as elements of L' which happens iff

glIL£ 115 = llgllg 1f17 a-e. (11.11)

Proof. The cases p =1 and ¢ = co or p = oo and ¢ = 1 are easy to deal
with and will be left to the reader. So we now assume that p,q € (1,00). If
| fll¢ =0 orocoor|g|,=0oroco, Eq. is again easily verified. So we will
now assume that 0 < ||fllg, [[gll, < co. Taking s = [f| /[ f], and ¢ = |g|/llgllq

in Eq. (11.8]) gives,

P
p—1’

[fol 1P 1 gl
I£llpllglls = 2 Iflp g lglle

. . . —1 —1 .
with equality iff [g/|lgllq| = [fP~" /11 = AP0 /A5, de. |glellfIIE =
lgllZ|f|” . Integrating Eq. (11.12) implies

| fall1 < 11

I£llpllglle =P " a

with equality iff Eq. (11.11) holds. The proof is finished since it is easily
checked that equality holds in Eq. (11.10) when |f|” = ¢|g|? of |g|* = ¢|f|”
for some constant c. [ |

(11.12)

Ezample 11.13. Suppose that a, € C for k=1,2,...,n and p € [1,00), then
> an
k=1

Indeed, by Hélder’s inequality applied using the measure space, {1,2,...,n}
equipped with counting measure, we have

n n n 1/p n 1/q n 1/p
Zak Zak 1] < (Z akP) <Z 1q> — pl/a <Z |ak|p>
k=1 k=1 k=1 k=1 k=1

where ¢ = p’%l. Taking the p*™ — power of this inequality then gives, Eq.
[T,

Theorem 11.14 (Generalized Hélder’s inequality). Suppose that f; :
2 — C are measurable functions for i = 1,...,n and p1,...,pn and r are
positive numbers such that Z?zl pi_l =7r~1, then

11
=1

p n
<nP7H ag (11.13)
k=1

<T[Ifl,, - (11.14)
=1
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Proof. One may prove this theorem by induction based on Holder’s The-
orem [IT.12] above. Alternatively we may give a proof along the lines of the
proof of Theorem which is what we will do here.

Since Eq. is easily seen to hold if [|f;|,, = 0 for some 7, we will
assume that || fl|| > 0 for all 7. By assumption, E 1 5~ = 1, hence we may
replace s; by si and p; by p;/r for each i in Eq. - ) to find

PRyl

i=1 pz/r

3 n T
p /T st
TZ

Di

Now replace s; by |fi|/ |l fi”p,; in the previous inequality and integrate the

result to find
11 /
<YL
ST

Hfz

=1

n
P7d _ L _
n= =
T 7T, nmn,h 20

Theorem 11.15 (Minkowski’s Inequality). If 1 < p < co and f,g € L?
then

1+ gllo < I1fllp + llgllp- (11.15)

Proof. When p = oo, |f| < || f]|, a.e. and |g| < ||g]|, a.e.sothat |[f + g <
LfI+19] < 1 fllo + ll9ll o a-e. and therefore

1f + 9l < Wl + llglloo
When p < oo,
| + 9" < (2max (|f],[g]))" = 2P max (|f",19]") <27 (IfI" + l9I") ,
which impliesEI f+ g€ LP since
1f + gl <22 (IF1I5 + llgll) < oo

Furthermore, when p = 1 we have

1549l = [ 17+ gldu< [ 1f1du [ loldn =171 + gl
[0} [0} 2

We now consider p € (1,00) . We may assume || f +g]|,, || f[|, and [|g]|,, are
all positive since otherwise the theorem is easily verified. Integrating

f+alP =1f+gllf +gP~t < (fI+ gD f +glP~"

! In light of Example [11.13] the last 2P in the above inequality may be replaced by
2Pt
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and then applying Holder’s inequality with ¢ = p/(p — 1) gives
/ |f +glPdu < / [ 1f+glP~ dp +/ gl 1f + g|P~ dpa
Q Q Q

< (I£1lp + lgllp) 1 + g1 g, (11.16)

where

I1F + gl le = / (If + glP~Y)idu = / 4 gPdu=IIf + gz (11.17)
0 0

Combining Eqs. (11.16) and (11.17) implies

17+ glly < Fll1F + gl + llallplLf + gllz/? (11.18)
Solving this inequality for ||f + g||, gives Eq. (11.15]). |

11.3 Completeness of LP — spaces

Theorem 11.16. Let |-|| , be as defined in Eq. (11.2), then (L>(£2, B, ), |||l o) is
a Banach space. A sequence {fy},..; C L™ converges to f € L* iff there ex-

ists E € B such that u(E) = 0 and f, — f uniformly on E°. Moreover,
bounded simple functions are dense in L.

Proof. By Minkowski’s Theorem ||-|| o, satisfies the triangle inequal-
ity. The reader may easily check the remaining conditions that ensure |||
is a norm. Suppose that {f,} -, C L> is a sequence such f, — f € L, i.e.
I|f = fulloo — 0 as n — oo. Then for all k£ € N, there exists N}, < oo such that

p(If = ful > k1) =0 for all n > Ny
Let
E=U  Upsn, {If = ful > k7).
Then p(E) = 0 and for 2 € B¢, |f(z) — fau(z)] < k! for all n > Nj. This

shows that f,, — f uniformly on E°. Conversely, if there exists F € B such
that u(F) =0 and f, — f uniformly on E°, then for any € > 0,

p(f =fal Zze) =p({lf = ful 2} NEF) =0
for all n sufficiently large. That is to say limsup || f — fn||, < € for all € > 0.
o

The density of simple functions follows from the approximation Theorem[6.32}
So the last item to prove is the completeness of L°°.

Suppose €mpn = |fm— fulle — 0 as m,n — oo. Let E,, =
{lfn = fm| > emn} and E := UE,, ,,, then pu(E) = 0 and

sup |fm (ZL’) - fn ((E)| < Emmn — 0 as m,n — OQ.
reke

Therefore, f := lim, . f, exists on E¢ and the limit is uniform on FE*°.
Letting f = limy, oo 1ge fn, it then follows that lim, .o ||fn — f|l., =0. =
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Theorem 11.17 (Completeness of LP(u)). For 1 < p < oo, LP(u) equipped
with the LP — norm, [-||, (see Eq. ), is a Banach space.

Proof. By Minkowski’s Theorem [[-[],, satisfies the triangle inequal-
ity. As above the reader may easily check the remaining conditions that ensure
|||, is a norm. So we are left to prove the completeness of L () for 1 < p < oo,
the case p = co being done in Theorem [11.16

Let {fn},—; C LP(n) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma , {fn} is L%-Cauchy (i.e. Cauchy in measure) and by Theorem
there exists a subsequence {g;} of {f,} such that g; — f a.e. By Fatou’s
Lemma,

loy £l = [ Jim it g, — guPdp <t it [ g, — g

= lim inf||g; — gx|h — 0 as j — oc.
k— o0

In particular, [|f|l, < [lg; — fllp + lgllp < 00 so the f € L and g; - f. The
proof is finished because,

1fn = Fllp < 1lfn = gillp + g5 = fllp — 0 as j,n — oo

]
See Proposition for an important example of the use of this theorem.

11.4 Relationships between different LP — spaces

The LP(u) — norm controls two types of behaviors of f, namely the “behavior
at infinity” and the behavior of “local singularities.” So in particular, if f
blows up at a point xg € (2, then locally near zy it is harder for f to be
in LP(u) as p increases. On the other hand a function f € LP(u) is allowed
to decay at “infinity” slower and slower as p increases. With these insights
in mind, we should not in general expect LP(u) C L9(u) or L9(u) C LP(u).
However, there are two notable exceptions. (1) If 4(§2) < oo, then there is no
behavior at infinity to worry about and L?(u) C LP(p) for all ¢ > p as is shown
in Corollary [11.18 below. (2) If y is counting measure, i.e. 1(A) = #(A), then
all functions in LP(u) for any p can not blow up on a set of positive measure,
so there are no local singularities. In this case LP(u) C L(u) for all ¢ > p,
see Corollary [I1.23] below.

Corollary 11.18. If u(£2) < 0o and 0 < p < ¢ < o0, then L(u) C LP(p),
the inclusion map is bounded and in fact

171, < (2] G~ 7], -
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Proof. Take a € [1, 00] such that

1
= -4 -, ie.a= 2L

1 1
p a q q—p
Then by Theorem [T1.14]
o 11
A1, = 11F - 2, < Illg - Itlla = p(2)21fllg = 1(2) 5~ 211 f 4.

The reader may easily check this final formula is correct even when ¢ = oo
provided we interpret 1/p — 1/00 to be 1/p. ]

The rest of this section may be skipped.

Ezample 11.19 (Power Inequalities). Let a := (ay,...,a,) with a; > 0 for
i=1,2,...,n and for p € R\ {0}, let

1 n l/p
= (130
=1

Then by Corollary(11.18 p — Ha||p is increasing in p for p > 0. Forp = —¢ < 0,

we have
-1/ 1/q B
lal (1 > ) q : 4"
a = — a.: = — — || =
P 7 q
= F i (ai) “llg
where % = (1/a1,...,1/a,) . So for p < 0, as p increases, ¢ = —p decreases, so

that H % Hq is decreasing and hence H % H;l is increasing. Hence we have shown
that p — [[al|, is increasing for p € R\ {0}.

We now claim that lim,_¢ [lal, = {/a1---a,. To prove this, write af =
el —1 4 plna; + O (p2) for p near zero. Therefore,

1 & 1 &
- P=14p=> Ina;+0 (p?).
Hence it follows that
1 1/p Lo 1/p
. _ . - p _ . - . 2
%%“a“p—;fz(nil%) —;:Ha<1+pn21naz+0<p>)

i=1
1
—en ZimiMei — o,

So if we now define [lal|, := {/a1.." @y, the map p € R —|laf|, € (0,00) is
continuous and increasing in p.
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We will now show that lim,_, [|a||, = max; a; =: M and lim,,—,_ [[a|[, =
min; a; =: m. Indeed, for p > 0,

1 1 —
—MP < = P < MP
SMP < =l <

i=1

1 1/P
() M < lall, < M.
n

Since (%)1/17 — 1 as p — oo, it follows that lim, . [|al|, = M. For p = —¢ <
0, we have

and therefore,

ti_Jaf, = Ji o —mem
mem allp = A0 HlH © max; (1/a;)  1/m - m=mma

Conclusion. If we extend the definition of ||al|, to p = oo and p = —o0
by |la||, = max; a; and [la||__ = min;a;, then R 3p — [all, € (0,00) is a
continuous non-decreasing function of p.

Proposition 11.20. Suppose that 0 < py < p1 < 0o, A € (0,1) and py €
(po,p1) be defined by
1 1=2, 2 (11.19)
px Po b1
with the interpretation that A\/p1 =0 if p1 = OOE| Then LP> C LPo + LPr j.e.
every function f € LP> may be written as f = g+h with g € LP° and h € LP*.

For1<py<ps <ooand fe LPo+ LP [et

11 = int {ligll,, + Al : £ =g+h}.

Then (LPo 4+ LP*,||-||) is a Banach space and the inclusion map from LP> to
Lro + LP is bounded; in fact ||f|| < 2| fl,, for all f € LP>.

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f] > M} and the behavior of f at “infinity” is solely determined
by f on E°. Hence let g = flg and h = flge so that f = g+ h. By our earlier
discussion we expect that g € LP% and h € LP* and this is the case since,

Po
Po __ p _ f
lolls = [ 1917 Ugios = 217 [
f Px
< MPo
<a [|L

2 A little algebra shows that A may be computed in terms of po, px and p: by

Lig>m

Ligsar < MPOTPY[f[PY < 00

)\:1770 P1—DPx
PA PL—po
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and

Rlipy = 1 Lsi<all; = /\f|p1 Lipi<nr = MP Lisi<m

fPA
< MP1
< [\

Moreover this shows

Lipjcar < MPUPA|FIEY < oo

71l < ML—Pr/pPo ||f||5i/po ML-Pa/p1 Hf”pk/pl.

Taking M = X||f|,, then gives

1Al < (Woe/m g X))

and then taking A = 1 shows [|f|| < 2| f]|,, . The proof that (LP° + L1, |- ||)
is a Banach space is left as Exercise [11.6] £o the reader.

Corollary 11.21 (Interpolation of LP? — norms). Suppose that 0 < py <
p1 < 00, A € (0,1) and px € (po,p1) be defined as in Eq. , then

LPonNLPr C LP* and \ )
£l < NI, (11, " (11.20)

Further assume 1 < pg < px < p1 < 00, and for f € LPo N LP* et

= 1Ay + WAL, -

Then (LPo N LP ||-|) is a Banach space and the inclusion map of LP° N LP
into LP> is bounded, in fact

171, < max (A™%, (1= )" (||f\|p0 + Hf||p1) . (11.21)

The heuristic explanation of this corollary is that if f € LPo N LP!, then f
has local singularities no worse than an LP! function and behavior at infinity
no worse than an LP° function. Hence f € LP* for any p) between py and p;.

Proof. Let A be determined as above, a = po/A and b = p; /(1 — A), then

by Theorem [11.14]
A 1-X
1l = |11 171
Px

A 1-X A 1-X
< P, = e, 1

It is easily checked that |-|| is a norm on LP° N LP*. To show this space is
complete, suppose that {f,} C LP° N LP' is a ||-|| — Cauchy sequence. Then
{fn} is both LPo and L”1 Cauchy. Hence there exist f € LP° and g € LP* such
that lim, o || f — = 0 and lim, . [|g — fall,, = 0. By Chebyshev’s
inequality ( Lemma ﬂ ) fn — f and f,, — ¢ in measure and therefore by
Theorem f = g a.e. It now is clear that lim, o ||f — fn]| = 0. The
estimate in Eq is left as Exercise [11.5] _ to the reader. [
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Remark 11.22. Combining Proposition and Corollary gives
LPoN P C [P C [P + p
for 0 < pg < p1 <00, A € (0,1) and py € (po,p1) as in Eq. (11.19).

Corollary 11.23. Suppose now that p is counting measure on 2. Then
LP(p) C L9(p) for all 0 < p < g < oo and || f|, <[ f]l,-

Proof. Suppose that 0 < p < ¢ = oo, then

I£1%, = sup{|f(2)[" : 2 € 2} < > [f(@) = |£],

zes?

Le. |[fllo < IIf], for all 0 < p < oo. For 0 < p < ¢ < o0, apply Corollary
11.21| with pp = p and p; = oo to find

1— 1—
11, < IFIE/ AN < AR = N1, -

11.4.1 Summary:

Lron [P C L2 C LP° + LP! for any q € (po, p1)-
Ifp < g, then 2 C 0 and |f], < [1£],-
Since p(|f| > ¢) < e P||f[[}, LP — convergence implies L — convergence.

= W o=

L° — convergence implies almost everywhere convergence for some subse-

quence.

5. If u(£2) < oo then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L? —
convergence.

6. If 1(§2) < oo, then L2 C LP for all p < ¢ and LY — convergence implies L?

— convergence.

11.5 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L° — convergent sequence is LP — convergent. This will lead
us to the notion of uniform integrability. To simplify matters a bit here, it will
be assumed that (2, B, 1) is a finite measure space for this section.

Notation 11.24 For f € L'(u) and E € B, let

p(f: E) ZZ/Efdu-
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and more generally if A, B € B let

u(f: A B) = fdu.
ANB

When p is a probability measure, we will often write E[f : E] for u(f : E)
and E[f : A, B] for u(f : A, B).

Definition 11.25. A collection of functions, A C L'(u) is said to be uni-
formly integrable if,

lim sup p ([ f] : |[f| > a) = 0. (11.22)
a—00 rep

The condition in Eq. (11.22)) implies sup;c 4 || [, < ooE| Indeed, choose a
sufficiently large so that supyc 4 p (|f]: |f| > a) <1, then for f € A

[flly = p(f1: 1= a) + (][] <a) <T+ap(2).

Let us also note that if A = {f} with f € L' (u), then A is uniformly in-
tegrable. Indeed, lim,_,o0 p (| f] : |f] > a) = 0 by the dominated convergence
theorem.

Definition 11.26. A collection of functions, A C L'(u) is said to be uni-
formly absolutely continuous if for all € > 0 there exists § > 0 such that

sup i (|f| : E) < € whenever u(E) < 6. (11.23)
feA

Remark 11.27. 1t is not in general true that if {f,} C L'(p) is uniformly
absolutely continuous implies sup,, || fn||; < oco. For example take 2 = {x}
and p({*}) = 1. Let f,(x) = n. Since for 6 < 1 a set E C {2 such that
p(E) < § is in fact the empty set and hence {f,},—, is uniformly absolutely
continuous. However, for finite measure spaces without “atoms”, for every
0 > 0 we may find a finite partition of {2 by sets {Ez}lzzl with p(E,) < 4. If
Eq. holds with € = 1, then

k
p(1fal) =D ull fal - Be) <k
=1

showing that u(|f,]) < k for all n.

Lemma 11.28 (This lemma may be skipped.). For any g € L*(u), A =
{g} is uniformly absolutely continuous.

3 This is not necessarily the case if u (£2) = co. Indeed, if 2 = R and u = m is
Lebesgue measure, the sequences of functions, { fn = 1[,n,n]}zo:1 are uniformly
integrable but not bounded in L' (m).
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Proof. First Proof. If the Lemma is false, there would exist ¢ > 0
and sets F, such that u(E,) — 0 while u(lg| : E,) > € for all n. Since
g, g] <lg| € L' and for any 6 > 0, u(1g, |g| > 6) < p(E,) — 0 as n — oo,
the dominated convergence theorem of Corollary implies lim,, o p(]g] :
E,) = 0. This contradicts p(|g| : Ey) > ¢ for all n and the proof is complete.

Second Proof. Let ¢ = Y "  ¢;1p, be a simple function such that
lg = ll, < /2. Then

plgl: E) <pu(lpl: E)+p(lg—¢l: E)

<Y laln(EnBi)+lg— ¢l < (ZI@) pu(E) +e/2.

i=1

This shows i (|g] : E) < e provided that u(E) <e (2, |Ci|)71 . ]
Proposition 11.29. A subset A C L' (u) is uniformly integrable iff A C

L' () is bounded is uniformly absolutely continuous.

Proof. (= ) We have already seen that uniformly integrable subsets, A,
are bounded in L' (1) . Moreover, for f € A, and E € B,

u(lf1: E) = p(f] = [fl = M, E) + u(lf] - [f] < M, E)
< supp(|f]+ |f| = M)+ Mp(E).

So given ¢ > 0 choose M so large that sup,c, pu(|f| : [f| = M) < €/2 and
then take § = 55; to verify that A is uniformly absolutely continuous.
(<=) Let K :=supsc, || f]l; < co. Then for f € A, we have

w(fl > a) <|Ifll;/a < K/a for all a > 0.

Hence given ¢ > 0 and § > 0 as in the definition of uniform absolute continuity,
we may choose a = K/¢ in which case

sup pu (|f[ = [f] = a) <e.
feAa

Since £ > 0 was arbitrary, it follows that lim,cosuppey p([f]: |[f| > a) =0
as desired. -

Corollary 11.30. Suppose {fy},—; and {gn},., are two uniformly integrable
sequences, then {fn 4+ gn},_, is also uniformly integrable.

Proof. By Proposition {fu}o2, and {g,},—, are both bounded
in L' (1) and are both uniformly absolutely continuous. Since || f,, + gnll; <
Il fally + llgnll; it follows that {f, + gn}.—, is bounded in L' (u) as well.
Moreover, for ¢ > 0 we may choose § > 0 such that u(|f,|: E) < € and
i (lgn] : E) < & whenever p (E) < 4. For this choice of € and d, we then have

1 (1 fn + gal - B) < (| fal + lgal  B) < 2 whenever i (E) <6,

showing {f, + gn},—; uniformly absolutely continuous. Another application
of Proposition [11.29| completes the proof. [
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Exercise 11.3 (Problem 5 on p. 196 of Resnick.). Suppose that {X,,}~_,

is a sequence of integrable and i.i.d random variables. Then {%}?:1 is uni-
formly integrable.

Theorem 11.31 (Vitali Convergence Theorem). Let (2, B, 1) be a finite
measure space, A := {fn} >, be a sequence of functions in L' (n), and f :
2 — C be a measurable function. Then f € L' (n) and ||f — full, — 0 as
n — oo iff fn — f in p measure and A is uniformly integrable.

Proof. («<=) If f, — f in p measure and A = {f,},-, is uniformly
integrable then we know M := sup,, ||fn||; < oco. Hence and application of
Fatou’s lemma, see Exercise [11.1

[ 1#1dn < timint [ (fldu < 0 <0,
Q n—ee Ja

ie. f € L*(n). One now easily checks that Ay := {f — f,} -, is bounded
in L' (1) and (using Lemma [11.28 and Proposition [11.29) Ay is uniformly

absolutely continuous and hence Aq is uniformly integrable. Therefore,
1f = fally = w(lf = Fal 2 1F = ful Z @) + ([ = ful - |f = ful <a)
<e(@+ [ Nygicalf = fuldu (11.24)
where
£ (@) i=supps(f = ful 31 = fnl 2 @) = 025 0 — cx.
Since 1s_. <o |f — ful <a € L (n) and

(L= poi<a lf = fal >€) S u(|f = ful > ) = 0as n — o,

we may pass to the limit in Eq. (11.24)), with the aid of the dominated con-
vergence theorem (see Corollary [11.8)), to find

limsup||f — full; <e(a) — 0 as a — oo.

n—oo

(=) 1If f,, — fin L' (1), then by Chebyschev’s inequality it follows that
fn — fin p — measure. Since convergent sequences are bounded, to show A is
uniformly integrable it suffices to shows A is uniformly absolutely continuous.
Now for F € B and n € N,

pllfnl = B) < pllf = fol - B) + 0l f]: B) < |If = fully + 6] : B).
Let ey :=sup,~n ||f — full;, then ex | 0 as N T co and

sup (| fal : ) < Sggu(\fnl tE)V(en+tu(fl: E)) <en+pulgy: E),
- (11.25)
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where gy = |f| + ZnN:1 |fn] € LY. Given € > 0 fix N large so that ex < £/2
and then choose § > 0 (by Lemma|11.28]) such that u (gn : E) < eif p (E) < 4.
It then follows from Eq. (11.25)) that

sup u(|fn] : E) <e/2+¢/2 =¢ when u(F) < 0.

Ezample 11.32. Let §2 = [0,1], B = Bjp,;) and P = m be Lebesgue measure
on B. Then the collection of functions, f- (z) := 2 (1 —x/e) V0 for e € (0,1)
is bounded in L' (P), f- — 0 a.e. as € | 0 but

0= { lim f.dP +#1i AP = 1.
[ timp.ap £1im [

This is a typical example of a bounded and pointwise convergent sequence in
L' which is not uniformly integrable.

Ezample 11.33. Let £2 = [0,1], P be Lebesgue measure on B = Byg 1], and for
e € (0,1) let a > 0 with lim. g a. = oo and let f. := acljg ). Then Ef. = ca.
and so sup,~g || fz]|; =: K < o0 iff ea. < K for all €. Since

supE [f. : fo > M] =sup [eac - Lo.>Mm]
€ 1>

if {f.} is uniformly integrable and & > 0 is given, for large M we have
ea. < § for € small enough so that a. > M. From this we conclude that
limsup, | (ea.) < d and since § > 0 was arbitrary, lim.|gca. = 0 if {f.} is
uniformly integrable. By reversing these steps one sees the converse is also
true.

Alternatively. No matter how a. > 0 is chosen, lim.jo f- = 0 a.s.. So
from Theorem if {f.} is uniformly integrable we would have to have

151%1 (eae) = IEIEJIEfE =[E0=0.

Corollary 11.34. Let (£2, B, 1) be a finite measure space, p € [1,00), {fn}
be a sequence of functions in LP (u) , and f : £2 — C be a measurable function.
Then f € LP () and || f — full, — 0 as n — oo iff f, — f in p measure and
A= {|fu|P}.2, is uniformly integrable.

oo

Proof. ( <) Suppose that f,, — f in g measure and A := {|f,['}
is uniformly integrable. By Corollary fnl? & |fIP in g — measure, and

ho = |f — fol” £ 0, and by Theorem [11.31} |f|* € L' (1) and |fu|® — |f|”
in L' (1) . Since

B = 1F = Fal” < (F1 4 1Fa)? < 227 (5P 4 [ fal?) =2 g0 € L' ()

n=1
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with g, — ¢ := 2P~ |f|” in L' (i), the dominated convergence theorem in
Corollary [T1.8] implies

||f*anZ:/Q|f*fn|pd/i:/9hndu%()asnﬂoo.

(=) Suppose f € LP and f, — f in LP. Again f, — f in u — measure
by Lemma Let

hi = || fal? = [fIPL < | fal? +1fP = gn € L

and g := 2|f|? € L'. Then g,, % g, hp, %5 0 and [ g,dp — [ gdu. Therefore
by the dominated convergence theorem in Corollary nh_)n;o [ hy dp =0,

ie. |fu|P — |f|P in LY (u) E| Hence it follows from Theorem that A is
uniformly integrable. [ ]

The following Lemma gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly integrable.

Lemma 11.35. Suppose that p(2) < oo, and A C L°(2) is a collection of
functions.

1. If there exists a non decreasing function ¢ : Ry — Ry such that
limg 00 p(x)/x = 00 and

K= sup p(p(|f]) < o0 (11.26)
feA

then A is uniformly integrable.
2. Conversely if A is uniformly integrable, there exists a non-decreasing con-
tinuous function ¢ : Ry — Ry such that ¢(0) = 0, lim, o @(x)/z = 00

and Eq. is valid.
A typical example for ¢ in item 1. is ¢ (x) = xP for some p > 1.

Proof. 1. Let ¢ be as in item 1. above and set €, := sup,>, % — 0 as
a — oo by assumption. Then for f € A

4 Here is an alternative proof. By the mean value theorem,

A7 =1 fal?l < p(max (], |1 fn )"~ FL = |l < ST+ LD)PHET = |l

and therefore by Holder’s inequality,

/\|f|p — \fal?ldp §p/(|f| F 1P ] = ol dp Sp/(lfl F 1P S — fol dp

<pllf = Fallp QST+ 1Fal) ™ g = 2l ST+ 1l NS = fallo
< P fllp + I fallo)”“I1f = fulls

where g := p/(p — 1). This shows that [ ||f|” — |fa|?|dpx — 0 as n — co.
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u(lf1: 1) = a) = <¢|(]|c}|)¢(|f|) e ) < ulo (1) : 1] > a)ea

< ulp (If]))ea < Keq

and hence
lim sup,u(|f| Lifza) < hm Ke, =0.

a— 00 f

2. By assumption, €, := Supye 4 i (|f| 1‘f|2a) — 0 as a — oo. Therefore we
may choose a,, T oo such that

inJrl L < 00

where by convention ag := 0. Now define ¢ so that ¢(0) = 0 and

P@) =3 (04 1) T e (@),
n=0
o) = [ ¢ Wy =3 (04 1) @ At — 2 ).
n=0

By construction ¢ is continuous, ¢(0) = 0, ¢'(x) is increasing (so ¢ is convex)
and ¢'(x) > (n+ 1) for > a,. In particular

p(x) o plan) +(n+ Dz

T xT

>n+1for x > a,

from which we conclude limy_, o p(z)/x = co. We also have ¢'(z) < (n+1)
on [0, an+1] and therefore

plr) < (n+ 1)z for x < aptq.
So for f € A,

8

(1) = D 1 (DU DL anan il (1FD)

n=

8

0
(n+1) 1 (11 L(an,ansa1 (I£])
=0

< Z(”+1)N(|f|1\f|zan) < Z(n—&-l)san

=0 n=0

<
n

and hence

o0
sup p (¢(|f1)) a, < 00.
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11.6 Exercises

Exercise 11.4. Let f € LP N L*> for some p < oo. Show |f|, =
limg oo || f]], - If we further assume p(X) < oo, show || f[|,, = limg—.c || f]|, for
all measurable functions f : X — C. In particular, f € L iff lim, o, ||fﬁq <
co. Hints: Use Corollary [11.21] to show limsup, 1 fll, < Ifll. and to
show liminf, oo [|f|l, > /T s let M < | f[l,, and make use of Chebyshev’s
inequality.

Exercise 11.5. Prove Eq. (11.21]) in Corollary [L1.21} (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a,b > 1 with a=! + b~ = 1 chosen
appropriately,

s* b
st < — 4+ —
a

b
applied to the right side of Eq. (11.20)).

Exercise 11.6. Complete the proof of Proposition [11.20| by showing (LP +
L™, ||-||) is a Banach space.

11.7 Appendix: Convex Functions

Reference; see the appendix (page 500) of Revuz and Yor.

Definition 11.36. A function ¢ : (a,b) — R is convex if for all a < xg <
x1 <bandt€[0,1] p(z:) < te(x1)+ (1 —1t)p(ro) where zy = tag + (1 —t)xo,
see Figure 77 below.

Example 11.37. The functions exp(z) and —log(z) are convex and |z|’ is
convex iff p > 1 as follows from Lemma for p > 1 and by inspection
of p=1.

Theorem 11.38. Suppose that ¢ : (a,b) — R is convex and for z,y € (a,b)
with x < y, lef]
ply) —e&
F(w,y):zi() ( )
y—
Then;

1. F (z,y) is increasing in each of its arguments.
2. The following limits exist,

¢\ (x) == F (z,2+) := lian(x,y) < o0 and (11.27)
ylz

¢ (y) = F(y—y) = lim F'(z,y) > —oo. (11.28)

® The same formula would define F (z,y) for ¢ # y. However, since F (z,y) =
F (y,z), we would gain no new information by this extension.
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L}

2 2 -
'\’:-_'X_t 0 - 'O—)(l

X

Fig. 11.1. A convex function with three cords. Notice the slope relationships; mq <
ms S ma.

3. The functions, ¢’y are both increasing functions and further satisfy,
—co<¢ () <¢\ () <¢_ (y) <o Va<z<y<b. (11.29)
4. For any t € [ (z),¢, (z)],
o) >e@)+ty—=x) foralzye (a,b). (11.30)
5. Fora<a<p<b,let K :=max{|¢} (a)|,|¢_ (B)|}. Then
lp(y) —¢ (@) < K|y —af foralz,yé€a,f].

That is ¢ is Lipschitz continuous on [, f3] .

. The function @', is right continuous and ¢'_ is left continuous.

7. The set of discontinuity points for ¢!, and for ¢’ are the same as the
set of points of non-differentiability of . Moreover this set is at most
countable.

D

Proof. 1. and 2. If we let hy = to(z1) + (1 — t)p(xo), then (x4, hy) is on
the line segment joining (xg, ¢ (g)) to (z1,¢ (z1)) and the statement that ¢
is convex is then equivalent of ¢ (x;) < hy for all 0 < ¢ < 1. Since

he —p(z0) (1) —p(@0) _ plz1) — My

Tr — Zo T1 — Zo Ty — Tt

the convexity of ¢ is equivalent to
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(2 =@ (x0) _ he =@ (w0) _ ¢ (21) = ¢ (20)

< for all zg < x; < x4
Tt — X Tt — To T1 — o

and to

(1) —p o) _ plx) —he _ p(z1) =@ (20)

xr1 — X T, — Ty xT1 — Tt

for all zg < a2 < 13

and convexity also implies

p @) —p(zo) _hi—p@) _ele) —h _ o) —p(z)

Ty — g Ty — X xr1— Ty Tr1 — Tt

These inequalities may be written more compactly as,

p) ) e —e) e - @) (11.31)

V—U w—Uu o w—v
valid for all @ < u < v < w < b, again see Figure The first (second)
inequality in Eq. (11.31]) shows F'(z,y) is increasing y (x). This then implies
the limits in item 2. are monotone and hence exist as claimed.
3. Let a < z < y < b. Using the increasing nature of F),

—00 < ¢l (z)=F (z—,2) < F(z,2+) = ¢, (z) < o0
and
¢ () =F (2,2+) < Fy—y) = ¢_ ()

as desired.
4. Let t € [¢_ (x),¢, (z)] . Then

t < ¢, (x) = F(a,a4) < F (z,y) = ‘P(?/;—f(m)

or equivalently,
ey) = e(x)+ty—=) fory >

Therefore Eq. (11.30)) holds for y > x. Similarly, for y < =z,

p(x) =9y

t>¢ (xr)=F(z—,x) > F(y,x) = T —y

or equivalently,
o) >e@)—t@—y) =p) +t(y—=z) fory <.

Hence we have proved Eq. (11.30) for all =,y € (a,b).
5. Fora<a<z<y<f<b, we have

¢ (a) <@y () = F(z,2+) < F(z,y) < F(y—y) = ¢ (y) <" (B)
(11.32)
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and in particular,

¢ (y) —p(x)

—K < <
_90-1-(0‘)_ y—

<¢ (B)<K.

This last inequality implies, |¢ (y) — ¢ (z)| < K (y — z) which is the desired
Lipschitz bound.

6. Fora < c <z <y <b, we have ¢, (z) = F(r,2+) < F(x,y) and
letting = | ¢ (using the continuity of F) we learn ¢/, (c+) < F(c,y). We
may now let y | ¢ to conclude ¢/, (c+) < ¢/, (¢). Since ¢/, (¢) < ¢/, (c+), it
follows that ¢/, (¢) = ¢/, (c+) and hence that ¢/, is right continuous.

Similarly, for a < & < y < ¢ < b, we have ¢’ (y) > F (x,y) and letting
y T ¢ (using the continuity of F') we learn ¢’ (¢—) > F (x,¢). Now let = 1 ¢ to
conclude ¢’ (¢—) > ¢’ (c). Since ¢’ (c) > ¢’ (¢—), it follows that ¢’ (c¢) =
@ (c—), i.e. ¢ is left continuous.

7. Since ¢y are increasing functions, they have at most countably many
points of discontinuity. Letting = T y in Eq. , using the left continuity
of ¢’ , shows ¢’ (y) = ¢’ (y—). Hence if ¢’ is continuous at y, ¢’ (y) =
¢ (y+) = ¢’ (y) and ¢ is differentiable at y. Conversely if ¢ is differentiable
at y, then

¢ (=) =¢" () =¢' ) =¢\ ¥
which shows ¢/, is continuous at y. Thus we have shown that set of disconti-
nuity points of ¢/, is the same as the set of points of non-differentiability of
. That the discontinuity set of ¢’ is the same as the non-differentiability set
of ¢ is proved similarly. [

Corollary 11.39. If ¢ : (a,b) — R is a convex function and D C (a,b) is a
dense set, then

#(y) = sup [p(2) + ¢l (@) (y — )] forall 2,y € (a.0).

Proof. Let ¢4 (y) := sup,cp [¢ () + ¢+ (z) (y — x)] . According to Eq.
above, we know that ¢ (y) > ¥4 (y) for all y € (a,b). Now sup-
pose that z € (a,b) and x, € A with z, T x. Then passing to the
limit in the estimate, ¥_ (y) > ¢ (zn) + ¢_ (zn) (y — xy), shows Y_ (y) >
o (z)+¢_ (z) (y — x). Since = € (a,b) is arbitrary we may take z = y to dis-
cover ¢— (y) > ¢ (y) and hence ¢ (y) = ¢— (y) . The proof that ¢ (y) = 1+ (y)
is similar. ]
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Laws of Large Numbers

In this chapter {X}},—, will be a sequence of random variables on a proba-
bility space, (§2, 8, P), and we will set S,, := X; +---4+ X, for all n € N.

Definition 12.1. The covariance, Cov (X,Y) of two square integrable ran-
dom wvariables, X andY, is defined by

Cov(X,Y)=E[(X —ax)(Y —ay)|=E[XY] -EX -EY
where ax := EX and ay := EY. The variance of X,
Var (X) := Cov (X, X) = E [X?] — (EX)® (12.1)

We say that X and Y are uncorrelated if Cov (X,Y) = 0, i.e. E[XY] =
EX - EY. More generally we say {Xy},_, C L*(P) are uncorrelated iff
Cov (X;, X;) =0 for all i # j.

Notice that if X and Y are independent random variables, then f (X),
g (Y) are independent and hence uncorrelated for any choice of Borel measur-
able functions, f,¢: R — R such that f(X) and g (X) are square integrable.
It also follows from Eq. that

Var (X) <E[X?] for all X € L*(P). (12.2)

Lemma 12.2. The covariance function, Cov (X,Y) is bilinear in X and Y
and Cov (X,Y) = 0 if either X or Y is constant. For any constant k,
Var (X + k) = Var (X) and Var (kX) = k* Var (X) . If {Xx};_, are uncorre-
lated L? (P) — random variables, then

n
Var (S,,) = ZVar (Xk) .
k=1
Proof. We leave most of this simple proof to the reader. As an example

of the type of argument involved, let us prove Var (X + k) = Var (X)) ;

Var (X + k) = Cov (X + k, X + k) = Cov (X + k, X) + Cov (X + k, k)
=Cov (X +k,X)=Cov(X,X)+ Cov(k,X)
= Cov (X, X) = Var (X).
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Exercise 12.1 (A correlation inequality). Suppose that X is a random
variable and f, g : R — R are two increasing functions such that both f (X)
and g (X) are square integrable. Show Cov (f (X),g (X)) > 0. Hint: let YV
be another random variable which has the same law as X and is independent
of X. Then consider

E[(f (V)= f(X))-(g(Y) = g(X))].

Theorem 12.3 (An L? — Weak Law of Large Numbers). Let {X,} ~,
be a sequence of uncorrelated square integrable random variables, p, = EX,
and 02 = Var (X,,) . If there exists an increasing positive sequence, {a,} and
w € R such that

n
1
—ijﬁu as n — oo and
G, “
Jj=1
n

E 0]2-—>0 as n — 0o,

Jj=1

1
a

then ‘2—: — p in L* (P) and also in probability.
Proof. We first observe that ES,, = Z?Zl w; and

2

E|S, - f:uj = Var (S,) = i:\/ar (X;)=> a7
Jj=1 j=1

j=1
Hence
1 n
ES, = —
P g
7=1
and )
Sn = 225—1 1y 1<
n j=1Hi 2
E ( - ) == Za] -0
n =1
Hence,
&_ _ Sn*Z?:L“j +Z;‘L:1Hj _
Qn L2(P) Qn Qn L2(P)
< Sn — Zj:l K n Zj:l Hi ,U‘ o
(7% Gnp
L2(P)
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Ezxzample 12.4. Suppose that {Xk};il C L?(P) are uncorrelated identically
distributed random variables. Then
Sy L2(P)
— =

n

uw=EX; asn — oc.

To see this, simply apply Theorem with a,, = n.

Proposition 12.5 (L? - Convergence of Random Sums). Suppose that
{X)}re, C L?(P) are uncorrelated. If > p | Var (Xj,) < oo then

Z (X1, — px) converges in L (P).
k=1

where py, = EX}.

Proof. Letting S,, := > 7_,; (X — pg) , it suffices by the completeness of
L? (P) (see Theorem |1 ) to bhOW ||S Smlly — 0asm,n — oo. Supposing
n > m, we have

n

2
sn—smni:E( > m—m)
k=m+1

Z Var (X;) = Z 0% — 0 as m,n — oo.
k=m+1 k=m-+1

]

Note well: since L? (P) convergence implies LP (P) — convergence for

0 < p < 2, where by LY (P) — convergence we mean convergence in proba-

bility. The remainder of this chapter is mostly devoted to proving a.s. conver-

gence for the quantities in Theorem and Proposition under various
assumptions. These results will be described in the next section.

12.1 Main Results

The proofs of most of the theorems in this section will be the subject of later
parts of this chapter.

Theorem 12.6 (Khintchin’s WLLN). If {X,,} 7, are i.i.d. L' (P) - ran-
dom variables, then %Sn £ nw=EXj.

Proof. Letting
= Z Xil|x;|<n

we have {S] # S,} < U, {|Xi| > n} Therefore, using Chebyschev’s in-
equality along with the domlnated convergence theorem, we have
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n

P(S! #5,) Z (|1X;] > n) =nP(|X1]| > n)

[|X1\ S 1X4| > n] — 0.

Hence it follows that

Sn
r(
Sn _ Sn :

>5)§P(S§L#Sn)H0asnﬂoo,

!
on._ Pn
n n
n P 3 S7L P
.2 = — 0. So it suffices to prove == — p.

i.e

r L*(P
We will now complete the proof by showing that, in fact, 37" P w. To

this end, let

1 1 —
pn = —BS; = gZE [Xilix,1<n] = E [X11)1x,)<n)

i=1

and observe that lim, . @, = ¢ by the DCT. Moreover,

2
ANEE
= Var <n> = ﬁ Var (S’:z)

E|—2 — g,
n
1 n
= EZVar (Xil\Xi|§n)
=1
1 1 2
= ﬁval“ (X11|X1|§n) < E]E [Xll\X1|§n}
<E [|X1|1|X1\Sn]

and so again by the DCT, — Un o) — 0. This completes the proof
since,

S/ /

— — <= = pn + |pn — | — 0 as n — co.

" ORI L2(P)

In fact we have the stronger result.

Theorem 12.7 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {X,,}.—, are i.i.d. random variables and let S,, :== X1 + -+ + X,,.
Then there exists u € R such that %Sn — u a.s. iff X, is integrable and in
which case EX,, = p.

Remark 12.8. IfE|X;| = co but EX; < oo, then 2 S,, — 00 a.s. To prove this,
for M > 0 let XM :: X, AM and S, o Zl 1 X%[ It follows from Theorem
that 252 — M = EX] as.. Slnce Sp > S , we may conclude that
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S, 1
liminf =" > liminf —SM = p™ ass.
n—oo N n—oo N

Since uM — oo as M — oo, it follows that liminf, . 5; = oo a.s. and hence
that lim,, % = 00 a.s.

One proof of Theorem[12.7)is based on the study of random series. Theorem
and [12.12] are standard convergence criteria for random series.

Definition 12.9. Two sequences, {X,} and {X]}, of random variables are
tail equivalent if

E

Z 1X"7$X;1‘| = ZP(XTL # X,;L) < 0.
n=1

n=1
Proposition 12.10. Suppose {X,} and {X]} are tail equivalent. Then

1.5 (X, — X)) converges a.s.
2. The sum Y X, is convergent a.s. iff the sum > X, is convergent a.s.
More generally we have

P ({Z X, s com}ergent} VAN {Z X is com}ergent}) =1

3. If there exists a random variable, X, and a sequence a,, T oo such that

1 n
lim — X=X a.
nggoan; k a.s

then

1 n
lim — X, =X a.
Jm o 2 X=X as

Proof. If { X,,} and { X, } are tail equivalent, we know; for a.e. w, X,, (w) =
X! (w) for a.a n. The proposition is an easy consequence of this observation.
]

Theorem 12.11 (Kolmogorov’s Convergence Criteria). Suppose that
{Ya},2, are independent square integrable random variables. If 5272, Var (Y;) <
00, then Z;X;l (Y; —EY;) converges a.s.

Proof. One way to prove this is to appeal Proposition above and
Lévy’s Theorem below. As second method is to make use of Kol-
mogorov’s inequality. We will give this second proof below. [

The next theorem generalizes the previous theorem by giving necessary
and sufficient conditions for a random series of independent random variables
to converge.
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Theorem 12.12 (Kolmogorov’s Three Series Theorem). Suppose that
{X,},2, are independent random variables. Then the random series, Z;i1 X,
is almost surely convergent iff there exists ¢ > 0 such that

137521 P(|Xa| > ¢) < o0,
2.3 7 Var (X,1)x, <) < o0, and
8.3 1 E(Xnlix,|<c) converges.

Moreover, if the three series above converge for some ¢ > 0 then they
converge for all values of ¢ > 0.

Proof. Proof of sufficiency. Suppose the three series converge for some
c>0. If we let X, := X,,1|x,|<c, then

iP(X;#Xn):iPﬂXn\ > ¢) < o0.
n=1 n=1

Hence {X,,} and {X,} are tail equivalent and so it suffices to show Y~ | X/,
is almost surely convergent. However, by the convergence of the second series
we learn

ZVar (X)) = Zvar (Xnljx,|<c) <00
n=1

n=1

and so by Kolmogorov’s convergence criteria,

o0
Z (X! —EX]) is almost surely convergent.
n=1

Finally, the third series guarantees that > o EX; = > E (X,1x,|<.) is

n=1

convergent, therefore we may conclude >~ | X/ is convergent. The proof of
the reverse direction will be given in Section below. ]

12.2 Examples

12.2.1 Random Series Examples

Ezample 12.13 (Kolmogorov’s Convergence Criteria Example). Suppose that
{Yn}zo=1 are independent square integrable random variables, such that
> ey Var (Y;) < oo and 772 EY; converges a.s., then ) 77 Y; converges
a.s..

Definition 12.14. A random variable, Y, is normal with mean u stan-
dard deviation o? iff

P(Y eB)= / eiﬁ(yf"ydy for all B € Bg. (12.3)
B

1
V2mo?
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We will abbreviate this by writing Y N (,u7 02) . When =0 and 0% =1 we

will simply write N for N (0,1) and if Y 4 N, we will say Y is a standard
normal random variable.

Observe that Eq. (12.3)) is equivalent to writing

E[f (V)] = ﬁ / f(y) ez’ gy

for all bounded measurable functions, f : R — R. Also observe that Y 4

N (,u702) is equivalent to Y L 4N + p. Indeed, by making the change of
variable, y = ox + p, we find

B N+ = <= [ fow+ et an

1 1 2 d 1 1 2
L - _ / -l (y—p)

e 202 = e 20 dy.

o /R f ) o Brg? o ) Y

Lemma 12.15. Suppose that {Y,},_, are independent square integrable ran-

dom wvariables such that Y, 2N (,un,ofl). Then Zj’;l Y; converges a.s. iff
E;‘;l 0'?- < oo and Zj‘;l [tj converges.

Proof. The implication “ = ” is true without the assumption that the
Y,, are normal random variables as pointed out in Example [I2.13] To prove
the converse directions we will make use of the Kolmogorov’s three series
theorem. Namely, if Z;’il Y; converges a.s. then the three series in Theorem
12.12] converge for all ¢ > 0.

1. Since Y,, 4 onN + 1, we have for any ¢ > 0 that

oo o0 1
00 > Z P(lonN + pin| > ¢) = Z \/ﬂ/B e 2 dg (12.4)

n=1 n=1

where

Bn:(—oo,—”“")u (c—un,oo)

Un 0-77.
If lim,, 0 f4r, # O then there is a ¢ > 0 such that either u,, > ci.o. or p, < —c
i.o. In the first case in which case (0,00) C B,, and in the second (—o0,0) C B,
and in either case we will have \/% Is. e 2% dx > 1/2 i.o. which would
contradict Eq. . Hence we may concluded that lim,,_, p,, = 0. Similarly
if limy, o 0, # 0, then we may conclude that B,, contains a set of the form
[, 00) i.0. for some a < oo and so

1 / _%mzd S 1 /oo _%zzd .
y— e X y— e X 1.0.
V2 JB, T V2 Ja
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which would again contradict Eq. (12.4). Therefore we may conclude that
hmn—>oo Hn = hmn—>oo On = 0.
2. The convergence of the second series for all ¢ > 0 implies

00 > ZVar (Yalyy, <) = Z Var ([0nN + fin] Lo, Nty <c) » 1€

n=1 n=1

o0
Z o Var Nl‘onN+M|<c) +anar (l‘anNﬂch > Zoian.

where «,, := Var (Nl‘gnNﬂLn‘SC) . As the reader should check, «,, — 1 as
n — oo and therefore we may conclude Y 2, 02 < oco. It now follows by
Kolmogorov’s convergence criteria that Y -, (Y, — p,) is almost surely con-

vergent and therefore
oo (o] (oo}
2 tin =2 Yo =3 (Yo pn)
n=1 n=1 n=1

converges as well.
Alternatively: we may also deduce the convergence of Y7 | yi,, by the
third series as well. Indeed, for all ¢ > 0 implies

onN + fin] 1IUnN+un\SC) is convergent, i.e.
ané + unfBr] is convergent.

where 6,,
effort one can sh

,\ HM8 HMS

1|0'nN+;U"n‘<C) and ﬁn =E (1\O'nN+an|§C) . With a little

Op ~ e k9% and 1 — B ~ e k90 for large n.

Since e~ */7n < Co? for large n, it follows that >~ | [0,0,| < CY 00 03 <
00 SO that anl nBn is convergent. Moreover,

Z ltn (Bn — 1| < CZ |.un|01%, <000
n=1

n=1

and hence

Z;u'n—Z/inﬁn Z/in n_
n=1

n=1

must also be convergent. [
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Ezample 12.16 (Brownian Motion). Let {N,} >, be ii.d. standard normal
random variable, i.e.

P(N,€A) = Le_‘"”z/cha: for all A € Bg.

A V2T
Let {wn},~; CR, {an},~; CR, and t € R, then

oo

E an N, sinwyt converges a.s.

n=1

provided > 7 | a? < oo. This is a simple consequence of Kolmogorov’s con-
vergence criteria, Theorem [12.11] and the facts that E [a,, N, sinw,t] = 0 and

Var (a, N, sinw,t) = a2

sin? wpt < ai‘
As a special case, if we take w, = (2n — 1) § and a,, = % then it follows
that Y
2v/2 Ni . T
B = —— Z = gin (kgt) (12.5)

s k
k=1,35,...

is a.s. convergent for all ¢ € R. The factor % has been determined by re-

quiring,
2
d 2v2
- krt)| dt =1
/0 [dt — sin ( w)]
as seen by,

'rTd . (kr \]° k2m2 [ kr \1°
—sin [ —t dt = —— cos | —t dt
o Ldt 2 22 Jy 2
k2r2 2 Tkn 1 U p2g2
= t + 1 sin k7t

22 krm o TSI
Fact: Wiener in 1923 showed the series in Eq. (12.5) is in fact almost
surely uniformly convergent. Given this, the process, t — B, is almost surely

continuous. The process {B; : 0 <t < 1} is Brownian Motion.

Example 12.17. As a simple application of Theorem [12.12] we will now use
Theorem to give a proof of Theorem We will apply Theorem
with X,, :=Y,, — EY,,. We need to then check the three series in the
statement of Theorem [12.12] converge. For the first series we have by the
Markov inequality,

oo o0 oo

Z (|1 Xn| > ¢) < ZC%MX,,F: C%ZV&I"(Y

n=1 n=1 n=1
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For the second series, observe that

> Var (Xulix,i<e) € DB [(Xalix,<e)’| € DB [X2] = 3 Var(v,) < oo
n=1 n=1 n=1

n=1

and for the third series (by Jensen’s or Holder’s inequality)

Z E (Xnlix,<c)| < ZE (|Xn\2 1‘Xn|§c) < ZVar (V) < oo.
n=1 n=1 n=1

12.2.2 A WLLN Example

Let {X,} 7, be i.i.d. random variables with common distribution function,
F(z) := P(X, <z).For z € R let F, (x) be the empirical distribution
function defined by,

F, () :Z%Zb@g: %Zaxj (=00, 2]).

j=1

Since Elx, <, = F'(z) and {lxjgm};i are Bernoulli random variables, the

1

weak law of large numbers implies F), () LF (z) as m — oo. As usual, for
p € (0,1) let
F= (p) :=inf{x: F(z) > p}

and recall that F~ (p) < z iff F'(z) > p. Let us notice that

F~ (p)=inf{z: F, (z) > p} =inf = : lejgm > np
j=1

=inf{z: #{j <n:X; <z} >np}.

The order statistic of (X7, ..., X,,) is the finite sequence, (an), X2(n), e X,(L")> ,
where (XYL)7 Xén), e ,Xy(Ln)) denotes (X1, ..., X,) arranged in increasing or-

der with possible repetitions. Let us observe that X ]in) are all random variables
for k < n. Indeed, X" < xiff #{j <n:X; <z} > kiff ) 1x,<0 >k,
ie.

(X <2} ={> 12k eB

Moreover, if we let [z] = min{n € Z:n > x}, the reader may easily check

that F;~ (p) = X1
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Proposition 12.18. Keeping the notation above. Suppose that p € (0,1) is a
point where

F(F~(p)—¢e)<p< F(F~ (p)+e¢) foralle >0

then XF:;T =F"(p) R (p) as n — oco. Thus we can recover, with high
probability, the pt* — quantile of the distribution F by observing {X:y ..

Proof. Let ¢ > 0. Then

(F-(p)—F  (p) >} ={F (p)<ec+F (p)={F"(p) <e+F (p)}
={F.(e+F" (p) > p}

so that

{Fy (p)—F~ (p) >e} ={F.(F" (p) +¢) <p}
={F,(E+F (p)-F+F (p)<p-F(F (p)+e)}.

Letting 0. := F (F (p) + &) —p > 0, we have, as n — oo, that
PHEET (p) = F~ (p) >e}) =P (Fu(e+F7 (p) - F(e+F~ (p)) < —bc) = 0.
Similarly, let 8. := p — F (F~ (p) — &) > 0 and observe that

{F™(p)—F, (p) 2} ={F (p) <F" (p) —e} ={Fn (F" (p) —¢) 2 p}

and hence,

P(F=(p) = Fy (p) 2 €)
=P(F,(F (p)—e) - F(F~(p)—e) 2p— F(F~ (p) —¢))
=P(F,(F~ (p)—¢)—F(F~ (p) —€) >6:) = 0asn— oo.
Thus we have shown that XFZ;] L F=(p) as n — oc. [

12.3 Strong Law of Large Number Examples

Ezample 12.19 (Renewal Theory). Let {X;}.2, be i.i.d. random variables with
0 < X; < oo a.s. Think of the X; as the time that bulb number ¢ burns
and T}, := X; + --- + X, is the time that the n*® — bulb burns out. (We
assume the bulbs are replaced immediately on burning out.) Further let N, :=
sup{n > 0:T, <t} denote the number of bulbs which have burned out up
to time n. By convention, we set Ty = 0. Letting u := EX; € (0, 00], we have
ET,, = np — the expected time the nt" — bulb burns out. On these grounds
we expect Ny ~ t/u and hence
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1 1
—-N; — — as. (12.6)
t %
To prove Eq. 1) by the SSLN, if (2 := {hmnéOO %Tn = u} then P ({2) =
1. From the definition of Ny, Ty, <t < Tn,+1 and so

TNt < i < TNt-‘rl.
Ny = N Ny

Since X; > 0 a.s., 21 := {N; T oo ast ] oo} also has full measure and for
w € 20 N 21 we have

. . t [Ty @)+1 (W) Ni (w) 41
= lim MO oy <y : -
P28 TN () it N (@) e | @)+ 1 N, (@) a

Ezample 12.20 (Renewal Theory II). Let {X;};°, be iid. and {Y;};2, be
iid. with {X;};2, being independent of the {Y;};-, . Also again assume that
0< X; <ooand 0<Y; < oo as. We will interpret Y; to be the amount of
time the 7" — bulb remains out after burning out before it is replaced by bulb
number ¢ + 1. Let R; be the amount of time that we have a working bulb in
the time interval [0,¢]. We are now going to show

lim LR - X1
tteo t © EX, +EY;

To prove this, now let T}, := 31" | (X; +Y;) be the time that the n'® — bulb

is replaced and
Ny:=sup{n>0:T, <t}

denote the number of bulbs which have burned out up to time n. Then R; =
Zf\il X;. Setting p = EX; and v = EY;, we now have %Nt — L as. so

ptv
that N; = uivt + o(t) a.s. Therefore, by the strong law of large numbers,
Ny Ny
1 1 Ny 1 1
“R=-Y x == =Y x, s,
g t; ¢ Nt; T ato P28

Theorem 12.21 (Glivenko-Cantelli Theorem). Suppose that {X,} -,
are i.i.d. random wariables and F(x) := P(X; <x). Further let u, :=
%Z?:l 0x, be the empirical distribution with empirical distribution
Sfunction,

Fo (&) = pin ((=00,0]) = = 3 Iy

Then
lim sup|F, (z) — F (z)] =0 a.s.
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Proof. Since {lx,<,};~, are iid random variables with Elyx,<, =
P(X;<xz) = F(x), it follows by the strong law of large numbers the
lim, o F,, () = F (z) as. for each z € R. Our goal is to now show that
this convergence is uniformEI To do this we will use one more application
of the strong law of large numbers applied to {1x,<,} which allows us to
conclude, for each z € R, that

lim F,, (x—) = F (z—) a.s. (the null set depends on x).

Given k£ € N, let Ay := {%:izl,?,...,kfl} and let z; :=
inf{z: F(x)>i/k} for i = 1,1,2,...,k — 1. Let us further set z;, = oo
and xg = —oo. Observe that it is possible that x; = x;;1 for some of the 3.

This can occur when F has jumps of size greater than 1/k.

4: /

>

i Xy = ALy

Now suppose i has been chosen so that x; < ;11 and let © € (2, 241) .
Further let NV (w) € N be chosen so that

! Observation. If F' is continouous then, by what we have just shown, there is a set
20 C 2 such that P (£20) = 1 and on 2, F,, (r) — F (r) for all » € Q. Moreover
on 2, if z € Rand r < x < s with r,s € Q, we have

F(r)= lim F, (r) <liminf F, (z) <limsup F, (z) < lim F, (s) = F (s).

n—oo n—oo n—oo n— oo

We may now let s |  and r T = to conclude, on {2y, on

F (z) <liminf F, (z) < limsup F,, (z) < F (z) for all z € R,

n— oo n— oo

ie. on 2, limp—oo Fr (x) = F (z). Thus, in this special case we have shown off
a fixed null set independent of x that lim, . F,, () = F (z) for all z € R.
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[P () = F (z3)| < 1/k and |F,, (2i—) = F (2;—)[ < 1/k

forn > N(w)andi=1,2,...,k—1 and w € 2 with P ({2;) = 1. We then
have

and
F,(x) > F, (z;) > F(x;) = 1/k > F (x441—) — 2/k > F (x) — 2/k.

From this it follows that |F' () — F,, ()| < 2/k and we have shown for w € {2
and n > N (w) that

Sup |F (z) — Fy (v)| < 2/k.

Hence it follows on 2y := N5, (2 (a set with P (£29) = 1) that

lim sup |F, () — F (z)| = 0.

Ezample 12.22 (Shannon’s Theorem). Let {X;}:~, be a sequence of i.i.d. ran-
dom variables with values in {1,2,...,7} C N. Let p (k) := P (X; = k) > 0 for
1 < k < r. Further, let 7, (w) = p (X3 (w))...p (X, (w)) be the probability of
the realization, (X (w),..., X, (w)). Since {Inp (X;)}:=, are i.i.d.,

1
——lnﬂnz—fzmp i) — —E[lnp(X1)] Zp Ynp (k) =: H (p).

In particular if ¢ > 0, P (|H — L Inm,| > ) — 0 as n — oo. Since

>5}:{H+11n7rn>5} {H+1ln7rn<—5}
= {lnﬂn>H+{—:}U{1n7rn < Hs}
n n

= {ﬂ'n > e"(*H“)} U {wn < e”(*H*E)}

c
>g}

1
{‘H+ —Inm,
n

and

{ﬂ'n > en(—H+5)}C g {7Tn < en(—H—g)}C

{ﬂ-n < en(fHJrs)} N {7Tn > en(fos)}

— {e—TL(H+E) <m, < e—n(H—e)}7

1
{’H— —Inm,
n
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it follows that
P (e_”(H+E) <m, < e_"(H_E)) — 1 asn — oo.
Thus the probability, m,, that the random sample {X1, ..., X, } should occur

is approximately e ™ with high probability. The number H is called the
entropy of the distribution, {p (k)};_, .

12.4 More on the Weak Laws of Large Numbers

Theorem 12.23 (Weak Law of Large Numbers). Suppose that {X,} -,
is a sequence of independent random variables. Let S, = 2?21 X; and

an = E(Xy:[Xi| <n) =nE(X;:|X1] <n).
k=1

If
n
> P (IXk[>n)—0 (12.7)
k=1
and
1 n
— > E(XP Xk <n) =0, (12.8)
k=1
then g
Pn —4n P 0.
n

Proof. A key ingredient in this proof and proofs of other versions of the
law of large numbers is to introduce truncations of the { X} . In this case we

consider .
= ZXk1|Xk\§n'
k=1
Since {Sy, # Sp/} C UR_y {|Xk| > n},
> 5)

_ ! _ /
P(‘Sn an  Sp —an >s>_P<‘Sn S!
n n

n
P (S, # Sn) Z (| Xkx] >n) — 0asn — oo.
k=1

S, —an

Hence it suffices to show £ 0 asn — oo and for this it suffices to show,

Sl —an L*(P)
——= — "0 asn— oo.
Observe that ES!, = a,, and therefore,
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S —a 2 n
E |:nnn:| 7V&I‘ Sl Z Xklle|<n)

k=1

IN

% D E(X71x,j<n) — 0 as n — oo
k=

We now verify the hypothesis of Theorem [12.23|in three situations.
Corollary 12.24. If {X,}°>2, are iid. L*(P) - random variables, then

Proof. By the dominated convergence theorem,

an, 1
— == E(Xr:|Xg| <n)=E(X;:|X1| < . 12.9
2= LB S0 =B XS0 e (129
Moreover,
1< ) 1 ) 1 )
EE ]E(Xk:|Xk|§n):EE(X1:|X1\§n)§EE(X1)—>Oasn—>oo

k=1

and by Chebyschev’s inequality,

n
1

E P(|Xg| >n)=nP(|X1| >n) < n—2E|X1|2 — 0asn — 0.
n

k=1

With these observations we may now apply Theorem [12.23| to complete the
proof. [

Corollary 12.25 (Khlntchln s WLLN). If {X,};2, are iid. L'(P) -
random variables, then ESH £ nw=EX;.

Proof. Again we have by Eq. (12.9), Chebyschev’s inequality, and the
dominated convergence theorem, that

n

1
ZP(\XH >n)=nP(|X1] >n) < HEEHX” (| X1l >n] = 0asn— oo.
k=1

Also

1 — 1
S E(X} X <n) = TE[Xi: Xl <n] = E [Xn' Fly e
k=1

and the latter expression goes to zero as n — oo by the dominated convergence
theorem, since
1

K <ixpe )

and lim,, o |X1| |1‘X1‘<n = 0. Hence again the hypothesis of Theorem
[[223 have been verified. n
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Lemma 12.26. Let X be a random variable such that T (x) := 2P (| X| > x) —
0 as x — oo, then

1
lim ~E [\X\Q LX< n} = 0. (12.10)
n—oo N

Note: If X € L'(P), then by Chebyschev’s inequality and the dominated
convergence theorem,

7(x) <E[|X|:|X|>2] =0 as x — oo.

Proof. To prove this we observe that
§2/ xP (| X]| Zac)dx:2/ 7 (x) dz.
0 0

Now given € > 0, let M = M (e) be chosen so that 7 (z) < € for x > M. Then

M n
E[|X\2:|X\§n} :2/ T(I)dl’JrQ/ T(z)de <2KM +2(n— M)e
0 M

where K = sup {7 (z) : « > 0} . Dividing this estimate by n and then letting
n — oo shows

hmsup E [\X| |X| < n} < 2e.
n—oo

Since € > 0 was arbitrary, the proof is complete. [

Corollary 12.27 (Feller’s WLLN). If {X,},-, are i.i.d. and T( ) =
xP (| X1] >x) — 0 as * — o0, then the hypothesis of Theorem are
satisfied.

Proof. Since
ZP | X% >n) =nP(|X1] >n)=7(n) - 0asn — oo,
k=1
Eq. (12.7) is satisfied. Eq. (12.8]), follows from Lemma [12.26|and the identity,

]. 2 ]- 2
- X < :—]E{X X <}.
i B O <) = LB [l <o
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12.5 Maximal Inequalities

Theorem 12.28 (Kolmogorov’s Inequality). Let {X,,} be a sequence of
independent random variables with mean zero, S, = X1 + -+ + X,, and
S} = max;<, |S;|. Then for any o > 0 we have

* 1 *
P(SNEQ)S?E[S%V:|SN‘ZO[}'

(See Proposition and Ezample |19.4( below for generalizations of this
inequality.)

Proof. Let J = inf {j : |S;| > o} with the infimum of the empty set being
taken to be equal to co. Observe that

=7 ={IS1<a,..,[8i-1| <a,|S] > a} € o (Xy,..., Xj).

Now
N
[SX IS8 >a] =R [S}: J < N] =) E[S}:J =]
j=1
N
=Y B[S+ Sv -5 T =]

<.
Il
—_

I
] =

E[S2+ (Sn — 8;)° +28; (S = 8) 1 T = j

j=1
) o 2 .
fZE[SJ+(SNij) .ny}
j=1
N N
>3 E[S;:J=j]>a*) P[J=j=a’P(Sx|>a).
j=1 j=1

The equality, (%), is a consequence of the observations: 1) 1;-;5; is
o (Xi,...,X;) — measurable, 2) (S, —5;) is 0 (Xj41,...,X,) — measurable
and hence 1;-;5; and (S, — S;) are independent, and so 3)

E[S; (Sy —S;) : J = j] =E[S;1;=; (Sn — S;)]
=E[Sj1,55] - E[Sy — S;] =E[S;1,-5]-0=0.
| |

Corollary 12.29 (L% — SSLN). Let {X,,} be a sequence of independent ran-
dom wvariables with mean zero, and 0® = EX2 < oco. Letting S, = Y 1_; Xk
and p > 1/2, we have
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1
HS’H — 0 a.s.

If {Y,,} is a sequence of independent random variables EY,, = pu and 0? =
Var (X,,) < oo, then for any § € (0,1/2),

1 — 1
n n
k=1

Proof. (The proof of this Corollary may be skipped. We will give another
proof in Corollary[12.36|below.) From Theorem [12.28] we have for every € > 0
that

1
g2N2p

1 C
I = 2w = a2y

P(SN >a> =P (Sy>eNP) <

2
v E [S¥

Hence if we suppose that N, = n® with « (2p — 1) > 1, then we have
S

oo oo C
> (5 29) <3 ey <

n=1

and so by the first Borel — Cantelli lemma we have

S}*Vn )
P 3 > ¢ for n i.0. =0.

*

.. . S
From this it follows that lim, .., # = 0 a.s.

To finish the proof, for m € N, we may choose n = n (m) such that

n®=N,<m< Np41 =(n+1)7.

Since . .
Nn(m) < S:n < Nn(wt)#»l
P > = P
Nn(m)+1 m Nn(m)
and

Npt1/Np — 1 as n — oo,
it follows that

* * %

. Ny (m . N, .
0= lim %zhm %“’”ghm—’g
m—oo n(m) m— 00 n(m)+1 m—0o0 M,
SA SK
. No(m . No(m
< lim % = lim % =0 as.
m— oo Nn(m) m— oo n(m)+1

*

That is lim,, oo 22 = 0 as. n
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Theorem 12.30 (Skorohod’s Inequality). Let {X,,} be a sequence of in-
dependent random variables and let o > 0. Let S,, := X1+ ---+ X,,. Then for
all a > 0,

P (15| > ) 2 (1= e (@) P (|51 > 20 )

where
ey (@) = IjnS%(PﬂSN -S| >a).
Proof. Our goal is to compute
P <max|Sj| > 2a> .
J<N
To this end, let J = inf {j : |S;| > 2a} with the infimum of the empty set
being taken to be equal to co. Observe that
{J :]} = {|Sl| < 20[, R |Sj*1| < 2aq, ‘SJ| > 20[}
and therefore
N
{rj%wﬂ > 2a} :;{J:
Also observe that on {J = j},
|Sn| =[Sy = 8; + 5;| =2 |Sj] = |Sn = S5 > 20— [Sy = 551
Hence on the {J = j,|Sy — S| < a} we have |Sy| > a, Le.
{J=14,1Sv = S| <a} C{|Sn|>a} forall j <N.

Hence ti follows from this identity and the independence of {X,,} that

N
P(|Sn| > o) ZZP(J:J'JSN—SH <a)

<.
Il
—

(/=) P (S8 = Sj| < ).

<
Il
—_

|
.MZ
|

Under the assumption that P (|Sy — 5;| > o) < c for all j < N, we find
P(Sy—Sj|<a)>1-c¢c

and therefore,
N
P(|Sn|> @) ZZ J(1—¢)= (1_C)P<%a]ff(|5j|>2a>'
n

As an application of Theorem [12.30| we have the following convergence
result.
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Theorem 12.31 (Lévy’s Theorem). Suppose that {X,} —, are i.i.d. ran-
dom variables then > - | X,, converges in probability iff >, X,, converges
a.s.

Proof. Let S,, := >_}_, Xj. Since almost sure convergence implies con-
vergence in probability, it suffices to show; if S, is convergent in prob-
ability then S,, is almost surely convergent. Given M € M, let Qp; =
sup,>as [Sn — Sum| and for M < N, let Qup N = Suppr<p<n |Sn — Sml-
Given ¢ € (0,1), by assumption, there exists M = M (¢) € N such that
maxp<j<n P (|Sv — S| >¢) < ¢ for all N > M. An application of Skoro-
hod’s inequality, then shows

P (|Sy — Su| > ¢€) €

P >2) < < .
(QMJV_ )_ (1—maXM§j§NP(|SN—Sj|>E)) “1-—c¢

Since Qar,n T Qar as N — oo, we may conclude

£
1—¢

P(Qum >2¢) <
Since,
dar = sup |Sp — S| < sup [|Sn — Sum| + |Sw — Sl =2Q 0
m,n>M m,n>M

we may further conclude, P (6 > 4¢) < 1= and since € > 0 is arbitrary, it

follows that das L 0as M — . Moreover, since §j; is decreasing in M, it

follows that limp;_, dps =: 0 exists and because &y 5 0 we may concluded
that 6 = 0 a.s. Thus we have shown

lim |S, — S| =0 a.s.

m,n— oo

and therefore {5, } -, is almost surely Cauchy and hence almost surely con-
vergent. u

Proposition 12.32 (Reflection Principle). Let X be a separable Banach
space and {fi}ijil be independent symmetric (i.e. &; 4 —&;) random variables

with values in X. Let Sy := Zle & and Sy = sup,; <y, [|S;]| with the conven-
tion that S5 = 0. Then

P(Sk > 1) < 2P (|Sw ]| > 7). (12.11)
Proof. Since

{Sx 2ry =Y LISl >r, Sj_ <7},
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P(Sy z7r)=P(Sy zr, ISvllZ27)+ P(Sy 27, (S <7)

= P([|Snll = 7) + P(Sy =7, [ISn]l <7). (12.12)
where
N
P(Sy >r |ISnl <r) =S P(ISill >r, Siy<r, |Sxl <r). (12.13)
j=1

By symmetry and independence we have

P(IS =7, S;_y <r, |ISnll <r)=P(IS;] =7, Sj_y <r S5+ &l <7)

k>j

= P(HSJH > r, 5;71 <r, Sj - ka < T)

k>j
= P(|Sll > 7, Sj_1 <7, [|25; = SN[l < 7).

If ||S;]| > r and ||2S; — Sn|| < 7, then
r> 255 = Snll = 2[9;]l = [ISn [l = 2r — [|Snl
and hence ||Sy|| > r. This shows,
{8l = v, 854 <r 1285 = Swll <r} c{lISill =7, Sy <7, [ISnll >}
and therefore,
PIS;ll =, Sjy <7, ISvI <) < POIS;ll = 7, S5y < SN[ > 7).

Combining the estimate with Eq. (12.13)) gives

N
P(Sy >, ISl <r) <Y PUIS;II =7, Sj_y <7, [ISnll>7)
j=1

= P(Sy 27, |Snll>r) < P(ISN]l = 7).

This estimate along with the estimate in Eq. (12.12)) completes the proof of
the theorem. n

12.6 Kolmogorov’s Convergence Criteria and the SSLN

We are now in a position to prove Theorem [T2.11] which we restate here.

Theorem 12.33 (Kolmogorov’s Convergence Criteria). Suppose that
{Ya},2, are independent square integrable random variables. If 3272, Var (Y;) <

oo, then 372 (Y; — EYj) converges a.s.
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Proof. First proof. By Proposition the sum, Z(;il (Y; —EY;),
is L? (P) convergent and hence convergent in probability. An application of
Lévy’s Theorem [12.31| then shows Zj; (Y; — EY;) is almost surely conver-
gent.

Second proof. Let S, := Z;-L:l X, where X; :=Y; — EY}. According to
Kolmogorov’s inequality, Theorem [12.28] for all M < N,

1 R
2] 2

P (MH<1?§N |S; — Swml| > oz) < @E [(SN — Sum) ] =2 %:HIE [Xj]

j=

1 N
== > Var(X;).
J=M+1

Letting N — oo in this inequality shows, with Qas := sup;> / [S; — Sul,

Since

dp = sup |S; — Sk < sup [|S; — Sml|+ S — Skl] <2Qm
J,k>M g, k>M

we may further conclude,

P((SMZQOZ)Si Z Var (X;) — 0 as M — oo,

ie. Opr L 0 as M — oo. Since dpr is decreasing in M, it follows that

limps— o0 Oar =: O exists and because s L0 we may concluded that § = 0
a.s. Thus we have shown

lim |S, — S| =0 a.s.

m,n— oo

and therefore {5, } -, is almost surely Cauchy and hence almost surely con-
vergent. u

Lemma 12.34 (Kronecker’s Lemma). Suppose that {xr} C R and {ar} C
(0,00) are sequences such that ap 1 oo and Y -, ok exists. Then

n
. 1
lim — E x = 0.
n—oo @
" k=1
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Proof. Before going to the proof, let us warm-up by proving the following
continuous version of the lemma. Let a (s) € (0,00) and z (s) € R be contin-

uous functions such that a(s) T oo as s — oo and [|* z(si ds exists. We are

going to show
1

nILrI;O a(n)/l x(s)ds =0.
Let X (s) := [ « (u) du and

o0 A o0
X (u)du:/ ()
a (u) s a(u)
Then by assumption, 7 (s) — 0as s — 0and X’ (s) = —a (s) ' (s) . Integrating
this equation shows

X (s)— X (sg) = —/Sa(u) ' (u) du = —a (u)r (u) [5—,, —l—/sr(u)a/ (u) du.

S0 S0

Dividing this equation by a (s) and then letting s — oo gives

X [also)rso) —a(s)r(s) |1
ls—>oop CL(S) ls—>oop L CL(S) a(s) S0

< limsup | =1 (s) + % / Ir (u)] o (u) du]

< lim sup als) —a(s) sup |r (u)@ = sup |r (u)| — 0 as sg — 0.
s—oo | a (5) u>so u>so

With this as warm-up, we go to the discrete case.

Let
k o)
xj

Sy = ij and ry ;= —

a;
j=1 j=k 7

so that r, — 0 as k — oo by assumption. Since xy = ay, (ry — rg+1), we find

S n+1
n
— = E ag 7“k - 7’k+1 E agTr — g ak—1Tk
an  Gp &
1 .
= — |07~ anTnt + g (ag — ag—1) Tk | - (summation by parts)
" k=2

Using the fact that ap — ax—1 > 0 for all £ > 2, and

m

. 1
S UM IARY

for any m € N; we may conclude
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S 1|
lim sup ’" < limsup — Z (ax — ak—1) |k
n—oo |Q n—oo On s
1 n
= limsup — [Z (ar — ax—1) Tk|1
n—oo On P
=m
1 n
< sup |rg| - im sup — ar — Qp—
sup 7] - Jimsup 2= Lg%( 1)
. 1
= sup |rg| - limsup — [a,, — am—1] = sup |rg] .
k>m n—oo On k>m
This completes the proof since supy,, [rx| — 0 as m — oc. |

Corollary 12.35. Let {X,,} be a sequence of independent square integrable
random variables and b, be a sequence such that b, T co. If

Z Var (X},) -
b2
k=1 k

then
S, —ES,

bn
Proof. By Kolmogorov’s Convergence Criteria, Theorem [12.33

— 0 a.s.

= X —EXy,
Z ——— 18 convergent a.s.
k=1 Ok

Therefore an application of Kronecker’s Lemma implies

1 — S, — ES,,
0= lim — (X —EXy) = lim ———.
nsbo b, kzzl k k) = lim b,

Corollary 12.36 (L?> — SSLN). Let {X,} be a sequence of independent
random wvariables such that 0® = EX? < oo. Letting S, = > p_, X) and

w=EX,, we have
1

by
provided b, T oo and > -7, b% < 00. For example, we could take b, = n or

by, = nP for an p > 1/2, or b, = n'/? (lnn)l/2+s for any € > 0. We may

rewrite Eq. as

(Sp —np) — 0 a.s. (12.14)

Sp—nu=o0(1)b,

or equivalently,
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Proof. This corollary is a special case of Corollary Let us simply
observe here that

o0 o0

1 1

n=2 <n1/2 (ln n)1/2+5> n=2 n

by comparison with the integral

| megte = [ e = [ g <o

wherein we have made the change of variables, y = In x. ]
Fact 12.37 Under the hypothesis in Corollary
Sn = \fog as.

lm —M—
n—oo n1/2 (ln In n)1/2

Our next goal is to prove the Strong Law of Large numbers (in Theorem
12.7) under the assumption that E|X;]| < co.

12.7 Strong Law of Large Numbers

Lemma 12.38. Suppose that X : {2 — R is a random variable, then
E|X|” :/ psP=1P(|X] > 5) ds :/ psP 1P (|X| > 5) ds.
0 0

Proof. By the fundamental theorem of calculus,

| X 0o 0o
| X P :/ pspfld‘s:p/ Li<|x| ~sp*1ds:p/ Loc|x| - sPds.
0 0 0

Taking expectations of this identity along with an application of Tonelli’s
theorem completes the proof. [ |

Lemma 12.39. If X is a random variable and € > 0, then

oo 1 oo
> P(X|>ne) < E|X| < > P(IX] > ne). (12.15)

n=1 n=0

Proof. First observe that for all y > 0 we have,

D lngy YD lagy 1= lng, (12.16)
n=1 n=1

n=0

Taking y = | X| /e in Eq. (12.16)) and then take expectations gives the estimate
in Eq. (12.15). [ |
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Proposition 12.40. Suppose that {X,} -, are i.i.d. random variables, then
the following are equivalent:

1.E ‘X1| < 0o0.
2. There exists € > 0 such that Y~ P (|X1] > en) < oc.
3. Foralle >0, > ° | P(|X1| > en) < .

4' My — 00

=0 a.s.
n

Proof. The equivalence of items 1., 2., and 3. easily follows from Lemma
So to finish the proof it suffices to show 3. is equivalent to 4. To this
end we start by noting that lim,, ‘);"l =0 a.s. iff

Xn
0=P <|| >e i.o.) = P(|X,| > ne i.o.) forall e > 0. (12.17)
n

However, since {|X,,| > ne} | are independent sets, Borel zero-one law shows

the statement in Eq. (12.17) is equivalent to Y~ P (| X,| > ne) < oo for all

n

e > 0. ]

Corollary 12.41. Suppose that {X,,} -, are i.i.d. random variables such that
%Sn — c€R as., then X,, € L' (P) and p := EX,, = c.

Proof. If %Sn — ¢ a.s. then ¢, := f{ff — % — 0 a.s. and therefore,
Xny1  Snta Sh 1 1
= - = ¢&n Sn - -
n+1 n+1 n+1 €n T+ n n+1
1 S,
=en+——=——0+4+0:-¢c=0
(n+1) n

Hence an application of Proposition [12.40| shows X,, € L' (P). Moreover by
Exercise {%Sn}:il is a uniformly integrable sequenced and therefore,

i-2[ts] <5 L] <=

n—oo 1
]
Lemma 12.42. For all z > 0,
() ::nz_:lnlzngn :7;7112 < 2-min (;,1) .
Proof. The proof will be by comparison with the integral, faoo t%dt =1/a.

For example,

1 |

E —2§1+/ —2dt:1+1:2
n 1 t

n=1
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and so

Z Zn2: §%or0<z<1

n>x

Similarly, for x > 1,

1 1 <1 1 1 1 1 2
Sos< ot gli=gro=—(14 )<
n? — a2 - 2?2 oz x x

]
Lemma 12.43. Suppose that X : 2 — R is a random variable, then
an [IX\ ¢1|X\§n] <2E[X].
Proof. This is a simple application of Lemma [12.42
S Lr(ix?1 R |xPS L =E||X]p (X
> SE X lxicn| =E|IXP Y —lixica | =E[IXP (X))
n=1 n=1
1
< 2E [X|2 ( A 1” <2E|X].
| X
]

With this as preparation we are now in a position to prove Theorem
which we restate here.

Theorem 12.44 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {X,,},~_, are i.i.d. random variables and let S, :== X1 + -+ X,,.
Then there exists p € R such that %Sn — u a.s. iff X, is integrable and in
which case EX,, =
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Proof. The implication, =S, — p a.s. implies X,, € L' (P) and EX,,
has already been proved in Corollarym So let us now assume X,, € L! (P)
and let p:=EX,.

Let X, := X,,1|x,|<n- By Proposition [12.40)

N P(X, #Xn) =) P(IX,|>n)= Z (1X1] >n) <E|X;| < oo,
n=1

and hence {X } and {X]} are tail equivalent. Therefore it suffices to show
lim, .o =5, = p a.s. where S/, := X{ + -+ + X . But by Lemma [12.43

= g E[P s

— Var (X/, 4
yo Ve lh) s B

n=1 n=1 n=1
>~ E [|X1\2 1\X1|Sn}
=> : < 2E|X,| < oo.
n
n=1

Therefore by Kolmogorov’s convergence criteria,

X, —-EX]
Z —~——" is almost surely convergent.
n

n=1

Kronecker’s lemma then implies

So to finish the proof, it only remains to observe

R LG 1
nlilrgogkzﬂEX,g = lim —Z]E[an‘xﬂgn] = lim *;E[thxl\gn]

n—00 N — n—oo N
n— oo

Here we have used the dominated convergence theorem to see that a, :=
E [X11x,|<n] — 1 as n — oo. It is now easy (and standard) to check that
My, oo = S0y @y = limy, oo ap = 11 as well. m

We end this section with another example of using Kolmogorov’s conver-
gence criteria in conjunction with Kronecker’s lemma. We now assume that
{X,} 2, are ii.d. random variables with a continuous distribution function
and let A; denote the event when Xj is a record, i.e.

Aj = {XJ > max {Xl,XQ, - 7Xk_1}} .

Recall from Renyi Theorem that {4;}77, are independent and P (4;) =
7 L for all j.
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Proposition 12.45. Keeping the preceding notation and let py := Zjvzl la,
denote the number of records in the first N observations. Then limy_, o £5¢ =

1 a.s.
Proof. Since 1 A, are Bernoulli random variables, E1 A; = % and

1 j-1

J2 72

Var (1Aj) = Elij — (]Elj%)2 =

(-

Observing that
n n 1 N 1
SoELy, =3~ [ fdr=mN
— — ) 1 X
j= j=

we are lead to try to normalize the sum Zjvzl 1a; by In N. So in the spirit of
the proof of the strong law of large numbers let us compute;

- 1a, — 1 j—1 > 11 > 1
ZV&r(AJ,>—Z 2'1.2 N/ 5 fdx:-/ —dy < 00.
— In j — In“j J 2 In"zx m2 Y
j=2 j=2

Therefore by Kolmogorov’s convergence criteria we may conclude

im—% :i Ly, g [la
Inj Inj Inj

j=2 =2

is almost surely convergent. An application of Kronecker’s Lemma then im-

plies
N 1
lim Ej:l <1Aj _ ;)
n— o0 InN
So to finish the proof it only remains to show

N 1
lim 7Zj:1 i
n—oo ln N

=0 a.s.

—1. (12.18)

To see this write

j=1
N o i+l N
= / (1 - 1) dz + Z !
j=1"7 rod =
Al
—on+ > (12.19)
=17

where
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In(1+1/5) —‘ Z%

j=1 j=1 j=1

and hence we conclude that limy_. o, py < 00. So dividing Eq. (12.19) by In V
and letting N — oo gives the desired limit in Eq. (12.18)). [ ]

12.8 Necessity Proof of Kolmogorov’s Three Series
Theorem

This section is devoted to the necessity part of the proof of Kolmogorov’s
Three Series Theorem [12.12] We start with a couple of lemmas.

Lemma 12.46. Suppose that {Yn}ff:l are independent random variables such
that there exists ¢ < oo such that |Y,| < ¢ < oo a.s. and further assume
EY, = 0. If Y07, Y, is almost surely convergent then Y .- | EY,? < co. More
precisely the following estimate holds,

> A+c)?
Ey? < — 12.2
Z S Bl L= o A> 0 (12.20)

where as usual, Sy, = Z?Zl Y;.

Remark 12.47. Tt follows from Eq. (12.20)) that if P (sup,, |Sn| < o0) > 0, then
Z;‘;l ]EYj2 < oo and hence by Kolmogorov’s Theorem, Z?’;l Y; =lim, . Sy
exists a.s. and in particular, P (sup,, |S,| < 00).

Proof. Let A > 0 and 7 be the first time |S,| > A, ie. let 7 be the
“stopping time” defined by,

T=7y:=inf{n >1:|S,| > \}.
Asusual, T =00 if {n >1:|S,| > A} = 0. Then for N € N,

E[szv]:E[S?VZTSN]+E[S]2\,IT>N}
<E[S}:7T<N|]+NP[r>N].

Moreover,
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N N
E[S?V:TgN]:ZE[SJQV:T:j]:ZE“S]‘—FSN—SJ-\Q:T:]}

j=1

<.
Il
a

] =

E[$2+28; (S = 8j)+ (Sn = $;)° i 7 = j]

=Y E[s}:7=/] +ZE[(SN—Sj)2]p[T:j]
SZE[(Sj,l +Y5)7 7= j] +E[S}] Y Plr=

M=

E[(AJFC)Q:T:g} +E[S%] P[r < N]

<.
I
—

= [0+ +E[S}]| P[r < N

Putting this all together then gives,
E[s%] < [0+ +E[S%
<[a+o*+E[s%
=(A\+0)’+P[r<N]-E[S%]

form which it follows that

) (A +c¢)? Ao’ (A+o)S
BN S PN S T-Pr<od ~ Plr=od
()\+c)2

P (sup,, |S,| < /\).

Since S, is convergent a.s., it follows that P (sup,, |S,| < co) = 1 and there-
fore,

lim P (Sup|Sn| < A) =1
AToo n
Hence for A sufficiently large, P (sup,, |Sn| < A) > 0 ad we learn that

> . )\+c)2
EY2 = lim E[S%] < ( )
2BV = Jim B < 5, = <%

Lemma 12.48. Suppose that {Y, },-_| are independent random variables such
that there exists ¢ < oo such that |Yy,| < ¢ a.s. for alln. If Y| 'Y, converges
in R a.s. then Y .~ | EY,, converges as well.
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Proof. Let (29, By, Py) be the probability space that {Y,,} -, is defined
on and let

Q= x 2o, B:=By® By, and P := Py ® P,.
Further let Y, (w1, ws) : =Y, (w1) and Y, (w1, ws2) := Y, (w2) and

Zn (wi,w2) =Y, (wi,w2) = Y, (w1, wa) =Y, (w1) — Y, (w2) .
Then |Z,| < 2c¢ a.s., EZ, =0, and

i Zn (w1, ws) = i Y, (w1) — i Y, (w2) exists
n=1 n=1 n=1

for P a.e. (w1,ws). Hence it follows from Lemma [12.46] that

o0

00 > ZEZZ = iVar(Zn) = iVal" (Y, =Y))
n=1 n=1

[Var (Y,)) + Var (Y,))] = 2 Z Var (Yy,) .

n=1

Mo 2

3
Il
-

Thus by Kolmogorov’s convergence theorem, it follows that >~ , (Y,, — EY},)
is convergent. Since )~ Y, is a.s. convergent, we may conclude that
Yoo L EY,, is also convergent. n
We are now ready to complete the proof of Theorem [12.12
Proof. Our goal is to show if {X,,}~, are independent random variables,
then the random series, 22021 X, is almost surely convergent iff for all ¢ > 0
the following three series converge;

L3 21 P(1Xa| > ¢) < oo,
2. 32, Var (X,1x, |<c) < o0, and
3. 3 E(Xnlix, |<c) converges.

Since 270;1 X, is almost surely convergent, it follows that lim,, ., X,, =0
a.s. and hence for every ¢ > 0, P ({|X,,| > c¢i.0.}) = 0. According the Borel
zero one law this implies for every ¢ > 0 that Y~ | P (|X,,| > ¢) < co. Given
this, we now know that {X,} and {X,Cl = Xn1|Xn|§c} are tail equivalent for
all ¢ > 0 and in particular > o> | X¢ is almost surely convergent for all ¢ > 0.
So according to Lemma (with Y, = X?),

(oo} oo
Z EXS = Z E (Xn1|Xn‘§c) converges.
n=1

n=1

Letting Y,, := X¢ — EX¢, we may now conclude that > 7Y, is almost
surely convergent. Since {Y},} is uniformly bounded and EY;, = 0 for all n, an
application of Lemma [12.46| allows us to conclude
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oo o0
> Var (Xnlix, <o) = Y _EY; < oo.
n=1

n=1
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Weak Convergence Results

Suppose {X,,} | is a sequence of random variables and X is another random
variable (possibly defined on a different probability space). We would like to
understand when, for large n, X,, and X have nearly the “same” distribution.
Alternatively put, if we let p, (A) = P (X, € A) and pu(A) := P(X € A),
when is p,, close to u for large n. This is the question we will address in this
chapter.

13.1 Total Variation Distance

Definition 13.1. Let p and v be two probability measure on a measurable
space, (§2,B). The total variation distance, dpy (u,v), is defined as

dry (p,v) = sup lu(A) —v (A).

Remark 15.2. The function, A : B — R defined by, A (4) := p(A) — v (A) for
all A € B, is an example of a “signed measure.” For signed measures, one
usually defines

|\l 7y == sup {Z IA(4;)| : n € N and partitions, {4;}" , C B of _Q} i

i=1
You are asked to show in Exercise below, that when A\ = pu — v,

drv (p,v) = 5 |l —vllpy -

Lemma 13.3 (Scheffé’s Lemma). Suppose that m is another positive mea-
sure on (2, B) such that there exists measurable functions, f,g: 2 — [0,00),
such that dp = fdm and dv = gde| Then

1
drv (uv) =5 [ 17 =gl dm.

Moreover, if {un}, - is a sequence of probability measure of the form, du,, =
fndm with f, : 2 — [0,00), and f, — g, m - a.e., then dpy (pn,v) — 0 as
n — oo.

! Fact: it is always possible to do this by taking m = p 4 v for example.
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Proof. Let A\=p—vand h:= f —g: {2 — R so that d\ = hdm. Since
A2 =p(2)—v(2)=1-1=0,

if A € B we have
AA) +A(A)=)X(2)=0.

In particular this shows |\ (4)| = |\ (A)| and therefore,

SN+ W = g || [ |+ | [ haml]| )
s | ot [ nlam] =3 [ ol

1
dry (1,v) = sup |\ (4)] < 5/ Ih| dm.
AeB (9

A (A)]

IN

This shows

To prove the converse inequality, simply take A = {h >0} (note A° =

{h <0}) in Eq. (13.1) to find

|/\(A)|:% UAhdm Achdm}

1 1
:U |h\dm+/ |h|dm}:/|h|dm.

For the second assertion, let G, := f, + g and observe that |f, —g| — 0
m —ae., |fo—g| <G, € L' (m), G, - G:=2gae and [,Grdm =2 —
2= f o Gdm and n — oco. Therefore, by the dominated convergence theorem

1
lim dry (pin,v) = = lim |frn — gldm = 0.
n—00 2n—oo [

]
For a concrete application of Scheffé’s Lemma, see Proposition|13.35/below.

Corollary 13.4. Let ||h]|, = sup,cq |h (w)| when h : 2 — R is a bounded
random variable. Continuing the notation in Scheffé’s lemma above, we have

dTV(,u,V)—;sup{'/thu/thu

Consequently,
/ hdu — / hdv
¢ Q

and in particular, for all bounded and measurable functions, h: 2 — R,

Al < 1}. (13.2)

< 2y (1,v) - [l (13.3)
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/ hdp, — / hdv if dpy (pn,v) — 0. (13.4)
0 Q
Proof. We begin by observing that

hdp —

h(f—g)dm‘</0|h||f—gdm

hdv
o}

< hl /Q 1 — gldm = 2dry () [hll

Moreover, from the proof of Scheffé’s Lemma we have

drv (p,v ’/ hdp — /hdl/

when h 1= 1754 —1¢<4. These two equations prove Egs. and and
the latter implies Eq. . |

Exercise 13.1. Under the hypothesis of Scheffé’s Lemma show

= gy = /Q f — gl dm = 2y (u.v).

Exercise 13.2. Suppose that (2 is a (at most) countable set, B := 2, and
{pn},~, are probability measures on (§2,B). Let f, (w) := p, ({w}) for w €
2. Show

dTV N'ru,u'O Z |fn )|

wEQ

and limy, o0 dpy (fn, po) = 0 iff lim,, oo i, ({w}) = o ({w}) for all w € £2.
Notation 13.5 Suppose that X and Y are random variables, let

dry (X,Y) :=drv (ux, py) zfug |[P(X € A)— P (Y € 4)],
€Br

where pxy = Po X' and uy = PoY 1.

13.2 Weak Convergence

Ezxample 13.6. Suppose that P (Xn = %) = % for i € {1,2,...,n} so that
X, is a discrete “approximation” to the uniform distribution, i.e. to U where
PU€e€A) =m(AN[0,1]) forall A € Bg. If welet A, = {£:i=1,2,...,n},
then P (X, € 4,) = 1 while P(U € A,,) = 0. Therefore, it follows that
drv (X,,,U) =1 for all nf]

2 More generally, if p and v are two probability measure on (R,Bg) such that
pw({z}) = 0 for all z € R while v concentrates on a countable set, then

drr (p,v) = 1.
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Nevertheless we would like X,, to be close to U in distribution. Let us
observe that if we let F), (y) := P(X,, <y) and F (y) := P (U <y), then

SRS

Fn(y)=P(Xn§y)=i#{ie{l,z...,n}: ' gy}

and
F(y)=PU<y)=(@yA1)VO.

From these formula, it easily follows that F' (y) = lim,,_,~ F}, (y) for ally € R.
This suggest that we should say that X, converges in distribution to X iff
P(X, <y) — P(X <y) for all y € R. However, the next simple example
shows this definition is also too restrictive.

Ezample 13.7. Suppose that P (X, =1/n) = 1 for all n and P (X, =0) =
1. Then it is reasonable to insist that X, converges of Xy in distribution.
However, Fy, (y) = 1y>1/n, — ly>0 = Fo (y) for all y € R except for y = 0.
Observe that y is the only point of discontinuity of Fj.

Notation 13.8 Let (X,d) be a metric space, f : X — R be a function. The
set of x € X where f is continuous (discontinuous) at x will be denoted by

C(f) (D(F)-

Observe that if F : R — [0,1] is a non-decreasing function, then C (F
is at most countable. To see this, suppose that € > 0 is given and let C. :=
{yeR:F(y+)—F(y—) >e}. If y < ¢ with y,y € C., then F(y+) <
F(y'=)and (F (y—),F (y+)) and (F (y'—), F (y'+)) are disjoint intervals of
length greater that €. Hence it follows that

L=m([0,1) = Y m((F(y=),F(y+)) = - #(C:)

y€Ce

and hence that # (C.) < 7! < oo. Therefore C := U2 Ciyi s at most
countable.

Definition 13.9. Let {F, F,, : n=1,2,...} be a collection of right continuous
non-increasing functions from R to [0,1] and by abuse of notation let us also
denote the associated measures, pp and pr, by F and F,, respectively. Then

1. F,, converges to F vaguely and write, F,, > F, iff F,, ((a,b]) — F ((a,b])
for all a,b e C(F).

2. F,, converges to F' weakly and write, F,, = F, iff F,, (x) — F (x) for all
xeC(F).

3. We say F is proper, if F' is a distribution function of a probability mea-
sure, i.e. if F'(00) =1 and F (—o0) = 0.

Ezample 13.10. If X,, and U are as in Example and F, (y) .= P (X, <vy)
and F (y) := P(Y <y), then F,, % F and F,, % F.
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Lemma 13.11. Let {F,F, :n=1,2,...} be a collection of proper distribu-
tion functions. Then F, 5 F iff Fi X F. In the case where F,, and F are
proper and F, = F, we will write F,, = F.

Proof. If F,, % F, then F, ((a,b]) = E, (b) — F,, (a) — F (b) — F (a) =
F ((a,b]) for all a,b € C (F) and therefore F,, > F. So now suppose F,, — F
and let @ < « with a,z € C (F'). Then

F(x)=F(a)+ nleréo [F (x) — Fy, (a)] < F(a) + liminf F,, (x).

n—oo
Letting a | —oo, using the fact that F' is proper, implies
F (z) < liminf F, ().
n—oo

Likewise,

F(2)—F (a) = lim [F, (x) — F, (a)] > limsup [F, () — 1] = limsup F, (z)—1

n—00 n— 00 n—00
which upon letting a 7 0o, (so F'(a) 1 1) allows us to conclude,

F (z) > limsup F,, (z) .

n—oo

Definition 13.12. A sequence of random variables, {X,} -, is said to con-
verge weakly or to converge in distribution to a random wvariable X
(written X, = X) iff F, (y) =P (X, <y) = F(y):=P(X <y).

Ezample 13.13 (Central Limit Theorem). The central limit theorem (see the

next chapter) states; if {X,,} -, are i.i.d. L? (P) random variables with y :=

EX; and 0% = Var (X;), then
Sp —np

vn

Written out explicitly we find

= N(O,a)gaN(O,l).

Sn — np
lim P — " <b|=P N(0,1)<b
nl_)rr;o (a< on = ) (a<N(0,1) <)

1 f 1a?y
= — & X
V2o Ja

or equivalently put

[
lim P (np + ov/na < S, < nj+ o/nb) :7/ et g

More intuitively, we have

4

[0 =

Sp & np+/noN (0,1) = N (np,no?).
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Lemma 13.14. Suppose X is a random variable, {c,},—, C R, and X,, =
X +c¢y,. If c:=1lim, o ¢, exists, then X,, — X +c.

Proof. Let F (z) := P (X <«z) and
F,(z) =P(X,<2)=PX+c,<z)=F(x—cy).

Clearly, if ¢, — ¢ as n — oo, then for all x € C (F (- — ¢)) we have F,, (z) —
F(x—c). Since F(x—c¢) = P(X +c¢<uz), we see that X,, — X +e¢
Observe that F, (z) — F (x — ¢) only for € C (F (- — ¢)) but this is sufficient
to assert X,, — X +c. ]

Example 13.15. Suppose that P (X,, = n) = 1 for all n, then F,, (y) = 1y>, —
0 = F (y) as n — oo. Notice that F' is not a distribution function because all
of the mass went off to +oo. Similarly, if we suppose, P (X,, = +n) = % for
all n, then F,, = %1[_%”) + o) — % = F (y) as n — oo. Again, F' is not
a distribution function on R since half the mass went to —oo while the other
half went to +oc.

Ezxample 13.16. Suppose X is a non-zero random variables such that X 4 _x ,

then X,, := (-1)" X £ X for all n and therefore, X,, = X asn — oo. On
the other hand, X,, does not converge to X almost surely or in probability.

The next theorem summarizes a number of useful equivalent characteriza-
tions of weak convergence. (The reader should compare Theorem with
Corollary [13.4]) In this theorem we will write BC (R) for the bounded con-
tinuous functions, f : R = R (or f: R — C) and C. (R) for those f € C (R)
which have compact support, i.e. f(z) =0 if |z] is sufficiently large.

Theorem 13.17. Suppose that {/in},io:o is a sequence of probability measures
on (R, Bgr) and for each n, let F, (y) := p, ((—o0,y]) be the (proper) distri-
bution function associated to p,. Then the following are equivalent.

1. For all f € BC' (R),

/fdun — / fdpg as n — oo. (13.5)
R R

2. Eq. (13.5) holds for all f € BC (R) which are uniformly continuous.

3. Eq. (13.5) holds for all f € C. (R).

4. F, = F.

5. There exists a probability space (§2,B, P) and random variables, Y,,, on
this space such that P o Yn_1 = U, for alln and Y, — Yy a.s.

Proof. Clearly 1. = 2. =— 3. and 5. = 1. by the dominated
convergence theorem. Indeed, we have

/ fdpin =E[f ()] PSTE[f (V)] = / Fduo
R R
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for all f € BC (R). Therefore it suffices to prove 3. = 4. and 4. = 5.
The proof of 4. = 5. will be the content of Skorohod’s Theorem [13.2§|
below. Given Skorohod’s Theorem, we will now complete the proof.

(3. = 4.) Let —00 < a < b < oo with a,b € C(Fp) and for € > 0, let

fe () > 1(qp) and ge (z) < 1(45) be the functions in C. (R) pictured in Figure
M3 Then

lim sup iy, ((a, b)) < hmsup/ fedpy, = /fgduo (13.6)
n—oo n—oo

and
lim inf p, ((a,b]) > liminf/ gedpin, = / gedig. (13.7)
n—oo n—oo

Since fe — 1 and ge — lp) as € | 0, we may use the dommated con-
vergence theorem to pass to the limit as € | 0 in Eqgs. and - ) to
conclude,

lim sup pr, ((a,b]) < po ([a,b]) = po ((a, b))

n—oo

and
lim inf y4,, ((@,b]) > po ((a,b)) = po ((a, b)),

n—oo
where the second equality in each of the equations holds because a and b are

points of continuity of F. Hence we have shown that lim,,— s in, ((a, b]) exists
and is equal to pg ((a,b]).

A '
e
A £ s
A

1
O a< vz b

Fig. 13.1. The picture definition of the trapezoidal functions, f. and g..
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Corollary 13.18. Suppose that {X,} -, is a sequence of random variables,

such that X, il Xo, then X,, = Xo. (Recall that example shows the
converse is in general false.)

Proof. Let g € BC (R), then by Corollary g(X,) 2 g(Xo) and
since g is bounded, we may apply the dominated convergence theorem (see
Corollary [11.8)) to conclude that E[g (X,,)] — E[g (Xo)]. |
Lemma 13.19. Suppose {X,,},—, is a sequence of random variables on a

common probability space and ¢ € R. Then X,, = c iff X, L
Proof. Recall that X,, > c iff for all e > 0, P (|Xn —¢| >¢€) — 0. Since
{|Xn—c|>e}=4{X, >c+e}U{X, <c—¢}

it follows X, = ¢ iff P(X,, >z) — 0forallz > cand P (X, <x)— 0 for all
x < c. These conditions are also equivalent to P (X, <z) — 1 for all z > ¢
and P(X,, <z) < P(X,, <z’) — 0 for all z < ¢ (where z < 2’ < ¢). So

Xniciff
lim P (X, <z)=

n—oo

= F(x)

where F'(z) = P(c<z) = 1z>.. Since C(F) = R\ {c}, we have shown
X, Lot X, = c [ |

We end this section with a few more equivalent characterizations of weak
convergence. The combination of Theorem [I3.17] and is often called the
Portmanteau Theorem.

Difz<ec
lifx>c

Theorem 13.20 (The Portmanteau Theorem). Suppose {F,} —, are
proper distribution functions. By abuse of notation, we will denote up, (A)
simply by F,, (A) for all A € Bg. Then the following are equivalent.

1. F, = F,.

2. liminf, o Fy, (U) > Fy (U) for open subsets, U C R.

3. limsup,,_, o Fy, (C) < Fy (C) for all closed subsets, C' C R.

4. limy, oo F, (A) = Fy (A) for all A € Br such that Fy (0A) = 0.

Proof. (1. = 2.) By Theorem [13.28] we may choose random variables,
Y., such that P(Y,, <y)=F,(y) forally e Rand n € Nand Y,, — Y} a.s.
as n — oo. Since U is open, it follows that

lU (Y) < lim inf lU (Yn) a.s.

n—oo
and so by Fatou’s lemma,

F(U)=P(Y €U)=E[1y (V)
<liminfE[1y (Y,)] = liminf P (Y, € U) = liminf F, (U) .

n—oo
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(2. <= 3.) This follows from the observations: 1) C' C R is closed iff
U := C°isopen, 2) F(U) =1—-F(C), and 3) liminf, .o (=F, (C)) =
—limsup,,_, ., F (C). B B

(2. and 3. <= 4.)If Fy (0A) =0, then A° C A C A with Fyy (A\ A°) =
0. Therefore

Fy (A) = Fy (A°) < liminf F, (A°) < limsup F, (4) < Fy (4) = Fy (4).

(4. = 1.) Let a,b € C(F,) and take A := (a,b]. Then Fy(0A) =
Fy ({a,b}) = 0 and therefore, lim,, o Fy, ((a,b]) = Foy ((a,b]) ,i.e. F,, = Fy.
[

Exercise 13.3. Suppose that F is a continuous proper distribution function.
Show,

1. F : R —0,1] is uniformly continuous.
2. If {Fn}f:;1 is a sequence of distribution functions converging weakly to F
then F, converges to F' uniformly on R, i.e.

lim sup|F (z) — F, (z)] = 0.

In particular, it follows that

sup e ((a,0]) — pr, ((a,0])] = sup |F (b) — F(a) = (F (b) — Fy (a))]

SSIZP|F(5)*Fn (b)‘+sgp|Fn(a)7Fn(a)|

— 0 asn — oo.

Hints for part 2. Given € > 0, show that there exists, —0o = ap < a1 <
< < ayy, = 00, such that |F (a;41) — F (a;)| < € for all i. Now show, for
x € [a, aig1), that

|F (z) — Fy ()] < (F (vig1) — F (o)) +|F (i) = Fp ()| 4+(Fy (1) — F (o)) -

13.3 “Derived” Weak Convergence

Lemma 13.21. Let (X, d) be a metric space, f : X — R be a function, and
D (f) be the set of x € X where f is discontinuous at x. Then D (f) is a Borel
measurable subset of X.

Proof. For x € X and § > 0, let B, (§) = {y € X : d(z,y) < d}. Given
§>0,let fo: X — RU{oo} be defined by,

)= sw f(y).

yEBL(J)
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We will begin by showing f5 is lower semi-continuous, i.e. {f5 < a} is
closed (or equivalently {f° > a} is open) for all a € R. Indeed, if f (z) > a,
then there exists y € B, (d) such that f(y) > a. Since this y is in B, (9)
whenever d (z,2') < § —d (z,y) (because then, d (z',y) < d(x,y)+d(z,2') <
§) it follows that f° (2/) > aforalla’ € B, (§ — d (w,y)) . This shows { f° > a}
is open in X.
We similarly define f5 : X — RU{—o00} by
fs () = inf )f(y)-

YyEB,(

Since f5 = — (—f)°, it follows that

{fs > a} = {(=) < —a}

is closed for all a € R, i.e. fs is upper semi-continuous. Moreover, fs5 <
f<fiforalléd>0and fO| fOand f5 T fo as 6 | 0, where fo < f < f9 and
fo: X — RU{-o00} and f°: X — RU{oco} are measurable functions. The
proof is now complete since it is easy to see that

D(f)={f">fo} ={f°— fo#0} € Bx.
n

Remark 13.22. Suppose that z,, — x withz € C (f) := D (f)°. Then f (z,) —
f(x) as n — oo.

Theorem 13.23 (Continuous Mapping Theorem). Let f : R = R be a
Borel measurable functions. If X,, = Xy and P(Xo € D(f)) = 0, then
f(Xn) = f(Xo). If in addition, f is bounded, Ef (X,) — Ef (Xo).

Proof. Let {Yn}flo:o be random variables on some probability space as
in Theorem [13.28] For g € BC (R) we observe that D(go f) C D(f) and
therefore,

P(Yy€D(gof)) < P(Yo € D(f)) = P(Xo € D(f)) = 0.

Hence it follows that go foY,, — go f oY, as. So an application of the
dominated convergence theorem (see Corollary [11.8]) implies

Elg(f (X))l =Elg (f (Y))l = Elg (f V)] =E[g (f (X0))].  (13.8)
This proves the first assertion. For the second assertion we take g (z) =
(x A M)V (—M) in Eq. (I3:8) where M is a bound on |f|. ]

Theorem 13.24 (Slutzky’s Theorem). Suppose that X, — X and
Y, £ ¢ where ¢ is a constant. Then (Xn,Yn) = (X,c¢) in the sense
that E[f (X, Y,)] = E[f (X,¢)] for all f € BC (R?). In particular, by tak-
ing f(z,y) = gx+y) and f(z,y) = g(z-y) with g € BC(R), we learn
X,+Y, = X+cand X,,-Y, = X - c respectively.
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Proof. First suppose that f € C. (R?), and for € > 0, let 6 := & (¢) be
chosen so that

|f(2,y) = (@ y)| < eif [[(z,y) = (2", < 6.
Then
B [f (Xn, Yn) = f (X, )| SE[[f (Xn,Yn) = f(Xn, )| [V — ¢ <]
+E[[f (Xn,Yn) = f(Xn, )| [V — | > 6]
<e+2MP(|Y, —c| >06) = e asn— oo,

where M = sup |f]. Since, X;, = X, we know E[f (X,,c)] — E[f (X, ¢)]
and hence we have shown,

limsup [E [f (X,,Y,) — f (X, )]

n—oo

<limsup [E[f (X, Ys) — f (Xn,o)]| + limsup [E[f (Xn,c) — f (X, 0)]| < e.

n—oo n—oo

Since € > 0 was arbitrary, we learn that lim, . Ef (X,,Y,) =Ef(X,c).

Now suppose f € BC (R?) with f > 0 and let ¢ (z,y) € [0,1] be contin-
uous functions with compact support such that ¢k (x,y) = 1 if |z| V |y| < k
and ¢ (z,y) T 1 as k — oo. Then applying what we have just proved to
fr == @i f, we find

E[fi (X.0)] = lim E[fy (X,..Y,)] < iminf E[f (X,,,%,)].

n—oo

Letting kK — oo in this inequality then implies that
E[f (X,c)] <lminfE[f (X,,Y,)].
n—oo

This inequality with f replaced by M — f > 0 then shows,
M-E[f(X,o)] <liminfE[M — f(X,,Y,)] =M —limsupE [f (X,,Y,)].
n—oo

n—oo

Hence we have shown,

limsupE [f (X,,, V)] < E[f (X,¢)] < liminf E[f (X,,Y,)]

n— oo n—00

and therefore limy, .o E[f (X5, Y,)] = E[f (X, ¢)] for all f € BC (R?) with
f > 0. This completes the proof since any f € BC (R2) may be written as a
difference of its positive and negative parts. [

Theorem 13.25 (§ — method). Suppose that {X,},>, are random vari-
ables, b € R, a,, € R\ {0} with lim,_, a, =0, and

X, —b

Qn

= Z.

If g : R — R be a measurable function which is differentiable at b, then
9 (Xn) —g(b)

Qp

= ¢ (b) Z.
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Proof. Observe that

X, —
Xy —b=an =l L g.z-0

29

so that X,, =— b and hence X, . By definition of the derivative of g at
b, we have

gx+2)=gd)+g (H)A+e(A)A
where € (A) — 0 as A — 0. Let Y;, and Y be random variables on a fixed
probability space such that Y,, 4 Xa—b and Y £ Z with Y, — Y a.s. Then

XnianYn—&—b, so that
X)) —g(b W Yo +b)—g(b nYne (anYy
9(Xn) =g () 4 9(@Yot0) =g ®) _ 0y nYne (@nYn)

(429 Qp, an,
= g/ (b) Y, +Yae (anYn) - g’ (b) Y a.s.

This completes the proof since ¢’ (b)Y < g (b) Z. |

Ezample 15.26. Suppose that {Un}zoz1 are i.i.d. random variables which are
1
uniformly distributed on [0,1] and let Y, := [[;_, U;". Our goal is to find

a, and b, such that Y”T;b” is weakly convergent to a non-constant random
variable. To this end, let

1 n
Xp =Y, =— i
n ny, - Z In U;
Jj=1
By the strong law of large numbers,
1
lim X, © E[lnU;] = / Inzde = [zl — 2] = -1
n—oo 0
a.s. _1

and therefore, lim,, .o Y, = e
Let us further observe that

1
E [In® U1] :/ In® zdz = 2
0

so that Var (InU;) = 2 — (—=1)® = 1. Hence by the central limit theorem,
Xn— (-1
# =vn(X,+1) = N(0,1).
un

Therefore the § — method implies,

v
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Taking g (z) := e using g (X,,) = eX» =Y,,, then implies

Y, —e !
1

un

— ¢ IN(0,1) £ N (0,e72).
Hence we have shown,
Vi |T[uf —e | = N(0,e72),
j=1

Exercise 13.4. Given a function, f : X — R and a point z € X, let

lim inf =1 inf d 13.9
im inf £ (y) lim (J)f(y) an (13.9)

limsup f (y) :=lim sup f(y), (13.10)
y—oz €10 ye By (5)

where
B,(0):={ye X:0<d(x,y) <d}.

Show f is lower (upper) semi-continuous iff liminf, ., f(y) > f(z)
(limsup, ., f (y) < f (2)) for all z € X.

Solution to Exercise ([13.4)). Suppose Eq. (13.9) holds, a € R, and z € X
such that f (z) > a. Since,

li inf — liminf S —a
;%ye?;(a)f(y) nnm fly)>f(z)>a

it follows that inf,cp (s) f (y) > a for some 6 > 0. Hence we may conclude
that B, (0) C {f > a} which shows {f > a} is open.

Conversely, suppose now that {f > a} is open for all a € R. Given z €
X and a < f(x), there exists § > 0 such that B, (6) C {f > a}. Hence
it follows that liminf, ., f (y) > a and then letting a T f(z) then implies

liminf, ., f (y) > f ().

13.4 Skorohod and the Convergence of Types Theorems

Notation 13.27 Given a proper distribution function, F : R —[0,1], letY =
F=:(0,1) — R be the function defined by

Y(@)=F (z)=sup{yeR: F(y) <z}.

Similarly, let
YT (z):=inf{y e R: F(y) > x}.

We will need the following simple observations about Y and Y+ which are
easily understood from Figure
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1t

.Y (x) <Yt (x) and Y (z) < YT (2) iff z is the height of a “flat spot” of

F.

The set, E:={z € (0,1) : Y (z) < YT (2)}, of flat spot heights is at most
countable. This is because, {(Y (z),Y™ (2))},cp is a collection of pair-
wise disjoint intervals which is necessarily countable. (Each such interval
contains a rational number.)

The following inequality holds,

F(Y(z)-)<z<F(Y () forall z € (0,1). (13.11)

Indeed, if y > Y (z
follows that F (Y (z
hence F (Y (z)—) <=z

{x €(0,1):Y (z) <yo} = (0,F (y0)]N(0,1). To prove this assertion first
suppose that Y (z) < yp, then according to Eq. we have z <
F(Y (2)) < F(yo), i.e. z € (0,F (yo)] N (0,1). Conversely, if x € (0,1)
and z < F (yo), then Y (x) < yo by definition of Y.

As a consequence of item 4. we see that Y is B(o,1)/Br — measurable and
moY ! = F, where m is Lebesgue measure on ((0, 1) 73(0,1)) .

), then F'(y) > x and by right continuity of F' it
)) > x. Similarly, if y < Y (z), then F (y) < z and
0

Theorem 13.28 (Baby Skorohod Theorem). Suppose that {F,},_ is a
collection of distribution functions such that F,, =— Fy. Then there ex-
ists a probability space, (2,8, P) and random variables, {Yy,},~, such that
P(Y, <y) = F,(y) for all n € NU{o0} and lim, o F; = lim, o Y, =
Y =F" a.s.

Proof. We will take 2 := (0,1), B = Bo,1), and P = m — Lebesgue

measure on §2 and let Y, := F;;” and Y := Fj;~ as in Notation [[3.27] Because
of the above comments, P (Y, <y) = F, (y) and P (Y <y) = Fy (y) for all
y € R. So in order to finish the proof it suffices to show, Y, (z) — Y (x)

for

all x ¢ E, where E is the countable null set defined as above, E :=

{x e (0,1): Y (z) <Y™*(x)}.
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We now suppose z ¢ E. If y € C(Fy) with y < Y (x), we have
lim, . F, (y) = Fy (y) < x and in particular, F, (y) < z for almost all n.
This implies that Y;, () > y for a.a. n and hence that liminf, . Y, () > y.
Letting y T Y (2) with y € C (Fy) then implies

liminfY,, () > Y (2).

Similarly, for ¢ E and y € C(Fp) with Y (z) = Yt (z) < y, we have
limy, o0 F, (y) = Fo (y) > z and in particular, F, (y) > x for almost all n.
This implies that Y,, () < y for a.a. n and hence that limsup,,_, . V5, (x) <.
Letting y | Y (z) with y € C (Fp) then implies

limsup Y, () <Y (x).

n—oo

Hence we have shown, for z ¢ F, that

limsup Y, (z) <Y (z) <liminfY, (x)

n—oo n—oo

which shows

lim F (z) = lim Y, (z) =Y () = F" (z) forall z ¢ E. (13.12)

n—oo n—oo

Definition 13.29. Two random wvariables, Y and Z, are said to be of the
same type if there exists constants, A > 0 and B € R such that

Z LAY + B. (13.13)

Alternatively put, if U (y) := P(Y <y) and V (y) := P(Z <y), then U and
V' should satisfy,

Uly)=PY <y =P(Z<Ay+B)=V (Ay+ B).
For the next theorem we will need the following elementary observation.

Lemma 13.30. If Y is non-constant (a.s.) random variable and U (y) =
P(Y <y), then U™ (1) < U (y2) for all v, sufficiently close to 0 and -y,
sufficiently close to 1.

Proof. Observe that Y is constant iff U (y) = 1,>. for some ¢ € R, i.e.
iff U only takes on the values, {0,1}. So since Y is not constant, there exists
y € R such that 0 < U (y) < 1. Hence if v2 > U (y) then U (y2) > y and
if 7 < U (y) then U (1) < y. Moreover, if we suppose that v is not the
height of a flat spot of U, then in fact, U™ (1) < U (72). This inequality
then remains valid as v; decreases and 5 increases. ]
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Theorem 13.31 (Convergence of Types). Suppose { X}~ is a sequence
of random variables and a,, o, € (0,00), by, Bn € R are constants and Y and
Z are non-constant random variables. Then

1.if
— Y (13.14)

and
= 7, (13.15)

A

then' Y and Z are of the same type. Moreover, the limits,

A= lim %% ¢ (0,00) and Bi= lim 22 —tn

n— 00 an n—oo an

(13.16)

exists and Y < AZ + B.
2. If the relations in Eq. (13.16) hold then either of the convergences in Eqs.
(13.14) or (13.15) implies the others with Z and Y related by Eq. (13.13).
3. If there are some constants, a, > 0 and b, € R and a non-constant

random variable Y, such that Eq. (13.14) holds, then Eq. holds

using o, and (3, of the form,

an :=F (v2) — F, (m) and B, :=F,; (m) (13.17)

for some 0 < y1 < v9 < 1. If the F,, are invertible functions, Eq.
may be written as

Fo (Bn) =M and Fy, (an + Bn) = 7. (13.18)

Proof. (2) Assume the limits in Eq. (13.16)) hold. If Eq. (13.14) is satisfied,
then by Slutsky’s Theorem [13.20

Xn_ﬁn _Xn_bn"f'bn_ﬁnal

Qo 27 Qp
Xn_bnan_ﬁn_bnan
Qn Qp an  Qn

— A'(Y-B) =727

Similarly, if Eq. (13.15)) is satisfied, then
Xn*bn Xn* n 4n n*bn

_ Bn an n B

Qn o2 an an

= AZ+B=Y.

() I F, (y) =P (X, <y), then

P(X”_b" <y) = Fy (any + bn) andP(X”_ﬁn <y> = Fu (any + Bn) -
Qo

Qnp
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By assumption we have

If w:=sup{y: F, (a,y + by) < x}, then ap,w + b, = F;; () and hence

F(x)—5b
up {y ¢ By (any + b) < ) = T D=0
Similarly,
F, (LL') - ﬁn

Sup{y:Fn(any"‘ﬂn) <x}: - a

With these identities, it now follows from the proof of Skorohod’s Theorem
13.28| (see Eq. (13.12)) that there exists an at most countable subset, A, of
(0,1) such that,

W =sup{y: Fy (apy +b,) <z} —- U™ (z) and
B qupty B (o + ) < 2} — V= ()

for all x ¢ A. Since Y and Z are not constants a.s., we can choose, by Lemma

13.30L 71 < 2 not in A such that U (1) < U (y2) and V= (1) < V= (72).
In particular it follows that

Fr(e) = Fy (n) _ Fy (p) =bn Fy (1) —bn

Qn an an

— U~ (’YQ) -U™ (’Yl) >0 (1319)

and similarly

Fo(v2) = F, (m)
an

= V7 () =V (n)>0.

Taking ratios of the last two displayed equations shows,

ap U™ (v2) —U" (m)

— = A= € (0,00).
an V) =V () - )
Moreover,
EZO0 =0 g (1) sna 1520
Fr ) = b _ B n) = fuen |y
2% Qp (79} !

and therefore,
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Po=bn _ E () =Bn  Fm () =bu 0 (11) — U™ (71) == B.

Qn Qn an

(3) Now suppose that we define o, := F: (y2) — F7 (v1) and 3, =
E: (v1), then according to Eqgs. (13.19)) and (13.20))we have

an/an — U™ (72) =U™ (1) € (0,1) and
ﬂn —b

“ U™ (y) as n — oo.
n

Thus we may always center and scale the {X,,} using a,, and 3, of the form

described in Eq. (13.17]). ]

13.5 Weak Convergence Examples

Ezample 13.32. Suppose that {X,,},- | are i.i.d. exp (\) — random variables,
ie. X,, >0as.and P(X,, >z) = e~ for all > 0. In this case

F (Z‘) = P(X1 < Jj) =1 e*)\(mvo)
Consider M,, := max (X1,...,X,). We have, for z > 0 and ¢, € (0,00) that

Fp () := P (M, <z)=P(Nj_, {X; <z})

=[[P&X; <o) =[F@)" =(1-e?)".

We now wish to find a,, > 0 and b,, € R such that 7M’{b" = Y.
1. To this end we note that

Mn_bn

= F, (an® + by) = [F (anz + by)]" .
If we demand (c.f. Eq. (13.18) above)

F (Mnabn = 0) = F, (bp) = [F (bp)]" — m € (0,1),

then b, — oo and we find
Iny; ~nlnF (b,) =nln (1 — e_kb"') ~ —ne b,

From this it follows that b, ~ A~!Inn. Given this, we now try to find a, by
requiring,

M, — b, n
P(a<1) = F (an +bn) = [F (an + b)) — 72 € (0,1).
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However, by what we have done above, this requires a, +b, ~ A~ ! Inn. Hence
we may as well take a,, to be constant and for simplicity we take a,, = 1.
2. We now compute

lim P (M, — A 'lan <) = lim (1 — e—A(wwwnn))"

n—oo n—oo

- 1 1— ei)\w " _ (_ 7)@)
= lim " = exp e .

n—oo

Notice that F' (z) is a distribution function for some random variable, Y, and
therefore we have shown

1
Mn—xlnn = Y asn— o0

where P (Y < z) = exp (—e™*?).

Example 13.33. For p € (0,1), let X, denote the number of trials to get
success in a sequence of independent trials with success probability p. Then
P(X,>n)=(1-p)" and therefore for z > 0,

P(pX,>z)=P (Xp > ;) =(1 _p)[%] — olg]ma-p)

T

~ e—l)[p] —e Tasp—0.

Therefore pX, = T where T 2 exp (1),ie. PT >z)=e*forz>0or
alternatively, P (T <y) =1— e ¥V0.

Remarks on this example. Let us see in a couple of ways where the
appropriate centering and scaling of the X, come from in this example. For
this let ¢ = 1 — p, then P (X, =n) = (1 —p)"_lp = ¢" !p for n € N. Also
let

Fy(z) = P(X, < @) = P(X, < [a]) = 1 - ¢
where [2] := >0 0 L ng1)-

Method 1. Our goal is to choose a, > 0 and b, € R such that
lim, |0 F, (apz + by) exists. As above, we first demand (taking z = 0) that

lim F, (by) =71 € (0,1).
p 10

Since, v1 ~ F}, (by) ~ 1 — g we require, ¢ ~ 1 —~; and hence, ¢ ~ b,Inq =
bpIn (1 —p) ~ —byp. This suggests that we take b, = 1/p say. Having done
this, we would like to choose a, such that

Fy(x) := Zl)irl% F, (apx +by,) exists.

Since,
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Fy () ~ Fy (apa +by) ~ 1 — g7+t
this requires that
(1= p) e = gt w1 By (2)
and hence that
In(1- Fy(2)) = (apx +bp)Ing ~ (apz +by,) (—p) = —payz — 1.

From this (setting z = 1) we see that pa, ~ ¢ > 0. Hence we might take
ap = 1/p as well. We then have

Fy(apr+b,)=F,(p'a+p ') =1-(1 ,p)[p’ (z+1)]

which is equal to 0 if z < —1, and for x > —1 we find

(1 _p)[p_l(mﬂ)} =exp([p7'(z+1)]In(1—p)) —exp(—(z+1)).
Hence we have shown,

li% Fy(apz+by) =[1—exp(—(z+1))]1z>_1
p

Xp—1/p
1/p
or again that pX,, =— T.
Method 2. (Center and scale using the first moment and the variance of
X,.) The generating function is given by

=pX, -1 = T-1

S e pz
f(z) ::E[ZXP] :;Z " lp= T

Observe that f (z) is well defined for |z| < % and that f (1) = 1, reflecting the

fact that P (X, € N) =1, i.e. a success must occur almost surely. Moreover,
we have

() =E [XPZXp_l] , 7 (2) =E[X, (X, — 1) ZXP_Q] )
FO @) =E[X, (X, —1) ... (Xp — k+1) 25 7F]

and in particular,

d\" pz
B (X, ~ 1) (X, ~ £+ 0] = 9 () = () L2
Since
d pz _p(l—gz)+qpz _  p

dz1—qz (1—gz)° (1—g2)°
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and

it follows that

P
pp = EX :(1 q2:fand
Pq 2q
E[X,(X,—-1)]=2 -
[ P( P )} ( 7q)3 p2
Therefore,
2 1 (1)’
2 2 2 q
0, = Var (X,) =EX  — (EX :_|__<)
p (P) D ( p) p2 » D

p? p? p?

_2q+p—-1_ q 1-p

Thus, if we had used p,, and o, to center and scale X, we would have consid-
ered,
1
Xp—g :po—l 7.1

1—p /1 —p

P

instead.

Theorem 13.34. Let {X,,},~ | be i.i.d. random variables such that P (X,, = +1) =
1/2 and let S,, := X1+ --- + X,, — the position of a drunk after n steps. Ob-
serve that |Sy,| is an odd integer if n is odd and an even integer if n is even.
Then % = N(0,1) as m — oo.

Proof. (Sketch of the proof.) We start by observing that Sa, = 2k iff

#{i<2n:X, =1} =n+k while
#li<2n: X, =-1}=2n—(n+k)=n—k

and therefore,

o= (T () - e ()

Recall Stirling’s formula states,

nl~n"e "V2rn asn — oo

and therefore,
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P (S5, = 2k)

(2n)*" e=2n\/dmn <1> 2
(n+ k)" etk 2r(n+ k) - (n— k)" e (=0 /21 (n — k) \2

\/W(,H_];L(n_k) <1+z>(n+k). (15";)(”’“)
2\ -k k
- ey (-5 (48 (-8

1 B2\ " N\ k172 B\ R/
=—=\1-= 14+ = |l 1== .
VT n n n

So if we let x := 2k/v/2n, i.e. k =x4/n/2 and k/n = J5» we have

1 22 —-n T —xz\/n/2—1/2 T
ORI (I B I Y
™ < 2n> < «/Zn) ( V2n

L (o) (T
™
~ 1 67m2/2
Vrn ’

wherein we have repeatedly used

(1+ an)b” = ebnn(tan)  ebnan when g, — 0.

We now compute

SZn ) ( 5271 )
Pla< <b| = P =z
( Vv2n aggb V2n
1 2 2
= R p— (13.21)

ors a;gb V2n

where the sum is over z of the form, x = % with k € {0,%1,...,4+n}. Since

2_ is the increment of x as k increases by 1, we see the latter expression in

n
Eq. (13.21) is the Riemann sum approximation to
[
I —z°/24
e .
V2T /a

This proves 322% — N (0,1). Since
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Son+1 Son+ Xont1  Son 1 Xont1

= = + ,
V2n +1 Van +1 V2n \/1 L1 Von+l
2n

it follows directly (or see Slutsky’s Theorem |13.20) that 5% = N(0,1)

as well. -

Proposition 13.35. Suppose that {U,} _, are i.i.d. random variables which
are uniformly distributed in (0,1). Let U, ) denote the position of the kth —
largest number from the list, {Uy,Us,...,Up}. Further let k (n) be chosen so

that lim, o k (n) = oo while lim,,_, o @ =0 and let
X, — Utn),m) — K (n) /0
k(n)

n

Then drvy (X, N (0,1)) — 0 as n — oo.

Proof. (Sketch only. See Resnick, Proposition 8.2.1 for more details.) Ob-
serve that, for z € (0,1), that

i=1 1=k
From this it follows that p,, () := 1(¢,1) () %P (U(k’n) < x) is the probability

density for Uy ). It now turns out that p, (z) is a Beta distribution,

pn (z) = (Z) koah 11— a)" "

Giving a direct computation of this result is not so illuminating. So let us go
another route. To do this we are going to estimate, P (U(k,n) € (z,z+ A]) ,
for A € (0,1). Observe that if U, ) € (2, 2+ 4], then there must be at least
one U; € (z,z + A, for otherwise, Uy, »y < x + A would imply U,y < x as
well and hence Uy, ) ¢ (z,2 + A]. Let

2, ={U; € (z,x+ Al and U; ¢ (z,x + A] for j #i}.

Since

P(U;,U; € (z,z+ A] for some i # j with ¢,j <n) < Z P(U;,U; € (z,x+ A)])

i<j<n

n2—n

A2

we see that
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P (Ugo,ny € (z,x + A]) ZP k) € (x,2 4 A], 2 )-|-O(A2)

= nP (U(k,n) S (x,:c —+ A],Ql) —+ @) (AQ) .

Now on the set, £21; Uy ny € (z, 2+ A] iff there are exactly k—1 of Us,...,U,
in [0,z] and n — k of these in [z + A, 1]. This leads to the conclusion that

n—1

P (Ut € (z,2 + A]) :n(k_ )

):vk_l (1-(z+A)""Aa+0(4?)

and therefore,

. P (U(k,n) € (wa + A]) n! k—1 n—k
pu (@) = lim A B R
By Stirling’s formula,
n!
(k=1 (n—k)!
n"e_"\/27rn
(k—1)* D e~k 1)\/277 —1) k)R e~k /2 (n — k)
e
/o kN h—1)  Jho1 tnk\ (=) [
(R (Tk) Vars
Vnet 1

var (EEP -k

E_1\®1/2) B E (k—1/2) B 1\ *1/2)
n T \n k
[k (k—1/2) 1 1\ k=1/2)
“\n k
k—1/2
ot (k)( /2)
n

n! Vn 1
(k=D (n= k)l Vom (k)12 (k) nmk /2

By the change of variables formula, with

_ u—k(n)/n
NCol

n

(n—k+1/2) "
)

Since

we arrive at
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on noting the du = ~ ]:I(n) dz, x = —\/k(n) at u =0, and

k(n) k(n)
_on _k(n) - n k(n)
- k(n>(1 n )=V k(n)( n> "
E[F(Xn)]:/o pn (1) F “_kk((z))/” du
_ [ VE®W k(n)
_/_\/@ - pn< - x+k(n)/n>F(m)du

Using this information, it is then shown in Resnick that

kﬂ(n)pﬂ( l;(n)ijk(n)/n) B e\—/a%2

which upon an application of Scheffé’s Lemma [13.3| completes the proof. m

Remark 13.36. 1t is possible to understand the normalization constants in the
definition of X,, by computing the mean and the variance of U, ). After
some computations (see Chapter ?77?), one arrives at

1 !
n: —
EUjn) = L (R
m /0 =gyt T

1 !
EUGny = / G v (1 —2)" 22 de
0 . .

(k4 Dk K
Var (U, ) = n+2)(n+1) (n+1)°

k k+1_ k
T n+l1|n+2 n+1
_k [ n—k+1 k
(

S n+l | (n+2)(n+1) n2’

13.6 Compactness and Tightness

Suppose that A C R is a dense set and F' and F are two right continuous
functions. If F = F on A, then F = F on R. Indeed, for z € R we have
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F(z) = AlahﬁxF (\) = Agﬂxﬁ (\) = F(z).

Lemma 13.37. If G : A — R is a non-decreasing function, then
F(z) =Gy (z):=inf{G\):z< e A} (13.22)
1 a non-decreasing right continuous function.

Proof. To show F is right continuous, let z € R and A € A such that
A > z. Then for any y € (2, ),

Fz)<F(y) =G4 (y) <G (N

and therefore,
F(z) < F(z+):= lilmF(y) <G(N).
ylz
Since A > = with A € A is arbitrary, we may conclude, F (z) < F'(z+) <
Gy (z) =F(x),ie F(z+)=F(z). |

Proposition 13.38. Suppose that {F,} >~ is a sequence of distribution func-
tions and A C R is a dense set such that G (X) := lim, o Fy, (A) € [0,1] exists
for all A € A. If, for oall x € R, we define F' = G4 as in Eq. , then
F, (z) — F (x) for all x € C(F). (Note well; as we have already seen, it is
possible that F (00) < 1 and F (—o0) > 0 so that F' need not be a distribution
function for a measure on (R, Bg).)

Proof. Suppose that z,y € R with < y and and s,t € A are chosen so
that £ < s < y < t. Then passing to the limit in the inequality,

Fy(s) < Fo(y) < Fu (t)
implies

F(z) =G4 () <G (s) <liminf F,, (y) < limsup F,, (y) < G (¢).

n— oo n—o00

Taking the infinum over ¢ € AN (y,00) and then letting € R tend up to y,
we may conclude

F (y—) <liminf F, (y) <limsup F,, (y) < F (y) for all y € R.

n—oo n—oo

This completes the proof, since F' (y—) = F (y) for y € C (F). |

The next theorem deals with weak convergence of measures on (R BR) .
So as not have to introduce any new machinery, the reader should identify R
with [—1,1] C R via the map,

[-1,1] 5  — tan (gx) eR.
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Hence a probability measure on (R, Bz) may be identified with a probability
measure on (R, Bg) which is supported on [—1, 1] . Using this identification, we
see that a —oo should only be considered a point of continuity of a distribution
function, F: R — [0, 1] iff and only if F'(—oc) = 0. On the other hand, oo is
always a point of continuity.

Theorem 13.39 (Helly’s Selection Theorem). FEvery sequence of prob-
ability measures, {,un}ff:l, on (R, B@) has a sub-sequence which is weakly

convergent to a probability measure, g on (R,BR) .

Proof. Using the identification described above, rather than viewing p,, as
probability measures on (R, B@) , we may view them as probability measures
on (R, Bg) which are supported on [—1,1], i.e. u, ([—1,1]) = 1. As usual, let

Fy (ZL‘) = fn ((—OO, l‘]) = Hn ((_0075(;] n [_17 1]) :

Since {F), (z)},~; C [0,1] and [0,1] is compact, for each 2 € R we may find a
convergence subsequence of {F, (z)},~ ;. Hence by Cantor’s diagonalization
argument we may find a subsequence, {Gj, := F),, },—, of the {F,} , such
that G (x) := limg_ o G (z) exists for all z € A := Q.

Letting F (z) := G (z+) as in Eq. (13.22), it follows from Lemma
and Proposition that G, = F,,, = Fpy. Moreover, since G, () = 0
for all x € QN (—o0,—1) and G (z) = 1 for all z € QN [1,00). Therefore,
Fy(x)=1forall z > 1 and Fy () = 0 for all z < —1 and the corresponding
measure, pg is supported on [—1,1]. Hence ug may now be transferred back
to a measure on (R, Bg) . n

Ezxzample 15.40. Suppose d_,, — 0_o and 9, — oo and
%(6n +i_,) = %(500 + 0_s) - This shows that probability may indeed
transfer to the points at 4o0.

The next question we would like to address is when is the limiting measure,
Lo on (R, BR) concentrated on R. The following notion of tightness is the key
to answering this question.

Definition 13.41. A collection of probability measures, I', on (R, Bgr) is tight
iff for every e > 0 there exists M, < oo such that
inf p (M., M.]) >1—e. (13.23)
pel’
We further say that a collection of random variables, { X : X\ € A} is tight iff

the collection probability measures, {P o X;l TN € /1} is tight. Equivalently
put, {Xx : X € A} is tight iff

lim sup P (|X»| > M) =0. (13.24)
M—o00 xe
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Observe that the definition of uniform integrability (see Definition [11.25))
is considerably stronger than the notion of tightness. It is also worth observing
that if & > 0 and C := sup,c 4, E | X,|" < oo, then by Chebyschev’s inequality,

1 C
P Xy > M) < —EIX,|Y < — M
Sl;p (XAl > )Sl)l\p{Ma | ,\|]Ma—>0as — 00

and therefore {X : A € A} is tight.

Theorem 13.42. Let I" := {u, },—, be a sequence of probability measures on
(R,Bgr). Then I is tight, iff every subsequently limit measure, pg, on (R, BR)
s supported on R. In particular if I' is tight, there is a weakly convergent
subsequence of I' converging to a probability measure on (R, Bg) .

Proof. Suppose that p,, = po with po being a probability measure on
(R, Bg) . As usual, let Fy (z) := o ([—o0, x]) . If I is tight and & > 0 is given,
we may find M, < oo such that M., —M. € C (Fp) and p, ([—M., M,]) > 1—¢
for all n. Hence it follows that

po ([=Me, Mc]) = klggo:“nk ([-Me, Mc]) > 1~¢

and by letting € | 0 we conclude that ug (R) = limg|g po ([—Me, Me]) = 1.

Conversely, suppose there is a subsequence {i,, }ro; such that p,, =
to with o being a probability measure on (R, Bg) such that o (R) < 1. In
this case ¢ := o ({—00,00}) > 0 and hence for all M < oo we have

pro ([=M, M]) < 1o (R) — po ({—00,00}) = 1 — &o.

By choosing M so that —M and M are points of continuity of Fy, it then
follows that

T i, (=M, M]) = po ([~ M, M]) < 1~ .

Therefore,
irelfR’I,un (([-M, M])) <1—ggp for all M < o0

and {un}oo, is not tight. [

13.7 Weak Convergence in Metric Spaces

(This section may be skipped.)

Definition 13.43. Let X be a metric space. A sequence of probability mea-
sures { Py}, is said to converge weakly to a probability P if lim,_.c P, (f) =
P(f) for all for every f € BC(X). This is actually weak-* convergence when
viewing P, € BC(X)*.
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For simplicity we will now assume that X is a complete metric space
throughout this section.

Proposition 13.44. The following are equivalent:

1.P, % P asn — oo, i.e. P,(f) — P(f) for all f €€ BC(X).
2. P, (f) — P(f) for every f € BC(X) which is uniformly continuous.
3. limsup P,,(F) < P(F) for all F T X.

J. limin oo Po(G) > P(G) for all G C, X.
5. limy, 00 P (A) = P(A) for all A € B such that P(bd(A)) = 0.

Proof. 1. = 2. is obvious. For 2. = 3., let

1 if t<0
pet):=¢ 1—-tif0<t <1 (13.25)
0 if t>1

and let f,,(z) := p(nd(z, F)). Then f, € BC(X,]0,1]) is uniformly continu-
ous, 0 < 1p < f,, for all n and f,, | 1 as n — oo. Passing to the limit n — oo
in the equation

0< Py(F) < Py(fm)

gives

0 < limsup P, (F) < P(fm)
and then letting m — oo in this inequality implies item 3. 3. <= 4. Assuming
item 3., let F' = G°, then

1 —liminf P,(G) = limsup(l — P,(G)) = limsup P, (G°)

n—00 n— oo n—oo

< P(G%) =1- P(G)

which implies 4. Similarly 4. = 3. 3. <= 5. Recall that bd(A) = A\ A°,
so if P(bd(A)) =0 and 3. (and hence also 4. holds) we have

limsup P, (A) < limsup P,(A) < P(A) = P(A) and

liminf P,(A) > liminf P,(A°) > P(A°) = P(A)
n—oo n—oo

from which it follows that lim,, ., P,(A) = P(A). Conversely, let F C X and
set Fs :={r € X : p(z,F) < d}. Then

bd(F(;) CFg\{IEGX:p(ZE,F) <5}:A5

where As := {x € X : p(x, F') = 6} . Since {45}, are all disjoint, we must
have
Y P(4;) < P(X)<1

6>0
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and in particular the set A := {6 > 0: P(A4s) > 0} is at most countable. Let
0n ¢ A be chosen so that §,, | 0 as n — oo, then

P(Fs, )= lim P,(Fjs ) > limsup P,(F).

n—oo n—oo

Let m — oo in this equation to conclude P(F) > limsup,,_,., Pn(F) as de-
sired. To finish the proof we will now show 3. = 1. By an affine change of
variables it suffices to consider f € C(X,(0,1)) in which case we have

B

(i-1) i
ey ST plren gy (13.26)
=1

3

iM-

7

Let F; := {% <f } and notice that Fj, = (). Then for any probability P,

ko, k.
S D ) — pR)) < P < Y0 L P - POR). (1327
Since
k
Z(l ; 1) [P(szl) P(Fz)]
=1
(i 1) 5 (i 1)
:Z L P(szl)_z A P(F)
TR
= - EP(Fz) _; A P(F;) = E;P(Fz)
and
u 1
> L [P(Fiiy) — P(F)]
T i—1 F 1
= Z — [P(Fia) = P(F)] + Z —[P(Fi—1) — P(F;)]
k—1
= P(Fz) + %,
Eq. becomes,
= =
T P(Fz)SP(f)S% P(F;) +1/k.

Using this equation with P = P,, and then with P = P we find
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k—1
1
li P, <l - P, (F; 1/k
imsup Py (f) < limsup | - ; (Fy)+1/
1 k—1
< ;Pm-) +1/k < P(f) +1/k.

Since k is arbitrary, limsup,,_, . P.(f) < P(f). Replacing f by 1 — f in
this inequality also gives liminf,, o, P,(f) > P(f) and hence we have shown
lim,, o Pn(f) = P(f) as claimed. ]

Theorem 13.45 (Skorohod Theorem). Let (X,d) be a separable metric
space and {pn}, ., be probability measures on (X,Bx) such that p, = o
as n — oo. Then there exists a probability space, (£2,B, P) and measurable
functions, Y, : 2 — X, such that p, = PoY, * for alln € Ny := NU{0} and
lim,, oo Y, =Y a.s.

Proof. See Theorem 4.30 on page 79 of Kallenberg [7]. (]

Definition 13.46. Let X be a topological space. A collection of probability
measures A on (X, Bx) is said to be tight if for every e > 0 there exists a
compact set K. € Bx such that P(K.) > 1—¢ for all P € A.

Theorem 13.47. Suppose X is a separable metrizable space and A =
{P,},2_, is a tight sequence of probability measures on Bx. Then there exists
a subsequence {P,, }ro, which is weakly convergent to a probability measure
P on Bx.

Proof. First suppose that X is compact. In this case C'(X) is a Banach
space which is separable by the Stone — Weirstrass theorem, see Exercise 77.
By the Riesz theorem, Corollary ??, we know that C'(X)* is in one to one
correspondence with the complex measures on (X, Bx). We have also seen
that C(X)* is metrizable and the unit ball in C'(X)* is weak - * compact,
see Theorem ??. Hence there exists a subsequence {P,, };—, which is weak
-* convergent to a probability measure P on X. Alternatively, use the can-
tor’s diagonalization procedure on a countable dense set I" C C'(X) so find
{P,, }rey such that A(f) := limg_oo Py, (f) exists for all f € I. Then for
g € C(X) and f € I', we have

1P (9) = Py (9)] < [Py (9) = Pri ()] + [Pr (F) = Py ()]
+ |Pm(f> - P’ﬂz(g)|
<29 = flloo + [Pui(f) = Py (£)]

which shows
limsup [P, (9) = Pn,(9)| < 2(l9 = flloo -

n—o0

Letting f € A tend to g in C(X) shows limsup,,_, . | P, (9) — Pr,(g)| = 0 and
hence A(g) :=limg— 0o Pn,(g) for all g € C(X). It is now clear that A(g) >0
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for all g > 0 so that A is a positive linear functional on X and thus there is a
probability measure P such that A(g) = P(g).

General case. By Theorem we may assume that X is a subset of
a compact metric space which we will denote by X. We now extend P, to X
by setting P,(A) := P,(ANX) for all A € Bg. By what we have just proved,
there is a subsequence {P] := Pnk}liil such that P/ converges weakly to a
probability measure P on X. The main thing we now have to prove is that
“P(X) = 1,” this is where the tightness assumption is going to be used. Given
e >0, let K. C X be a compact set such that P,(K.) > 1— ¢ for all n. Since
K. is compact in X it is compact in X as well and in particular a closed
subset of X. Therefore by Proposition

P(K.) > limsup P,;(KE) =1-c.

k—oo
Since € > 0 is arbitrary, this shows with X := Uj2 K1, satisfies P(Xy) =1.
Because Xy € Bx N By, we may view P as a measure on By by letting

P(A) := P(AN X,) for all A € Bx. Given a closed subset F' C X, choose
F C X such that F'= F'N X. Then

limsup P, (F) = limsupplé(ﬁ') < P(F) = P(FHXO) = P(F),

k—oo k—oo

which shows P} - P. n
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Characteristic Functions (Fourier Transform)

Definition 14.1. Given a probability measure, p on (R™, Brn), let

A = / N (2)

be the Fourier transform or characteristic function of p. If X =
(X1,...,Xn) : 2 — R"™ is a random vector on some probability space
(2, B, P), then we let f (X) := fx (A) := E [e"¥] . Of course, if p := PoX 1,
then fx (\) = (V).

Notation 14.2 Given a measure p on a measurable space, (£2,B) and a func-
tion, f € L' (n), we will often write p (f) for [, fdpu.

Definition 14.3. Let 1 and v be two probability measure on (R™, Bgn). The

convolution of p and v, denoted p = v, is the measure, Po (X + Y)_1 where
{X,Y} are two independent random vectors such that P o X~' = p and
PoY™ !l =vu.

Of course we may give a more direct definition of the convolution of y and
v by observing for A € Bg~ that

puxv(A)=P(X+Y €A

= du(z) [ dv(y)la(z+y) (14.1)
R® Rn

_ / (A=) du () (14.2)
_ / (A=) dv (@), (14.3)

Remark 14.4. Suppose that dy (z) = u (z) dx where u (z) > 0 and [, u (z) dz =
1. Then using the translation invariance of Lebesgue measure and Tonelli’s
theorem, we have

“*”(f):/w Rnf(x+y)u(w)dmdu(y):/ f (@) u(z —y)dedy (y)

R7 xR™

from which it follows that



290 14 Characteristic Functions (Fourier Transform)

If we further assume that dv (z) = v (z) dz, then we have

1)@ = | [ ute-part)]an
1) @) = | [ ute =)o) a.
To simplify notation we write,

wo@ = [ ule-pe@dy= [ vl-yu)dy

Ezample 14.5. Suppose that n = 1, du(z) = 1y (x)dz and dv(z) =
1[—1,0) () dx so that v (A) = u(—A). In this case

d(ﬂ * V) (.CC) = (1[0’1] * 1[,170]) (.’1?) dx

where
(Ljoa] * Li=1,0]) /1 —1,00 ( Lio,1) (v) dy
R
2/101] ) 10,17 (y) dy
R
:/101]+z 0,1 (v) dy
R

=m ([0,1]N (z+[0,1])) = (1 — [=[).

14.1 Basic Properties of the Characteristic Function

Definition 14.6. A function f : R™ — C is said to be positive definite, iff
F(=X) = f(A) for all A\ € R™ and for all m € N, {)\j};nzl C R™ the matriz,

({f (Aj — Ak)}Tk:1> 18 non-negative. More explicitly we require,

m

D F Oy = M) &&= 0 for all (G, &) €C™

jk=1

Notation 14.7 For | € N U {0}, let C'(R",C) denote the vector space
of functions, f : R® — C which are | - time continuously differentiable.
More explicitly, if 0; = %, then f € C'(R™, C) iff the partial derivatives,
0j, ... 05, [, exist and are continuous for k = 1,2,...,1 and all ji,...,jk €

{1,2,...,n}.

Proposition 14.8 (Basic Properties of ji). Let p and v be two probability
measures on (R™, Bgrn), then;
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o~
= =

(0) =1, and | (X)| < 1 for all A.

(N) is continuous.

3. (A) = 1 (=) for all A € R™ and in particular, ji is real valued iff p is
symmetric, i.e. iff u(—A) = p(A) for all A € Brn. (If u = Po X~ for
some random vector X, then u is symmetric iff X 4 -X))

4. [i is a positive definite function. (For the converse of this result, see
Bochner’s Theorem [I].41] below.

5 1If [on | z]|" dps (z) < oo, then i € C' (R™,C) and

05, ...05,, (N = / (izj, ... iz, ) e dp (z) for allm < 1.
6. If X and Y are independent random vectors then
fxay A) = fx A) fy (\) for all X € R™.
This may be alternatively expressed as
pxv(N) =pa (NP (\) forall X € R™.
7. IfaeR, beR™ and X : 2 — R"™ is a random vector, then
faxso (A) =€ fx (aX).

Proof. The proof of items 1., 2., 6., and 7. are elementary and will be left
to the reader. It also easy to see that i (A\) = (=) and g (N\) = (=) if
u is symmetric. Therefore if p is symmetric, then ji (A) is real. Conversely if
fi (A) is real then

OV =N = [N (@) =5 ()

n

where v (A) := pu(—A) . The uniqueness Proposition below then implies
w = v, ie. pis symmetric. This proves item 3.

Item 5. follows by induction using Corollary For item 4. let m € N,
{)\j};nzl CR™ and (&1, ...,&,) € C™. Then

Z ﬂ()\j _ )\k)fjgk — / Z ei()\j—)\k)mgjgkdu (.’I})
k= R

Ji.k=1 Jik=1

= [ Mg @

k=1
2

= [ o] du@ =0
R™ |5
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Ezample 14.9 (Example continued.). Let du(x) = lpq(z)dr and
v(A)=pu(—A). Then

1 i>\_1
o) = zAacd :e
i) = [ s =
. . _ 6—1')\_1
PO = (-X) =0 = S and
_ R A er 1P 2
TP ) =P ) = ) = | T2 = 2 cos).

According to example we also have d (u*v) (x) = (1 — |z]), dz and so
directly we find

= [

e (1 — jz]), dz = / cos (A\z) (1 — |z|), dz
- R

sin Ax

1 1
=2/ (l—m)cos)\xd;v:2/ 1-x)d
0 0 A

1 . 1 .
sin Az sin Az —COSAT
:‘2/0‘“1”) A :2/0 A e

1—cos A

A2
Proposition 14.10 (Injectivity of the Fourier Transform). If u and v
are two probability measure on (R™, Bgn) such that i = U, then pu = v.

Proof. Let H be the subspace of bounded measurable complex functions,
f + R* — C, such that pu(f) = v(f). Then H is closed under bounded
convergence and complex conjugation. Suppose that A C Z? is a finite set,

L >0 and _
p(z) = Z ayeN /(L) (14.4)
AeA
with ay € C. Then by assumption,

A A
p(p) = ari (m) = <m> =v(p)
€A AeA
so that p € H. From the Stone-Weirstrass theorem (see Exercise below)
or the theory of the Fourier series, any f € C' (R™,C) which is L — periodic,
(ie. f(z+ Le;) = f (v) for all z € R? and i = 1,2,...,n) may be uniformly
approximated by a trigonometric polynomial of the form in Eq. , see
Exercise below. Hence it follows from the bounded convergence theorem
that f € H for all f € C' (R",C) which are L — periodic. Now suppose f €

C. (R™,C). Then for L > 0 sufficiently large the function,

fo(@)= > fz+Lx),

AEZ™
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is continuous and L periodic and hence f; € H. Since f; — f boundedly as
L — oo, we may further conclude that f € H as well, i.e. C. (R, C) C H.
An application of the multiplicative system Theorem (see either Theorem
or Theorem implies H contains all bounded o (C. (R",R)) = Bgn —
measurable functions and this certainly implies pu = v. ]

For the most part we are now going to stick to the one dimensional case, i.e.
X will be a random variable and p will be a probability measure on (R, Bg) .
The following Lemma is a special case of item 4. of Proposition [14.8

Lemma 14.11. Suppose n € N and X is random wvariables such that
E[|X|"] < oco. If p = Po X~ is the distribution of X, then i ()) := E [¢¥]
is C™ — differentiable and

D\ =E [(z‘X)l e“‘X} = / (iz) e dp (z) forl=0,1,2,...,n.
R

In particular it follows that

The following theorem is a partial converse to this lemma. Hence the com-

bination of Lemma [14.11and Theorem [14.12f (see also Corollary [14.34] below)

shows that there is a correspondence between the number of moments of X
and the differentiability of fx.

Theorem 14.12. Let X be a random wvariable, m € {0,1,2,...}, f(A) =
E [¢X]. If f € C*™ (R,C) such that g := F@m) s differentiable in a neigh-
borhood of 0 and g" (0) = f*m+2(0) exists. Then E [X?*" 2] < oo and
feC™?2(R,C).

Proof. This will be proved by induction on m. We start with m = 0 in

which case we automatically we know by Proposition [14.8] or Lemma [14.11
that f € C (R,C)). Since

u(A) :=Re f (A) =E[cos (AX)],

it follows that u is an even function of A and hence v/ = Re f’ is an odd
function of A and in particular, v’ (0) = 0. By the mean value theorem, to
each A > 0 with A near 0, there exists 0 < ¢y < A such that

A)—u(0
M =u'(ex) = v (ex) — ' (0).
Therefore,

w(@—u) _ W) =w O gy a0l
ey A
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Since x x
B 1 —cos (A X) <E 1 —cos (AX) :u(O)—u()\)
/\2 )\C)\ )\C)\
and limy o 1_%2()‘)() = %X27 we may apply Fatou’s lemma to conclude,

1 —cos (AX)

1 2 ..
— <
2E [X ] hr/r\llbnf E { 2

} < —u" (0) < o0.

An application of Lemma [14.11|then implies that f € C? (R, C).
For the general induction step we assume the truth of the theorem at level
m in which case we know by Lemma [14.11] that

FEM Q) = ()" E [XPeMN] = (=1)" g (A) .

By assumption we know that g is differentiable in a neighborhood of 0 and
that ¢” (0) exists. We now proceed exactly as before but now with u := Reg.
So for each A > 0 near 0, there exists ¢y € (0, A) such that

u<0)_u()‘) 7
T_)_u (0) asA |0
and
om 1 — cos (AX) om1—cos(AX)]  u(0)—u(X)
e ] e

Another use of Fatou’s lemma gives,

1 2m+2 OO 2m 1 CO8 ()“f) "
- — -V <

from which Lemma [14.11| may be used to show f € C?™*+2 (R, C). This com-
pletes the induction argument. [

14.2 Examples

Ezample 14.13.1f —0o < a < b < 00 and dp (z) = 3-1(4) (z) dz then

) 1 b . oiAb _ pida
H(/\)_b—a/a =

If a = —c and b = ¢ with ¢ > 0, then

sin Ac

By =

Observe that
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1
p) =1— =222+ ...
3!
and therefore, i’ (0) = 0 and 2" (0) = —4¢? and hence it follows that
Lo

/Ra:du () = 0 and /Rx2du (1) = 3¢

Ezxample 14.14. Suppose Z is a Poisson random variable with mean a > 0, i.e.
P(Z=n)= e_a%. Then

oo n oo i\ 7
fz(\) =E[e*] =e° Z 6“‘”% =e Z % =exp (a(e” —1)).
n=0 n=0

Differentiating this result gives,
15 (\) = iae™ exp (a (e — 1)) and
7(\) = (—aQeQ}‘ - ae“) exp (a (eM -1))

from which we conclude,
1
EZ = -f,(0)=aand EZ*> = —f7 (0) = a* + a.
i

Therefore, EZ = a = Var (Z).

Ezample 14.15. Suppose T is a positive random variable such that P (T > ¢ + s|T > s) =
P (T >t) for all s,t > 0, or equivalently

P(T>t+s)=P(T>t)P(T > s) forall s,t >0,

then P (T >t) = e~ for some a > 0. (Such exponential random variables
are often used to model “waiting times.”) The distribution function for T is
Fr(t):=P(T <t)=1-e"%0 Since Fr (t) is piecewise differentiable, the
law of T, y :== P oT~', has a density,

dp (t) = Ff (t) dt = ae™ " 1;>0dt.

Therefore,
E waT _ —at i)\tdt: a =a(\).
[e*"] /o ae” e i i(A)
Since a a
7N =i——and i/ (\) = 22—
fi" () @ e i (N) @i
it follows that
~! ~1
ET:M(O)ZalandETQ: ‘(0):—
i 12 a?

and hence Var (T) = & — (%)2 =a 2
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Proposition 14.16. If du (z) := \/%e_ﬁ/zdx, then i (\) = e~ /2. In par-
ticular we have

/R wdp () = 0 and /]R 22dp (z) = 1.

Proof. Differentiating the formula,

1 20
A\ = — e " /261/\wdx’
i =—=[
for fi with respect to A and then integrating by parts implies,
[ () = L/iﬂceﬂ”z/%ai’\g”cla:
V2m Jr
i d —322/2:| AT
= — ——e e dx
V27T/]R |: dzr
i —x2/2 d iAT ~
e —e"dxr = =M1 (M) .
o /R - fi (A)

Solving this equation of fi (\) then implies

A = e 20) = e N Pp(R) = e N2,
]
Ezample 14.17. If p is a probability measure on (R, Bg) and n € N, then "
is the characteristic function of the probability measure, namely the measure
n times
W=k ek (14.5)

Alternatively put, if {X;}r_, are i.i.d. random variables with y = P o X!,
then

fxiprx, A) = fx, (V).

Ezample 14.18. Suppose that {1, }, -, are probability measure on (R, Bg) and
{pn}or C[0,1] such that > >~ p, = 1. Then > > | pnfiy is the characteristic
function of the probability measure,

S
Hi= Z Pnlin.
n=0

Here is a more interesting interpretation of p. Let {X,,} - ,U{T'} be indepen-
dent random variables with Po X1 = p,, and P (T = n) = p,, for all n € Ny.
Then p(A) = P(Xr € A), where X7 (w) := Xp(,) (w) . Indeed,
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p(A)=P(XreA)=> P(XreAT=n)=> P(X,€AT=n)
n=0 n=0
=Y P(Xn€AT=n)=> poin(A).
n=0 n=0

Let us also observe that

p(\)=E [ei)‘XT] = Z]E [ei)‘XT :T=n| = ZE [e“‘X” : T =n]

n=0

= ZE [ P(T =n) = anﬂn (A).
n=0 n=0

Ezample 14.19.If i is a probability measure on (R, Bg) then Y~ p,i" is
the characteristic function of a probability measure, v, on (R, Bg) . In this case,
V= Z;:O:o P ™ where p*" is defined in Eq. . As an explicit example,
ifa >0 and p, = %e‘“, then

0o 0o a”

An —apsn —a  afl a(fi—1
d pafi" =) e Ut = e et = et
n=0 n=0

is the characteristic function of a probability measure. In other words,

Fxr N) =E[e?7] = exp (a(fx, (V) — 1))

14.3 Continuity Theorem

Lemma 14.20 (Tail Estimate). Let X : (£2,8,P) — R be a random vari-
able and fx (\) :=E [e”‘X} be its characteristic function. Then for a > 0,

a 2/a a 2/a
PUX|za<s [ a-sxona=5 [ a-Refx)dr (140)
2 —2/a 2 —2/a
Proof.‘ Recall that the Fourier transform of the uniform distribution on
[—¢, ] is #22¢ and hence
1 [° 1 r° X sin cX
— =— | E[e*]d\=E :
50 7CfX (N) dX 50 [C [e ]d)\ { e }
Therefore,
1 [° sincX
— 1-— Md\=1-FE =E[Y, 14.
[ a- ) e

where
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sin cX
cX

Notice that Y, > 0 (see Eq. (14.47)) and moreover, Y, > 1/2 if |cX| > 2.
Hence we may conclude

Y. =1-

E[YC]EE[YC:chQz}zEB:|cX|z2] = P (X2 2/0).

Combining this estimate with Eq. (14.7]) shows,

1 f€ 1
— I-=fx\)drx>=P(|X]|>2/c).
2c J_. 2
Taking a = 2/c in this estimate proves Eq. (14.6)). ]

Theorem 14.21 (Continuity Theorem). Suppose that {j,},—, is a
sequence of probability measure on (R,Br) and suppose that f(\) =
limy, o fin, (A) exists for all A € R. If f is continuous at A = 0, then f
is the characteristic function of a unique probability measure, p, on Br and
fn = 4 asn — 00.

Proof. By the continuity of f at A = 0, for ever € > 0 we may choose a.
sufficiently large so that

2/ac
las/ (I1=Ref(N)dx<eg/2.
2 —2/a.

According to Lemma and the DCT,

2/ac

1 .
po (o 1a] 2 0)) < ga. [ . (= Refin (1) )

2/ac
- %a/ (1—Ref(\)d\ < e/2.
—2/a.

Hence py, ({z : |z| > a.}) < e for all sufficiently large n, say n > N. By in-
creasing a. if necessary we can assure that p, ({z:|z| > ac}) < e for all n
and hence I" := {u,} -, is tight.

By Theorem|13.42) we may find a subsequence, {ji, } 1., and a probability
measure g on Bg such that 1, = pask — oo. Since x — €% is a bounded
and continuous function, it follows that

a(A) = klirgo fin, (A) = f(A) for all A € R,
that is f is the characteristic function of a probability measure, p.

We now claim that p,, = p© as n — oo. If not, we could find a bounded
continuous function, g, such that lim,_, fn (¢) # p (g) or equivalently, there
would exists € > 0 and a subsequence {y}, := fin, } such that
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1 (g) — pi, (9)| > € for all k € N.

However by Theorem again, there is a further subsequence, ;' = pj,
of uj, such that yf = v for some probability measure v. Since ¥ (\) =
im0 1 (A) = f(A) = £ (X), it follows that p = v. This leads to a contra-
diction since,

e < lim |p(g) —pi' (9)| = | (9) = v (9)] = 0.
| |

Remark 14.22. One could also use Bochner’s Theorem [14.47] to conclude; if
f (A :==1lim,, o i, (A) is continuous then f is the characteristic function of a
probability measure. Indeed, the condition of a function being positive definite
is preserved under taking pointwise limits.

Exercise 14.1. Suppose now X : (2,B8,P) — R? is a random vector and
fx (A) :=E [e"*X] is its characteristic function. Show for a > 0,

P(Ix], >0 <2 (%)’ /H R

a

—9 (4)d/[_2/a72/a]d (1 - Re fx (V) dX (14.8)

where | X|_ = max; |X;| and d\ = dAq, ..., d)q.
Solution to Exercise ([14.1]). Working as above, we have

1\¢ d sin c¢X;
— 1— X d)\:lf” I =Y, 14.
(26> /[c,c]d ( ‘ ) CXj , ( 9)

Jj=1

where as before, Y, > 0and Y, > 1/2if ¢|X;| > 2 for some j, i.e. if ¢| X| > 2.
Therefore taking expectations of Eq. (14.9)) implies,

d
(2lc> /[_ v (I=fx (N)dAX=E[Y] ZE[Y, : [X], > 2/¢]

>E B X > 2/0] _ %P(\X|oo > 9/c).

Taking ¢ = 2/a in this expression implies Eq. (14.8).

The following lemma will be needed before giving our first applications of
the continuity theorem.

Lemma 14.23. Suppose that {z,},., C C satisfies, lim, .o nz, = € C,
then
lim (14 2,)" = ef.

n—oo
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Proof. Since nz, — &, it follows that z,, ~ % — 0 as n — oo and therefore
by Lemma [14.45 below, (1 4 z,) = e™(1+2n) and

In(1+ 2,) zzn—|—0(zfl) =z, + 0 <7112) )
Therefore,
(1+2z,)" = [eln(lﬂn)}n = enn(+zn) = on(=:+0(32)) - ¢ ag n — o0
|

Proposition 14.24 (Weak Law of Large Numbers revisited). Suppose
that {X,}°2, are i.i.d. integrable random variables. Then 2= L EX, = 1.

Proof. Let f(\) = fx, (\) = E[e¢**1]. Then by Taylor’s theorem,
f(A) =14iur+o()\). Since,

A\ 1" A 1\1"
n n n n
it follows from Lemma [14.23] that

lim fs, () = e

n—oo n

which is the characteristic function of the constant random variable, p. By the

continuity Theorem [14.21} it follows that % — u and since p is constant

we may apply Lemma [13.19| to conclude ‘%“ Lt . [

Theorem 14.25 (The Basic Central Limit Theorem). Suppose that

{X,}o2, are ii.d. square integrable random variables such that EX; = 0
and EX7 = 1. Then 52 = N (0,1).

Proof. By Theorem [14.2T] and Proposition [I4:16] it suffices to show

lim E [e”ﬂ — /2 for all A € R.

n—oo

Letting f (X) := E [¢"**1] | we have by Taylor’s theorem (see Eq. (14.43)) and
(T4.46)) that
1
f)=1- 5(1+5(A))A2 (14.10)

where € (A\) — 0 as A — 0. Therefore,
ixSe A"
= n fr—
fsﬁ W= [e } [f (\/ﬁﬂ

[T e
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wherein we have used Lemma [14.23] with

()2

Alternative proof. This proof uses Lemma [I5.6] below as follows;

=l ()] e

<nl|f (%) — e N/
1 A 22 22 1
s (e ()7 - (5 ()

— 0 asn — oo.

Corollary 14.26. If {Xn}zo=1 are i.i.d. square integrable random variables
such that EX; = 0 and EX? = 1, then

Sn
sup P(Sy)—P(N(O,l)gy)’HO asmn — oo. (14.11)

AR vn
Proof. This is a direct consequence of Theorem and Exercise [13.3]

[
Berry (1941) and Esseni (1942) showed there exists a constant, C' < oo,

such that; if p? := E|X;|® < oo, then

sup
ACR

P(5z <) -rPwon sw‘ <o (L) v

In particular the rate of convergence is n~'/2. The exact value of the best

constant C' is still unknown but it is known to be less than 1. We will not
prove this theorem here. However we will give a related result in Theorem
114.28 below.

Remark 14.27. It is now a reasonable question to ask “why” is the limiting
random variable normal in Theorem [14.25] One way to understand this is, if

under the assumptions of Theorem |14.25, we know % —> L where L is

some random variable with EL = 0 and EL? = 1, then

2n 2n
Son 1 ( k=1, k odd Xj L Zek=1k even Xj)

Van V2 NG NG
- %(Ll‘i‘LQ)

(14.12)
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where L 4 L 4 Ls and Ly and Ly are independent. To rigorously understand
this, using characteristic functions we would conclude from Eq. ((14.12]) that

Passing to the limit in this equation then shows, with f (A) = lim, o fs. (A) =
Jn

fr (\), that ,
- ()]

Iterating this equation then shows

o= [ ()] [ () (o)

An application of Lemma [14.23| then shows

)= Jim 15((\2)’)2(”5((\/%”))

2
—e 3V = Ineo,y (A).

n

That is we must have L < N (0,1).

It is interesting to give another proof of the central limit theorem. For this
proof we will assume {X, } -, has third moments. The only property about
normal random variables that we shall use the proof is that if {N,} ~, are
i.i.d. standard normal random variables, then

T Ny+---+N

n o MA-+ N iN(O’l).

vn Vn
Theorem 14.28 (A Non-Characteristic Proof of the CLT). Suppose
that {X,},—, are mean zero variance one i.i.d random variables such that

E|X;|* < co. Then for f € C3(R) with M := sup,er | f@ ()] < oo,

o (35) s

where Sy, = X1+ -+ X, andNiN(O,l).

E [|N|3 + \Xlﬂ (14.13)

Proof. Let {XmNn}ZO:l be independent random variables such that

N, 4 N(0,1) and X, 4 X,. To simplify notation, we will denote X,, by
X, . Let T, :=Ny+---+ N, and for 0 < k < n, let
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Vii=(Ni4-+ Np+ X1 + -+ X)) [V

with the convention that V,, = S,,/v/n and Vi = T, //n. Then by a telescoping
series argument, it follows that

n

F(Su/v/n) = F(Tufv/n) = (Vi) = f (Vo) = D [f (Vi) = f (Vim)] - (14.14)

k=1
We now make use of Taylor’s theorem with integral remainder the form,
1
Fla+ )= f@) = @A+ o f' () 8@ )8 (1415)
where
1 ! " 2
r(z,A) =g " (x+tA) (1 —1t) dt.
0

Taking Eq. (14.15) with A replaced by ¢ and subtracting the results then
implies

Fat D)= f (04 8) = [ (2) (A= 0) 57" (1) (47 = 8) 4 p(a, 4), (14.16)
where
p (2, )| = |r (2, A) A% — 1 (2,6)6°| < % a8+ 7). (a17)

wherein we have used the simple estimate, |r (z, A)| < M/3L
If we define Uy := (N1 + -+ Np—1 + Xpq1 + - + X,,) /y/n, then Vj, =

Uy + Ni//n and V1 = Uy + Xy /+/n. Hence, using Eq. (14.16) with x = Uy,
A= Ni/y/n and § = X //n, it follows that

f (Vi) = fF (Vier) = f (U 4+ Ni/v/n) = f (Ui + Xi/v/n)

1 1
= ﬁf/ (Ug) (Nk, — Xi,) + %f” (Uk) (le - Xl?) + Ry
(14.18)
where v
_ 3 3
|Ry| = 32 [INkI + | Xk | } : (14.19)

Taking expectations of Eq. (14.18) using; Eq. (14.19), EN, = 1 = EXj,
EN?Z =1 =EX? and the fact that Uy is independent of both X}, and Ny, we
find

M )
Ef (Vi) = f (Ven)ll = ERY| < 5B [Nl + X[

M

3 3
< WE [\N1| + | X4 } .
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Combining this estimate with Eq. (14.14]) shows,

E [f (Su/v/n) = f (Tu/vn)]| = ZERk <Y E|Ry
< 75 E |INf*+ %]

This completes the proof of Eq. (|14.13)) since T—\/TL LBY because,

e 0= [ (25)] e (502 ) = e (-x2) = 1w 0.
]

For more in this direction the reader is advised to look up “Stein’s
method.”

14.4 A Fourier Transform Inversion Formula

Proposition [14.10] guarantees the injectivity of the Fourier transform on the
space of probability measures. Our next goal is to find an inversion formula for
the Fourier transform. To motivate the construction below, let us first recall
a few facts about Fourier series. To keep our exposition as simple as possible,
we now restrict ourselves to the one dimensional case.

For L > 0, let & (x) := e '£% and let

(fr9), = m/ e

for f,g € L? (|—wL,wL],dx). Then it is well known (and fairly elementary to
prove) that {e :n € Z} is an orthonormal basis for L? ([—~7L,nL],dz). In
particular, if f € C. (R) with supp(f) C [-wL,wL], then for z € [-nL,wL],

L
)= Z ( ,eﬁ)L ey () = %% ( f(y) eizydy> e LT
nez nez —nL
1 p(n —itx
= 5np 21 (E) ¢ (14.20)

where

= [ 7 f ) vy,

Letting L — oo in Eq. (14.20) then suggests that

%% sz (%) eTIET %[mf(k) e\
ne
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and we are lead to expect,
F) =g [ iea
) =5 - e .

Hence if we now think that f (x) is a probability density and let du (z) :=
f () dzx so that i (A) = f (A\), we should expect

b b oo
/a f(x) d:v:/a [;ﬁ /_Dop(A)e—WdA] dx
0o b
% (N < / ei*ﬂﬂdx) d\
1 00 A e—i)\a _ e—i>\b

2r /o

1 c efi/\a _ efi)\b
= lim — g (N) | ———— | dA.

—C

p (la, b))

This should provide some motivation for Theorem [[4.30] below. The following
lemma is needed in the proof of the inversion Theorem [14.30] below.

Lemma 14.29. For ¢ > 0, let

S(c): 1/6 s s (14.21)

T or

—C

Then S (¢) — m boundedly as ¢ — oo and

/ sm}\/\yd)\ =sgn(y)S (cly|) for ally € R. (14.22)
where
1 ify>0
sgn(y) =< —1ify <0.
0 ify=0

Proof. The first assertion has already been dealt with in Example [10.12
We will repeat the argument here for the reader’s convenience. By symmetry
and Fubini’s theorem,

1 C . 1 (& o0
S(C)Z*/ Sln)\d)xzf/ sin)\(/ e_)‘tdt> d\
TJo A ™ Jo 0
1 oo C
= f/ dt/ dAsin \e™ M
™ Jo 0

1 1 [~ 1
=3 + = /0 e e ' [~ cosc — tsin ] dt, (14.23)
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wherein we have used

/ d\sin e = Im / dhee ™ = Im / dXeli=DA
0 0 o
1

li—te _ o ‘
:Im< (i—t)l)zl—i—t?Im([e(z : _1] H_t))

_ 1 (e7*[—cosc —tsinc] + 1)

1+1¢2
1 /> 1 1
| ——adt=-=.
77/0 14 ¢2 2

The the integral in Eq. (14.23)) tends to as ¢ — oo by the dominated conver-
gence theorem. The second assertion in Eq. (14.22) is a consequence of the
change of variables, z = \y. ]

and

Theorem 14.30 (Fourier Inversion Formula). If u is a probability mea-
sure on (R, Br) and —oo < a < b < oo, then

c efi)\a _ e*i)\b
i 5 [ a0 (S ) d = (@) + 5 e dad) + e (0D).

—C

Proof. By Fubini’s theorem and Lemma [14.29

I(c) = /_Cc,z(x) (e_AZ_Ae_Ab) dx
_ /_cc </]R ei}\xd'u (x)) (e—i)\a Z;\ e—ikb) I\
- /R dp () /_ A (e—““;\ G_Mb)
_ /R dp () /_ Ccd)\ (G_M(a_x)i;e_wb_x)>.
Since

Im (ei’\(““") ;\ e”‘(b‘”)) _ (cos (A (a—x)) ; cos (A (b— zc)))

is an odd function of X\ it follows that

1@ = [du) [ arre <‘f”(”) - ‘f”(”)>
_ /Rd,u(x)/ccd/\ <sin)\(x —a) ;sin/\(xf b))

= 27r/ dp (z) [sgn(x — a)S (c|x — a|) — sgn(x — b)S (c|x — b])] .
R
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Now letting ¢ — oo in this expression (using the DCT) shows

hmALI@%:%Aﬁu@H%Mx—aI—%Mx—w]

c—o0 27

= %/}Rdﬂ ($) [2 . 1(a,b) (x) + 1{11} (1‘) -+ l{b} (gg)]

= 1 ((a,0) + 5 I ({ad) + e ({0)].
]

Corollary 14.31. Suppose that i is a probability measure on (R,Bgr) such
that i € L' (m), then du = pdm where p is a continuous density on R.

Proof. The function,

1 .
= — [ (N e dA
3 e

is continuous by the dominated convergence theorem. Moreover,

b 1 b _
/ p(x)dx —/ dx/d)\ﬂ (\) e~
a 2m a R
1

b
= — [ d\a(N) / dze "

p(z)

2w R
1 e—i)\a _ e—iAb
—— (a0 |Y— =
or [, M ){ iX ]
1 ) c . efi)\a _ e*i)\b
=g dm [ A {)\] X

= () + 3 [ ({a}) +  ({B))].

Letting a 1 b over a € R such that p ({a}) = 0 in this identity shows p ({b}) =
0 for all b € R. Therefore we have shown

b
,u((a,b]):/ p(z)dx for all —oco < a <b< oco.

Using one of the multiplicative systems theorems, it is now easy to verify
that pu(A) = [, p(z)dx for all A € Bg or [, hdp = [, hpdu for all bounded
measurable functions i : R — R. This then implies that p > 0, m — a.e., and
the dy = pdm. ]

Ezample 14.32. Recall from Example [[4.9] that

i 1—cosA
/ek(1—uuﬁm:247§—a
R
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Hence it followrﬂ from Corollary [14.31 that

1 [ 1—cosA _;\,
Corollary 14.33. For all random variables, X, we have
1 1 — R A
E|X| = f/ eizf)(()dx. (14.25)
™ Jr )\
Proof. Evaluating Eq. (14.24) at x = 0 implies
1 [ 1—cosA

T J -0

Making the change of variables, A — M\, in the above integral then shows

M:l/ l_COS()\M)d)\.
™ JrR )\2

Now let M = | X]| in this expression and then take expectations to find
1 1—cosAX 1 [1-R A
E\X|:,/E$dhf/eifx<>dx
™ Jr )\2 ™ Jr )\2

7 =N s L we

Suppose that we did not know the value of ¢ := [~
could still proceed as above to learn

IE\X|:1 Md)\_
C Jr )\2

We could then evaluate ¢ by making a judicious choice of X. For example if
x<in (0,1), we would have on one hand

1 2 > 2
E|X|= E/Rhﬂe*ﬁ/zdxzﬁ/o ze 2 dy = —

On the other hand, fx (A) = e~*"/2 and so

et [ = [ul e

1 V2
== / e N/2q) = YT
R

c c
from which it follows, again, that ¢ = .

! This identity could also be verified directly using residue calculus techniques from
complex variables.
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Corollary 14.34. Suppose X is a random variable such that u (X) := fx (\)
continuously differentiable for X € (—2¢,2¢) for some € > 0. We further
assume

/ A < oo (14.26)

Then E|X| < 0o and fx € C* (R (C) (Since u is even, u' is odd andu (0) =
0. Hence if u' (\) were a — Holder continuous for some o > 0, then Eq. (14.26]
would hold.)

Proof. Let u(A) = Refx (A) = EcosAX] and assume that u €
C' ((—2¢,2¢),C). Then according to Eq. (14.25)

1—u(N)

d.
Nse A2

1—u(A 1—u(A
R IA|<e

Since 0 < 1 —wu(A\) <2 and 2/A? is integrable for |\| > ¢, it suffices to show

1—u(N) . 1-u(N)
o0 > ————2d\ =lim ————=d\.
/|>\<s A? 310 Js<pp<e A2

By an integration by parts we find

T=u gy = . o
/5<>\|<g A2 d)‘/5<>\|<€(1 ()\))d( AT

_ 'LL()\) -1 3
B A |5 + /5 /\\<s )d>\
:—/ Al (an 4 L@ uze) Tl
S<|AI<e € -

u(=0)—1 u(d)—1

+ =5 - 5 .
/ (6) +u(_5) / /

— ~lim 6SW<€A (\) dA + - + ' (0) =/ (0)

W V] oy ule) +u(—e)
< /)\|<s dX + .

_2/ LGV (6)+€u(_5)<oo.

Passing the limit as ¢ | 0 using the fact that u' () is an odd function, we
learn

/ ;Zé()od)\:lim AL () d)\+w
A<e A 510 J5<|x|<e €

< 2/05 L/Y)'dx ule)tulze) +€“(*5) < .
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14.5 Exercises
Exercise 14.2. For z, A € R, let

e“m;%mif 40
o\ x) =

—%/\2 if x =0.

(It is easy to see that ¢ (A, 0) = lim,_,0 ¢ (A, 2) and in fact that ¢ (A, z) is
smooth in (A\,z).) Let {zx},_; C R\ {0}, {Zx};_, U{N} be independent
random variables with N < N (0,1) and Zj being Poisson random variables
with mean aj, > 0, ie. P(Z, =n) = e %% forn = 0,1,2.... With ¥ :=
Sony i (Z, — ai) + aN, show

Fr ) = B[] = e ([ 00w (o)

where v is the discrete measure on (R, Br) given by

v=a%5+ Z ApT0y, - (14.27)
k=1

Exercise 14.3. To each finite and compactly supported measure, v, on
(R, Br) show there exists a sequence {v,}-, of finitely supported finite mea-
sures on (R, Bg) such that v, = v. Here we say v is compactly supported
if there exists M < oo such that v ({z : |x| > M}) = 0 and we say v is finitely
supported if there exists a finite subset, 4 C R such that v (R \ A) = 0. Please
interpret v, = v to mean,

/ fdv, — / fdv for all f € BC (R).
R R

Exercise 14.4. Show that if v is a finite measure on (R, Bg), then

FOV = exp ( /R o (\z) dv @)) (14.28)

is the characteristic function of a probability measure on (R, Bg) . Here is an
outline to follow. (You may find the calculus estimates in Section to be
of help.)

1. Show f ()) is continuous.

2. Now suppose that v is compactly supported. Show, using Exercises [14.2]
and the continuity Theorem that exp ([ ¢ (X, #) dv (z)) is the
characteristic function of a probability measure on (R, Bg) .

3. For the general case, approximate v by a sequence of finite measures with
compact support as in item 2.
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Exercise 14.5 (Exercise 2.3 in [14]). Let p be the probability measure
on (R, Bg), such that 4 ({n}) =p(n) = leln\ﬂ with ¢ chosen so that
> ez P (n) = 1. Show that i € C* (R,C) even though [, |z|du (z) = oo. To

do this show,
1 — cosnt
t): —_—
90—
n>2
is continuously differentiable.

Exercise 14.6 (Polya’s Criterioin [1, Problem 26.3 on p. 305.] and
[3, p. 104-107.]). Suppose ¢ (A) is a non-negative symmetric continuous
function such that ¢ (0) = 1, ¢ (\) is non-increasing and convex for A > 0.
Show ¢ (A) = ¥ (A) for some probability measure, v, on (R, Bgr) .

Solution to Exercise ([14.6]). Because of the continuity theorem and some
simple limiting arguments, it suffices to prove the result for a function ¢ as
pictured in Figure From Example|14.32) we know that (1 — |A]) | = @ (A)

—$,

—$5

Fig. 14.1. Here is a piecewise linear convex function. We will assume that d, > 0
for all n and that ¢ (A) = 0 for A sufficiently large. This last restriction may be
removed later by a limiting argument.

where p is the probability measure,

11—cosx
For a > 0, let p, (A) = p(ad) in which case pq (f) = p(f (a™!+)) for all
bounded measurable f and in particular, fi, (A\) = (ail)\). To finish the
proof it suffices to show that ¢ (\) may be expressed as

©(N) = Pafla, N) = pn <1 -

A

) (14.29)
N

a
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for some a,, > 0 and p,, > 0 such that Zf;l Prn. Indeed, if this is the case we

may take, v := > " | pyfla, -
It is pretty clear that we should take a,, = d1+---+d, for all n € N. Since
we are assuming ¢ (A) = 0 for large A, there is a first index, N € N, such that

N
O=gp(an)=1- dysp. (14.30)
n=1

Notice that s, = 0 for all n > N.
Since

> 1
(A = — n— wh 1 <A<
o) == 3 o when iy <A <o

we must require,

S |
SE = ana for all k&
n=k

which then implies pka% = S, — Sk4+1 or equivalently that
Pr = ak (S — Sk+1) - (14.31)

Since ¢ is convex, we know that —sp < —sp41 or s > sk4q for all k and
therefore pp > 0 and pr = 0 for all £k > N. Moreover,

o0 o0 o0 o0
E P = E ak (Sk — Sk+1) = E agSk — E Ak—15k
k=1 k=1 k=1 k=2

o0 o0
=a181 + Z Sk (ak — CLk_l) =dis] + Z Srdy
k=2 k=2

o0
= jz:skdk =1
k=1

where the last equality follows from Eq. (14.30]). Working backwards with py
defined as in Eq. (|14.31)) it is now easily shown that % > P (1 —|2 ) =
Jr

@ (A) for X ¢ {a1,aq,...} and since both functions are equal to 1 at A = 0
we may conclude that Eq. (14.29)) is indeed valid.

14.6 Appendix: Bochner’s Theorem

Definition 14.35. A function f € C(R™,C) is said to have rapid decay or
rapid decrease if

sup (1+ |z))V |f(x)] < 0o for N =1,2,....
TER™
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Equivalently, for each N € N there exists constants Cy < 0o such that
If(z)] < On(1 + |2z))™N for all z € R™. A function f € C(R",C) is said
to have (at most) polynomial growth if there exists N < oo such

sup (1 + [2) ™ | f(2)] < oo,

i.e. there exists N € N and C < oo such that |f(z)| < C(1 + |z|)N for all
x € R™

Definition 14.36 (Schwartz Test Functions). Let S denote the space of
functions f € C®(R™) such that f and all of its partial derivatives have rapid
decay and let

1 fll .0 = sup [(1+[z)¥0% f(2)]
zER™

so that
S= {f € C(R") : | fll 5o <00 for all N and oz}.

Also let P denote those functions g € C°(R™) such that g and all of its
derivatives have at most polynomial growth, i.e. g € C>*(R™) is in P iff for
all multi-indices «, there exists N, < 0o such

_Noc (0%
sup (1 + [z])” 7 [0%g(z)| < oo.
(Notice that any polynomial function on R™ is in P.)

Definition 14.37. A function x : R™ — C is said to be positive (semi)
definite iff the matrices A := {x(& — §j)};nj:1 are positive definite for all
m € N and {fj};nzl C R™.

Proposition 14.38. Suppose that x : R™ — C is said to be positive definite

with x (0) = 1. If x is continuous at 0 then in fact x is uniformly continuous
on all of R™.

Proof. Taking & = z, & = y and &3 = 0 in Definition we conclude
that

L x(—y) x(z) I x(@—-y) x(@)
A= |xly—2) 1 x@|=|x@~-y) X (y)
x(=2) x(-y) 1 X  x@ 1

is positive definite. In particular,

0<detA=1+x(z—y)x () x @) +x@)x-y)xy)
—Ix @) = Ix@ = Ix(z -y
Combining this inequality with the identity,

X (@) = x W)° = Ix @) + Ix @ = x (@) x(») = x @) X (@),
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gives
0<1—|x(z =yl +x(@—yx®)X(@) +x@)x(@—y) XY)
—{Ix@) = xO)F +x @ W)+ x B) X (@)}
X

=1-|x(@-y-Ix@-xu/
+x@-y)x@x@) —x@x@)+x@x@E-y)x) —x@) x)
=1-|x(@-y-|x( W))* +2Re ((x (z —y) — 1) x () ¥ (z))

X (@) = x(y
<1—|x(@ -y = Ix@) - x @ +2x(z—y) - 1],
Hence we have
X (@) = x@I* <1=|x(@@ -y +2x@—y) -1
— (=@ — gD (+ Iy @ - +2x @ —y) — 1]
<41l -x(z—y)
which completes the proof. [
Lemma 14.39. If x € C(R",C) is a positive definite function, then

1. x(0) > 0.

2. (=€) = x(€) for all € € R™.
3. 1x(&)| < x(0) for all £ € R™.
4. For all f € S(RY),

/Rn . X(& = n).f (&) F(n)dédn > 0. (14.32)

Proof. Taking m = 1 and & = 0 we learn x(0)|A]> > 0 for all A € C
which proves item 1. Taking m = 2, £; = £ and &; = 7, the matrix

— | x) x(€-n)
A{m—fs) X(0) }

is positive definite from which we conclude y (£ —n) = x(n — &) (since A = A*
by definition) and

x(0) x(€=n| _ 2 g2
0 < det || KO XCE D] ) - s -l

and hence |x(€)] < x(0) for all £&. This proves items 2. and 3. Item 4. follows
by approximating the integral in Eq. (14.32) by Riemann sums,

[ &= nr@ramacan
— lime 2" > X(&=n)f(&)f(n) > 0.

el0
Eme(ezmni—e=te 1"

The details are left to the reader. [ ]
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Lemma 14.40. If p is a finite positive measure on Bgn, then x = [ €
C(R™,C) is a positive definite function.

Proof. As has already been observed after Definition 77, the dominated
convergence theorem implies i € C(R™,C). Since u is a positive measure (and
hence real),

(€)= / () = / emierdu(a) = A0

From this it follows that for any m € N and {fj};n:l C R™, the matrix
A= {fu(& — &)}y =, is self-adjoint. Moreover if A € C™,

j=1 ‘K =1
:/ D e T e e N dp()
R™ =1
2

du(z) =2 0

m

:/nze

k=1

—ifk~w)\k

showing A is positive definite. [

Theorem 14.41 (Bochner’s Theorem). Suppose x € C(R™,C) is positive
definite function, then there exists a unique positive measure ji on Brn such
that x = 1.

Proof. If x(§) = j1(§), then for f € S we would have
fdu= [ () du= [ PO
R™ R™ R™
This suggests that we define
1) = | x(OF(©d forall f € 5.

We will now show I is positive in the sense if f € S and f > 0 then I(f) > 0.
For general f € S we have

102 = [ @ (197) (@ = [ x© (&) ©)de
= [ MO €= mdnas = [ (@€~ mF Tmdna

= [ 6= @ Tdnac > . (14.33)
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For t > 0 let py(x) := t—"/2¢~121*/2t ¢ § and define
I () = Dkpi(a) i= Iou(e =) = I V(e =] )
which is non-negative by Eq. and the fact that \/pt(xi—) € S. Using
e = © = [ o= verdy= [ plye oy

= e pi(§) = et eT NI,

[ @ e = @t ) o
/ ) x(é)emfe‘t'f'z%(m)dg) dz
= /Rn X(g)y,V(g)e*t\EPMdf

which coupled with the dominated convergence theorem shows

(Ikpe, ) — | x(Ep¥(€)dE = I(¢) ast | 0.
Rn
Hence if ¢ > 0, then I(v) = limy|o(I;, ¢) > 0.
Let K C R be a compact set and ¢ € C.(R,[0,00)) be a function such
that ¢ = 1 on K. If f € C°(R,R) is a smooth function with supp(f) C K,
then 0 < || f||o ¥ — f € S and hence

0< (Ll =) = fllo (L, 90) = (L, £)

and therefore (I, f) < ||f|l (Z,%). Replacing f by —f implies, —(I, f) <
|| fllo (I,%) and hence we have proved

(L, ) < Clsupp(f)) 1/l (14.34)

for all f € Drn := CP(R™,R) where C(K) is a finite constant for each
compact subset of R™. Because of the estimate in Eq. , it follows that
I|p,. has a unique extension I to C.(R™,R) still satisfying the estimates in
Eq. and moreover this extension is still positive. So by the Riesz —
Markov Theorem ?7?, there exists a unique Radon — measure p on R™ such
that such that (I, f) = p(f) for all f € C.(R"™,R).

To finish the proof we must show fi(n) = x(n) for all n € R™ given

p(f) = / XSV (©E for all f € CX(R™,R). (14.35)
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Let f € C2°(R™, Ry ) be a radial function such f(0) = 1 and f(z) is decreasing
as |z| increases. Let f.(x) := f(ex), then by Theorem ?7?,

e @] © = (2
and therefore, from Eq. ,

/n e~ f(z)du(x) = /n e e

9

)de. (14.36)

Because [p, fY(§)dé = FfY(0) = f(0) = 1, we may apply the approximate &
— function Theorem 77 to Eq. (14.36) to find

/ e L () dp(x) — x(o) as < L0, (14.37)

On the the other hand, when = 0, the monotone convergence theorem
implies u(f:) T 1(1) = pu(R™) and therefore u(R™) = (1) = x(0) < co. Now
knowing the p is a finite measure we may use the dominated convergence
theorem to concluded

e fo(x)) — p(e™) = j(n) as e L O

for all n. Combining this equation with Eq. (14.37) shows fi(n) = x(n) for all
n € R™ [

14.7 Appendix: A Multi-dimensional Weirstrass
Approximation Theorem

The following theorem is the multi-dimensional generalization of Theorem

423

Theorem 14.42 (Weierstrass Approximation Theorem). Suppose that
K =[a1,b1] x ...[ag,bq] with —oco < a; < b; < 00 is a compact rectangle in
R?. Then for every f € C(K,C), there exists polynomials p, on R? such that
Pn — [ uniformly on K.

Proof. By a simple scaling and translation of the arguments of f we may
assume without loss of generality that K = [0, 1]d. By considering the real
and imaginary parts of f separately, it suffices to assume f € C([0,1],R).

Given z € K, let {X,, = (X}, ... ,X,‘f)}:;l be i.i.d. random vectors with
values in R? such that

d
P(X,=¢)= [ —z) " af

=1
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foralle = (e1,...,eq) € {0,1}*. Since each X7 is a Bernoulli random variable
with P (X7 = 1) = z;, we know that

EX, =z and Var (X}) =z; — a3 = z;(1 — x;).
Asusual let S, = S, := X1 +---+ X,, € R, then

E ["} =2 and
n
2 d 2 d
E %— 1:21@(75—@) —ZVar(%—xj>
j=1 Jj=1
d Sgl 1 d n ;
=Y Var <n) =YY Var (Xk)
j=1 j=1k=1
d
d
= *Jz::lxj(l zj) < n

This shows S,,/n — z in L? (P) and hence by Chebyshev’s inequality, S,, /n il
z in and by a continuity theorem, f (%) it f () as m — oo. This along with
the dominated convergence theorem shows

pu(z) =E [f (%)} — f(z) asn — oo, (14.38)
where
@ = Y 1 <5(1) +'7'1'+€(”)) P(Xi=c(1),....X, = (n)

e(efo,1}¢

_ eM)+--+e(n)\ a _ i) s
- > (e ),EU“ o1E ) g

e(-)e{0,1}3¢

is a polynomial of degree nd. In fact more is true.
Suppose € > 0 is given, M = sup {|f(z)| : x € K}, and

oe = sup{[f(y) — f(z)| : v,y € K and |[ly —z|| <¢}.

By uniform continuity of f on K, lim.|o . = 0. Therefore,

@) - @l =[5 (10) - 15} | < |10 - 152)
<e |0 - 1) 15, - ol > <]
+E @) - 15| s ol < ]

<OMP (||Sy — ]| > ) + 6. (14.39)
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By Chebyshev’s inequality,
d
4ne?’

1
P(|Sn —al >e) < ZE[Sn ~ z|* =

and therefore, Eq. (14.39)) yields the estimate

2dM
S - Mn < 55
;gg'f@) pn ()] < 2t

and hence
limsup sup | f () —pn (z)| <. = 0ase | 0.

n—oo zeK

Here is a version of the complex Weirstrass approximation theorem.

Theorem 14.43 (Complex Weierstrass Approximation Theorem).
Suppose that K C C? = R? x R? is a compact rectangle. Then there ex-
ists polynomials in (z =z +iy,Z =x —1y), pn(2,2) for z € C% such that
SUP,ex |an(2,2) — f(2)] = 0 as n — oo for every f € C (K,C).

Proof. The mapping (z,y) € R¢xR? — 2z = z+iy € C¢is an isomorphism
of vector spaces. Letting Z = & — iy as usual, we have x = 252 and y = =0
Therefore under this identification any polynomial p(x,%) on R? x R? may be

written as a polynomial ¢ in (z, Z), namely

Z+zZ z2—2Z2 )
2 7 2%

Conversely a polynomial ¢ in (z,z) may be thought of as a polynomial p in

(z,y), namely p(z,y) = q(z + iy, z — iy). Hence the result now follows from

Theorem [14.42] [ |

Example 14.44. Let K = S* = {z € C: |z| = 1} and A be the set of polyno-
mials in (2, Z) restricted to S'. Then A is dense in C(S'). To prove this first
observe if f € C'(S') then F(z) = |z| f(ﬁ) for z # 0 and F(0) = 0 defines
F € C(C) such that F|s: = f. By applying Theorem to F restricted to
a compact rectangle containing S we may find ¢, (z, z) converging uniformly
to F on K and hence on S!. Since z = z~! on S!, we have shown polynomials
in z and 27! are dense in C'(S*'). This example generalizes in an obvious way

to K = ()" c e,
Exercise 14.7. Use Example([14.44|to show that any 27 — periodic continuous
function, ¢ : R* — C, may be uniformly approximated by a trigonometric
polynomial of the form

p(m) — Z a/\ew\m

AeA
where A is a finite subset of Z¢ and ay € C for all A\ € A. Hint: start by

showing there exists a unique continuous function, f : (S 1)d — C such that
f(e™,... e™d) = F (z) for all z = (21,...,xq4) € R

q(z,2) = p(
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Solution to Exercise (14.7)). I will write out the solution when d = 1. For
z € S, define F(2) := f(e'’) where 6 € R is chosen so that z = €*. Since
f is 2m — periodic, F is well defined since if 6 solves € = z then all other
solutions are of the form {f + 27n : n € Z}. Since the map 0 — €' is a local
homeomorphism, i.e. for any J = (a,b) with b—a < 27, the map 6 € J g =
{e":0 € J} c S is a homeomorphism, it follows that F|(z) = fo¢~!(2) for
z € J. This shows F is continuous when restricted to .J. Since such sets cover
S, it follows that F' is continuous. It now follows from Example that
polynomials in z and z~1 are dense in C(S'). Hence for any & > 0 there exists

= mzn m.,—n m—n
p(z,2) = g 22" = E A2z " = g A n?

such that |F(2) — p(z,2)| < € for all z. Taking z = ¢ then implies there
exists b, € C and N € N such that

N
pe(0):= Y bpe™ (14.40)
n=—N

satisfies ~
sup 17(0) —p(0)] <e.

Exercise 14.8. Suppose f € C(R,C) is a 27 — periodic function (i.e.
f(z+2m) = f(z) for all z € R) and

2
(z) e dx = 0 for all n € Z,
0

show again that f = 0. Hint: Use Exercise [14.7

Solution to Exercise li . By assumption, fo% f(0)e"?do = 0 for all n
and so by the linearity of the Riemann integral,

2
0= f(0)p:(0)deo. (14.41)
0
Choose trigonometric polynomials, pe, as in Eq. (14.40) such that p. 0) —
£ (0) uniformly in € as £ | 0. Passing to the limit in Eq. (14.41) implies

27 2m

o=tim [ 1@ p.@ a8~ [ @ F 0@~ [ 1700

0 0

From this it follows that f = 0, for if |f (6p)| > O for some 6y then |f (9)| >
e > 0 for 6 in a neighborhood of 6y by continuity of f. It would then follow
that [ | (8)]> d§ > 0.
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14.8 Appendix: Some Calculus Estimates

We end this section by gathering together a number of calculus estimates that
we will need in the future.

1. Taylor’s theorem with integral remainder states, if f € CF(R) and
z, A € R or f be holomorphic in a neighborhood of z € C and A € C be
sufficiently small so that f (z + tA) is defined for ¢ € [0, 1], then

k—1 n
fFlz+2)=) f"(2) % + AFry (2, A) (14.42)
= A 1
=> " (z) —+ AR [k' F®) (2) 4+ e (2, Q) (14.43)
n=0 ' :
where
1 1
el 4) = gy / £ (4 tAY (1 — 1)L (14.44)
+JO
= %f(’“) (2) + (2, A) (14.45)
and
e(z,A) = ﬁ /1 {f(k) (z4+tA) — (z)} (1—t)"'dt —0as A—0.
—11 ),

(14.46)
To prove this, use integration by parts to show,

e (2, A) = kl'/1 F8) (2 4tA) (-i) (1—t)Fat
- JO
1 k t=1 A ! k
=—5 [f(k) (z+tA) (1 —1t) L:ﬁﬁ/o FED (4t A) (1 — )" dt

1
- Ef(k) (Z) =+ Ark+1 (Zv A) ;
i.e. {
Afry (2, 4) = il FHB (2) AF + AR ey (2, A) .

The result now follows by induction.
2. For y € R, siny =y fol cos (ty) dt and hence

[siny| < |y| . (14.47)

3. For y € R we have
1 1 y?
cosy:1+y2/ —cos(ty)(l—t)dtzl—i—yQ/ —(1—t)dt:1—?.
0 0
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Equivalently putﬂ
g(y) :=cosy —1+4?/2>0 for all y € R. (14.48)

4. Since

le* —1—2z| =

1 1
zz/ e“"(l—t)dt‘<|z|2/ e!Rez (1 — 1) dt,
0 0

if Rez < 0, then
le* —1—z| <|z* /2 (14.49)

and if Rez > 0 then
e —1—z| < eRe? |2 /2.

Combining these into one estimate gives,

2
le* —1 —z| < ePVRez. % (14.50)
5. Since e — 1 =iy fol e'dt, |e" — 1| < |y| and hence
e —1| <2Ay| for all y € R. (14.51)

Lemma 14.45. For z = re® with —m < @ <7 andr > 0, let Inz = Inr + if.
Then In : C\ (—00,0] — C is a holomorphic function such that e* = 2E| and
if |z| <1 then

2 Alternatively,

[siny| = < <yl

y y
/ cos zdx / |cos z| dx
0 0

y y
cosy — 1= / —sinxzdx > / —xdx = fy2/2.
0 0

and for y > 0 we have,

This last inequality may also be proved as a simple calculus exercise following
from; g (z00) = oo and g’ (y) = 0 iff siny = y which happens iff y = 0.

% For the purposes of this lemma it suffices to define In (1 +2) = =322 | (—2)" /n
and to then observe: 1)

d

Eln(l—i—z):Z(—z)": !

1+z2

k]

and 2) the functions 1 + z and ™1+*) both solve

f(z) = %f(z) with f(0) = 1

and therefore (112 =1 4 2.
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1
In(1+2)— 2z < |2? —— for |2] < L. (14.52)
2(1—1z)

Proof. Clearly e"* = z and In z is continuous. Therefore by the inverse
function theorem for holomorphic functions, In z is holomorphic and

Inz

zglnz—e —Inz=1.
Therefore, -2 Zlnz= ; and 7 lnz = —=. So by Taylor’s theorem,
o ! 1
In(l4+z2)=z—=z /0 m(lft)dt. (14.53)
If t > 0 and |z] < 1, then
1 1
‘1+t ‘ Z'”' Tt ~1-1

and therefore,
1

L |
/ a1
o (1+4t2) 2(1—1z2)

Eq. (14.52)) is now a consequence of Eq. (14.53) and Eq. (14.54]). [ |

Lemma 14.46. For all y € R and n € NU{0},

(14.54)

e i (Zy)k |y|n+1 (14.55)
— K7 (n+ 1) '
and in particular,
— (144 v < MM (14.56)
Yoo )| =Y R '
More generally for all n € N we have
~ (i "t 2y
A . 14.57
Z:: ‘ ~ (n+1)! n! ( )

Proof. By Taylor’s theorem (see Eq. (14.42)) with f (y) = e®, x = 0 and
A = y) we have

n+1

— yn' A n+1 zty( ) dt
n+1 1 n+1
< 1l / (1— 1) di = ly]
0

n! (n+1)!
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which is Eq. (14.55)). Using Eq. (14.55) with n = 1 implies

v
2

2
e — (1+iy—y2'>‘ < le® — (1+iy)| +

v
2

2

2
Y
< + =] =
= 9 Y

and using Eq. (14.55)) with n = 2 implies

» v\ | _ Lyl

Combining the last two inequalities completes the proof of Eq. (14.56)). Equa-
tion (|14.57)) is proved similarly and hence will be omitted. [

Lemma 14.47. If X is a square integrable random variable, then
. A2
FN) =E[e*] =1+i\EX — STE X +r ()

where

r(\) == \E [XQ A A'lf'g] =\ (\)

and

3
ALX]
|

e(\) ::ElXZ/\ 2

] —0as A —0. (14.58)

Proof. Using Eq. (14.56) with y = AX and taking expectations implies,

’f(A)—(HiAEX—;T]E[X?])‘SIE o1

) X2
e (1 +idX — AQ) ‘

AL1X]°

2
XA 3l

< \’E

] =: A% ().

The DCT, with X2 € L' (P) being the dominating function, allows us to
conclude that lim._,ge (A) = 0. |



15

Weak Convergence of Random Sums

Throughout this chapter, we will assume the following standing notation un-
less otherwise stated. For each n € N, let {X,, x};/_, be independent random
variables and let

Si= Xpp (15.1)
k=1

Until further notice we are going to assume E[X,, x| =0, 0. , = E [Xfl’k} <
oo, and Var (S,) = Y_,_; 0n. , = 1. Also let

fak (A) :=E [k (15.2)
denote the characteristic function of X, ;.

Ezample 15.1. Suppose {Xn}ff:l are mean zero square integrable random
variables with o7 = Var (X,,). If we let s2 := > }'_, Var (Xy) = Y_, 07,
0% = 0p/sn, and X, 1, == X /sp, then {X,, .}, _; satisfy the above hypoth-
esis and S,, = i Sy X

Our main interest in this chapter is to consider the limiting behavior of
S, as n — oo. In order to do this, it will be useful to put conditions on the
{Xn.k} such that no one term dominates sum defining the sum defining S, in

Eq. (15.1)) in the limit as n — oc.

Definition 15.2. We say that {X,, 1} satisfies the Lindeberg Condition
(LC) iff
lim Y E[X7, ¢ [Xnkl >t] =0 forallt >0. (15.3)
k=1
We say {Xn 1} satisfies condition (M) if

D,, := max {O’?L’k k< n} — 0 as n — oo, (15.4)

and we say {Xp 1} is uniformly asymptotic negligibility (UAN) if for
all e > 0,
lim max P (| X, x| >¢) =0. (15.5)
n—oo k<n
Remark 15.3. The reader should observe that in order for condition (M) to
hold in the setup in Example it is necessary that lim,, ., s2 = oc.



326 15 Weak Convergence of Random Sums

Lemma 15.4. Let us continue the notation in Example|15.1 Then {X, ; := Xi/sn}

satisfies (LC) if either of two conditions hold;

1.{X,},>, arei.i.d.
2. The {X,},_, satisfy Liapunov condition; there exists some o > 2 such

that "R
L Bl

n— o0 3%

=0. (15.6)

More generally, if {X, i} satisfies the Liapunov condition,

lim Z]E ke (1 Xni)] =
=1

where ¢ : [0,00) — [0,00) is a non-decreasing function such that ¢ (t) > 0 for
allt > 0, then {X,, 1} satisfies (LC).

Proof. 1. If {X,,}.7 | are i.i.d., then s,, = y/no where 02 = EX? and

S EXZ Xkl > t] = = Z (X2 | Xk| > snt] (15.7)
k=1 S k=1
1 n
- WZ]E (X7 ¢ |X1| > vnot]
k=1
e

which, by DCT, tends to zero as n — oo.
2. Assuming Eq. ([15.6]), then for any ¢ > 0,

a—2

: |Xn,k‘ >t

n

S E[X2 g | Xkl > t] <ZE[X3W Xk

k=1

1
—ta 22E|Xnk| ta— 2aZE|Xk — 0.
nk: 1

For the last assertion, working as above we have

n
Z]E X > t] < ZE{,MW:|X”7;€|>Z€}
< LS R[XZ 0 (X)) —
(1) F=
as n — oQ. |

Lemma 15.5. Let {X,, 1} -, be as above, then (LC) = (M) =

(UAN).

n=1
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Proof. For k < n,

ony =B [X7 ] =E X2 x, <t] +E[X2 1 x, 0(51)

S t2 + ]E [X3L7k1|Xn,k|>t} S t2 + Z ]E [Xg,ml‘xn,m|>tj|

m=1

and therefore using (LC') we find

lim maxo? , < t* for all t > 0.
n—oo k<n ’

This clearly implies (M) holds. The assertion that (M) implies (UAN) follows
by Chebyschev’s inequality,

1 2
masxc P (| X, 4] > £) < max S E [\Xn7k| Xk > e]

1 O >
< 5 Y E [[Xasl: [Xosl > €] =0,
k=1

In fact the same argument shows that (M) implies

n

1 n
SOP(Xusl > 0) € 5 SOB [IXusl?: [ Xosl > ¢ — 0.
€
k=1 k=1
]
We will need the following lemma for our subsequent applications of the
continuity theorem.

Lemma 15.6. Suppose that a;,b; € C with |a;|,|b;| < 1 fori=1,2,...,n.
Then

n

[[o-II»

i=1 i=1

n
< la; — by .
=1

Proof. Let a := [[/-] a; and b := [/, b; and observe that |a|,|b] < 1
and that
lana — byb| < ana — apb| + lanb — b,b|
= |an|[a —b] + |an — bn|[b]
< l|a—b|+ |a, — byl.

The proof is now easily completed by induction on n. ]

Theorem 15.7 (Lindeberg-Feller CLT (I)). Suppose {X,r} satisfies
(LC), then
S, = N(0,1). (15.8)

(See Theorem [15.11| for a converse to this theorem.)
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To prove this theorem we must show
E [ei)‘s"] — e /2 as n — 0. (15.9)
Before starting the formal proof, let me give an informal explanation for Eq.

(15.9). Using

2

A
Ink ()‘) ~1- ?Ugﬂc’

we might expect

Z)\S H fnk = 622:1 In frr(N)

= eEkzl n(1+fre(A)—1)

Zk l(fWk )‘) 1 ( H (fw)c )‘) 1)
k=1

B A2 A2
(B) P D ST o

The question then becomes under what conditions are these approximations
valid. It turns out that approximation (A), namely that

TT for ) = exp (Z (ot (V) — 1>> ‘ ~0, (15.10)
k=1

k=1

lim
n—oo

is valid if condition (M) holds, see Lemma below. It is shown in the
estimate Eq. (15.11)) below that the approximation (B) is valid, i.e.

n

Jim > (fux (V) = 1) = _%,\27

k=1

if (LC) is satisfied. These observations would then constitute a proof of The-
orem The proof given below of Theorem will not quite follow this
route and will not use Lemma directly. However, this lemma will be used

in the proofs of Theorems [I5.11] and
Proof. Now on to the formal proof of Theorem Since

n

2 2 2
’L)\S H ,fnk and e—A /2 _ H e—)\ Jn,k/Q’

k=1

we may use Lemma to conclude,

‘E [eiASn} *)‘2/2‘ < fnk ( ) 7)\20727”’6/2’ = Z (An’k + Bmk)

k=1 k=1
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where

Now, using Lemma [T447]

AX )‘2
i n,k __ R 2
e 1+ X0k

<E
- 2

_ A2
Ang = ’E {61’\)("”“ -1+ 2X2,k:|

3
v, ST

r 3
<AE | X2, A A X" p;””“

A Xk
Xnk| <e| +AE Xﬁwa

: |Xn,k| > z’:;|

A X il

2
SNE 3!

Xkl Se| £ NE X5, : [ Xkl > €]

)\2

< S e E [1Xil s [ Xoal S €] + RE[X2 4 ¢ [ Xnil > €]
AP e

_ | |6 on FNE[X2 [ X > €]

From this estimate and (LC) it follows that

i 3 ; Ne v 2 e
hmsupZAn,k < lim sup e + A Z]E [ka X k] > 5} - =

n/eo k1 n—ee k=1 6
(15.11)
and since € > 0 is arbitrary, we may conclude that limsup,, .o > p_; Anx = 0.
To estimate Y ,_, By x, we use the estimate, [e™* — 1+ u| < u?/2 valid
for u > 0 (see Eq. with z = —u). With this estimate we find,

n

> Bur=2,
k=1

wherein we have used (M) (which is implied by (LC)) in taking the limit as
n — oo. [
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As an application of Theorem[I5.7] we can give half of the proof of Theorem
12.12

Theorem 15.8 (Converse assertion in Theorem [12.12)). If {X,,} * | are
independent random variables and the random series, >~ | Xy, is almost
surely convergent, then for all ¢ > 0 the following three series converge;

1. Zf=1P(|Xn| > ¢) < 00,
2.3 Var (X,1x,|<c) < o0, and
8.3 1 E(Xnlix,|<c) converges.

Proof. Since ) 2, X, is almost surely convergent, it follows that
lim, o X, = 0 a.s. and hence for every ¢ > 0, P({|X,|>cio.}) =
0. According the Borel zero one law this implies for every ¢ > 0 that
S P(|Xn| > ¢) < oc. Since X, — 0 as., {X,,} and {X¢ = X,1|x, |<c}
are tail equivalent for all ¢ > 0. In particular > 2 | X¢ is almost surely con-
vergent for all ¢ > 0.

Fix ¢ >0, let Y, := X2 —E[X¢] and let

n n n
sp=Var(Yi+--+Y,) =Y Var(Vy) =) Var(Xj) =) Var (Xpljx,|<c) -
k=1 k=1 k=1

For the sake of contradictions, suppose s2 — oo as n — oo. Since |Y%| < 2c,
it follows that >, E [Y?1)y,|>s,¢] = 0 for all sufficiently large n and hence

1
lim — Y " [V 1y,j5s,6) =0,

n—oo §
k=1

e {Vai = Yi/sn}, ., satisfies (LC) — see Examples and Remark
So by the central limit Theorem it follows that
1

52 Z(XZ_E[XZ])ZS%ZYIC = N(0,1).

—
3
=~
Il
—

k
On the other hand we know

1 < ey X
11m—2§ ¢ = k=l kaOas
n—oo §7, £~ limy, o0 82

and so by Slutsky’s theorem,
n

1< o1 o1
S—ZZE[X,L]:STZX;—?ZY,C — N(0,1).
" =1 " =1 " =1

But it is not possible for constant (i.e. non-random) variables, ¢, :=
= > r_ 1 E[XE], to converge to a non-degenerate limit. (Think about this ei-

ther in terms of characteristic functions or in terms of distribution functions.)
Thus we must conclude that
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e} oo
. 2
D Var (Xulpx,<c) = ) Var (X)) = Jim s, < o0,
n=1 n=1

An application of Kolmogorov’s convergence criteria (Theorem [12.11]) im-
plies that

o0
E X¢]) is convergent a.s.

Since we already know that Y ° | X¢ is convergent almost surely we may now
conclude Y07 | E (X,,1x,|<c) is convergent. [
Let us now turn to the converse of Theorem [I5.7] see Theorem [I5.11]below.

Lemma 15.9. Suppose that {X, .} satisfies property (M), i.e. D, :=
maxy<p, Ui,k — 0. If we define,

e (N) = frp (N) =1 =E [e?¥nr — 1],
then;
1. limy, 0o MaXg <y |@nk (A)] =0 and

2. fs, (A) — HZ:l e k(N 0 as n — oo, where

fs, (A) =E [esn H e (

Proof. For the first item we estimate,

Ee?* — 1| <E e — 1| SE[2 A [AX]]
—E2AMX]:|X| > +ER2ANX]: |X| <€]

2
<2P(|X| > €] +|Me < SEIXP + A

Replacing X by X,  and in the above inequality shows

2 20721
[Pk ] = 1k ) = 1] < SEIX il + M e = =5

Therefore,

. 2D,
lim sup max |onk (A)] < limsup | —;
5

n—oo n—o0

5}|/\|€H0assl0.

For the second item, observe that Rey, 1 (A) = Re frx (A) —1 < 0 and
hence

’ewn,m)‘ = eRevnk(N) < g0 = 1

and hence we have from Lemma and the estimate ((14.49)),
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ﬁ For (N) — f[ P k()
k=1 k=1

3

<
k

Fok (\) — e%,k()\)‘
1

I
NE

‘elpn,k()‘) —1—nk (A)‘
1

IN
N — ‘?)l“

[ens (V)
k=1

1 n
5 max ion i (V)] ; [P (V).

IN

Moreover since EX, , = 0, the estimate in Eq. (14.49) implies
S lenk W] =D B[ Xme — 1 —idX,, 1]|
k=1

/\2 n ) /\2
< ?I;O.n,k = ?

1 2
E|=-|AX

Thus we have shown,

n n Az
kli[lfmk (\) — klillesan,k(A) < T %@?"ﬂ"vk )|
and the latter expression tends to zero by item 1. [

Lemma 15.10. Let X be a random variable such that EX? < co and EX = 0.
Further let f (X) :=E [e”¥] and u(X) := Re (f (\) — 1). Then for all ¢ >0,

u(>\)+)\—2]E[X2]>E X2 M2 X >e (15.12)
2 - 2 2] '
or equivalently
A, o [A2 2
Ecos/\X—l—i—?X >E (X T = X >l (15.13)

In particular if we choose |\| > v/6/|c|, then

A2 1
E {cos AX — 1+ 2)(1 > SE[X?: X[ > (. (15.14)
C

Proof. For all A € R, we have (see Eq. (14.48)) cosAX — 1+ A;XZ >0
and cos AX — 1 > —2. Therefore,
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i 2
u(N) + FE [X?] =E [cosAX — 1+ QXQ}

- 22
>E cos)\X—1+§X2:|X| >c]

- K
>R —2+2X2:|X|>c]

[ x]2Ea
>E —2|2|+X2:|X|>c]
c 2

which gives Eq. (15.12]).
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Theorem 15.11 (Lindeberg-Feller CLT (II)). Suppose {X, i} satisfies
(M) and also the central limit theorem in Eq. holds, then {X,, 1} satis-
fies (LC) . So under condition (M) , Sy, converges to a normal random variable

iff (LC) holds.

Proof. By assumption we have

n
. . — 2
lim maxai’k =0 and lim H fak (X)) =ce AT/2
n—oo k<n n—00 paie

The second inequality combined with Lemma [15.9] implies,

n
lim eZr=19ns) — lim H ePnk(A) — =272
n—oo n—oo
k=1
Taking the modulus of this equation then implies,

. n .
lim eXk=1 Rewns(N) — |y
n—oo n—oo

eZi wn,km‘ — o—N/2

from which we may conclude

lim Y " Repn (A) = —A?/2.

n—oo

k=1

We may write this last limit as
lim_ Y E [cos (AXpx) — 1+ 7X§,k =0
k=1
which by Lemma [15.10] implies

lim Y E[X], ¢ [Xnkl >c] =0
k=1

for all ¢ > 0 which is (LC).
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15.1 Infinitely Divisible and Stable Symmetric
Distributions

To get some indication as to what we might expect to happen when the Lin-
deberg condition is relaxed, we consider the following Poisson limit theorem.

Theorem 15.12 (A Poisson Limit Theorem). For each n € N, let
{Xnk}tp_, be independent Bernoulli random variables with P (Xn, =1) =
P and P ( Xy =0) = qn i =1 — pnr. Suppose;

1. 1My oo Yy Pk = a € (0,00) and
2. lim,, oo MaXi<g<pn Pnk = 0. (So no one term is dominating the sums in
item 1.)

Then S,, = 22:1 Xnx = Z where Z is a Poisson random variable with
mean a. (See Section 2.6 of Durrett[3] for more on this theorem.)

Proof. Recall from Example that for any a > 0,
E [e“‘z] = exp (a (ei)‘ — 1)) .

Since ‘ . ,
E [k ] = e png+ (1= ppi) = 1+ pog (€7 = 1),

it follows that

n

E [ei’\S"] = H [1 + Dnk (ei)‘ — 1)] .

k=1

Since 14 py, & (ei’\ — 1) lies on the line segment joining 1 to e**, it follows that

|1 + Pk (ei’\ — 1)| <1l

N

H_?Lei)\_i)

Hence we may apply Lemma [I5.6] to find
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H exp (pnk (€™ = 1)) = ] [1 + pn (¢ = 1)]
k=1

M:

lexp (pak (€ = 1)) = [L+pa (e? = 1)]|

ol
Il
-

|exp (zn,k) = [1 4 2n,i]|

I
[M]=

£l
Il
-

where ,
Zng = Pnyi (€7 —1).

Since Re zp k= Pn.k (cos A — 1) < 0, we may use the calculus estimate in Eq.

to conclude,
n
Hexp Pk ( H 1+ pog (e —1)]
1 n
<5 2 bl < 3 s ol Y- o

<2 maX pnkzpnk

Using the assumptions, we may conclude

H exp (pn,k (GM - 1)) - H [1 + Dnk (6”‘ — 1)]| — 0 as n — oo.

k=1
Since
- ix _ - iA ix
H exp (pn,k; (6 - 1)) = exp (an,k (e — 1)) — exp (a (e — 1)) ;
k=1 k=1

we have shown

lim E[e?] = lim H 1+ pni (€ —1)]

n— 00 n— 00
=1

— nh—{%o H exp (pni (e — 1)) = exp (a (e - 1)).

k=1
The result now follows by an application of the continuity Theorem [14.21] =

Remark 15.13. Keeping the notation in Theorem [15.12] we have

E [Xn,k] = Pn,k and Var (Xn,k) = Pn,k (1 - pn,k)
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and

n n

Si = ZV&I‘ (Xn,k) = an,k (1 - pn,k) .

k=1 k=1
Under the assumptions of Theorem [15.12] we see that s2 — a as n — oo.
Let Y, 5 := w so that E[Y, ] = 0 and oiyk = Var (Y, ) =
é\/ar (Xnk) = épn,k (1 — pn.x) which satisfies condition (M). Let us ob-
serve that, for large n,

=

E
=E Y74 [Xnk — okl > snt]
E [Ynz,k | Xk — okl > 2at]

E[V2,: Yol > 1] [yg’k : ’Xnk—f?nk

1= \2
=k [Y’?’“ Xk = 1] = Pn,k (spk>

n

from which it follows that

2
lim ZE Yokl >t] = hm ank (1_sp”7k> =a.

-1 n

Therefore {Y;, 1} do not satistfy (LC'). Nevertheless we have

—
Sn a

. Dbt Xng = Dk Pnsk Z—a
> Yok =
k=1
where Z is a Poisson random variable with mean a. Notice that the limit is

not a normal random variable.

We wish to characterize the possible limiting distributions of sequences
{Sn},2, when we relax the Lindeberg condition (LC) to condition (M). We
have the following theorem.

Theorem 15.14. Suppose { Xy 1 }y_, satisfy property (M) and Sy, := > Xnjp =

L for some random wvariable L. Then the characteristic function fr, (\) =
E [e“L] must be of the form,

R = ([ S M w)

X

where v — is a finite positive measure on (R, Br) such that v (R) < 1. (Recall

that you proved in Exercise|14.4| that exp (fR e —l-ide dv (z ) is always the

ZE2

characteristic function of a probability measure.)
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Proof. As before, let f, 1 (A) = E [ei)‘XW“] and @, 1 (A) == for(A) —
By the continuity theorem we are assuming

lim fs, (A) = lim II for ) =rM)
k=1

n—oo

where f (\) is continuous at A = 0. We are also assuming property (M), i.e.

lim maXU k= =0.
n—oo k<n

Under condition (M), we expect f,, x (A) = 1 for n large. Therefore we expect

Fare (A) = e s = Ml (k=1 & (s ()=1)
and hence that

) T [0 (S0
k=1 k=1

(15.15)
This is in fact correct, since Lemma indeed implies

lim_ [E [¢*9"] —exp (Z Fak ( ﬂ = 0. (15.16)
k=1
Since E [X,, k] =0,
far (A) =1 =E [e**k — 1] = E [e?¥mr — 1 — XX, 4]
— / (e — 1 —iAx) dpy i, ()
R

where p, ;== P o X;i is the law of X, ;. Therefore we have
n
exp (Z Jnke () = 1) ) = exp (Z/ 1 —iXx) dpin g (o ))
k=1
= exp (/ (e —1 —iAz) Z dpin, i (x))
R

= exp (/R( AT 1 — i) flz_/l( )) (15.17)

where v := >"/'_| pn k. Let us further observe that

/]R2d1/ Z/ 2d,unk ZO’ r =1L
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Hence if we define dv* (x) := 2%dv}; (z), then v, is a probability measure and

we have from Eqs. (15.16) and Eq. (15.17) that
AT _ 11—\
fs. (\) — exp (/ ", (x)) ’ —0. (15.18)
R

T

Since h (z) := euz;%m is a continuous function of R with h (£00) = 0, there

is a subsequence, {n;} of {n} such that v, (h) — v (h) for some probability
measure on (]R, BR) . Combining this with Eq. (|15.18]) allows us to conclude,

fr(\) = llirgoE [eXSm] = llim exp (/R (e —1 —idz) dvy, (x))

i)\asi]_i i\
= exp (/ %du (x)) .
R x
]

Definition 15.15. We say that {X, 1}, _, has bounded variation (BV') iff

sup Var (Sy,) = sup Z C’Z,k < 0. (15.19)
Corollary 15.16. Suppose {X, i}, _, satisfy properties (M) and (BV). If
Sy = 2221 Xnx = L for some random variable L, then

£ (\) = exp (/R wdy (:17)) (15.20)

x
where v — is a finite positive measure on (R, Bg) .

Proof. Let s2 := Var(S,). If lim, .o s, = 0, then S, — 0 in L? and
hence weakly, therefore Eq. (15.20) holds with » = 0. So let us now sup-
pose lim, . s, # 0. Since {s,},., is bounded, we may by passing to a
subsequence if necessary, assume lim, .. s, = s > 0. By replacing X,,
by X, k/sn and hence S,, by S, /sy, we then know by Slutsky’s theorem that
Sn/sn = L/s. Hence by an application of Theorem we may conclude

Y e e )

where v — is a finite positive measure on (R, Bg) such that v (R) < 1. Letting
A — s\ in this expression then implies

o =eo( [ roloide, @)

22

IAST __ 1 __ ;
= exp / ﬁ,&dy (x)
x (o0)

AT __ 11—\
= exp </ #dl/s (1»))
R X
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where vy is the finite measure on (R, Bg) defined by

vs (A) := s2v (s_lA) for all A € Bg.

The reader should observe that

e 1 —idr ii (ixz)* iifxfx’“—z
22 T a2 = Kl x2 = k!

e _1—idz

and hence (\,x) — " is smooth. Moreover,
d e —1— iz ixe —ix T 1
—_— = =1
d\ x? 2 T
and ) _
d? e —1—idx  izet i
— =1 = —e"\",
d\? 2 x

Using these remarks and the fact that v (R) < oo, it is easy to see that

ro=([ L, @) £.0)

X

v )= (/R ey, (2) + (/]Riemx_ldys (x))QD 1 )

and in particular, f7 (0) =0 and f/ (0) = —vs (R) . Therefore the probability
measure, u, on (R, Bg) such that () = fr (M) has mean zero and variance,
vs (R) < 0.

and

Definition 15.17. A probability distribution, u, on (R, Br) is infinitely di-
visible iff for all n € N there exists i.i.d. nondegenerate random variables,
{Xnwtp_ys such that Xp1 + - + Xy 4 w. This can be formulated in
the following two equivalent ways. For all n € N there should exists a non-
degenerate probability measure, i, on (R,Br) such that puX™ = u. For all
neN, (A =[g(\)]" for some non-constant characteristic function, g.

Theorem 15.18. The following class of symmetric distributions on (R, Bgr)
are equal;

1. Cy — all possible limiting distributions under properties (M) and (BV).
2. Cs — all distributions with characteristic functions of the form given in

Corollary[15:16,

3. C3 — all infinitely divisible distributions with mean zero and finite variance.
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Proof. The inclusion, C; C Cs, is the content of Corollary For
Cy C (3, observe that if

a0 =ew ([ S )

then fi (\) = [fin, (\)]" where p,, is the unique probability measure on (R, Bg)

such that N
. e —1—idx 1l

For C3 C Cy, simply define {X,, },_, to be i.i.d with E [e?**=+] = fi, ().

In this case S, =Y 1, Xnk L n

15.1.1 Stable Laws

See the file, dynkin-stable-infinitely-divs.pdf, and Durrett [3, Example 3.10
on p. 106 and Section 2.7.].



Part 1V

Conditional Expectations and Martingales






16

Hilbert Space Basics

Definition 16.1. Let H be a complex vector space. An inner product on H is
a function, (-|-) : H x H — C, such that

1. {ax + by|z) = a{z|z) + bly|z) i.e. © — (x|z) is linear.

2. {zly) = {ylz).
3. ||z]|? == (z|z) > 0 with equality ||z||* = 0 iff x = 0.

Notice that combining properties (1) and (2) that  — (z|z) is conjugate
linear for fixed z € H, i.e.

(zlax 4 by) = a(z|z) + b(z]y).

The following identity will be used frequently in the sequel without further
mention,

lz +yl* = (x +ylz +y) = llz]* + lylI* + (2ly) + (ylz)
= [l2ll* + lyll* + 2Re(zy)- (16.1)

Theorem 16.2 (Schwarz Inequality). Let (H,{(-|-)) be an inner product
space, then for all x,y € H

[{zly) < Nzl

and equality holds iff © and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0 and
observe; if # = oy for some o € C, then (z|y) = a ||y||* and hence

2
[zl = lalllyll™ = ll=llyl-

Now suppose that z € H is arbitrary, let z := z — ||y||7%(z|y)y. (So z is the
“orthogonal projection” of x onto y, see Figure M) Then

) 1P el o (ely)
os||z|2=Hw— o| =i+ Iyl? - 2Re(a] 22 )
Il TR Pk

2
— ||.’1?||2 _ |<$|y>|2
112

from which it follows that 0 < ||ly||?||z||*> — [{(x|y)|? with equality iff 2 = 0 or
equivalently iff x = [Jy| ~2(z|y)y. [
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:Mz= X~ (*)‘I)H
; ﬂaua—

o P
¢ /R {%,) 4

gy

Fig. 16.1. The picture behind the proof of the Schwarz inequality.

Corollary 16.3. Let (H, {:|-)) be an inner product space and ||z| := \/{z|x).
Then the Hilbertian norm, ||-|, is a norm on H. Moreover (-|-) is continuous
on H x H, where H is viewed as the normed space (H,||-]|).

Proof. If z,y € H, then, using Schwarz’s inequality,

lz +yl1* = ll2]” + lly]* + 2Re(|y)
< [l + iy + 2ll= iyl = (el + lyI)*.

Taking the square root of this inequality shows ||| satisfies the triangle in-
equality.
Checking that ||-|| satisfies the remaining axioms of a norm is now routine

and will be left to the reader. If x,2’,y,y’ € H, then

|(x + Az|y + Ay) — (z|y)| = [(z|Ay) + (Az|y) + (Az|Ay)|
< llz[l| Ayl + [lyl[[|Az[| + || Az]|[| Ay]
— 0 as Ax, Ay — 0,

from which it follows that (:|-) is continuous. ]

Definition 16.4. Let (H,(:|-)) be an inner product space, we say x,y € H
are orthogonal and write x L y iff (x|y) = 0. More generally if A C H is a
set, x € H is orthogonal to A (write x L A) iff (x|y) =0 for ally € A. Let
A+ ={x € H:z L A} be the set of vectors orthogonal to A. A subset S C H
is an orthogonal set if x 1 y for all distinct elements x,y € S. If S further
satisfies, ||x|| =1 for all z € S, then S is said to be an orthonormal set.

Proposition 16.5. Let (H, (:|-)) be an inner product space then
1. (Parallelogram Law)
Iz +yl* + llz =yl = 2}j2|* + 2]yl (16.2)

forall x,y € H.
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2. (Pythagorean Theorem) If S CC H is a finite orthogonal set, then

>

zeS

2

=Y ). (16.3)

zeS

3. If A C H is a set, then AL is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;
lz + ylI* + [l — y|®
= [lz]1? + Ilyl|* + 2Re(z[y) + 2] + |y]|* — 2Re(z|y)
= 2||z||* + 2[|y]1?,

and
2

Sall =0 2D w = (zly)

zeS zeS yeSs z,yeS
= (alz) =D |l=)*.
z€eS zeS

Item 3. is a consequence of the continuity of (-|-) and the fact that
At = Nyea Nul((-|z))
where Nul({-|z)) = {y € H : (y|z) = 0} — a closed subspace of H. |

Definition 16.6. A Hilbert space is an inner product space (H,{:|-)) such
that the induced Hilbertian norm is complete.

Ezample 16.7. For any measure space, (§2, B, 1), H := L? (1) with inner prod-

uct,

o) = | 16)3 () dn ()
is a Hilbert space — see Theorem [11.17| for the completeness assertion.

Definition 16.8. A subset C of a vector space X is said to be convez if for
all x,y € C the line segment [x,y] := {tx + (1 — )y : 0 < t < 1} joining = to
y is contained in C' as well. (Notice that any vector subspace of X is convez.)

Theorem 16.9 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M C H is a closed convex subset of H. Then for any x € H
there exists a unique y € M such that

lz =yl = d(w, M) = inf [z - 2.

Moreover, if M is a vector subspace of H, then the point y may also be char-
acterized as the unique point in M such that (x —y) L M.
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/

Fig. 16.2. The geometry of convex sets.

Proof. Uniqueness. By replacing M by M —xz:={m —xz:m € M} we
may assume z = 0. Let § := d(0, M) = inf,, e ||m]| and y, z € M, see Figure
116.2]

By the parallelogram law and the convexity of M,

2llyl1* + 2ll2* = ly + 2[1* + lly — 2II?
2

+z
Y Hlly—2)? > 462 + |y — 2. (16.4)

2

-4

Hence if ||y|| = ||z|| = 8, then 262 + 262 > 462 + ||y — 2|2, so that ||y — z||? = 0.
Therefore, if a minimizer for d(0, -)|ps exists, it is unique.
Existence. Let y, € M be chosen such that |y,|| = d, — § = d(0, M).

Taking y = ¥, and z = y,, in Eq. (16.4]) shows
263n =+ 26% 2 462 + ”yn - ym||2'
Passing to the limit m,n — oo in this equation implies,

252 4 252 > 452 + lim sup IIyn - ymH2v

m,n— 00

i.e. imsup,, ,, oo [|Un — Yml[* = 0. Therefore, by completeness of H, {yn},~,
is convergent. Because M is closed, y := lim y, € M and because the norm

n—oo

is continuous,
lyll = lim [y, || =6 = d(0, M).
n—oo

So y is the desired point in M which is closest to 0.
Now suppose M is a closed subspace of H and x € H. Let y € M be the
closest point in M to x. Then for w € M, the function

9(t) = llz — (y + tw)|* = [lz — y|* - 2tRe(z — ylw) + *[w]?

has a minimum at ¢ = 0 and therefore 0 = ¢’(0) = —2Re(z — y|w). Since
w € M is arbitrary, this implies that (z —y) L M.
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Finally suppose y € M is any point such that (z —y) L M. Then for
z € M, by Pythagorean’s theorem,

lo—z* = llo —y+y— 2" = o —ylI* + ly — 2lI* > = — ol

which shows d(x, M)? > ||z — y||?. That is to say y is the point in M closest
to x. [ |

Definition 16.10. Suppose that A: H — H is a bounded operator, i.e.
|Al| :==sup{||Az|| : z € H with ||z|| =1} < 0.

The adjoint of A, denoted A*, is the unique operator A* : H — H such that
(Az|y) = (x|A*y). (The proof that A* exists and is unique will be given in
Proposition below.) A bounded operator A : H — H is self - adjoint
or Hermitian if A = A*.

Definition 16.11. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection of H onto M is the function Py : H — H such that
for x € H, Py(x) is the unique element in M such that (x — Py (z)) L M,
i.e. Py(x) is the unique element in M such that

(x|m) = (Pp(x)|m) for allm € M. (16.5)

Theorem 16.12 (Projection Theorem). Let H be a Hilbert space and
M C H be a closed subspace. The orthogonal projection Py; satisfies:

. Py is linear and hence we will write Ppyx rather than Py (x).

. P}, = Py (P is a projection).

. Pi; = Py (P is self-adjoint).

.Ran(Pys) = M and Nul(Py) = M.

.If N C M C H is another closed subspace, the Py Py = Py Py = Py

Cr i o o~

Proof.
1. Let 1,29 € H and « € C, then Py;z1 + aPyre € M and

Pyxy + aPyxa — (21 + axs) = [Py — 1 + a(Pyze — x2)] € M+

showing Pz + aPyzy = Pry(x1 + axs), i.e. Py is linear.

2. Obviously Ran(Py) = M and Pyz = z for all x € M. Therefore Pi, =
Py

3. Let 2,y € H, then since (v — Pyx) and (y — Pyry) are in M+,

(Pryely) = (Pux|Puy +y — Puy) = (Pux|Pay)
= (Pyz + (x — Pyz)|Prpy) = (2| Pary).

4. We have already seen, Ran(Py;) = M and Pyx =0iff x =2 —0€ M+,
ie. Nul(P]\/]) = ML.



348 16 Hilbert Space Basics

5. If N ¢ M C H it is clear that PyyPy = Py since Pyy = Id on N =
Ran(Py) C M. Taking adjoints gives the other identity, namely that
Py Py = Py. More directly, if z € H and n € N, we have

(PyPyrx|n) = (Pyx|Pyn) = (Pyz|n) = (x| Pyn) = (z|n) .
Since this holds for all n we may conclude that Py Pyjx = Pyz.
[

Corollary 16.13. If M C H is a proper closed subspace of a Hilbert space H,
then H =M & M.

Proof. Given z € H, let y = Py so that z —y € M*. Then z =
y+(@x—y)e M+ M+ Itz e MAM>:, then z L z, ie. ||z|* = (z]z) = 0. So
MnM*={0}. n

Exercise 16.1. Suppose M is a subset of H, then M*+ = span(M).

Theorem 16.14 (Riesz Theorem). Let H* be the dual space of H (i.e. that
linear space of continuous linear functionals on H ). The map

ze H -1 (|2) € H* (16.6)
18 a conjugate linemﬂ isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x,z € H,

(z|2)| < ||z||||z]| for all z € H

with equality when x = z. This implies that |[jz| ;. = [[(:|2)]|5- = [z]l-
Therefore j is isometric and this implies j is injective. To finish the proof
we must show that j is surjective. So let f € H* which we assume, without
loss of generality, is non-zero. Then M =Nul(f) — a closed proper subspace
of H. Since, by Corollary H=Ma&M' f:HM>=M"—TFisa
linear isomorphism. This shows that dim(M*) =1 and hence H = M @ Fx
where 7o € M+ \ {0} E| Choose z = Azg € M+ such that f(zg) = (x0]2), i.e.
A = f(z0)/ ||zo||” . Then for & = m + Azg with m € M and X € F,

f(@) = Af(wo) = Mxol2) = (Awo|2) = (m + Awolz) = (x]z)
which shows that f = jz. ]
1RT&11that j is conjugate linear if
J(z1+az) =jz1 +ajz

for all 21,20 € H and o € C.

2 Alternatively, choose zo € M+ \ {0} such that f(zo) = 1. For x € M~ we have
f(z — Azo) = 0 provided that \ := f(z). Therefore z — Azo € M N M+ = {0},
i.e. z = Axo. This again shows that M~ is spanned by xo.
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Proposition 16.15 (Adjoints). Let H and K be Hilbert spaces and A :
H — K be a bounded operator. Then there exists a unique bounded operator

A*: K — H such that
(Az|y)k = (x|A*y) g for allz € H and y € K. (16.7)

Moreover, for all A;B € L(H,K) and A € C,

1. (A+AB)" = A* + \B*,

2. A = (A%)* = A,

3. (14" = |[All and

4- 1A Al = [[AlI7

5. If K = H, then (AB)" = B*A*. In particular A € L (H) has a bounded

inverse iff A* has a bounded inverse and (A*) "' = (Afl)* .

Proof. For each y € K, the map © — (Ax|y)x is in H* and therefore
there exists, by Theorem [16.14] a unique vector z € H (we will denote this z
by A* (y)) such that

(Az|y)k = (x|z)y for all z € H.

This shows there is a unique map A* : K — H such that (Az|y)x =
(x|A*(y)) g for all z € H and y € K.
To see A* is linear, let y1,y2 € K and A € C, then for any x € H,
(Azlyr + My2) e = (Az|yn) i + MAz[ys)
= (@A (1) k + Mz|A™(y2)) 1
= (2|A%(y1) + A" (y2)) 1

and by the uniqueness of A*(y; + \y2) we find
A" (y1 + Ay2) = A™(y1) + AA™(y2).

This shows A* is linear and so we will now write A*y instead of A*(y).
Since

(A*ylz) g = (z|A*y)r = (Azly)k = (y|Az)k

it follows that A** = A. The assertion that (A 4+ AB)" = A* + AB* is Exercise
116.2)
Items 3. and 4. Making use of Schwarz’s inequality (Theorem [16.2)), we

have
[A*[| = sup [|A7K|
keK:|k[=1
= sup sup  [(A"k[h)]
keK:||k||=1 he H:||h||=1
= sup sup  |[(k|AR)| = sup [[AR[ = [|A]

heH:||h||=1 ke K:|[k||=1 heH:||hl|=1
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so that ||A*|| = ||A]| . Since

1A= Al < AT Al = |14

and
JAI* = sup ||AR|*= sup |(Ah|Ah)]
heH:||h||=1 heH:||h||=1
= sup [(h|A"AR)| < sup [[ATAh|| = ||ATA] (16.8)
heH:||h||=1 heH:|[h||=1

we also have || A*A|| < || A||> < ||A* A|| which shows [|A||> = || A*A]|.
Alternatively, from Eq. (16.8]),

1AI” < A% Al < [lA] A7) (16.9)

which then implies ||A|| < ||A*||. Replacing A by A* in this last inequality
shows ||A*|| < ||A]| and hence that ||A*|| = ||A]|. Using this identity back in
Eq. (16.9) proves || A[* = [[A*A] .

Now suppose that K = H. Then

(ABh|k) = (Bh|A*k) = (h|B* A*F)

which shows (AB)" = B*A*. If A~! exists then

*

(A A" = (447" =I" =T and

AT (AT = (A7A) =" =1
This shows that A* is invertible and (A*)™" = (A*I)*. Similarly if A* is
invertible then so is A = A**. [
Exercise 16.2. Let H,K, M be Hilbert spaces, A,B € L(H,K), C €
L(K,M) and XA € C. Show (A+ AB)" = A* + AB* and (CA)" = A*C* €

L(M, H).

Exercise 16.3. Let H = C" and K = C™ equipped with the usual inner
products, i.e. (z|w)y = z-w for z,w € H. Let A be an m xn matrix thought of
as a linear operator from H to K. Show the matrix associated to A* : K — H
is the conjugate transpose of A.

Lemma 16.16. Suppose A : H — K is a bounded operator, then:
1. Nul(A*) = Ran(4)* .

2. Ran(A) = Nul(A4*)+.
3. if K=H andV C H is an A — invariant subspace (i.e. A(V) C V), then

VL is A* — invariant.
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Proof. An element y € K is in Nul(4*) iff 0 = (A*y|z) = (y|Ax
for all € H which happens iff y € Ran(A4)‘. Because, by Exercise

Ran(A) = Ran(A4)1+, and so by the first item, Ran(4) = Nul(A*)*1. Now
suppose A(V) C V and y € V1, then

(A*ylx) = (y|Az) =0 for all z € V

which shows A*y € V4. [
The next elementary theorem (referred to as the bounded linear transfor-
mation theorem, or B.L.T. theorem for short) is often useful.

Theorem 16.17 (B. L. T. Theorem). Suppose that Z is a normed space,
X isa Banaclﬂ space, and S C Z is a dense linear subspace of Z. If T :
S — X is a bounded linear transformation (i.e. there exists C' < 0o such that
ITz|| < Cz|| for all z € S), then T has a unique extension to an element
T € L(Z,X) and this extension still satisfies

|Tz|| < C ||| forall z € S.
Proof. Let z € Z and choose z,, € S such that z,, — z. Since
ITzm — Tzn|| < Cllzm — 2a|l = 0 as myn — oo,

it follows by the completeness of X that lim,, o T2, =: Tz exists. Moreover,
if w, € § is another sequence converging to z, then

1Tzn — Twn|| < Cllzn —wal| = Cllz = 2] =0

and therefore Tz is well defined. It is now a simple matter to check that
T :Z — X is still linear and that

|Tz]| = lim [Tz, < lim C|lz,|| = C|z|| for all z € Z.

Thus T is an extension of 7' to all of the Z. The uniqueness of this extension
is easy to prove and will be left to the reader. ]

16.1 Compactness Results for L? — Spaces

In this section we are going to identify the sequentially “weak” compact sub-
sets of LP (£2,B,P) for 1 < p < oo, where (2,8, P) is a probability space.
The key to our proofs will be the following Hilbert space compactess result.

Theorem 16.18. Suppose {xy,} -, is a bounded sequence in H (i.e. C' :=
sup,, ||zn|| < 00), then there exists a sub-sequence, yi := xn, and an x € H
such that limg_,oo (yx|h) = (x|h) for all h € H. We say that yi, converges to
x weakly in this case and denote this by yi — .

3 A Banach space is a complete normed space. The main examples for us are Hilbert
spaces.
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Proof. Let Hy := span(zy : k € N). Then H is a closed separable Hilbert
subspace of H and {zy},-, C Ho. Let {h,} -, be a countable dense sub-
set of Hy. Since [(zplhn)| < |2kl |hnll < Cllhn|| < oo, the sequence,
{{zk|hn)}rey C C, is bounded and hence has a convergent sub-sequence for
all n € N. By the Cantor’s diagonalization argument we can find a a sub-
sequence, Y := Tn,, of {z,} such that limy_ . (yx|h,) exists for all n € N.

We now show ¢ (2) := limg_ o (yx|2) exists for all z € Hy. Indeed, for any
k,l,n € N, we have

Wyl 2) — wil2)| = [{yk — wil2)] < [k — wilhn)| + [k — wilz — ha)l
< [ye — yilhn)| +2C ||z = ha || -

Letting k,l — oo in this estimate then shows

limsup |(yx|2) — (wl2)] < 2C [z = hal| -

k,l—o0

Since we may choose n € N such that ||z — h,|| is as small as we please, we
may conclude that limsupy, ;. [(yx|2) — (ni]2)], i.e. v (2) = limp o0 (Yr|2)
exists.
The function, @ (z) = limy— 0 (2|yx) is a bounded linear functional on H
because
5 (2)] = limin |(zly)| < O[]

Therefore by the Riesz Theorem [16.14] there exists € Hy such that @ (z) =
(z|x) for all z € Hy. Thus, for this € Hy we have shown

klim (yr|z) = (z|z) for all z € Hy. (16.10)

To finish the proof we need only observe that Eq. (16.10)) is valid for all
z € H. Indeed if z € H, then z = 2y + 2; where 290 = Py,z € Hy and
z1 =2z— Py,z € HOL. Since yi, © € Hy, we have

klim (yp|z) = klim (yx|20) = (x|z0) = (z|z) for all z € H.

]

Since unbounded subsets of H are clearly not sequentially weakly compact,

the previous states that a set is sequentially precompact in H iff it is bounded.

Let us now use Theorem [I6.18] to identify the sequentially compact subsets of
LP (2,8, P) for all 1 < p < oco. We begin with the case p = 1.

Theorem 16.19. If {X,,}7~, C L' (£2, B, P) is a uniformly integrable subset
of L' (2,B, P), there exists a subsequence Yy, := X,,, of {Xn}ro, and X €
L' (2, B, P) such that

klim E[Yih]| =E[Xh] for all h € By. (16.11)
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Proof. For each m € N let X} := X,,1|x,|<m- The truncated sequence
{Xm}>° | is a bounded subset of the Hilbert space, L? (£2, B, P) , for allm € N.
Therefore by Theore {X}f}fﬁ:l has a weakly convergent sub-sequence
for all m € N. By Cantor’s diagonalization argument, we can find Y, := X"

and X™ € L? (22, B, P) such that Y;” = X™ as m — oc and in particular

klim E[Y,"h] =E[X™h] for all h € B,.

Our next goal is to show X™ — X in L (2, B, P) . To this end, for m < M
and h € B, we have

E[(XY X a]| = tim [E (4 - ¥7) ]| < lminfE [~ v 1]

IN

7| -likminf]E[|Yk| M > Y| > m]

< ||hll. -l g E (¥ < [Yi > ).

Taking h = sgn(X™ — X™) in this inequality shows

E[| XM — X™|] < liminfE[|Yy] : |Yi| > m]
k—o00

with the right member of this inequality going to zero as m, M — oo with
M > m by the assumed uniform integrability of the {X,}. Therefore there
exists X € L' (£2, B, P) such that lim,, .., E|X — X™| = 0.

We are now ready to verify Eq. is valid. For h € By,

[E[(X = Y3) A < [E[(X™ = Y") B[ + [E[(X = X™) A]| + [E[(Yy — ¥,™) Al
S EX™ = YE") Al 4 [lAll - (BIX = X+ E[[Yx] : [Yi] > m])

< [BIC™ = Y|+ il - (B0 = X7+ supE (Y [l > ).
Passing to the limit as £k — oo in the above inequality shows

imsup B = ) ] < [l (EIX = X"+ supE (V<[] > ] )

Since X™ — X in L' and sup, E[|Y}] : |Y;| > m] — 0 by uniform integrability,
it follows that, limsup,_, . |E[(X — Yx) h]| = 0. =

Ezample 16.20. Let (2,8, P) = ((O, 1) 73(0,1),m) where m is Lebesgue mea-
sure and let X, (w) = 2"lgcy<o-». Then EX,, = 1 for all n and hence
{X,}:2, isbounded in L' (2, B, P) (but is not uniformly integrable). Suppose
for sake of contradiction that there existed X € L' (2, B, P) and subsequence,
Y, := X, such that Y 2 X. Then for h € By and any € > 0 we would have

E[Xhle ] = Jim B [Yih1( 1] = 0.
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Then by DCT it would follow that E[Xh] = 0 for all h € B, and hence that
X = 0. On the other hand we would also have

0=E[X-1] = lim E[t; 1] =1

and we have reached the desired contradiction. Hence we must conclude that
bounded subset of L (£2, B, P) need not be weakly compact and thus we can
not drop the uniform integrability assumption made in Theorem [16.19

When 1 < p < oo, the situation is simpler.

Theorem 16.21. Letp € (1,00) andq =p (p — Nte (1,00) be its conjugate
exponent. If {X,}>~_| is a bounded sequence in LP (12, B, P), there exists X €
L? (£2,B,P) and a subsequence Yy, := X,,, of {X,} -, such that

lim E[Yih] = E[Xh] for all h € L (2,5, P). (16.12)

Proof. Let C := sup, ¢y [|[Xn|, < 0o and recall that Lemma [11.35 guar-

antees that {X,,}-—, is a uniformly integrable subset of L' ({2, B, P). There-
fore by Theorem there exists X € L' (£2,B,P) and a subsequence,
Y: := X, such that Eq. holds. We will complete the proof by show-
ing; a) X € LP (£2,B, P) and b) and Eq. is valid.

a) For h € B, we have

£ [XA]| < liminf E[[Yih[] < lim inf [ i, - [|A]], < C Al

For M < oo, taking h = sgn(X)|X["~" lix)<nm in the previous inequality
shows

E[IX[P1xj<m] <C HSgH(X) XP I'X'SMHQ

_ 1/q
=0 (B [IXI" V" xien]) T < CE[XP 1x20])
from which it follows that
EIXP 1xi<m))” < € [XPx<n]) ™ < C

Using the monotone convergence theorem, we may let M — oo in this equation
to find || X[, = (E[X|")"" < C < o
b) Now that we know X € LP(£2,5,P), in make sense to consider
E[(X —Yg)h] for all h € LP(£2,B,P). For M < oo, let M := hljy <,
then
IE[(X = Yi) h]| < [E[(X = Vi) hM]| + |[E [(X = Vi) hljpys ]|
< |E (X —Yi) BM]| + | X = Vil ||h1\h|>MHq

< |[E[(X —Yi)hM]| +2C Hm‘hbMHq.
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Since hM € By, we may pass to the limit & — oo in the previous inequality to
find,
limsup [E [(X — Y%) ]| <2C Hh1|h\>M||q .

k—o0

This completes the proof, since ||h1|h|>M||q — 0 as M — oo by DCT. ]

16.2 Exercises

Exercise 16.4. Suppose that {M,} -, is an increasing sequence of closed
subspaces of a Hilbert space, H. Let M be the closure of My = U2, M,
Show lim,, oo Par,,x = Py for all x € H. Hint: first prove this for x € M)
and then for € M. Also consider the case where z € M+.

Solution to Exercise (16.4)). Let P, := Py, and P = Py;. If y € My, then
P,y = y = Py for all n sufficiently large. and therefore, lim,, ., P,y = Py.
Now suppose that x € M and y € My. Then

[Pz — Ppz|| < ||Pz — Pyl + | Py — Puyll + ([ Pay — Pux||
<2z =yl + [Py — Puyll

and passing to the limit as n — oo then shows

limsup || Pz — Pyz|| < 2|z — vy .
The left hand side may be made as small as we like by choosing y € My
arbitrarily close to z € M = Mj.
For the general case, if x € H, then © = Px+y where y = x — Px € M c
M- for all n. Therefore,

P,x = P,Px — Pxr asn — o
by what we have just proved.

Exercise 16.5 (The Mean Ergodic Theorem). Let U : H — H be a uni-
tary operator on a Hilbert space H, M = Nul(U — I), P = Pjs be orthogonal
projection onto M, and S,, = % Zz;é U*. Show S,, — P, strongly by which
we mean lim,,_, . S,z = Py for all x € H.

Hints: 1. Show H is the orthogonal direct sum of M and Ran(U — I) by
first showing Nul(U* —I) = Nul(U —I) and then using Lemma/[16.16] 2. Verify
the result for © € Nul(U — I) and z € Ran(U —I). 3. Use a limiting argument
to verify the result for € Ran(U — I).

Solution to Exercise (16.5)). Let M = Nul(U — I), then S,z = z for all
x € M. Notice that z € Nul(U* — I) iff z = U*z iff Uz = UU*z = z, iff
x € Nul(U — I) = M. Therefore
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Ran(U — I) = Nul(U* — )" = Nul(U — I)* = M *.

Suppose that ¢ = Uy —y € Ran(U — I) for some y € H, then
1
Spt = ﬁ(U"y—y)HOaanoo.

Finally if z € M+ and y € Ran(U — I), we have
[Sna — Snyll < [lz =y

and hence

lim sup [[Spz — Snyll < [z -yl
from which it follows that limsup,,_, . [|Snz|| < ||z —y| . Letting y — =«
shows that limsup,, . |[|Snx| = 0 for all z € M*. Therefore if z € H and
z=m+m*+ e MeM?', then

lim S,x = lim S,m + lim Snml =m-+0= Pyx.
n—oo n—oo n—oo
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The Radon-Nikodym Theorem

Theorem 17.1 (A Baby Radon-Nikodym Theorem). Suppose (X, M)
is a measurable space, X and v are two finite positive measures on M such
that v(A) < A(A) for all A € M. Then there exists a measurable function,
p: X —[0,1] such that dv = pdA.

Proof. If f is a non-negative simple function, then

v(f)=D av(f=a) <Y ar(f=a)=A(f).

a>0 a>0

In light of Theorem and the MCT, this inequality continues to hold
for all non-negative measurable functions. Furthermore if f € L' (\), then
v(If]) < X(|]f]) < oo and hence f € L' (v) and

DI <v (D) S AU A2 N fll g -

Therefore, L? (A\) 3 f — v (f) € C is a continuous linear functional on L?(\).
By the Riesz representation Theorem [16.14} there exists a unique p € L?()\)
such that

v(f) = /XfpdA for all f € L2(\).

In particular this equation holds for all bounded measurable functions, f :
X — R and for such a function we have

z/(f):Reu(f):Re/Xfpd/\:/XfRepd)\. (17.1)

Thus by replacing p by Re p if necessary we may assume p is real.
Taking f = 1,<0 in Eq. (17.1]) shows

OSV(p<O):/ 1p<op dX <0,
X

from which we conclude that 1,.9p =0, A — a.e., i.e. A(p < 0) = 0. Therefore
p >0, A — a.e. Similarly for o > 1,

)\(p>a)21/(p>a):/ Lpsap dX > aX(p > )
X

which is possible iff A (p > «) = 0. Letting « | 1, it follows that A (p > 1) =0
and hence 0 < p <1, X - ae. [ ]
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Definition 17.2. Let p and v be two positive measure on a measurable space,
(X, M). Then:

1. p and v are mutually singular (written as p L v) if there exists A € M
such that v (A) =0 and pu (A°) = 0. We say that v lives on A and p lives
on A°.

2. The measure v s absolutely continuous relative to p (written as
v < p) provided v(A) = 0 whenever u(A) = 0.

As an example, suppose that p is a positive measure and p > 0 is a
measurable function. Then the measure, v := pu is absolutely continuous
relative to . Indeed, if p (A) = 0 then

V(A):/Apdu:().

We will eventually show that if 4 and v are o — finite and v < pu, then
dv = pdu for some measurable function, p > 0.

Definition 17.3 (Lebesgue Decomposition). Let p and v be two positive
measure on a measurable space, (X, M). Two positive measures v, and vs
form a Lebesgue decomposition of v relative to p if v = v, + v, vy < U,
and vs L p.

Lemma 17.4. If py, pe and v are positive measures on (X, M) such that
p L voand po L v, then (g1 + p2) L v. More generally if {pi}ie, is a
sequence of positive measures such that p; L v for all i then p = 221 i 1S
singular relative to v.

Proof. It suffices to prove the second assertion since we can then take
pj =0 for all j > 3. Choose A; € M such that v (A4;) = 0 and p; (AS) = 0 for
all 4. Letting A := U; A; we have v (A) = 0. Moreover, since A° = N; A C A,
for all m, we have u; (A€) = 0 for all ¢ and therefore, p (A¢) = 0. This shows
that p L v. ]

Lemma 17.5. Let v and p be positive measures on (X, M). If there exists a
Lebesgue decomposition, v = vs + v, of the measure v relative to p then this
decomposition is unique. Moreover: if v is a o — finite measure then so are v
and v,.

Proof. Since v; L p, there exists A € M such that u(A) = 0 and v, (A°) =
0 and because v, < p, we also know that v, (A) = 0. So for C' € M,

v(CNA) =vs (CNA) +v, (CNA) =v,(CNA) =1, (C) (17.2)
and

v(CNA®) =vs (CNAY)+ 1, (CNA®) =v, (CNA®) =1, (C). (17.3)
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Now suppose we have another Lebesgue decomposition, v = 7, + s with
7 L pand 7, < p. Working as above, we may choose A € M such that
u(A) = 0 and A€ is 7, — null. Then B = AU A is still a g — null set and and
B¢ = A°N A¢ is a null set for both v, and ;. Therefore we may use Egs.

(17.2)) and (17.3) with A being replaced by B to conclude,

vs(C) =v(CNB) =0,(C) and
ve(C) = v(C'N B°) = 1,(C) for all C € M.

Lastly if v is a o — finite measure then there exists X,, € M such that X =
Yoo 1 Xy and v(X,,) < oo for all n. Since 0o > v(X,,) = vo(X,) + vs(X,),
we must have v,(X,) < co and v4(X,) < oo, showing v, and v, are o — finite
as well. ]

Lemma 17.6. Suppose p is a positive measure on (X, M) and f,g : X —
[0,00] are functions such that the measures, fdu and gdu are o — finite and
further satisfy,

/ fdp = / gdu for all A € M. (17.4)
A A

Then f(x) = g(x) for u — a.e. x.

Proof. By assumption there exists X,, € M such that X,, T X and
Jx fdp < oo and [, gdp < oo for all n. Replacing A by AN X, in Eq.

(17.4) implies

/1andu=/ fdu=/ gduz/ 1x,gdp
A ANX, ANX, A

for all A € M. Since 1x, f and 1x,g are in L'(u) for all n, this equation
implies 1x, f = 1x,9, p — a.e. Letting n — oo then shows that f = g, u — a.e.
|

Remark 17.7. Lemma [I7.6] is in general false without the o — finiteness as-
sumption. A trivial counterexample is to take M = 2% ;(A) = oo for all
non-empty A € M, f =1x and g =2 1x. Then Eq. (17.4) holds yet f # g.

Theorem 17.8 (Radon Nikodym Theorem for Positive Measures).
Suppose that p and v are o — finite positive measures on (X, M). Then v has
a unique Lebesque decomposition v = v, + vs relative to u and there exists
a unique (modulo sets of u — measure 0) function p : X — [0,00) such that
dv, = pdu. Moreover, vy = 0 iff v < p.

Proof. The uniqueness assertions follow directly from Lemmas [I7.5] and
1L'(.0l

Existence when y and v are both finite measures. (Von-Neumann’s
Proof. See Remark for the motivation for this proof.) First suppose that
1 and v are finite measures and let A = y + v. By Theorem dv = hdX
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with 0 < h <1 and this implies, for all non-negative measurable functions f,
that

v(f) = A(fh) = p(fh) +v(fh) (17.5)
or equivalently

v(f(1=h)) = p(fh). (17.6)
Taking f = 1(x=1} in Eq. shows that

p({h=1}) =v(p=13(1 = h)) =0,

ie. 0<h(z) <1for pu-ae x. Let

h
p =<y 1-7h
and then take f = glgp<13(1 —h)~! with g > 0 in Eq. to learn
v(glnary) = mlgl ey (1 = B)'h) = ulpg).
Hence if we define
Vo = l{pc1yv and v, 1= Lip=1yv,

we then have vs L u (since vy “lives” on {h = 1} while p(h =1) = 0) and
v, = pp and in particular v, < p. Hence v = v, + v, is the desired Lebesgue
decomposition of v. If we further assume that v < p, then p(h=1) = 0
implies v (h = 1) = 0 and hence that v, = 0 and we conclude that v = v, =
pit.

Existence when ;1 and v are o-finite measures. Write X = ° | X,
where X,, € M are chosen so that pu(X,) < co and v(X,,) < oo for all n. Let
dp, = 1x, dpand dv, = 1x, dv. Then by what we have just proved there exists
pn € LY(X, pn) C LY (X, ) and measure v¢ such that dv,, = p,du, +dvs with
v L py,. Since p, and vS “live” on X, there exists A, € Mx, such that
1 (An) = pin (An) = 0 and

vy (X\ An) = v, (Xn \ An) = 0.

This shows that v5 L p for all n and so by Lemma [17.4] v, := Y 07 v is
singular relative to u. Since

(oo} (oo} oo
V= Z Un = Z (Pnbin +vp) = Z (Pnlx,p+vy) = pu+vs, (17.7)
n=1 n=1 n=1

where p :=>"" | 1x, pn, it follows that v = v, + v, with v, = pp. Hence this
is the desired Lebesgue decomposition of v relative to p. [
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Remark 17.9. Here is the motivation for the above construction. Suppose that
dv = dvs + pdp is the Radon-Nikodym decomposition and X = A> B such
that vs(B) =0 and p(A) = 0. Then we find

vs(f) + ulpf) = v(f) = Mhf) = v(hf) + p(hf).
Letting f — 14 f then implies that
v(laf) = vs(laf) = v(Lahf)
which show that h = 1, v —a.e. on A. Also letting f — 1pf implies that
wplpf) =v(hlpf) + p(hlpf) = wphlpf) + p(hlpf)
which implies, p = ph + h, p — a.e. on B, i.e.
p(l—h)=h, p—a.e. on B.

In particular it follows that h < 1, 4 = v — a.e. on B and that p = ﬁ1h<1,
i — a.e. So up to sets of v — measure zero, A = {h =1} and B = {h < 1} and
therefore,

h
dv = 1{h:1}dV + 1{h<1}dl/ = l{hzl}dl/ + m1h<1dﬂ.
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Conditional Expectation

In this section let (£2, B, P) be a probability space and G C B be a sub — sigma
algebra of B. We will write f € G, iff f: 2 — C is bounded and f is (G, Bc)
— measurable. If A € B and P (A) > 0, we will let

E[X : A]

P(ANB)
P (4)

E[X|A] := P A)

and P (B|A) :=E[1p|4] =
for all integrable random variables, X, and B € B. We will often use the
factorization Lemma [6.33]in this section. Because of this let us repeat it here.

Lemma 18.1. Suppose that (Y,F) is a measurable space and 'Y 12— Y s
a map. Then to every (o(Y'),Bg) — measurable function, H : {2 — R, there is
a (F,Bg) — measurable function h: Y — R such that H=hoY.

Proof. First suppose that H = 14 where A € o(Y) = Y "1(F). Let B€ F
such that A = Y ~'(B) then 14 = 1y-1(g) = 1p o Y and hence the lemma
is valid in this case with h = 1p. More generally if H = ) a;14, is a simple
function, then there exists B; € F such that 14, = 1p,0Y and hence H = hoY
with h := Y a;1p, — a simple function on R.

For a general (F,Bg) — measurable function, H, from {2 — R, choose
simple functions H, converging to H. Let h, : Y — R be simple functions
such that H,, = h,, o Y. Then it follows that

H = lim H, =limsup H,, =limsuph, oY =hoY

n—oo n—o00 n—oo

where h := limsup h,, — a measurable function from Y to R. [

n—oo

Lemma 18.2 (Integral Comparison). Suppose that F,G : 2 — [0,00] are
B — measurable functions. Then F > G a.s. iff

E[F: Al >E[G: A] forall Ae B. (18.1)

In particular F' = G a.s. iff equality holds in Eq. . Moreover, for F €
LY (2,B,P), F=0 a.s. iff E[F : A] =0 for all A € B.

Proof. It is clear that F' > G a.s. implies Eq. (18.1]). For the converse
assertion, if we take A = {F =0} in Eq. (18.1) we learn that

0=E[F:F=0>E|[G: F=0]
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and hence that Glp—y = 0 a.s., i.e.
G =0as.on {F=0}. (18.2)
Similarly if A :={G > aF} with o > 1 in Eq. (18.I]), then
E[F:G>aF]|>E[G:G>aF]|>E[aF:G>aF]=adE[F:G > aF].

Since o > 1, the only way this can happen is if E[F : G > aF] = 0. By the
MCT we may now let @ | 1 to conclude, 0 = E[F : G > F]. This implies
Flgsr =0 a.s. or equivalently

G < Fason {F>0}. (18.3)

Since 2 = {F = 0} U{F > 0} and on both sets, by Egs. and we
have G < F' a.s. we may conclude that G < F a.s. on {2 as well. If equality
holds in Eq. , then we know that G < Frand F < G a.s.,ie. F =G as.

If F e L'(2,B,P) and E[F: A] = 0 for all A € B, we may conclude
by a simple limiting argument that E[Fh] = 0 for all h € B;. Taking h :=
sgn(F) := %1|F‘>0 in this identity then implies

0=E[Fh =E [Ffﬂlm] —E[|F|1p50] = E[IF]

which implies that F' =0 a.s. [ |

Definition 18.3 (Conditional Expectation). Let Eg : L*(2,B,P) —
L?(02,G, P) denote orthogonal projection of L*(§2,B, P) onto the closed sub-
space L?(£2,G, P). For f € L*(2,B, P), we say that Egf € L*(£2,G, P) is the
conditional expectation of f.

Remark 18.4 (Basic Properties of Eg). Let f € L?(£2,B, P). By the orthog-
onal projection Theorem [16.12| we know that F' € L?(2,G, P) is Egf a.s. iff
either of the following two conditions hold;

L|f=Flly <|If = gll, for all g € L*(2,G, P) or
2. E[fh] = E[Fh] for all h € L2(£2,G, P).

Moreover if Gy C G C B then L?(£2,Gy, P) C L?(£2,G1, P) C L?(£2,B, P)
and therefore,

Eg,Eg, f = Eg,Eg, f = Eg, f a.s. for all f € L (2,B,P). (18.4)
It is also useful to observe that condition 2. above may expressed as
E[f:AJ=E[F: A] forall Ae g (18.5)

or

E[fh] = E[Fh] for all h € Gy (18.6)
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Indeed, if Eq. (18.5) holds, then by linearity we have E[fh] = E [F'h] for all G
— measurable simple functions, A and hence by the approximation Theorem

and the DCT for all b € Gy,. Therefore Eq. (18.5) implies Eq. (18.6). If
Eq. (18.6) holds and h € L?(£2,G, P), we may use DCT to show

E[fh] "Z" lim E [fhlp<n] Tim E [Fhlpc,] "= E[FR],

which is condition 2. in Remark Taking h = 14 with A € G in condition
2. or Remark we learn that Eq. (18.5) is satisfied as well.

Theorem 18.5. Let (£2,B,P) and G C B be as above and let f,g €
LY(2,B, P). The operator Eg : L*(2, B, P) — L*(02,G, P) extends uniquely
to a linear contraction from L'(§2, B, P) to L*(£2,G, P). This extension enjoys
the following properties;

JIff >0, P —a.e then Egf >0, P — a.e.

. Monotonicity. If f > g, P — a.e. there Egf > Egg, P — a.e.

. L*>® — contraction property. |Egf| <Eg|f|, P — a.e.

. Averaging Property. If f € LY (2,B,P) then F = Egf iff F €
LY(92,G,P) and

B W DS~

E(Fh) = E(fh) for all h € G. (18.7)

5. Pull out property or product rule. If g € G, and f € L'($2,B, P),
then Eg(gf) =g -Egf, P — a.e.
6. Tower or smoothing property. If Gy C G C B. Then

Eg,Eg,f = Eg,Eg, f = Eg, f a.s. for all f € L' (2,B,P).  (18.8)

Proof. By the definition of orthogonal projection, f € L?(§2, B, P) and

h € Gy,
E(fh) = E(f - Egh) = E(Eg/ - h). (18.9)
Taking L
h= sgn (ng) = Ezﬁl|ﬂggf>0 (18.10)
in Eq. shows
E(|Eqf]) = E(Eqf - h) = E(fh) < E(|fhl) < E(|f]). (18.11)

It follows from this equation and the BLT (Theorem that Eg extends
uniquely to a contraction form L!'(£2,B, P) to L'(§2,G, P). Moreover, by a
simple limiting argument, Eq. remains valid for all f € L' (2, B, P)
and h € Gp. Indeed, (without reference to Theorem if fr == flif<n €
L?(02,B,P), then f, — f in L*(£2,B, P) and hence

E[|Eg frn — Egfinll = E[|Eg (fn — fu)|] S E[|fn — fiul] = 0 as m,n — oo.
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By the completness of L'(2,G, P), F := L'(§2,G, P)-lim, o Egf, exists.
Moreover the function F' satisfies,

E(F-h) =E(lim Egf,-h) = lim B(f,-h) =E(f-h) (18.12)

for all h € G, and by Lemma there is at most one, F € L'(§2,G,P),
which satisfies Eq. . We will again denote F' by Egf. This proves the
existence and uniqueness of F' satisfying the defining relation in Eq. of
item 4. The same argument used in Eq. again shows E |F| < E|f| and
therefore that Eg : L' (2, B, P) — L' (2,G, P) is a contraction.

Items 1 and 2. If f € L' (£2,B, P) with f > 0, then

E(Egf-h) =E(fh) >0Y h € G, with h > 0. (18.13)

An application of Lemma then shows that Egf > 0 a.sE| The proof of
item 2. follows by applying item 1. with f repalced by f — g > 0.

Item 3. If f is real, =f < |f| and so by Item 2., +Egf < Eg|f], i.e.
|[Egf| < Eg|f|, P — a.e. For complex f, let h > 0 be a bounded and G —
measurable function. Then

E([Egf|h] = E [Egf - sgn (Bg/)h| = E [f - sgn (Eg /)]
<E[f[h] =E[Eg|f]-h].
Since h > 0 is an arbitrary G — measurable function, it follows, by Lemma
that |[Egf| < Eg |f|, P — a.s. Recall the item 4. has already been proved.
Item 5. If h,g € G, and f € L' (£2,B, P), then
E[(gEgf)h] =E[Egf-hg] =E[f-hg] =Elgf -h] =E[Eg (¢f) - h].

Thus Eg (9f) = g-Egf, P — a.e.

Item 6., by the item 5. of the projection Theorem Eq. holds
on L?(£2,B, P). By continuity of conditional expectation on L! (£2, B, P) and
the density of L' probability spaces in L? — probability spaces shows that Eq.
continues to hold on L'(£2, B, P).

Second Proof. For h € (Gy), , we have

E[Eg,Eg, f-h] =E[Eg, f-h] =E[f-h] = E[Eg,f - h]

which shows Eg,Eg, f = Eg,f a.s. By the product rule in item 5., it also
follows that

Eg, [Eg, f] = Eg, [Eg, f - 1] = Eg, f - Eg, [1] = Eg, f a.s.

Notice that Eg, [Eg, f] need only be G; — measurable. What the statement
says there are representatives of Eg, [Eg, f] which is Gy — measurable and any
such representative is also a representative of Eg, f. [

! This can also easily be proved directly here by taking h = 1gg r<o in Eq. (18.13)).
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Remark 18.6. There is another standard construction of Egf based on the
characterization in Eq. and the Radon Nikodym Theorem m It goes
as follows, for 0 < f € L' (P), let Q := fP and observe that Q|g < P|g and
hence there exists 0 < g € L' (£2,G, P) such that dQ|g = gdP|g. This then
implies that

/fdP:Q(A):/gdeorallAEQ,
A A

i.e. g = Egf. For general real valued, f € L' (P), define Egf = Egf, —Egf_
and then for complex f € L' (P) let Egf = Eg Re f + iEg Im f.

Notation 18.7 In the future, we will often write Egf as E[f|G]. Moreover,
if (X, M) is a measurable space and X : 2 — X is a measurable map. We
will often simply denote E[f|o (X)] simply by E[f|X]. We will further let
P (A|G) := E[14]G] be the conditional probability of A given G, and
P(A|X):=P(Alo (X)) be conditional probability of A given X.

Exercise 18.1. Suppose f € L' (£2,B,P) and f > 0 a.s. Show E[f|G] > 0
a.s. Use this result to conclude if f € (a,b) a.s. for some a, b such that —oo <

a < b < oo, then E[f|F] € (a,b) a.s. More precisely you are to show that any
version, g, of E[f|G] satisfies, g € (a,b) a.s.

18.1 Examples

Ezample 18.8. Suppose G is the trivial o — algebra, i.e. G = {0, 2} . In this
case Egf =Ef a.s.

Ezxample 18.9. On the opposite extreme, if G = B, then Egf = f a.s.
Lemma 18.10. Suppose (X, M) is a measurable space, X : 2 — X is a
measurable function, and G is a sub-o-algebra of B. If X is independent of G
and f: X — R is a measurable function such that f (X) € L* (£2,B, P), then

Eg[f(X)] = E[f (X)] a.s.. Conversely if Eg[f (X)] = E[f (X)] a.s. for all
bounded measurable functions, f : X — R, then X is independent of G.

Proof. Suppose that X is independent of G, f : X — R is a measurable
function such that f (X) € L($2,B8,P), p:=E[f(X)], and A € G. Then, by
independence,

E[f (X): A] = E[f (X)1a] = E[f (X)]E [La] = E[ula] = E[u: 4.

Therefore Eg [f (X)] = p =E|[f (X)] a.s.
Conversely if Eg [f (X)]=E[f(X)] = p and A € G, then

E[f (X)1a] =E[f (X): A]=E[p: Al = pE[1a] = E[f (X)]E[14].

Since this last equation is assumed to hold true for all A € G and all bounded
measurable functions, f: X — R, X is independent of G. ]
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The following remark is often useful in computing conditional expecta-
tions. The following Exercise should help you gain some more intuition about
conditional expectations.

Remark 18.11 (Note well.). According to Lemma E(f|X) = f(~X) a.s
for some measurable function, f : X — R. So computing E (f|X) = f (X)
equivalent to finding a function, f : X — R, such that

is

E[f-h(X)] =E[](X)h(X)] (18.14)
for all bounded and measurable functions, h : X — R.

Exercise 18.2. Suppose ({2, B, P) is a probability space and P := {A4;}.~, C
B is a partition of £2. (Recall this means 2 = >"°, A;.) Let G be the o —
algebra generated by P. Show:

1. Be G ifft B=U;cpA; for some A C N.

2.¢: 2 — Ris G — measurable iff g = > 2, \;14, for some \; € R.

3. For f € LY2,B,P), let E[f|A;] := E[la,f]/P(A;) if P(A;) # 0 and
E [f|Ai] = 0 otherwise. Show

ng = iE [f|Al] 1Ai a.s. (18.15)

i=1

Solution to Exercise ([18.2]). We will only prove part 3. here. To do this,
suppose that Egf = > 2 A\;14, for some \; € R. Then

i >\11A7 : Aj
i=1

which holds automatically if P (A;) = 0 no matter how A; is chosen. Therefore,
we must take

Elf:Aj]=E[Egf: A;]=E =\ P (4;)

CE[f: A
AJ—W*EWAJ‘]

which verifies Eq. (18.15)).

Proposition 18.12. Suppose that (2,8, P) is a probability space, (X, M, 1)
and (Y,N,v) are two o — finite measure spaces, X : 2 - X andY : 2 - Y
are measurable functions, and there exists 0 < p € L'(2, B, ® v) such that
P((X,Y)eU) = [,p(z,y)du(z)dv(y) for alU € MR N. Let

plz) = / p () dv (y) (18.16)

and x € X and B € N, let
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oy 7 Je @) dv (v) if p(x) € (0,00)
Q(x,B): { oo ) (18.17)

where yo is some arbitrary but fized point in Y. Then for any bounded (or
non-negative) measurable function, f: X x Y — R, we have

E[f (X,Y)[X] = Q (X, f (X,-) = / F (X)) Q(X.dy) = g (X) as
(18.18)
where,

9@) = [ f @) Qdy) = Qe (2.).
Y
As usual we use the notation,

)= [ o a7 Je v @) p (@ y) dv () if 5 () € (0,00)
Q)= [ow @y = {7 LW d po €0,

for all bounded measurable functions, v:Y — R,

Proof. Our goal is to compute E[f (X,Y)|X]. According to Remark
we are searching for a bounded measurable function, ¢ : X — R, such
that

E[f(X,Y)h(X)] = E[g(X)h(X)] for all h € M,. (18.19)

(Throughout this argument we are going to repeatedly use the Tonelli - Fubini
theorems.) We now explicitly write out both sides of Eq. ((18.19));
BIFXY)IACOL = [ 1) f ) p o) di @) do ()
X

- [1@ | [ senpenam]ae s
X Y

E g (X)h (X)] :/X Yh(x)g(x)p(w,y)du(x)dV(y)

= [ r@a@ sl dn ). (18.21)

Since the right sides of Eqgs. (18.20) and (18.21)) must be equal for all h € My,
we must demand,

/Y f (5 9) p (2, ) dv (y) = g (2) 5 () for i - ae. z. (18.22)

There are two possible problems in solving this equation for g (x) at a partic-
ular point z; the first is when p(z) = 0 and the second is when p(z) = occ.
Since
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[o@adut = [ | [ paiv ) du 1.

we know that p(x) < oo for p — a.e. x and therefore

PXE{p=00=P(p(X)=0) = [ 150pdn =0

Hence the points where p () = oo will not cause any problems.
For the first problem, namely points x where p(xz) = 0, we know that
p(x,y) =0 for v — a.e. y and therefore

/Y f (@,9) p(a,y) dv (y) = 0. (15.23)

Hence at such points, x where p(x) = 0, Eq. (18.22)) will be valid no matter
how we choose g (x). Therefore, if we let yo € Y be an arbitrary but fixed
point and then define

sioy = {7 R0 ) Pl 0
f (2, 90) if p(z) € {0,000}
then we have shown E[f (X,Y)|X] = ¢g(X) = Q (X, f) a.s. as desired. (Ob-
serve where that when p(x) < oo, p(x,-) € L' (v) and hence the integral in

the definition of g is well defined.)
Just for added security, let us check directly that g (X) =E[f (X,Y)|X]

a.s.. According to Eq. we have
Elg (X)h(X)] = / h(2) g (2) 5 (@) du ()

_ / h(z)g(z)p(x)dy(z)
XN{0<p<oo}

p
:/Xn{0<p<oo}h(:v)p($) (ﬁx)/yf(m»y)p(w’y) dv (y)) dp ()
o NI ([1@noniw) e

/h (/f wy)dl/(y)>du(l‘)
h(X)]  (by Eq. (18.20),

wherein we have repeatedly used p (p = c0) = 0 and Eq. holds when
p (z) = 0. This completes the verification that g (X) =E[f(X,Y)|X] as.. m

This proposition shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables in the
integrand. Whereas to compute the expectation, one should integrate over all
of the variables. It also gives an example of regular conditional probabilities.
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Definition 18.13. Let (X, M) and (Y,N) be measurable spaces. A function,
Q:Xx N —0,1] is a probability kernel on X x Y iff

1. Q(z,-) : N — [0,1] is a probability measure on (Y,N) for each x € X and
2.Q(-,B): X —[0,1] is M/Bg — measurable for all B € N.

If @ is a probability kernel on X x Y and f : Y — R is a bounded mea-
surable function or a positive measurable function, then z — Q (z, f) =
Jy f () Q (x,dy) is M/Br — measurable. This is clear for simple functions
and then for general functions via simple limiting arguments.

Definition 18.14. Let (X, M) and (Y, N') be measurable spaces and X : 2 —
X andY : 2 — Y be measurable functions. A probability kernel, Q, on X x Y
is said to be a regular conditional distribution of Y given X iff Q (X, B)
is a version of P(Y € B|X) for each B € N. Equivalently, we should have
QX,f)=E[f(Y)|X] as. for all f € N,. When X = 2 and M =G is a
sub-o — algebra of B, we say that Q is the regular conditional distribution
of Y given G.

The probability kernel, @, defined in Eq. is an example of a regular
conditional distribution of Y given X. In general if G is a sub-o-algebra of B.
Letting Pg (A) = P(A|G) :=E[14|G] € L? (12,8, P) for all A € B, then Pg :
B — L?(£2,G, P) is a map such that whenever A, A,, € Bwith A =5 | A,,
we have (by ¢cDCT) that

Pg(A) = Py (Ay) (equality in L? (2,G,P). (18.24)
n=1

Now suppose that we have chosen a representative, Pg (A4) : £ — [0,1], of
Pg (A) for each A € B. From Eq. (18.24)) it follows that

Pg(A) (w) =Y _ Py (Ay) (w) for P -ae. w. (18.25)

However, note well, the exceptional set of w’s depends on the sets A, A,, € B.
The goal of regular conditioning is to carefully choose the representative,
Pg (A): 2 — [0,1], such that Eq. holds for all w € 2 and all A, A,, €
Bwith A=Y A,.

Remark 18.15. Unfortunately, regular conditional distributions do not always
exists. However, if we require Y to be a “standard Borel space,” (i.e. Y is
isomorphic to a Borel subset of R), then a conditional distribution of Y given
X will always exists. See Theorem Moreover, it is known that all “rea-
sonable” measure spaces are standard Borel spaces, see Section [I8.4] below for
more details. So in most instances of interest a regular conditional distribution
of Y given X will exist.
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Exercise 18.3. Suppose that (X, M) and (Y, N') are measurable spaces, X :
2 —-Xand Y : 2 — Y are measurable functions, and there exists a regular
conditional distribution, @, of Y given X. Show:

1. For all bounded measurable functions, f : (X x Y, M @ N) — R, the
function X 3 z — Q (z, f (z,-)) is measurable and

Q(X,f(X,)) =E[f (X,Y)]X] as. (18.26)

Hint: let H denote the set of bounded measurable functions, f, on X x Y
such that the two assertions are valid.
2.If Ac M®N and p:= Po X! be the law of X, then

PXY)€A) = [ Qatale)du(@) = [ duta) [ 1a(0) Q).
X X Y
(18.27)
Exercise 18.4. Keeping the same notation as in Exercise [18.3| and further

assume that X and Y are independent. Find a regular conditional distribution
of Y given X and prove

E[f(X,Y)|X] = h;(X) as. ¥ bounded measurable f : X x Y — R,
where
hy(z) :=E[f (z,Y)] for all z € X,
ie.
Elf (X, Y)IX]=E[f (2,Y)]|.=x as.
Exercise 18.5. Suppose (2, B, P) and ({2, B, P') are two probability spaces,
(X, M) and (Y,N) are measurable spaces, X : 2 - X, X' : ' - X, YV :
2 — Yand Y’ : 2 — Y are measurable functions such that Po (X,Y) ' =
Plo(X,Y'), e (X,Y) L (X,Y') . If f: (XX Y, M @A) — Ris a bounded
measurable function and f : (X, M) — R is a measurable function such that
fX)=E[f(X,Y)|X] P - as. then

E'[f (X', Y)|X'] = f(X') P as.

18.2 Additional Properties of Conditional Expectations

The next theorem is devoted to extending the notion of conditional expecta-
tions to all non-negative functions and to proving conditional versions of the
MCT, DCT, and Fatou’s lemma.

Theorem 18.16 (Extending Eg). If f : 2 — [0,00] is B — measurable, the
function F =1 lim, . Eg [f An] exists a.s. and is, up to sets of measure
zero, uniquely determined by as the G — measurable function, F : £2 — [0, 00],
satisfying

E[f: A|=E[F:A] forall A€ g. (18.28)

Hence it is consistent to denote F' by Egf. In addition we now have;



18.2 Additional Properties of Conditional Expectations 373

1. Properties 2., 5. (with 0 < g € Gy), and 6. of Theorem [18.5 still hold for
any B — measurable functions such that 0 < f < g. Namely;
a) Order Preserving. Egf <Egg a.s. when 0 < f <g,
b) Pull out Property. Eg [hf] = hEg [f] a.s. for all h > 0 and G -
measurable.
¢) Tower or smoothing property. If Gy C G1 C B. Then

Eg,Eg, f = Eg,Eg, f = Eg, f a.s.

2. Conditional Monotone Convergence (¢cMCT). Suppose that, almost
surely, 0 < f,, < fna1 for alln, then then lim,,_ o Eg f, = Eg [lim,_ o0 7]
a.s.

3. Conditional Fatou’s Lemma (cFatou). Suppose again that 0 < f, €
L'(2,B,P) a.s., then

Eg [hminf fn] < liminfEg [fa] a.s. (18.29)
4. Conditional Dominated Convergence (¢cDCT). If f, — f a.s. and
|fnl < g€ L' (2,B,P), then Egf, — Egf a.s.

Remark 18.17. Regarding item 4. above. Suppose that f, il folfnl < gn €
LY (02,B,P), gn Lt g € L' (2,B,P) and Eg, — Eg. Then by the DCT in
Corollary [11.8] we know that f,, — f in L' (£2,B, P). Since Eg is a contrac-
tion, it follows that Egf,, — Egf in L (£2, B, P) and hence in probability.

Proof. Since f An € L' (2,8, P) and f A n is increasing, it follows that
F :=7 lim,,_ o, Eg [f A n] exists a.s. Moreover, by two applications of the
standard MCT, we have for any A € G, that

E[F:Al= lim E[Eg[fAn]: A= lim E[fAn:A]= lim E[f: A].
Thus Eq. (|18.28]) holds and this uniquely determines F' follows from Lemma
1S, 2

Item 1. a) If 0 < f < g, then

Egf = lim Eg[f An] < lim Eglg An]=Egg a.s.

and so Eg still preserves order. We will prove items 1b and 1lc at the end of
this proof.

Item 2. Suppose that, almost surely, 0 < f,, < fp41 for all n, then Eg f,
is a.s. increasing in n. Hence, again by two applications of the MCT, for any
A € G, we have

n—0o0 n—oo

:E{nm fn:A] :E[Eg [nllrlgofn] :A]

n—oo

E| lim ]ngn:A] = lim E[Egf,: Al = lim E[f, : 4]
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from which it follows that lim,, ., Eg f,, = Eg [lim, . fn] a.s.
Item 3. For 0 < f,, let g := inf,>; fr. Then gp < fi for all £ and
gr T liminf, . f, and hence by cMCT and item 1.,

Eg [lim inf fn} = klim Eggr < likm inf Eg fi. a.s.
n—oo — 00 — 00

Item 4. As usual it suffices to consider the real case. Let f,, — f a.s. and
|fnl < g a.s. with g € L' (£2, B, P) . Then following the proof of the Dominated
convergence theorem, we start with the fact that 0 < g + f,, a.s. for all n.
Hence by cFatou,

Eg (9% f) = Eg [liminf (g + f,)|

liminf, o Eg (fn) in + case

< linrriingg (9% fn) =Egg + { — lim sup Eg (fn) in — case

where the above equations hold a.s. Cancelling Egg from both sides of the
equation then implies

limsupEg (f,) < Egf <liminfEg (f,) a.s.

n—oo

Item 1. b) If h > 0 is a G — measurable function and f > 0, then by cMCT,

] cM:C

Eg [hf] =" lim Eg [(h An)(f An)]

= lim (hAn)Eg[(f An)] LT hEgf as.

n—oo

Item 1. ¢) Similarly by multiple uses of cMCT,

Eg,Eg, f = Eg, lim Eg, (f An)= lim Eg,Eg, (fAn)
= nlggo ]Ego (f A TL) = Egof
and
]Eg1]Egof = ]Eg1 nh—>H;o Ego (f A n) = nh_{rolo ]Egl]EgU [f A n]
= lim Eg, (f An) = Eg,[.

]
The next result in Lemma [18.19| shows how to localize conditional expec-
tations. We first need the following definition.

Definition 18.18. Suppose that F and G are sub-sigma-fileds of B and A €
B. We say that F = G on A iff A € FNG and Fa = Ga. Recall that
Fa={BNA:BeF}.
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Notice that if # = G on A then F =G = FNG on A as well. Indeed, if
B € Fathen Be€ Ggandso BNA € FNG and hence BNA=(BNA)NAE€
[F NG|, . Moreover, because [F NG|, C Fa we have F4 = G4 implies

Fa=0Ga=[FNGl,. (18.30)

Lemma 18.19 (Localizing Conditional Expectations). Let ({2, B, P) be
a probability space, F and G be sub-sigma-fileds of B, X,Y € L' (2,8, P) or
X, Y : (2,B) — [0,00] are measurable, and A € FNG. If F =G on A and
X =Y a.s. on A, then

ErX =ErngX =EzrqgY = EgY a.s. on A. (18.31)
Alternatively put, if A€ FNG and Fa = G4 then
1uEF = 14Erng = 14Eg. (18.32)

Proof. Let us start with the observation that if X is an F — measurable
random variable, then 14X is NG measurable. This can be checked directly
(see Remark below) or as follows. If X = 15 with B € F, then 1415 =
lanpand ANB € Fa=Ga=[FNG], CFNGandso lalgis FNG —
measurable. The general X case now follows by linearity and then passing to
the limit.

Suppose X € L' (£2,B, P) or X > 0 and let X be a representative of EzX.
By the previous observation, 14X is F NG — measurable. Therefore,

14X =Epng [14X] = 14Erng [X] = 1aErng [Er X] = 14ErqgX as.,

ie. 14ExX = 14Exr~gX a.s. This proves the first equality in Eq.
while the second follows by interchanging the roles of F and G.

Equation is now easily verified. First notice that X =Y a.s. on 4
iff 14X =14Y a.s.. Now from Eq. 7 the tower property of conditional
expectation, and the fact that 14 =14 - 14,we find

IAEzX = 14Ex [14X] = 14E£ [14Y] = IUuE£Y = 14ErqgY
from which it follows that Ex X = Ezr~gY a.s. on A. [ |

Remark 18.20. For the direct verification that 14X is F NG measurable, we
have,

{luX #0}=An{X #0} e Fa=Ga=(FNG), CFNG.
So for B € Bg,
{laX eB}=An{XeB}eF4CFNGif0¢ B
while if 0 € B,

{14X € B} ={1.X =0}"UAN{X € (B\ {0})}
={1aX #0}°UAN{X e (B\{0})} e FNG.
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Theorem 18.21 (Conditional Jensen’s inequality). Let (2,8, P) be a
probability space, —o0o < a < b <00, and ¢ : (a,b) — R be a convex function.
Assume f € LY(2, B, P;R) is a random variable satisfying, f € (a,b) a.s. and
¢(f) € L'(2,B,P;R). Then p(Egf) € L' (2,6, P),

p(Egf) < Eg[o(f)] as. (18.33)

and
E[p(Egf)] < Efp(f)] (18.34)

Proof. Let A := QN(a,b) — a countable dense subset of (a,b) . By Theorem

(also see Lemma [7.31)) and Figure [7.2| when ¢ is C*)
o(y) > ¢(z) + ¢ (x)(y — x) for all for all z,y € (a,b),

where ¢’ (x) is the left hand derivative of ¢ at x. Taking y = f and then
taking conditional expectations imply,

Eg [p(f)] = Eg [p(2) + ¢ (2)(f — 2)] = p(2) +¢" (2)(Egf —z) as. (18.35)

Since this is true for all € (a,b) (and hence all z in the countable set, A) we
may conclude that

Eg [¢(f)] > sup [p(z) + ¢ (2)(Egf — )] as.

By Exercise Egf € (a,b), and hence it follows from Corollary [11.39| that

sup [o(z) + ¢ (2)(Egf —z)] = ¢ (Egf) aus.

Combining the last two estimates proves Eq. ((18.33).
From Egs. (18.33)) and (18.35]) we infer,

[0(Eg f)] < [Eg [o(]I V |¢(2) + . (2)(Egf — )| € L' (2,6, P)

and hence ¢(Egf) € L' (2,G, P). Taking expectations of Eq. (18.33) is now
allowed and immediately gives Eq. (|18.34]). ]

Corollary 18.22. The conditional expectation operator, Eg maps LP (§2, B, P)
into LP (£2,B, P) and the map remains a contraction for all 1 < p < co.

Proof. The case p = oo and p = 1 have already been covered in Theorem
So now suppose, 1 < p < 0o, and apply Jensen’s inequality with ¢ (z) =
|z|” to find |Eg f|” < Eg|f|” a.s. Taking expectations of this inequality gives
the desired result. ]
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18.3 Regular Conditional Distributions

Lemma 18.23. Suppose that (X, M) is a measurable space and F : XxR — R
is a function such that; 1) F(-,t) : X — R is M/Bgr — measurable for all
t €R, and 2) F(x, ) : R — R is right continuous for all x € X. Then F is
M ® Br/Bgr — measurable.

Proof. For n € N, the function,

Fy (.Z‘,t) = Z F (CL‘, (k + 1) 2_n) 1(k2—",(k+1)2—"] (t) )

k=—o0

is M ® Br/Bg — measurable. Using the right continuity assumption, it follows
that F' (x,t) = limy_,00 Fyy (2, 1) for all (x,t) € X x R and therefore F' is also
M ® Br/Bgr — measurable. n

Theorem 18.24. Suppose that (X, M) is a measurable space, X : 2 — X is
a measurable function and 'Y : 2 — R is a random variable. Then there exits
a probability kernel, Q, on X x R such that E[f (V) |X]=Q (X, f), P — a.s.,
for all bounded measurable functions, f : R — R.

Proof. For each r € Q, let ¢, : X — [0, 1] be a measurable function such
that
Elly<,|X] =¢r (X) as.

Let v := P o X! be the law of X. Then using the basic properties of
conditional expectation, ¢, < ¢s v — a.s. for all » < s, limyoqr = 1 and
lim, | o g¢r = 0, v — a.s. Hence the set, Xy C X where ¢, (v) < g5 () for all r <
s, limy1oo ¢r () = 1, and lim, | o g, (x) = 0 satisfies, v (Xo) = P (X € Xp) = 1.
For t € R, let

F(x,t) := 1x, (z) - inf {g, () : 7 > t} + Ix\x, () - Ls>o0.

Then F (-, t) : X — R is measurable for each t € R and F (z, -) is a distribution
function on R for each x € X. Hence an application of Lemma [I8:23] shows
F : X x R — [0, 1] is measurable.

For each 2 € X and B € Bg, let Q(x,B) = pp(,.) (B) where pup de-
notes the probability measure on R determined by a distribution function,
F:R—[0,1].

We will now show that @ is the desired probability kernel. To prove this,
let H be the collection of bounded measurable functions, f : R — R, such
that X 5 ¢ — Q(z,f) € R is measurable and E[f (Y)|X] = Q (X, f),
P — a.s. It is easily seen that H is a linear subspace which is closed under
bounded convergence. We will finish the proof by showing that H contains
the multiplicative class, M = {1(,Oo,t] 1t e R} .

Notice that Q (m, 1(,m7t]) = F(z,t) is measurable. Now let r € Q and
g : X — R be a bounded measurable function, then
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Elly<r g (X)] =E[E[ly< |X] g (X)] = E[gr (X) g (X)]
=E[g (X) 1x, (X) g (X)].

For t € R, we may let r | ¢ in the above equality (use DCT) to learn,
Efly<-g(X)] = E[F (X,1) 1%, (X) g (X)] = E[F (X,t) g (X)].
Since g was arbitrary, we may conclude that
Q(X,1Cooy) = F(X,1) =E[ly<|X] as.

This completes the proof. [
This result leads fairly immediately to the following far reaching general-
ization.

Theorem 18.25. Suppose that (X, M) is a measurable space and (Y,N) is a
standard Borel space, see Appendiz[18.]] below. Suppose that X : 2 — X and
Y : 2 — Y are measurable functions. Then there exits a probability kernel,
Q, on X XY such that E[f (Y)|X] = Q(X,f), P — a.s., for all bounded
measurable functions, f:Y — R.

Proof. By definition of a standard Borel space, we may assume that Y €
Br and N = By. In this case Y may also be viewed to be a measurable
map form {2 — R such that Y (£2) C Y. By Theorem we may find a
probability kernel, Qg, on X x R such that

E[f(Y)|X]=Qo(X,f), P-aus., (18.36)

for all bounded measurable functions, f: R — R.

Taking f = 1y in Eq. (18.36]) shows
1=E[ly (Y)|X] = Qo (X,Y) as..
Thus if we let Xp := {x € X: Qo (z,Y) =1}, we know that P (X € Xo) = 1.

Let us now define

Q (x, B) := 1x, (7) Qo (v, B) + 1x\x, (z) §, (B) for (z,B) € X x By,

where y is an arbitrary but fixed point in Y. Then and hence @ is a probability
kernel on X x Y. Moreover if B € By C Bg, then

Q(X,B) = 1x, (X) Qo (X, B) = 1x, (X)E[15 (V) [X] = E[15 (V) [X] a.s.
This shows that @ is the desired regular conditional probability. [

Corollary 18.26. Suppose G is a sub-c — algebra, (Y, N) is a standard Borel
space, and 'Y : 2 — Y is a measurable function. Then there exits a probability
kernel, Q, on (£2,G) x (Y,N) such that E[f (Y)|G]=Q(, f), P - a.s. for all
bounded measurable functions, f:Y — R.

Proof. This is a special case of Theorem [18.25 applied with (X, M) =
(£2,G) and Y : 2 — 2 being the identity map which is B/G — measurable. m
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For more information along the lines of this section, see Royden [12].

Definition 18.27. Two measurable spaces, (X, M) and (Y,N') are said to be
isomorphic if there exists a bijective map, f : X — Y such that f (M) =N
and f~Y(N) = M, i.e. both f and f=1 are measurable. In this case we say f
is a measure theoretic isomorphism and we will write X =Y.

Definition 18.28. A measurable space, (X, M) is said to be a standard
Borel space if (X, M) = (B, Bg) where B is a Borel subset of ((0, 1) ,8(0,1)) .

Definition 18.29 (Polish spaces). A Polish space is a separable topolog-
ical space (X, T) which admits a complete metric, p, such that T = 7,.

The main goal of this chapter is to prove every Borel subset of a Polish
space is a standard Borel space, see Corollary below. Along the way we
will show a number of spaces, including [0,1],, (0,1], [0,1]*, R, and RY, are
all isomorphic to (0, 1) . Moreover we also will see that the a countable product
of standard Borel spaces is again a standard Borel space, see Corollary

On first reading, you may wish to skip the rest of this
section.

Lemma 18.30. Suppose (X, M) and (Y,N') are measurable spaces such that
X =3 XY =>Y,, withX, e M and ¥,, € N. If (X,,, Mx,) is
isomorphic to (Yn,Ny,) for all n then X =2 Y. Moreover, if (X,, M) and
(Y, Ny,) are isomorphic measure spaces, then (X :=[]°2, X,,, ®52,M,,) are
(Y :=TI[", Y, ®52,N,,) are isomorphic.

Proof. For each n € N| let f,, : X, — Y}, be a measure theoretic isomor-
phism. Then define f : X — Y by f = f, on X,,. Clearly, f : X - Y is a
bijection and if B € N, then

FHB) =L T (BNY,) = Uit f ! (BNYa) € M.

This shows f is measurable and by similar considerations, f~! is measurable
as well. Therefore, f : X — Y is the desired measure theoretic isomorphism.

For the second assertion, let f, : X,, — Y, be a measure theoretic isomor-
phism of all n € N and then define

f@)=(f1(x1), fo(z2),...) with x = (z1,22,...) € X.

Again it is clear that f is bijective and measurable, since

fil (H Bn) = H f;l (Bn) € ®7010:1Mn
n=1 n=1

for all B,, € M,, and n € N. Similar reasoning shows that f~! is measurable
as well. -
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Proposition 18.31. Let —0co < a < b < 00. The following measurable spaces
equipped with there Borel o — algebras are all isomorphic; (0,1), [0,1], (0, 1],
[0,1), (a,b), [a,b], (a,b], [a,b), R, and (0,1)UA where A is a finite or countable
subset of R\ (0,1).

Proof. It is easy to see by that any bounded open, closed, or half open
interval is isomorphic to any other such interval using an affine transformation.
Let us now show (—1,1) = [—1, 1] . To prove this it suffices, by Lemma to
observe that

(-1, 1) ={0}ud_((-27", -2 "u2"',27"))
n=0

and
[_17 1] = {0} U Z ([_27717 _277171) U (27“717 27”]) :

Similarly (0, 1) is isomorphic to (0, 1] because

0,1) = f:[z—"—l,z—") and (0,1] = i(z—"—l,z—"].
n=0 n=0

The assertion involving R can be proved using the bijection, tan
(—m/2,7/2) — R.

If A = {1}, then by Lemma and what we have already proved,
(0,1) U {1} = (0,1] = (0,1). Similarly if N € N with N > 2 and 4 =
{2,...,N + 1}, then

N—-1
(0,1)uA=(0,1]U4=(0,27N+u [Z (2—",2—"—1]1 U4

n=1
while
N-1
(0,1) = (0,27 M) U lz (2”,2"1)] u{2™":n=1,2,...,N}
n=1

and so again it follows from what we have proved and Lemma that
(0,1) = (0,1) UA. Finally if A ={2,3,4,...} is a countable set, we can show
(0,1) =2 (0,1) U A with the aid of the identities,

[Z (27,27 1]U{2”:n€N}
and

0,)uA=(0,1]UA= [ZZ O 1]UA.

n=1
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Notation 18.32 Suppose (X, M) is a measurable space and A is a set. Let
7q : X4 — X denote projection operator onto the a'™ — component of X4 (i.e.
7o (W) = w(a) for all a € A) and let M®4 := o (1, : a € A) be the product o
— algebra on X4

Lemma 18.33. If p : A — B is a bijection of sets and (X, M) is a measurable
space, then (XA,M®A) = (XB7M®B).

Proof. The map f : XB — X4 defined by f (w) = wo ¢ for all w € XP
is a bijection with f~! (o) =aogp l. Ifa € A and w € XB, we have

X" o f (W) = F (W) (@) =w(p(a) = 1, ),

XA

where 7' and 7rb X7 are the projection operators on X4 and X B respectively.

ThIlb X X of = WW( ) for all @ € A which shows f is measurable. Similarly,

of 7t = wso_l(b) showing f~! is measurable as well. [ ]

Proposition 18.34. Let 2 := {0, 1}N, m; + £2 — {0, 1} be projection onto the
it" component, and B := o (71,72, ...) be the product o — algebra on £2. Then

(£2,B) = ((0,1),Bo,1)) -

Proof. We will begin by using a specific binary digit expansion of a point
z € [0,1) to construct a map from [0,1) — 2. To this end, let 71 (z) = z,

Y1 (%) = 1y59-1 and 7o () := 2 — 271y (z) € (0,271),

then let 75 := 1,,59-2 and 73 = 13 — 272y, € (O7 2_2) . Working inductively,
we construct {7 (z), 7y (z)}7, such that v, (z) € {0,1}, and

iy (2) = 7 (1) — 27 F ( _x—Z2 Iy, (z) € (0,27F) (18.37)

for all k. Let us now define g : [0,1) — 2 by g(z) == (71 (z),% (z),...).
Since each component function, m; 0 g = y; : [0,1) — {0,1}, is measurable it
follows that g is measurable.

By construction,

CU—ZQ T5 () + i (@)
and ri41 () — 0 as k — oo, therefore

r = Z 2777 () and 741 ( Z 2775 (). (18.38)
j j=k+1



382 18 Conditional Expectation

Hence if we define f: 2 — [0,1] by f = >772, 277, then f(g(2)) = « for
all z € [0,1). This shows g is injective, f is surjective, and f in injective on
the range of g.

We now claim that 2 := ¢ ([0,1)), the range of g, consists of those w € 2
such that w; = 0 for infinitely many . Indeed, if there exists an k € N such

that v; (z) = 1 for all j > k, then (by Eq. ) Tke1 (r) = 27% which
would contradict Eq. (18.37). Hence g ([0,1)) C £2y. Conversely if w € 2y and
z = f(w) € [0,1), it is not hard to show inductively that v; (z) = w; for all
j, i.e. g(x) = w. For example, if w; = 1 then x > 27! and hence 7; (z) = 1.
Alternatively, if w; = 0, then

T = iw‘wj < iri =271
j=2 j=2

so that 1 (z) = 0. Hence it follows that ry (z) = >272, 27Jw; and by similar
reasoning we learn ry (x) > 272 iff wy = 1, i.e. yo (7) = 1 iff wy = 1. The full
induction argument is now left to the reader.

Since single point sets are in B and

A=0\=Up {we R :w;=1forj >n}

is a countable set, it follows that A € B and therefore 2y = 2\ A € B. Hence
we may now conclude that g : ([0,1), Bj,1)) — ({20, Bg,) is a measurable bi-
jection with measurable inverse given by f|q,, i.e. ([0, 1), 3[0,1)) & (§20,Bgq,) -
An application of Lemma and Proposition now implies

Q=02UA2[0,1)UN[0,1) = (0,1).
| ]

Corollary 18.35. The following spaces are all isomorphic to ((O, 1), B(o,l));

(0,1)* and R? for any d € N and [0,1]" and RN where both of these spaces
are equipped with their natural product o — algebras, .

Proof. In light of Lemma [18.30] and Proposition [18.31] we know that
! 18.34

(0, 1)d =~ R and (0, 1)N = 10,1]" = RN, So, using Proposition [18.34} it suffices
to show (0,1)* = 2 2 (0,1)" and to do this it suffices to show 27 = 2 and
M=

To reduce the problem further, let us observe that 2¢ = {0, 1}

2 2
and OV = {0,1}N . For example, let g : 2V — {0,1}N be defined by
N

g (W) (i,7) = w(i)(j) for all w € AN = {{0,1}1\1 . Then g is a bijection

d si {0.13"* _ o o
and since 7, % og(w) = 7

Nx{1,2,...,d}

(w)) , it follows that g is measurable.

The inverse, g~! : {0, l}N2 — N to g is given by g7 (o) (i) (§) = a (i,]) .
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. . o N? B N .
To see this map is measurable, we have 7;° og~':{0,1} — 2 ={0,1}"is

given 7" 0 g~1 (a) =g~ () (i) (-) = a(i,-) and hence

i

N .. 0,1 N2
wor og(a)=alij) =" (a)
2
from which it follows that 71']-Q o ﬂfN og t = 70" is measurable for all

1,7 € N and hence W{ZN o g~ is measurable for all ¢ € N and hence g~

measurable. This shows 2" 2 {0, 1}N2 . The proof that 24 = {0, 1}" {124}
is analogous.

We may now complete the proof with a couple of applications of Lemma
Indeed N, N x {1,2,...,d}, and N? all have the same cardinality and
therefore,

1 1

is

{0,102t 2 0,11 = 0,11 = 2.

Corollary 18.36. Suppose that (X,, M,) for n € N are standard Borel
spaces, then X =[], X,, equipped with the product o — algebra, M :=
®o 1 M, is again a standard Borel space.

Proof. Let A, € Bjy 1 be Borel sets on [0,1] such that there exists a
measurable isomorpohism, f, : X,, — A,. Then f : X — A := HZO:l A,
defined by f (z1,22,...) = (f1 (x1), f2 (xz2),...) is easily seen to me a mea-
sure theoretic isomorphism when A is equipped with the product o — algebra,
®2° B4, . So according to Corollary to finish the proof it suffice to
show ®7% 184, = Ma where M := ®7%,B|g q) is the product o — algebra on
0,17V,

The o — algebra, ®72,84,, is generated by sets of the form, B :=[[~ | B,
where B, € Ba, C Bj,1)- On the other hand, the o — algebra, M 4 is generated

by sets of the form, AN B where B := | B, with B, € Bp,1)- Since
ANB= H (BnmAn) = HBn
n=1 n=1

where B,, = B,, N 4,, is the generic element in B4, , we see that ®72,B4, and
M 4 can both be generated by the same collections of sets, we may conclude
that ®9° B4, = Ma. [ ]

Our next goal is to show that any Polish space with its Borel o — algebra
is a standard Borel space.

n?

Notation 18.37 Let Q := [0, 1] denote the (infinite dimensional) unit cube
in RY. Fora,be Q let

d(a,b) == 1 lan = bn| = L |7 (@) — 70, (B)] . (18.39)
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Exercise 18.6. Show d is a metric and that the Borel o — algebra on (Q, d)
is the same as the product o — algebra.

Solution to Exercise . It is easily seen that d is a metric on @) which,
by Eq. is measurable relative to the product o — algebra, M.. There-
fore, M contains all open balls and hence contains the Borel o — algebra, B.
Conversely, since

|70 (@) — 7, ()] < 2"d (a,b),

each of the projection operators, m, : @ — [0, 1] is continuous. Therefore each
T is B — measurable and hence M = o ({m,} ;) C B.

n=1

Theorem 18.38. To cvery separable metric space (X, p), there exists a con-
tinuous injective map G : X — @ such that G : X — G(X) C Q is a
homeomorphism. Moreover if the metric, p, is also complete, then G (X) is a
Gs —set, i.e. the G (X) is the countable intersection of open subsets of (Q,d) .
In short, any separable metrizable space X is homeomorphic to a subset of
(Q,d) and if X is a Polish space then X is homeomorphic to a Gs — subset
of (Q,d).

Proof. (This proof follows that in Rogers and Williams [I1, Theorem 82.5
on p. 106.].) By replacing p by ﬁ if necessary, we may assume that 0 < p < 1.

Let D = {a,},-, be a countable dense subset of X and define

G(x):(p(x,al),p(m,az),p(x,ag),...) 6@

and

I\D‘H

y(@,y) =d(G(2),GY) =Y 5= |p(x,an) = p(y, an)|

for x,y € X. To prove the first assertion, we must show G is injective and -y
is a metric on X which is compatible with the topology determined by p.

If G(x) = G (y), then p(x,a) = p(y,a) for all @ € D. Since D is a dense
subset of X, we may choose oy € D such that

0= lim p(z,ax) = lim p(y,ax) =p(y,z)
k—o0 k—oo

and therefore x = y. A simple argument using the dominated convergence
theorem shows y — 7 (z,y) is p — continuous, i.e. 7y (z,y) is small if p (x,y) is
small. Conversely,

P (LE, y) < P(x, an) + p(y7an) = 2:0 (l’, an) +p (ya an) - P(x, an)
<2p(@,an) +|p (@, an) = p(y,an)| < 2p (2, an) + 2" (z,y).
Hence if £ > 0 is given, we may choose n so that 2p(x,a,) < /2 and so if

v (z,y) < 27+ Ve it will follow that p (z,y) < e. This shows 7., = 7,. Since
G: (X,v7) — (Q,d) is isometric, G is a homeomorphism.
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Now suppose that (X, p) is a complete metric space. Let S := G (X) and
o be the metric on S defined by o (G (z),G (y)) = p(z,y) for all z,y € X.
Then (S,0) is a complete metric (being the isometric image of a complete
metric space) and by what we have just prove, 7, = 74,. Consequently, if
u € S and € > 0 is given, we may find ¢’ (¢) such that B, (u,d’ (¢)) C
By (u,e). Taking ¢ (¢) = min (¢’ (¢),¢), we have diamg (Bg (u,6 (€))) < &
and diam, (Bg (u,6 (¢))) < € where

diam, (A4) := {supo (u,v) : u,v € A} and
diamy (A) := {supd (u,v) : u,v € A}.

Let S denote the closure of S inside of (Q,d) and for each n € N let
N, :={N € 74 : diamy (N) V diam, (NN S) < 1/n}

and let U, := UN,, € 74. From the previous paragraph, it follows that S C U,
and therefore S C SN (N2 ,U,).

Conversely if u € SN (N%;U,) and n € N, there exists N,, € N,, such
that u € N,,. Moreover, since N1 N---N N, is an open neighborhood of u € S,
there exists u,, € Ny N--- N N, NS for each n € N. From the definition of
N, we have lim, o0 d (u,u,) = 0 and o (uy, uy) < max (nil,m’l) — 0
as m,n — oo. Since (S,0) is complete, it follows that {u,} -, is convergent
in (S,0) to some element ug € S. Since (S,dg) has the same topology as
(S,0) it follows that d(un,ug) — 0 as well and thus that u = ug € S. We
have now shown, S = SN (N2> ,U,,) . This completes the proof because we may
write S = (ﬂzo:l Sl/n) where Sy, = {u €qQ:d (u, S') < 1/n} and therefore,

S = (ﬂff:l U,) N (ﬂf;l Sl/n) is a G set. n

Corollary 18.39. Fvery Polish space, X, with its Borel o — algebra is a stan-
dard Borel space. Consequently and Borel subset of X is also a standard Borel
space.

Proof. Theorem [18.38| shows that X is homeomorphic to a measurable
(in fact a Gs) subset Qg of (@, d) and hence X = Q. Since @ is a standard
Borel space so is Qg and hence so is X. [
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(Sub and Super) Martingales

Notation 19.1 A filtered probability space is a probability space, (12,8, P)
endowed with a sequence of sub-o -algebras, {Bn}f;o such that B, C Bp4+1 C
B for alln=0,1,2.... We further define

Through out this chapter, we will assume (£2,8,{B,} . P) is a filtered
probability space and B, is defined as in Eq. (19.1)).

Definition 19.2. A sequence of random variables, {Yn}:ozo are adapted to
the filtration if Y, is B, — measurable for all n. We say {Z,},~_, is pre-
dictable if each Z, is B,_1 — measurable for all n € N.

A typical example is when {Xn}zozo is a sequence of random variables on
a probability space (£2,B,P) and B, := o (Xo,...,X,). An application of
Lemma [18.1] shows that {Y;,} is adapted to the filtration iff there are measur-
able functions, f,, : R"™! — R such that Y,, = f, (Xo,...,X,,) for all n € Ny
and {Zn}zo=1 is predictable iff there exists, there are measurable functions,
frn : R" — R such that Z,, = f, (Xo,...,Xp—1) for all n € N.

Definition 19.3. Let X := {Xn}zozo is a be an adapted sequence of integrable
random variables. Then;

1. X is a {By,},_, — martingale if E[X,,1|B,] = X,, a.s. for all n € Ny.

2. X is a {B,},_, — submartingale if E[X,1|B,] > X,, a.s. for alln €
Np.

3. X is a {Bn},—, — supermartingale if E[X,1|B,] < X,, a.s. for all
n € Np.

By induction one shows that X is a supermartingale, martingale, or sub-
martingale iff

<
E[X|B,] = X, a.s for all m > n, (19.2)
>

to be read from top to bottom respectively. This last equation may also be
expressed as

<
E [X.n|B,] % Xoman a.s for all m,n € Ny. (19.3)
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The reader should also note that E [X,,] is decreasing, constant, or increas-
ing respectively. The next lemma shows that we may shrink the filtration,
{Bn}zozo , within limits and still have X retain the property of being a super-
martingale, martingale, or submartingale.

Lemma 19.4 (Shrinking the filtration). Suppose that X is a {Bn},— -

. . . . 7 ) OO .
supermartingale, martingale, submartingale respectively and {B},"_, is an-
other filtration such that o (Xo,...,X,) C B], C B, for all n. Then X is a
{Bl}>"_, — supermartingale, martingale, submartingale respectively.

Proof. Since {X,,} —, is adapted to {B,},—, and o (Xo,...,X,) C B}, C

B,,, for all n,

Ep Xni1 =Ep Ep, Xni1 = Eg Xy = Xp,

IV IA

when X is a {B,},-, — supermartingale, martingale, submartingale respec-
tively — read from top to bottom. [

Enlarging the filtration is another matter all together. In what follows we
will simply say X is a supermartingale, martingale, submartingale if it is a
{B,.},~_, — supermartingale, martingale, submartingale.

19.1 (Sub and Super) Martingale Examples

Ezample 19.5. Suppose that (2, 8,{B,} -, P) is a filtered probability space
and X € L' (2,B,P). Then X,, := E[X|B,,] is a martingale. Indeed, by the
tower property of conditional expectations,

E[Xps1|Bn] = E[E [X|Bus1] |Ba] = E[X|Bu] = X, as.

Ezample 19.6. Suppose that 2 = [0,1], B = Bjp,1}, and P = m — Lebesgue
measure. Let P,, = {( k k“]}izzl U {[0, 2%]} and B, := o (P,,) for each

ony 9n
n € N. Then M, :=2"1(g2-») for n € N is a martingale such that E[M,| = 1
for all n. However, there is no X € L' (2, B, P) such that M, = E[X|B,].
To verify this last assertion, suppose such an X existed. Let . We would then

have for 2" > k > 0 and any m > n, that
e (5] o e (55|
2n’ 2n " 2n’ 2n

kE k+1

Using E [X : A] = 0 for all A in the m —system, Q := U2 {(%, k'“] (0 <k<2"},

n=1 on
an application of the m — A theorem shows E[X : A =0forall A€o (Q) =8
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Therefore X = 0 a.s. by Lemma[I8:2] But this is impossible since 1 = EM,, =
EX.

Moral: not all L' — bounded martingales are of the form in examplem
Proposition shows what is missing from this martingale in order for it to
be of the form in Example [19.5]

Proposition 19.7. Suppose 1 < p < oo and X € LP(§2,B,P). Then the
collection of random variables, I' := {E[X|G] : G C B} is a bounded subset of
L? (2, B, P) which is also uniformly integrable.

Proof. Since Eg is a contraction on all LP — spaces it follows that I is
bounded in L?P with
sup [|E[X|G]], < [ XT],,-
gcnB

For the p > 1 the uniform integrability of I' follows directly from Lemma
1.5l

We now concentrate on the p = 1 case. Recall that |[EgX| < Eg |X| a.s.
and therefore,

E[|EgX]|: |[EgX|>a]l <E[|X]|: |EgX]| > a] for all a > 0.

But by Chebyshev’s inequality,
1 1
P([EgX|>a) < —E|EgX| < -E|X].
a a

Since {|X|} is uniformly integrable, it follows from Proposition [11.29] that,
by choosing a sufficiently large, E[|X|: [EgX]| > a] is as small as we please
uniformly in G C B and therefore,

lim sup E[[EgX]|: |[EgX|>a] =0.

Ezample 19.8. This example generalizes Example Suppose (12, B,{B,},—,,P)
is a filtered probability space and @ is another probability measure on (2, B) .

Let us assume that Q|g, < P|g, for all n, which by the Raydon-Nikodym
Theorem implies there exists 0 < X,, € L' (2,B,,P) with EX,, = 1
such that dQ|g, = X,dP|z,, or equivalently put, for any B € B,, we have

Q(B):/BXndP:IE[Xn:B].

Since B € B,, C Bj+1, we also have E[X,,+1 : B] = Q(B) = E[X,, : B] for
all B € B, and hence E [X,,11]|B,] = X, as., i.e. X = {X,,},2, is a positive
martingale.

Example is of this form with @ = dy. Notice that dy|p, < m|z, for
all n < oo while 6y L m on By 1) = Bo. See Section for more in the
direction of this example.
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It is often fruitful to view X, as your earnings at time n while playing
some game of chance. In this interpretation, your expected earnings at time
n—+1 given the history of the game up to time n is the same, greater than, less
than your earnings at time n if X = {Xn}f;o is a martingale, submartingale
or supermartingale respectively. In this interpretation, martingales are fair
games, submartingales are favorable games, and supermartingales are unfa-
vorable games.

Ezxample 19.9. Suppose at each time n, we flip a fair coin and record the value,
X, € {0,1}. Let us suppose that a gambler is going to bet one dollar between
flips that either a 0 or a 1 is going to occur and if she is correct she will be
paid 1+ « dollars in return, otherwise she loses his dollar to the house. Let us
say Y,41 is the gambler’s prediction for the value of X,,;1 at time n. Hence
if we let M,, denote the gamblers fortune at time n we have

My =M, -1+ (1+a)ly,

nt1=Xn+1"

Assuming the gambler can not see into the future, his/her prediction at time
n can only depend on the game up to time n, i.e. we should have Y, 11 =
frnt1(Xo, ..., X,) or equivalently, Y, 41 is B, = o (Xo,...,X,) measurable.
In this situation {M,} , is an adapted process and moreover,

E [Mn+1|8n] = E [Mn -1 + (1 + Oé) 1Yn+1:Xn+1 |B”l]
=M, -1+ (1 + 04) E [1Yn+1=Xn+1 |B7l]

1 1
:Mn—1+(1+a)§:Mn+§(a—1)
wherein we have used Exercise in the last line. Hence we see that {M,} 7 |
is a martingale if « = 1, a sub-martingale of o > 1 and as supermartingale of
a <l

Exercise 19.1. Suppose that {X,,} | are i.i.d. random functions taking val-
ues in a finite set, S, and let p(s) := P (X, = s) for all s € S and assume
p(s) > 0 for all s. As above let B, := o (X1,...,X,,) with By = {0, 2} and
suppose that o : S — R is a payoff function. Let Y;, be the predictions of
a gambler as to the value of X,, based on the values of {X1,...,X,,_1}, ie.
Y, € S is a B, _1 — measurable random variable with the convention that
By = {0,02}. Also let M, be the gambler’s fortune at time n. Assuming
the gambler always wages one dollar and receives a pay off of 1 + « (s) if
Y41 = s = X4 for some s € S, then

My =My =14 (1+a(s) Ly, =s=x, -
seS
Show {M,} is a martingale, submartingale, supermartingale, if o = 1]'%”
a> 1%17, or a < 1%17 respectively.

! Tn more detail, a (s) = 1;53()3) for all s € S.
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Lemma 19.10. Let X := {X,,} -, be an adapted process of integrable ran-
dom wvariables on a filtered probability space, (2,B,{Bn},—,,P) and let
dp, = X, — X1 with X_1 := EXy. Then X is a martingale (respectively
submartingale or supermartingale) iff E[dp+1|Bn] = 0 (E[dn+1|Bn] > 0 or
E [dn+1|Bn] < 0 respectively) for all n € No.

Conversely if {d,},—, is an adapted sequence of integrable random vari-
ables and Xo is a By -measurable integral random variable. Then X, =
Xo+ Z?=1 d; is a martingale (respectively submartingale or supermartingale)
iff Eldn+11Bn] = 0 (Eldn+1|Bn] = 0 or E[dn+1|Bn] < 0 respectively) for all
n € N.

Proof. We prove the assertions for martingales only, the other all being
similar. Clearly X is a martingale iff

0=E[X,11|Br] — Xn =E[Xpnt1 — Xn|Bn] = E[dni1|Br] -
The second assertion is an easy consequence of the first assertion. [

Ezample 19.11. Suppose that {X,,} 7, is a sequence of independent random
variables, S, = Xo+ -+ X,,, and B,, := 0 (Xo,...,Xn) = 0 (So,...,5n).
Then

E [Snt1|Bn] = E[Sn + Xnt1|Bp] = Sy + E [Xn11|Bp] = Sy + E [Xq4].

Therefore {S,,},~, is a martingale respectively submartingale or supermartin-
gale) iff EX,, = 0 (EX,, > 0 or EX,, < 0 respectively) for all n € N.

Ezample 19.12. Suppose that {Z,,} -, is a sequence of independent integrable
random variables, X,, = Zy...Z,, and B,, := o (Zy, ..., Z,) . (Observe that
E|X,| = [[i_oE|Zk| < o0.) If EZ, = 1 for all n then X is a martingale
while if Z,, > 0and EZ,, <1 (EZ, > 1) for all n then X is a supermartingale
(submartingale). Indeed, this follows from the simple identity;

E[Xpi1|Bn] = E[XpZns1|Bn] = XnE [Zns1|Bn] = Xn - E [Znsi] as.

Proposition 19.13. Suppose that X = {X,.},~, is a martingale and ¢ is a
convez function such that ¢ (X,) € L' for all n. Then ¢ (X) = {¢ (Xn)} ey
is a submartingale. If ¢ is also assumed to be increasing, it suffices to assume
that X is a submartingale in order to conclude that ¢ (X) is a submartingale.
(For example if X is a positive submartingale, p € (1,00) , and EXE < oo for

all n, then XP := {XP}> | is another positive submartingale.

Proof. When X is a martingale, by the conditional Jensen’s inequality

[L8.21}

@ (Xn) =9 (Es, Xn+1) < Ep, [¢ (Xni1)]
which shows ¢ (X) is a submartingale. Similarly, if X is a submartingale and
¢ is convex and increasing, then ¢ preserves the inequality, X,, < Eg, X, 11,
and hence

¢ (Xn) <0 (E, Xni1) < Ep, [ (Xni1)]
so again ¢ (X) is a submartingale. ]
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19.2 Decompositions

Notation 19.14 Given a sequence {Zi};—, let AyZ = Zy, — Zy—y for k =
1,2,....

Lemma 19.15 (Doob Decomposition). To each adapted sequence, {Z,} -,
of integrable random variables has a unique decomposition,
Zy, =M, + A, (19.4)

where {Mn}zozo 18 a martingale and A, is a predictable process such that
Ag = 0. Moreover this decomposition is given by Ay = 0,

A= Ep,_, [ArZ] forn>1 (19.5)
k=1
and
My =2y~ Ap =2y~ Y Es,_, [AZ] (19.6)
k=1
=Zo+ > (% —Es,_,Z1) . (19.7)
k=1

In particular, {Z,},_, is a submartingale (supermartingale) iff Ay, is increas-
ing (decreasing) almost surely.
Proof. Assuming Z,, has a decomposition as in Eq. (19.4)), then
Eg, [Ant1Z] =Eg, [AptiM 4+ Api1 Al = Ayl A (19.8)

n

wherein we have used M is a martingale and A is predictable so that
Eg, [An+1M] = 0 and Eg, [Ap414] = A1 A. Hence we must define, for
m>1,

A, = Z ALA = ZJEBH [ALZ)
k=1 k=1
which is a predictable process. This proves the uniqueness of the decomposi-
tion and the validity of Eq. (19.5).
For existence, from Eq. ([19.5)) it follows that

EBn [A'rH»lZ} == An+1A == ]EBn [An+114.] .

Hence, if we define M, := Z,, — A,,, then
Eg, [Ant1M] =Epg, [Ant1Z — Apt 1Al =0

and hence {M,} -, is a martingale. Moreover, Eq. (19.7) follows from Eq.
(19.6)) since,
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n

M, =Zy+» (AZ —Es,_, [AcZ))
k=1

and

ApZ — Ep, [AkZ] =Zy—Zp—1—Epg,_, [Zk — Zk—l]
=2y — 21— By, Zk — Zi—1) = Zy — BB, _, Z.

Remark 19.16. Suppose that X = {X,},-, is a submartingale and X,, =
M, + A, is it Doob decomposition. Then A, =7 lim,, ., A, exists a.s.,

EA, = E[X, — M,] = EX,, —- EM, = E[X,, — Xy (19.9)

and hence by MCT,
EAy, =7 lim E[X,, — X¢]. (19.10)

n—oo

Hence if lim,, .o E [X,, — Xo] = sup,, E[X,, — X] < o0, then EA,, < 0o and
so by DCT, A, — A in L' (£2,B, P). In particular if sup, E|X,| < oo,
we may conclude that {X,} >, is L' (2,8, P) convergent iff {M,} ~, is
L' (2,B, P) convergent. (We will see below in Corollary that Xoo =
lim,, oo X, and My, := lim,, ., M, exist almost surely under the assumption
that sup,, E | X,| < c0.)

Ezxample 19.17. Suppose that N = {Nn}if:o is a square integrable martingale,
i.e. EN? < oo for all n. Then from Proposition 19.13) X := {X,, = Nﬁ}zozo
is a positive submartingale. In this case

]EBk—lAk:X = EBk—l (N]? - Nk%*l) = EBk—l [(Nk _ Nk‘fl) (Nk; + Nkfl)]
=Eg,_, [(Nr = Ng—1) (N, = Ni—1)]
=Eg,_, (Nk - Nk—1)2

wherein the second to last equality we have used
EBk71 [(Nk — Nk—l) Nk—l] = Nk—l]EBk,l (Nk — Nk—l) = 0 a.s.

in order to change (Nj 4+ Ni_1) to (Ny — Ni_1). Hence the increasing pre-
dictable process, A,, in the Doob decomposition may be written as

Ap=> Ep,_,AX =) Ep,_, (AN)”. (19.11)

k<n k<n
For the next result we will use the following remarks.

Remark 19.18. If X is a real valued random variable, then X = X+ — X,
[ X|=XT+ X", Xt <|X|=2XT — X, so that
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EX' <E|X|=2EX' —EX.
Hence if {X,,},, is a submartingale then
EX! <E|X,| =2EX; —EX, < 2EX; —EX,
from which it follows that

supEX, <supE|X,| < 2supEX," — EX,. (19.12)

Theorem 19.19 (Krickeberg Decomposition). Suppose that X is an in-
tegrable submartingale such that C := sup, E[X,[] < oo or equivalently

sup,, E | X,| < oo, see Fq. . Then
M, :=7 lim E [X;’|Bn] exists a.s.,
p—0Q

M = {M,},", is a positive martingale, Y = {Y,, }, " with Y, := X,, — M,, is
a positive supermartingale, and hence X, = M,,—Y,,. So X can be decomposed
into the difference of a positive martingale and a positive supermartingale.

Proof. From Proposition [19.13| we know that X* = {Xt} is a still a
positive submartingale. Therefore for each n € N, and p > n,

Eg, [X;Srl] = ]EBT,,]EBF [X;Jrl] > EBHX; a.s.

Therefore EBHX; is increasing in p for p > n and therefore, M, :=
limy_.o Ep, [X,f] exists in [0,00]. By Fatou’s lemma, we know that

EM, <liminfE [EBH [X;r]] < liminfE [X;r] =(C< >
p—0oo

p—0oo

which shows M is integrable. By cMCT and the tower property of conditional
expectation,

X'

EBn Mn-i—l = EBn pli)nol() E8n+1 [X;_} = pILH;O EB71EB71+1 [ D

= lim Ep, [Xzﬂ =M, a.s.,

p—00

which shows M = {M,,} is a martingale.
We now define Y, := M,, — X,,. Using the submartingale property of X+
implies,

Y, =M, — X, = lim Eg, [X]] - X, = lim Eg, [X]-X}+X,
p—0o0 p—o

= lim Eg, [X; — X;/] + X, >0as.

p—00
Moreover,
E [Yn+1|6n] =E [MnJrl - Xn+1|8n] = Mn —-E [Xn+1|8n] > Mn - Xn = Yn

wherein we have use M is a martingale in the second equality and X is
submartingale the last inequality. ]
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19.3 Stopping Times

Definition 19.20. Again let {B,} -, be a filtration on (2,B) and assume
that B = By 1= VB, := 0 (U B,) . A function, 7 : 2 — N := NU{0, 00}
is said to be a stopping time if {T < n} € B,, for all n € N. Equivalently put,
7: 8 — N is a stopping time iff the process, n — 1,<,, is adapted.

Lemma 19.21. Let {B,}.—, be a filtration on (£2,B) and 7 : 2 — N be a
function. Then the following are equivalent;

1. 7 is a stopping time.

2.{r <n} € B, for alln € Ny.
3.{r>n}={r>n+1} € B, for alln € Ny.
4. {7 =n} € B, for alln € Ny.

Moreover if any of these conditions hold for n € Ngy then they also hold for
n = oo.

Proof. (1. < 2.) Observe that if {r <n} € B, for all n € Ny, then
{r < oo} = U, {r <n} € By and therefore {7 = 0} = {7 < 0} € By
and hence {7 < oo} = {7 < 00} U {7 = 0} € B. Hence in order to check
that 7 is a stopping time, it suffices to show {r < n} € B, for all n € Ny.
The equivalence of 2., 3., and 4. follows from the identities

{r>n}"={r<n},
{r=n}={r<n}\{r<n-1}, and
{r <n}=Ui_o{r=k}
from which we conclude that 2. = 3. = 4. = 1. ]
Clearly any constant function, 7 : {2 — N, is a stopping time. The reader
should also observe that if B,, = o (Xo,...,X,), then 7 : 2 — N is a stopping
time iff, for each n € Ny there exists a measurable function, f,, : R"*! — R

such that 1,—,) = f (Xo,...,X,). Here is another common example of a
stopping time.

Ezample 19.22 (First hitting times). Suppose that X := {X,}°  is an
adapted process on the filtered space, (£2,B,{B,},-,) and A € Bg. Then
the first hitting time of A,

7:=inf{n € Nyg: X,, € A},
(with convention that inf ) = c0) is a stopping time. To see this, observe that
{r=n}={Xo€ A% ..., X1 € A°, X, € A} € 0 (Xo,..., Xpn) C B,.
More generally if o is a stopping time, then the first hitting time after o,

T:=inf{k >0: X, € A},
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is also a stopping time. Indeed,
{r=n}={c<n}in{X,¢A4,...,.Xp,_1¢AX, €A}
=Ui<k<n{o=k}N{Xx ¢ A,.... X1 ¢ A, X,, € A}
which is in B,, for all n. Here we use the convention that
{Xp ¢ A,.... X, 1 ¢ A X, e Ay ={X,, € A} it k=n.

On the other hand the last hitting time, 7 = sup{n € Ny : X, € A}, of a
set A is typically not a stopping time. Indeed, in this case

{T = n} = {Xn (S A,Xn_;'_]_ ¢ A,Xn_;,_g ¢ A,. } € U(Xn,Xn+1,. )
which typically will not be in B5,,.

Proposition 19.23 (New Stopping Times from O1d). Let (12, B, {B,},~)
be a filtered measure space and suppose o, T, and {1}, are all stopping
times. Then

1.7 No, TV o, T+ o are all stopping times.
2.If T, T Too OT Tk | Too, then Too is a stopping time.

3. In general, supy, 7, = limy_ oo max{m, ..., 7%} andinfy 7, = limp_ oo min{r ...

are also stopping times.

Proof.

1. Since {rAoc>n} ={r>n}n{o>n} € B,, {rvo<n}={r<n}n
{0 < n} € B, for all n, and

{r+o=n}=Ui_o{r=ko=n—-k} B,

for all n, 7 Ao, TV o, T+ o are all stopping times.

2. If 7% 1 Too, then {7, < n} = N {rx < n} € B,, and so 7, is a stopping
time. Similarly, if 7 | Too, then {700 > n} = Ng {7 > n} € B,, and so 7
is a stopping time. (Recall that {7 > n} = {70c > n+1}.)

3. This follows from items 1. and 2.

Lemma 19.24. If 7 is a stopping time, then the processes, fn = l{r<n}, and
Jn = l{z—n) are adapted and f,, := 1y is predictable. Moreover, if o and
T are two stopping times, then f, := lo<pn<, s predictable.

Proof. These are all trivial to prove. For example, if f,, := 1l,<n<-, then
fn is B,,_1 measurable since,

{o<n<ti={o<nin{n<tr={o<n}n{r<n}€B,.

7Tk}
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Notation 19.25 (Stochastic intervals) If o,7: 2 — N, let
(0,7l ={(w,n) €2 xN:o(w)<n<7(w)}
and we will write 1(4 ) for the process, 15<n<s.

Our next goal is to define the “stopped” o — algebra, B,. To motivate the
upcoming definition, suppose X,, : {2 — R are given functions for all n € Ny,
B, =0 (Xo,...,Xn),and 7: 2 — Ny is a B. — stopping time. Recalling that
a function Y : 2 — R is B,, measurable iff Y (w) = f,, (Xo (w),... X, (w)) for
some measurable function, f, : R"*' — R, it is reasonable to suggest that ¥ is
B measurable iff Y (w) = fr() (Xo (W), ... X;) (w)), where f,, : R""* — R
are measurable random variables. If this is the case, then we would have
1,=,Y = fn(Xo,...,X,) is B, — measurable for all n. Hence we should
define A C {2 to be in B, iff 14 is B, measurable iff 1,_,,14 is B,, measurable
for all n which happens iff {r =n} N A € B, for all n.

Definition 19.26 (Stopped o — algebra). Given a stopping time T on a
filtered measure space (£2,B,{By}r—,) with Boo := VB, 1= o (US2By),
let

Br={ACQ2:{r=n}NnAcB, foralln < co}. (19.13)

Lemma 19.27. Suppose o and 7 are stopping times.

1. A set, AC 2 isin B iff An{r <n} € B, foralln < .
2. B; is a sub-o-algebra of B .
3. If o <1, then B, C B,.

Proof. 1. Since

ANn{r <n} =Up<n, [AN{7r <k}] and
An{r=n}=[An{r <n}\[AN{r <n-1}],

it easily follows that A C 2 is in B, iff An{r <n} € B, for all n < cc.
2. Since 2N {1 < n} = {r <n} € B, for all n, it follows that 2 € B,. If
A € B, then, for all n € Ny,

An{r<n}={r<n}\A={r<n}\[AN{r <n}] € B,.
This shows A € B,. Similarly if {A;};—, C B, then
{r<n}n (N AK) =N, {7 <n}nAg) € B,

and hence N2 ;A € B,. This completes the proof the B, is a ¢ — algebra.
Since A = AN {7 < oo}, it also follows that B, C Bu.

3. Now suppose that ¢ < 7 and A € B,. Since AN{o <n} and {7 <n}
are in B3, for all n < oo, we find

An{r<n}=[An{oc<n}n{r<n}eB,Vn<oo

which shows A € B.. [
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Proposition 19.28 (B, — measurable random variables). Let (2, B,{B,}.—,)
be a filtered measure space. Let T be a stopping time and Z : {2 — R be a func-
tion. Then the following are equivalent;

1. Z is B, — measurable,
2. 1i;<ny Z is By, — measurable for all n < oo,
3. Lyr—py Z is By, — measurable for all n < oco.
4. There ezists, Y, : £2 — R which are B,, — measurable for all n < oo such
that
Z = Y'r = Z 1{T:n}Yn
neN

Proof. 1. = 2. By definition, if A € B;, then 1;;<;,31a = 1{r<pyna
is B,, — measurable for all n < co. Consequently any simple 3. — measurable
function, Z, satisfies 1(,<,}Z is B, — measurable for all n. So by the usual
limiting argument (Theorem [6.32), it follows that 1(-<,}Z is B, ~ measurable
for all n for any B, — measurable function, Z.

2. = 3. This property follows from the identity,

1{T:n}Z = 1{T§n}Z - 1{T<n}Z

3. = 4. Simply take Y,, = 1,1 Z.

4. = 1.Since Z = ) .5 l{r=n} Yn, it suffices to show 1,V is B, —
measurable if Y,, is 3,, — measurable. Further, by the usual limiting arguments
using Theorem [6.32} it suffices to assume that Y,, = 14 for some A € B,,. In
this case 1{;—n}Yn = Lan{r—n). Hence we must show AN{7 =n} € B, which
indeed is true because

B o 0eB, ifk#n
A”{T—”}“{T—k}—{Am{r_n}eskifk_n°

Alternatively proof for 1. =— 2. If Z is B, measurable, then
{ZeB}n{r<n} € B, for all n < oo and B € Bg. Hence if B € By
with 0 ¢ B, then

{1<mZ e B} ={Z e B}n{r <n} € B, for all n
and similarly,
{17emyZ =0} = {17} Z #0} ={Z #0} N {r < n} € B, for all n.

From these two observations, it follows that { lir<myZ €B } € B, for all
B € Bg and therefore, 1(,<,}Z is B, — measurable. ]

Lemma 19.29 (B, — conditioning). Suppose o is a stopping time and Z €
LY (2,B,P) or Z >0, then

E(Z|Bs) = Y 1o-nE[Z|B,] =Y, (19.14)

n<oo
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where -
Y, :=E[Z|B,] for alln € N. (19.15)

Proof. By Proposition [[9.28] Y, is B, — measurable. Moreover if Z is
integrable, then

Z E [1{0=n} |Yn|] = Z El{o:n} |E[Z|Bn”

n<oo n<oo

< > E[1o=mE[|Z]|B.]

n<oo
= Y E[E[Lo-n|2]|B.]]
n<oo
=Y E[lo—n}|Z]] =E|Z| < 0 (19.16)

n<oo

and therefore

E‘th‘ =E Z [1{0271}5/71]

n<oo
<Y E[lfgeny |Yal] <E|Z] < 0.

n<oo

Furthermore if A € B,, then

E(Z:Al=) E[Z:An{oc=n}]= )Y E[Y,:AN{o=n}

n<oo n<oo

= Y E[lgenyYat A =E | > ligenVa: A

n<oo n<oo

=E[Y,: 4],

wherein the interchange of the sum and the expectation in the second to last
equality is justified by the estimate in [19.16| or by the fact that everything in
sight is positive when Z > 0. [

Exercise 19.2. Suppose ¢ and 7 are two stopping times. Show;

1.{o <7},{o=7},and {o < 7} are all in B, N B,,
2. Bopr = B5 N B-,—,

3. Boyr =B,V B =0 (B, UB;), and

4. (Bg){UST} C Boar and (Ba){a<r} C Bonr-

Recall that
(BU){UST} = {A N {U < T} A€ BU} .
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Exercise 19.3 (Tower Property II). Let X € L' (2,B,P) or X : 2 —
[0,00] be a B — measurable function. Then given any two stopping times, o
and 7, show

Es,Es, X =Ep Eg, X =Eg,, X. (19.17)

oNT

(Hints: 1. It suffices to consider the case where X > 0. 2. Make use of Exercise
Lemma[19.29|and the basic properties of conditional expectations. If you
want to be sophisticated you may also want to use the localization Lemma
f but it can be avoided if you choose.)

Exercise 19.4. Show, by example, that it is not necessarily true that
Eg,Eg, = Eg, g,

for arbitrary G; and G — sub-sigma algebras of B.
Hint: it suffices to take (£2,B,P) with 2 = {1,2,3}, B = 29, and
P({j}) =3 for j=1,2,3.

19.4 Stochastic Integrals and Optional Stopping

Notation 19.30 Suppose that {u,},., and {z,},-, are two sequences of
numbers, let udx denote the sequence of numbers defined by

n

(u-Ax), = Zuj (xj —xj_1) = Zujij forn > 1.
j=1

Jj=1

For a gambling interpretation of (u- Ax), , let x; represent the price of
a stock at time j. Suppose that you, the investor, then buys u;_; shares at
time j — 1 and then sells these shares back at time j. With this interpretation,
uj_1A;x represents your profit (or loss if negative) in the time interval form
j—1to jand (u- Ax), represents your profit (or loss) from time 0 to time n.
By the way, if you want to buy 5 shares of the stock at time n = 0 and then
sell them all at time n, you would take uy =5 - 1p<p-

Ezample 19.31. Suppose that 0 < o < 7 where 0,7 € Ny and let u,, :=
ly<n<r. Then

n (oo}
(w-Ax), =Y ocjcr (@5 —251) = > locjcrnn (@5 — 25-1)
j=1 j=1

= Tran — LoAn-

Proposition 19.32 (The Discrete Stochastic Integral). Let X =
{Xn}zozo be an adapted integrable process, i.e. E|X,| < oo for all n. If X
is a martingale and {U,},2_, is a predictable sequence of bounded random
variables, then {(U - AX), }>7, is still a martingale. If X := {X,} ", is a

n=1
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submartingale (supermartingale) (necessarily real valued) and U, > 0, then
{(U-AX),}°>7, is a submartingale (supermartingale).

n=1
Conversely if X is an adapted process of integrable functions such that

E[(U-AX),] =0 for all bounded predictable processes, {Uy}.—, , then X is

n=1"
a martingale. Similarly if X is real valued adapted process such that

E[(U-AX),]=0 (19.18)

VA IA

for all n and for all bounded, non-negative predictable processes, U, then X is
a supermartingale, martingale, or submartingale respectively.

Proof. For any adapted process X, we have

E [(U . AX)n+1 |Bn] =E [(U : AX)n + Un+1 (Xn+1 - Xn) |Bn]
= (U-AX), + Up 1B [(Xnp1 — X0) |Ba] . (19.19)

The first assertions easily follow from this identity.

Now suppose that X is an adapted process of integrable functions such that
E[(U - AX),] = 0 for all bounded predictable processes, {U,} -, . Taking
expectations of Eq. then allows us to conclude that

E[UntiE [(Xn41 — Xn) [Ba]] =0

for all bounded B,, — measurable random variables, U, ;. Taking U, 41 =
sgn(E [(X,41 — Xy) |By]) shows |E[(Xp+1 — X5) |By]| = 0 a.s. and hence X
is a martingale. Similarly, if for all non-negative, predictable U, Eq.
holds for all n > 1, and U,, > 0, then taking A € B,, and Uy = g nt1la in
Eq. allows us to conclude that

E[X, 41— X, : A]=E[(U - AX)

IV IA

n+1] 07

i.e. X is a supermartingale, martingale, or submartingale respectively. [

Ezample 19.33. Suppose that {Xn}fbozo are mean zero independent integrable
random variables and f, : R™ — R are bounded measurable functions. Then

Y, = an (XOa--~7Xn—1)(Xn _Xn—l) (19-20)
j=1

defines a martingale sequence.

Notation 19.34 Given an adapted process, X, and a stopping time T, let
X7 = X;an. We call X7 :={X]},°, the process X stopped by 7.

Theorem 19.35 (Optional stopping theorem). Suppose X = {X,,}~ , is
a supermartingale, martingale, or submartingale and T is a stopping time, then
X7 is a{By},—, — supermartingale, martingale, or submartingale respectively.
This valid if either B|X,,| < oo for all n or if X, > 0 for all n.
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Proof. First proof. Since 1,<,X; = EZ:O 1,-,X, is B, measurable,
{r >n} € B,, and

Xonm+1) = Lr<n Xr + Lrsn X,
we have
Eg, [Xramt1)] =lr<nXr + LrsnEp, Xni1
élTSnXT + LisnXn = Xoan.

Second proof in case E |X,| < co. Let Uy := locp<, for k =1,2,....
Then U is a bounded predictable process and

(U-AX), =) lockr M X = Y ApX = Xopn — Xo.

k<n 0<k<TAN

Therefore, by Proposition [19.32) X7 = X, 4 (U - AX),, is (respectively) a
supermartingale, martingale, or submartingale.
Third proof. See Remark below. [ |

Theorem 19.36 (Optional sampling theorem I). Suppose that o and T
are two stopping times and T 1s bounded, i.e. there exists N € N such that 7 <
N < oo as. If X ={X,}—, is an integrable supermartingale, martingale, or
submartingale, then X, is integrable and

E[X;|Bs] = Xonr a.s. (19.21)

VI IA

respectivelgﬂ from top to bottom. Moreover, Eq. (19.21]) is valid with no inte-
grability assumptions on X provided X,, > 0 a.s. for all n < oco.

Proof. Since
Xo = ) L Xk < D Lemi [ Xkl <) |Xa,
0<k<r 0<k<r 0<k<N

if X,, € L' (2,B,P) for all n we see that E|X,| < > o<k<n E|Xk| < oo
Hence it remains to prove Eq. (19.21)) in case X,, > 0 or X,, € L' (£2,B, P)
for all n.

According to Lemma,
E[X:|Bs] =Y 1o—nE [X;[Bn]. (19.22)
n=0

2 This is the natural generalization of Eq. l| to the stopping time setting.
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On the other hand we know X7 is a supermartingale, martingale, or sub-
martingale respectively and therefore, for any n < co and m > max (n, N) we

have
<

E[X,B.] = E[X],|B.] = X[ = Xran.

Combining this equation with Eq. (19.22]) shows

< >
E [XT|BO'] f Z lo=nXran = Xipo-

n=0

This completes the proof. Nevertheless we will give two more proofs of Eq.
under the assumption that X,, € L! (£2, B, P) for all n.

First alternative proof. First suppose X is a martingale in which case
X, =Eg, Xy for all n < N and hence

Xr = Z Lr=n Xy = Z lT:nEBnXN = Z 1T:n]EBnXN = IEBTAX'N-

n<N n<N n<oo
Therefore, by Exercise [19.3

Ep,Xr =Ep,Ep, Xy =Ep, .. XN = Xoar.

oONT

Now suppose that X is a submartingale. By the Doob decomposition
(Lemma [19.15), X,, = M,, + A,, where M is a martingale and A is an in-
creasing predictable process. In this case we have

EB{,X‘F = EB,,MT + EB,,AT = MO‘/\T + EB,,AT
> Mo’/\'r + IE1’5’614(7/\7' = MO’/\T + AO’/\T = Xo/\'r-
The supermartingale case follows from the submartingale result just proved
applied to —X.

Second alternative proof. Let A € B, and U, := 14 - l,<pn<r. Then
U is predictable since

An{o<n<t}=(An{o<n})n{n <7} € B, for all n.
Let us also observe that
(U-AX), = Z 1a - locp<r A X = Z 1a - Ioprch<ran QX
k<n
= 1; (Xopn — Xonr) forall n > 1.
By Proposition (U - AX) is a supermartingale, martingale, or sub-
martingale respectively and hence

<
E[la(Xr — Xonr)] =E[1a (Xoan — Xonr)] = E[(U - AX) y] = 0 respectively.

Since A € B, is arbitrary and X, is B, — measurable (in fact Boar —

measurable), Eq. (19.21]) has been proved. [
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Remark 19.37. Theorem [19.36| can be used to give a simple proof of the Op-
tional stopping Theorem [19.35 For example, if X = {X,,} 7~ is a submartin-
gale and 7 is a stopping time, then

EBn,XTA(n+1) > X[TA(n+1)]An = ATAN

i.e. X7 is a submartingale.

19.5 Submartingale Inequalities
For a process, X = {X,,},7 let

Xy =max {|Xol|,...,|Xn]|}. (19.23)

19.5.1 Maximal Inequalities

Proposition 19.38 (Maximal Inequalities of Bernstein and Lévy). Let
{X,} be a submartingale on a filtered probability space, (2,B,{B,},—,,P).
Therﬁfor any a >0 and N € N,

>al < : >al < T .
aP (znga&(Xn > a) <E [XN glgag};Xn > a} <E [XN] , (19.24)
aP <min X, < —a) <E [XN : min X > —a} — E[Xo) (19.25)
n<N k<N
<E[X}] -E[X], (19.26)
and
aP (X% > a) < 2E [X};] —E[Xo]. (19.27)

Proof. Initially let X be any integrable adapted process and 7 be the
stopping time defined by, 7 := inf {n : X,, > a}. Since X, > a on

< = > .
{r <N} {nmgaz}\?X" > a} ) (19.28)
we have

aP <m<aif<Xn2a) =E[a:7T< N]<E[X,:7 <N] (19.29)

;E[XNITSN]—E[XN—XTAN]- (19.30)

3 The first inequality is the most important.
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Let me emphasize again that in deriving Eq. (19.30), we have not used any
special properties (not even adaptedness) of X.

If X is now assumed to be a submartingale, by the optional sampling
Theorem Es.  ~Xn > X;an and in particular E [ Xy — X, an] > 0.

Combining this observation with Eq. (19.30)) and Eq. ((19.28]) gives Eq. ((19.24]).

(Alternatively, since {7 < N} € B,an, it follows by optional sampling that
EX,:7T<N|=E[Xan:T<N|]<E[Xy:7<N]

which combined with Eq. (19.29) gives Eq. (19.24).)
Secondly we may apply Eq. (19.30) with X,, replaced by —X,, to find

aP (min X, < —a) =aP (— min X,, > a) =aP (max(—Xn) > a)
n<N n<N n<N
S—E[XNZTSN}—FE[XN—XT/\N] (1931)
where now,
T:=inf{n: -X, >a} =inf{n: X, < —a}.

By the optional sampling Theorem [19.36] E [X,An — Xo] > 0 and adding this
to right side of Eq. (19.31)) gives the estimate

aP (ngj%Xng—a) <-E[Xn:T<N]+E[Xy — Xan] +E[Xoan — X0]
<E[Xy - Xo] ~E[Xy : 7 < N]

=E[Xy:7> N]—E[X]

=K {XN s min X > —a| — E[X]
k<N

which proves Eq. (19.25) and hence Eq. (19.26)). Adding Eqgs. (19.24)) and
(119.26)) gives the estimate in Eq. (19.27)). ]

Remark 19.39. It is of course possible to give a direct proof of Proposition
19.38] For example,

E XN:rgaﬁana}z E[Xy: X1 <a,...,Xp—1<a,X>d

E[XkIXl <a,...,Xk,1 <(1,Xk Za]

M= 1= T

Y%

E[a:X1 <a,...,Xp_1 <a,Xk2a]

B
Il
—

aP (maXXn > a)
n<N

which proves Eq. ((19.24]).
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Ezample 19.40. Let {X,,} be a sequence of independent random variables with
mean zero, S, = X1 + -+ + X,, and S} = max;<, |S;|. Since {S,} , is
a martingale and {|S,["},—, is an (possibly extended) submartingale for any
p € [1,00). Therefore an application of Eq. of Proposition show

* % 1 .
P(SN > Oé) :P<S]\? > Oép) < JEHSNlp : SN Za]
When p = 2, this is Kolmogorov’s Inequality, see Theorem [12.2§

Lemma 19.41. Suppose that X andY are two non-negative random variables
such that P (Y > y) < iIE [X :Y >y for ally > 0. Then for allp € (1,00),

» \?
EY? < () EX?. (19.32)
p—1
Proof. We will begin by proving Eq. (19.32)) under the additional assump-
tion that Y € LP (2,8, P) . Since

oo

EY?P :pE/ ly<y Py = p/ E[1,<v] SyP Ty
0 0

oo 001
:p/ P(YZy)~y”*1dy§p/ —E[X:Y >y -y" tdy
0 o Y

:pE/ Xlysy -y ~dy = SRy
; -

Now apply Holder’s inequality, with ¢ = p (p — 1)_1 , to find
_ _ 1
E [xy7!] < |XI|, - [Y*7], = X1, - Y.

Combining thew two inequalities shows and solving for [|[Y|, shows [|Y][, <
525 [1X |, which proves Eq. under the additional restriction of Y being
in LP (02,B,P).

To remove the integrability restriction on Y, for M > 0 let Z :=Y A M
and observe that

1
EX:Y>y=-E[X:Z>y|ify<M

P(Zzy) =P 2y) < ;

| =

while L
P(Z>y)=0=-E[X:Z>y] ify>M.
Y

Since Z is bounded, the special case just proved shows
» \?
E[(Y AM)’]=EZ? < <1> EXP.
p—

We may now use the MCT to pass to the limit, M T oo, and hence conclude
that Eq. (19.32)) holds in general. ]
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Corollary 19.42 (Doob’s Inequality). If X = {X,}—, be a non-negative
submartingale and 1 < p < oo, then

p
EX < (pl) EX?,. (19.33)

Proof. Equation follows by applying Lemma with the aid of
Proposition [19.38] [

Corollary 19.43 (Doob’s Inequality). If {M,},>, is a martingale and
1 < p < oo, then for all a > 0,

1 1
P(My >a) < -E[|M|y: My >a] < -E[|My]] (19.34)
a a
and

p
EMP < (pfl) E|Myl|? . (19.35)

Proof. By the conditional Jensen’s inequality, it follows that X,, := |M,|

is a submartingale. Hence Eq. (|19.34]) follows from Eq. (19.24)) and Eq. (19.35))
follows from Eq. (19.33). [

19.5.2 Upcrossing Inequalities and Convergence Results
Given a function, Ng 3 n — X,, € Rand —oco < a < b < 00, let

T0=0, i =inf{n>17: X, <a}
To=inf{n>7: X, > b}, m:=inf{n>mn:X, <a}

Tor = inf {n > 191 : X, 2 b}, Topy1 :=inf {n > 7 : X, <a} (19.36)

with the usual convention that inf ()} = co in the definitions above, see Figures
and Observe that 7,41 > 7, + 1 for all n > 1 and hence 7, > n —1
for all n > 1. Further, for each NV € N let

UR (a,b) = max {k : 7o, < N}

be the number of upcrossings of X across [a,b] in the time interval,
[0, NT.

Lemma 19.44. Suppose X = {Xn}ff:o is a sequence of extended real num-
bers such that U3 (a,b) < oo for all a,b € Q with a < b. Then X =
lim,, oo X,, exists in R.
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Positive Martingale Path

50 60 70 80 80

10 20, Vg

Ty s ii“\ Tc
Fig. 19.1. A sample path of a positive martingale with crossing levels, a = 1 and
b = 2 marked off.

Proof. If lim,, .. X,, does not exists in R, then there would exists a,b € Q
such that
liminf X,, < a < b < limsup X,,

n—oo n—oo

and for this choice of a and b, we must have X,, < a and X,, > b infinitely
often. Therefore, UZX (a,b) = co. |

Theorem 19.45 (Doob’s Upcrossing Inequality — buy low sell high).
If {Xn}" o is a submartingale and —co < a < b < oo, then for all N € N,

E [UF (a,b)] < ﬁ [E(Xy —a), —E(Xo—a),].

Proof. We first suppose that X,, > 0, a =0 and b > 0. Let

70=0, m =inf{n>7: X, =0}
=inf{n>m:X, >0}, m:=inf{n>mn:X,=0}

Tor = inf{n > mp_1 : X, > b}, Topt1 :=1inf {n > m : X, =0}



19.5 Submartingale Inequalities 409

Simple-Rendermifalies

Posikwe Sub wmawdivacde

0 10 20 30 0 50 60 70 80 a0 100
. "L T, "
\ Ty \ 'E.cr TC.

Fig. 19.2. A sample path of a positive submartingale along with stopping times
To; and T2j+1, successive hitting times of 2 and 0 respectively. Notice that X, A70 —
X-,—3/\70 Z 2 while X-,—e/\70 - X-,—5/\70 Z 0. Also observe that X-rs/\go - X-,—7/\9() =0.

a sequence of stopping times. Suppose that N is given and we choose k such
that 2k > N. Then we know that 7o > N. Thus if we let 7, :== 7, A N, we
know that 7, = N for all n > 2k. Therefore,

2k
XN — XO = Z (X‘r; - 7'7/171>
n=1
k k
= (XTén - Xran_l) +> (ern_l - Xr;n_z)
n=1 n=1

k
=00 (0.0)+ Y (X, = Xny ), (19.37)
n=1
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wherein we have used X, — X, > b if there were an upcrossing in the
interval [74,, 1,73, ] and X, Xy 20 otherwiseﬁsee Figurem Taking
expectations of Eq. (19.37)) implies

2n—2

k
EXy —EXo > bEUY (0,0) + Y E (X%_l - X, ) > bEUR (0,b)
n=1

wherein we have used the optional sampling theorem to guarantee,

E (XTén—l - X"'2/n72> 2 0.
If X is a general submartingale and —co < a < b < oo, we know by
Jensen’s inequality that (X,, —a), is still a sub-martingale and moreover

UR (a,b) = UKD+ (0,b — a)
and therefore

(b—a)E[UX (a,b)] = (b—a)E [U(X_“)+ (0,b— a)}

SE(XN—a)+—E(X0—a)+.
]
It is worth contemplating a bit how is that E (Xrén,l - X ) >0

2n—2
given that are strategy is to buy high and sell low. On the {r,_1 < N},

Xy 1 — Xry_, <0 —b=—b and therefore,

0<E (XTén_l - XTZ;H_Q)

n—2

—E (Xrp s = Xryys i Pont SN)+E (Xgy | = Xy 7201 > N)

<~ bP(ron1 < N)+E (XN — Xy T > N) .

—2
Therefore we must have
E (XN — Xrp oaN i Ton—1 > N) > bP (12,1 < N)

so that Xy must be sufficiently large sufficiently often on the set where
Ton—1 > N.

Corollary 19.46. Suppose {X,,},-, is an integrable submartingale such that
sup,, EX;F < oo (or equivalently C := sup, E|X,,| < oo, see Remark ,
then X := lim, .o X,, exists in R a.s. and moreover, X, € L* (£2,B, P).

YIf 01 > N, then X, — X
X, —X, =X, —0>0.
2n 2n—1 2n

= Xy — Xy = 0, while if 72,1 < N,

n—1
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Proof. For any —co < a < b < oo, by Doob’s upcrossing inequality
(Theorem [19.45)) and the MCT,

—_

supE(Xy —a), —E(Xo—a) | <o
N

where
UX (a,b) := Jim Uz (a,b)

is the total number of upcrossings of X across [a,b]. In particular it follows
that

20 :=N{U% (a,b) < 00 : a,b € Q with a < b}
has probability one. Hence by Lemma [19.44} for w € (25 we have X, (w) :=
lim,, o X, (w) exists in R. By Fatou’s lemma we know that

E[|Xo|] = E [glrgigf |Xn|} <liminfE [|X,[] < C < o (19.38)

and therefore that X € R a.s.

Second Proof. We may also give another proof based on the Krickeberg
Decomposition Theorem[I9.19)and the supermartingale convergence Corollary
[19.54] below. Indeed, by Theorem X, = M, —Y,, where M is a positive
martingale and Y is a positive supermartingale. Hence by two applications of
Corollary [19:54 we may conclude that

Xo = lim X,, = lim M, — lim Y,

n—oo n—oo n—oo
exists in R almost surely. [

Notation 19.47 Given a probability space, (£2,B,P) and A, B € B, we say
A=B as. iff P(AA B) =0.

Corollary 19.48 (Localizing Corollary Eq. [19.46)). Suppose M =
{Mn}zozo is a martingale and ¢ < oo such that A, M < c¢ a.s. for all n.
Then

n—oo

{ lim M, exists in R} = {sup M, < oo} a.s.

Proof. Let 7, := inf {n : M,, > m} for all m € N. Then by the optional
stopping theorem, n — M™ is still a martingale. Since M ™ < m + ¢, it
follows that E (M;™), < m+c < oo for all n. Hence we may apply Corollary
to conclude, lim,,_,oc M ™ = M7 exists in R almost surely. Therefore
n — M, is convergent in R almost surely on the set

Up {M™ =M} = {SupMn < oo}

Conversely if n — M, is convergent in R, then sup,, M,, < oco. [
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Corollary 19.49. Suppose M = {MR}ZO:O is a martingale, and ¢ < oo such
that |A, M| < ¢ a.s. for all n. Let

C .= { lim M,, exists in R} and
D := {limsupM = oo} N {liminan = foo}.

Then, P(CUD) =1.

Proof. Since both M and —M satisfy the hypothesis of Corollary [19.48
we may conclude that almost surely,

C= {supMn < oo} = {inan > foo}
and hence almost surely,

Ce = {supMn = oo} = {inan = —oo}

n n

n

= {Sup M, = oo} N {inan = —oo} =D.
]

Corollary 19.50. Suppose (2,B8,{B,},~,.P) is a filtered probability space
and A, € B,, for alln. Then

{A, i0} = {ZE[lAn|Bn1] = oo} a.s. (19.39)

Proof. Let A, M =14, —E[14,|B,-1] and then set M, :=>", . A, M.
Then M is a martingale with |A,, M| <1 for all n. Since B

{A, i0} = {Z la, = oo},

it follows that on C' we have {A,, i.0.} = {}, E[l4,|Bnr_1] = 0o} a.s. More-

over, on D, we must have Y~ 14, =ocoand ) E[la,|B,—1] = oo and hence
again it follows that Eq. (19.39)) holds. Since C' U D = {2 a.s., the proof is
complete. [

See Durrett [3, Chapter 4.3] for more in this direction.

19.6 Supermartingale inequalities

As the optional sampling theorem was our basic tool for deriving submartin-
gale inequalities, the following switching lemma will be our basic tool for
deriving positive supermartingale inequalities.
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Lemma 19.51 (Switching Lemma). Suppose that X and Y are two su-
permartingales and T is a stopping time such that X, > Y, on {7 < co}.

Then
Xpifn<T

Zn = 1n<TXn + lnszn = { Y. an >

is again a supermartingale. (In short we can switch from X to'Y at time, T,
provided Y < X at the switching time, T.) This lemma is valid if X,,,Y,, €
LY (£2,B,, P) for all n or if both X,,,Y,, > 0 for all n. In the latter case, we
should be using the extended notion of conditional expectations.

Proof. We begin by observing,

Znt1 = lnj1<r Xng1 + lng1>0Ynga
=lot1<+ X1 + 1> Yog1 + L1 Yoga
< lpti<r Xng1 + LIn>oYot1 + L1 Xt
= lper Xng1 + 1n>o Yt

Since {n < 7} and {n > 7} are B, — measurable, it now follows from the
supermartingale property of X and Y that

EBn, Zn+1 S EBW [1n<7—Xn+1 + 1n21)Yn+1]
= 1n<TEBn [Xn-&-l] + 1n2vEBn [Yn-i-l]
< 1n<TXn + 1n2vYn = Zn.

19.6.1 Maximal Inequalities

Theorem 19.52 (Supermartingale maximal inequality). Let X be a
positive supermartingale (in the extended sense) and a € By with a > 0,
then

aP [suan > a|BO} <aAn Xy (19.40)

and moreover
P [Suan = oo|80} =0 on {Xp < o0}. (19.41)

In particular if Xo < 0o a.s. then sup,, X, < 00 a.s.
Proof. Let 7 :=inf {n : X,, > a} which is a stopping time since,
{r <n} ={X, >a} € B, for all n.

Since X, > a on {7 < oo} and Y, := a is a supermartingale, it follows by the

switching Lemma that
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Zy = 1per Xy +aly>r
is a supermartingale (in the extended sense). In particular it follows
aP (1 <n|By) =Eg, [aln>-] < Eg,Z, < Zp,

and
Zo = lo<r Xo+alr—0 = Ixy<aXo + lx,>40 = a A Xo.

Therefore, using the cMCT,
aP [sup Xn > aBO] =aP[r < o|By] = lim aP (7 < n|Bp)
< Zyp=aAN Xy
which proves Eq. ((19.40)).

For the last assertion, take a > 0 to be constant in Eq. (19.40) and then
use the ¢cDCT to let a T oo to conclude

X
P [sup X, = oo|Bo} = lim P [sup X, > a|80] <lim1AZ22 = 1x0=co-

n aloo n aToo a
Multiplying this equation by 1x,<~ and then taking expectations implies

E [1supn Xn:oo]-X0<oo:| =E []-X():oo]-Xo<oo] =0
which implies lgup, X,=c0clxo<cc = 0 a.s., ie. sup, X, < oo as. on
{X() < OO} . |
19.6.2 The upcrossing inequality and convergence result

Theorem 19.53 (Dubin’s Upcrossing Inequality). Suppose X = {X,,},,
s a positive supermartingale and 0 < a < b < co. Then

a

k X
P (UX (a,b) > k|By) < (5) (1 A ao> , fork>1 (19.42)
and U (a,b) < 00 a.s. and in fact

E[U;ﬁ(a,b)} = b/a—1 “bh-a

< 00.
Proof. Since
UX (a,b) = Un'"(1,b/a)

it suffices to consider the case where a =1 and b > 1. Let 7, be the stopping
times defined in Eq. (19.36)) with a =1 and b > 1, i.e.
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T0=0, m=inf{n>71:X, <1}
n=inf{n>mn:X, >0}, m:=inf{n>mn:X, <1}

To, = inf {n > 191 : X;, > b}, Topq1 :=inf{n > 1 : X, <1},

see Figure [19.1]

Let £k > 1 and use the switching Lemma [19.51] repeatedly to define a new

positive supermatingale Y,, = Y,Ek) (see Exercise |19.5| below) as follows,

qufk) = ]-n<7'1 + 1T1§n<7'2Xn
+ b172§n<r3 + bXn173§n<T4

+ b217—4§n<75 + bQXn1T5Sn<76

k—1 k—1
+b 17'2k—2§”<7'2k—1 +b Xﬂ172k71§ﬂ<72k

+ 051, <n- (19.43)

Since E[Y,|Bo] < Yp as., Y, > bleQkSn, and
Yo =lo<r, + 1r=0X0 = 1x,>1 + 1x,<1 X0 = 1 A X,
we may infer that
VP (1o < n|Bo) = E [b¥1,,, <, |Bo] <E[Y,|Bo] < 1A X as.
Using cM CT, we may now let n — oo to conclude
P (U~ (1,b) > k|By) < P (1ar < 00|By) < bik (1A Xo) as.

which is Eq. . Using ¢cDCT, we may let £ T oo in this equation to

discover P (UZ (1,b) = oo|By) = 0 a.s. and in particular, UL (1,b) < oo a.s.
In fact we have

BUX (0] = S P X (L0 2K < SB[ 0]

Exercise 19.5. In this exercise you are asked to fill in the details showing Y,
in Eq. (19.43) is still a supermartingale. To do this, define Y,fk) via Eq. (19.43))
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and then show (making use of the switching Lemma |19.51fwice) Y, s a

submartingale under the assumption that Y,gk) is a submartingale. Finish off
the induction argument by observing that the constant process, U,, := 1 and
V,, = 0 are supermartingales such that U, =1>0=V,, on {r; < oo}, and
therefore by the switching Lemma

Y,gl) = ]-O§n<'r1 Un + ]-'r1§nvn = ]-0§n<'rl
is also a supermartingale.

Corollary 19.54 (Positive Supermartingale convergence). Suppose
X ={X,},~, is a positive supermartingale (possibly in the extended sense),
then Xoo = lim,,_,oo X,, exists a.s. and we have

E[Xo|Bn] < X, for alln € N. (19.44)

In particular,
EX. <EX, <EXj for all n < oc. (19.45)

Proof. The set,
2y :=n{UZ (a,b) <oco:a,beQ with a < b},

has full measure (P (£2p) = 1) by Dubin’s upcrossing inequality in Theorem

19.53] So by Lemma [19.44] for w € {29 we have X (w) = lim,_ 00 X; (w)
existsﬂ in [0, 0o] . For definiteness, let Xo, = 0 on £25. Equation (19.44) is now
a consequence of cFatou;

E[Xo|B,] = E [ lim Xm|Bn} < liminf E [X,n|B,] < liminf X, = X,, as.
The supermartingale property guarantees that EX, < EX, for all n < oo
while taking expectations of Eq. (19.44]) implies EX, < EX,,. [

Theorem 19.55 (Optional sampling IT — Positive supermartingales).
Suppose that X = {X,} " is a positive supermartingale, Xoo := lim, oo X,
(which exists a.s. by Corollary|19.54), and o and T are arbitrary stopping

times. Then X7 := X n, is a positive {B,} —, — super martingale, X7, =
lim,, oo X7 4, and
E[X,|B;] < Xonr a.s. (19.46)

Moreover, if EXy < oo, then E[X;] =E[X7] < cc.

Proof. We already know that X7 is a positive supermatingale by optional
stopping Theorem [19.35] Hence an application of Corollary implies that

lim,, 0o X, = limy, o0 X7Ap is convergent and

5 If EXo < oo, this may also be deduced by applying Corollary [19.46|to {—Xn}"o-
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E [ lim X;|Bm} < X7 = Xy pm for all m < co. (19.47)
n—oo
On the set {7 < oo}, lim,—oo X;nn = X, and on the set {r =o0},
limy, oo Xrpn = lim, oo X;, = Xo = X, a.s. Therefore it follows that
lim,, o X, = X, and Eq. (19.47) may be expressed as
E[X;|Bn] < Xpam for all m < oco. (19.48)

An application of Lemma now implies

E [X‘F‘BU] = Z lo=mE [XT|Bm] < Z lo=mXram = Xrno ass.

m<oo m<oo

19.7 Martingale Closure and Regularity Results

Theorem 19.56. Let M := {M,}.-  be an L' — bounded martingale, i.e.
C := sup, E|M,| < oo and let Mo := lim,_,oo M,, which ezxists a.s. and
satisfies, B |Muo| < 0o by Corollary|19.46 Then the following are equivalent;

1. There exists X € L' (2,B, P) such that M,, = E [X|B,] for all n.
2. {M,},"_, is uniformly integrable.
8. M, — My in L' (2,8, P).

Moreover, if any of the above equivalent conditions hold we may take X =
M.

Proof. 1. = 2. was already proved in Proposition 2. = 3.
follows from Theorem [IT.311

3. = 2.If M,, = M, in L' (£2,B,P) and A € B,,, then E[M,, : A] =
E [M,, : A] for all n > m and

E[My : Al = lim E[M, : A] =E[M,, : 4].

Since A € B,, was arbitrary, it follows that M,, = E[M|B,]. [

Definition 19.57. A martingale satisfying any and all of the equivalent state-
ments in Theorem 18 said to be regular.

Theorem 19.58. Suppose 1l < p < oo and M = {M,},>_, is an LP — bounded
martingale. Then M, — My, almost surely and in LP.

Proof. Again, the almost sure convergence follows from Corollary
So, because of Corollary to finish the proof it suffices to show
{|M,,|"} ", is uniformly integrable. But by Doob’s inequality, Corollary
and the MCT, we find
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» \?
E {sup|Mn|p} < (1> supE[|M,|"] < .
n p— n
It now follows by an application of Proposition [11.29| that {|M,|"},_, is

uniformly integrable. [ ]

Theorem 19.59 (Optional sampling IIT — regular martingales). Sup-
pose that M = {M,} ", is a reqular martingale, o and T are arbitrary
stopping times. Define My, := lim,, .o M,, a.s.. Then My, € L' (P),

M, = E[My|B;], E|M,| < co (19.49)

and
E[M;|Bs] = Mgar a.s. (19.50)

Proof. By Theorem 19.56L My, € L' (2,B,P) and M,, := Eg, M, a.s.
for all n < co. By Lemma [19.29]

EB,-MOO = Z 17':nIEBn]\/[oo = Z Lr=n My = M.

n<oo n<oo

Hence we have |M;| = |Eg, M| < Eg, |[Ms| a.s. and E |M;| < E|My| < cc.
An application of Exercise [19.3| now concludes the proof;

EBUM,,- = ]EBOEBTMOO =Ep Moo = Mopr-

oAT

Definition 19.60. Let M = {M,} —, be a martingale. We say that T is a
regular stopping time for M if M" is a reqular martingale.

Remark 19.61. If 7 is regular for M, then lim,,_ ., M := M7 exists a.s. and

hence
lim M, = M7, as.on {r =o00}. (19.51)

n—oo

Thus if 7 is regular of M, we may define M., as,

M, = MZ, = lim Myn,.

n—oo

Also observe by Fatou’s lemma that,
E|M.| <liminfE|M]| < supE|[M]].
n—oo n
Theorem 19.62. Suppose M = {M,},° is a martingale and o, T, are stop-
ping times such that 7 is a regqular stopping time for M. Then

1.
Ep, M; = M, pq. (19.52)
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2. Ifo <71 a.s. then MZ =Ep, [Eg, M;] and o is regular for M.

Proof. By assumption, M, = lim,_ .o, M,a, exists almost surely and in
L' (P) and M] = E [M,|B,] for n < co.
1. Equation (|19.52)) is a consequence of;

Eg, My = Y loenBp, My = Y 1o My = Mg,

n<oo n<oo

2. By Theorem [19.59] and Exercise [19.3]

MU = MO’/\’IL = MT/\n :]EBG/\TLM; :]EB

n o

C,/\HMT: EBn [EBU M‘r]

from which it follows that M7 is a regular martingale. [ ]

Proposition 19.63. Suppose that M is a martingale and T is a stopping time.
Then the T is reqular for M iff;

1.E[|M:|:7 < o0] < oo and
2. {M, 1<, },2, is a uniformly integrable sequence of random variables.

Moreover, condition 1. is automatically satisfied if M is L' — bounded, i.e.
if C :=sup,, E|M,| < co.

Proof. (=) If 7 is regular for M, M, € L' (P) and M, = Eg, M,. In
particular it follows that

E[|M,|: 7 < o0] < E|M,]| < co.

Moreover,
|Mn1n<'r| < |EBHMT17L<T| < ]EBn |MT‘ a.s.

from which it follows that {M,1,<.},-, is uniformly integrable.
(<= Our goal is to show {M]} ° , is uniformly integrable. We begin
with the identity;

E[|My|:|My| > a] =E[M,]: M| >a, 7 <n]
+E[|M]: M| >a, n<T].

Since (by assumption 1.) E[|M;1,;<x|] < 0o and
E[IM:]: |[M7| 2 a, 7 <n] SE[[M:lrcoo| : [Mrlrcoo| = af,

if follows that
lim supE[|M;|:|M;| >a, 7 <n]=0.

Moreover,

supE[|M]|: |M]| >a, n<7|=supE[|M, 1cr|: M 1<r| > d]
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goes to zero as n — oo by assumption 2. Hence we have shown,

lim supE[|M]]: M| >a] =0

as desired.
For the last assertion, by Corollary [19.46] M, := lim,_ .. M, a.s. and
E |Mu| < 0o. Therefore,

E[|M,|:7 < 0o] <E|M,|=E [ lim |Mm\}

< lminfE [|M,p,|] < liminf E[|M,|] < oo

wherein we have used the optional sampling theorem (M p, = Eg_., M, ) and
cJensen to conclude | M an| < Eg,., |M,]|. ]

Corollary 19.64. Suppose that M is an L' — bounded martingale and J € Br
is a bounded set, then T =inf {n : M,, ¢ J} is a regular stopping time for M.

Proof. According to Proposition it suffices to show {M,1,<;}.~
is a uniformly integrable sequence of random variables. However, if we choose
A < oo such that J C [—A, 4], since M, 1,<, € J we have |[M,;1,,«.| < A
which is sufficient to complete the proof. [

Exercise 19.6. Suppose {Mn}zozo is a square integrable martingale. Show;

LE[M2,, - M2|B,] = E [(Mn+1 — M,)? |Bn] . Conclude from this that

the Doob decomposition of M2 is of the form,
M2 =N, + A,

where
An = Z E |:<Mk - Mk,1)2 |Bk,1:| .
1<k<n
2. If we further assume that M, — My_, is independent of By_; for all
k=1,2,..., explain why,

A= > E(My— My_1)*.
1<k<n

For the next four exercises, let {Z,,},~; be a sequence of Bernoulli random
variables with P (Z,, = £1) = % and let So =0and S,, := Z1+---+Z,. Then
S becomes a martingale relative to the filtration, B,, := o (Z1,...,Z,) with
By := {0, 2} — of course S,, is the (fair) simple random walk on Z. For any
a €7, let

oq :=inf{n:S, =a}.
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Exercise 19.7. For a < 0 < b with a,b € Z, let 7 = 0, A 0p. Explain why 7
is regular for S. Use this to show P (7 = c0) = 0. Hint: make use of Remark
19.61| and the fact that |S, — Sn—1] = |Z,| =1 for all n.

Exercise 19.8. In this exercise, you are asked to give a central limit theorem
argument for the result, P (7 = co) = 0, Exercise Hints: Use the central
limit theorem to show

\/%/Rf (2) e~ /2dz > f (0) P (v = o0) (19.53)

for all bounded continuous functions, f : R — [0,00). Use this inequality to
conclude that P (7 = o0) = 0.

Exercise 19.9. Show al
a

P o) = 19.54

(on <0a) = 3 al (19.54)

and use this to conclude P (0p < 00) = 1, i.e. every b € N is almost surely
visited by S,,. (This last result also follows by the Hewitt-Savage Zero-One
Law, see Example where it is shown b is visited infinitely often.)

Hint: Using properties of martingales and Exercise [19.7, compute
lim,, 00 E [S7"?] in two different ways.

Exercise 19.10. Let 7 := 0, A 0p. In this problem you are asked to show
E[r] = |a| b with the aid of the following outline.

1. Use Exercise above to conclude N,, := S2 — n is a martingale.
2. Now show
0=ENy =EN, A, =ES?,, —E[r An]. (19.55)

TAN
3. Now use DCT and MCT along with Exercise to compute the limit
as n — oo in Eq. ((19.55)) to find

Elo, Aoy =E[7r] =b|al. (19.56)

4. By considering the limit, a — —oo in Eq. (19.56)), show E [o}] = 0.

19.7.1 More Random Walk Exercises

Suppose now that P(Z, =1)=p > % and P(Z,=-1)=q=1-p< % As
before let B, =0 (Z1,...,Z,), So=0and S,, =Z1 +---+ Z, for n € N. In
order to follow the procedures above, we start by looking for a function, ¢,
such that ¢ (S,,) is a martingale. Such a function must satisfy,

©(Sn) =Ep, 0 (Sns1) =@ (Sn+1)p+ ¢ (S —1)q,

and this then leads us to try to solve the following difference equation for (;



422 19 (Sub and Super) Martingales
v@)=pe(x+1)+qp(z—1) for all z € Z. (19.57)

Similar to the theory of second order ODE’s this equation has two linearly
independent solutions which could be found by solving Eq. with initial
conditions, ¢ (0) = 1 and ¢ (1) = 0 and then with ¢ (0) = 0 and ¢ (1) = 0
for example. Rather than doing this, motivated by second order constant
coefficient ODE’s, let us try to find solutions of the form ¢ () = A* with A
to be determined. Doing so leads to the equation, A* = pA®T! 4+ ¢gA*~ ! or
equivalently to the characteristic equation,

pA2 = A+q=0.
The solutions to this equation are

Vo lEVI=dpg 1T dp(—p)
B 2p B 2p

/AP —dprl 12 -1)
a 2p a 2p
The most general solution to Eq. (19.57)) is then given by
¢ (z)=A+Bl(a/p)".

Below we will take A = 0 and B = 1. As before let 0, =inf{n >0:S5, =a}.

={L,(1-p)/p} ={1,q9/p}.

Exercise 19.11. Let a < 0 < b and 7 := o, A 0p.

1. Apply the method in Exercise with S,, replaced by M, := (q/p)s" to
show P (1 = o0) = 0.
2. Now use the method in Exercise [19.9 to show

(a/p)’ -1 .
(a/p)" — (a/p)"

3. By letting a — —oco in Eq. (19.58)), conclude P (o, = c0) = 0.
4. By letting b — oo in Eq. (19.58)), conclude P (o, < o0) = (q/p)la‘ .

Exercise 19.12. Verify,

P(o, < op) = (19.58)

M, 5:Sn_n(p_Q)

and
N, = M2 —o*n

are martingales, where 02 =1 — (p — ¢)°.
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Exercise 19.13. Using exercise show
b[1—(q/p)] +a [(q/p)b - 1]
b a
(a/p)” — (a/p)

By considering the limit of this equation as a — —oo, show

E (04 Aop) = p—q . (19.59)

b
Bl =0

and by considering the limit as b — oo, show E [o,] = 0.

19.8 More Exercises:
Exercise 19.14. Let (M), be a martingale with My = 0 and E[M?2] <
for all n. Show that for all A > 0,

E[M?]
> < — "
P (é“n?}éan = A) = B2+ 22

oo

Hints: First show that for any ¢ > 0 that {X,, := (M, +¢)*} _ is a
submartingale and then observe,

{ max M,, 2)\} C { max X, > ()\+c)2}.
1<m<n 1<m<n

Now use Doob’ Maximal inequality to estimate the probability of the last
set and then choose ¢ so as to optimize the resulting estimate you get for
P (maxlgmgn Mm Z )\) .

Exercise 19.15. Let {Z,,},- | be independent random variables, Sy = 0 and
Spi=Z1+ -+ Zp,and f,(A):=E [ei’\zn} . Suppose Ee*n = Hgil fn(X)
converges to a continuous function, F'(\), as N — oo. Show for each A € R
that

P ( lim ¢S exists) =1 (19.60)

n—oo

Hints:

1. Show it is enough to find an & > 0 such that Eq. (19.60)) holds for |A| < e.
2. Choose € > 0 such that [F'(\) — 1| < 1/2 for [A] < e. For [A| < ¢,

£iASn

show M, (\) := sxs; is a bounded complex’| martingale relative to the
filtration, B, = o (Z1,...,Z,).

6 Please use the obvious generalization of a martingale for complex valued pro-
cesses. It will be useful to observe that the real and imaginary parts of a complex
martingales are real martingales.
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Exercise 19.16 (Continuation of Exercise [19.15)). Let {Z,},2 | be in-
dependent random variables. Prove the series, 21 Zy, converges in R a.s.
iff ngl frn (A) converges to a continuous function, F () as N — oo. Con-
clude from this that > - | Z, is a.s. convergent iff Y > | Z,, is convergent in
distribution. (See Doob [2, Chapter VII.5].)

19.9 Backwards Submartingales

In this section we will consider submartingales indexed by Z_ :=={...,—n,—n+1,..., -2,
So again we assume that we have an increasing filtration, {B, : n <0}, i.e.

-+ C B_y C B_y C By C B. As usual, we say an adapted process {X,}, -

is a submartingale (martingale) provided E [X,, — X,,|B,] > 0 (= 0) for all

m > n. Observe that EX,, > EX,, for m > n, so that EX_,, decreases as n

increases. Also observe that (X,n, X_(n=1),-+ > X1, Xo) is a “finite string”
submartingale relative to the filtration, B_,, C B_(,_1) C -+ C B_1 C Bo.

Theorem 19.65 (Backwards Submartingale Convergence). Let {B,, : n < 0}
be a reverse filtration, {X,}, <o is a backwards submartingale. Then X_o =
lim, .o X, ezists a.s. in {—co} UR and XT__ € L' (22,8, P). If we further
assume that

C:= lim EX, = inf EX, > —o0, (19.61)

n——o0o n<0

then {X,.},, <, uniformly integrability, X _o, € L* (2, B, P), andlim,,_,_ E|X,, — X_o| =
0.

Proof. The number of downcrossings of (XO,X,l,...,X_(n_l),X,n)
across [a,b], (denoted by D, (a,b)) is equal to the number of upcrossings,
(X,n,X,(n,l)7 . ,X,l,Xo) across [a, b] . Since (X,n,X,(n,l), e ,X,l,XO)
isaB_, CB_—1) C -+ CB_1 C By submartingale, we may apply Doob’s
upcrossing inequality (Theorem to find;

(b—a)E[Dy, (a,b)] <E(Xo—a), —E(X_, —a),
<E(Xo—a), <oo. (19.62)

Letting Dy, (a,b) :=1 lim,,—.o, Dy, (a,b) be the total number of downcrossing
of (Xo,X_1,...,X_p,...), using the MCT to pass to the limit in Eq. (19.62)),
we have

(b—a)E[Du (a,b)] <E(Xg—a), <oo.

In particular it follows that Dy (a,b) < oo a.s. for all a < b.

As in the proof of Corollary (making use of the obvious downcrossing
analogue of Lemma , it follows that X_ := lim,_ _o X,, exists in R
a.s. At the end of the proof, we will show that X_ ., takes values in {—oco} UR
almost surely.

~1,0}.
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Now suppose that C' > —oo. We begin by computing the Doob decom-
position of X,, as X,, = M,, + A,, with A,, being predictable, increasing and
satisfying, A_ o, = lim,,_, _, A,, = 0. If such an A is to exist, following Lemma

19.15] we should define

Ap = > E[ApX|B ).

k<n

This is a well defined increasing predictable process since that submartingale
property implies E [Ag X|Bg_1] > 0. Moreover we have

Edg =Y E[E[A,X|By )] = > E[AX]

k<0 k<0
= lim (EXo —EX_y)=EXo - inf EX,, = EX, — C < oc.

As 0 < A, < A% = Ay € L' (P), it follows that {A,}, ., is uniformly
integrable Moreover if we define M,, := X,, — A,,, then B

E[AyM|By1] = E[A,X — AyA|By_1] = E[ApX|Bp_1] — ApA =0 as.

Thus M is a martingale and therefore, M,, = E [My|B,] with My = Xo— A4y €
L' (P). An application of Proposition implies {M,}, -, is uniformly
integrable and hence X,, = M,, + A,, is uniformly integrable as well. (See
Remark for an alternate proof of the uniform integrability of X.)
Therefore X _, € L* (2,8, P) and X,, — X_., in L' (£2,B, P) as n — oo.
To finish the proof we must show, without assumptions on C' > —oo,
that X € L' (2, B, P) which will certainly imply P (X_,, = occ) = 0. To
prove this, notice that X = lim,,_, ., X; and that by Jensen’s inequality,
{X;F}°7 | is a non-negative backwards submartingale. Since inf EX;5 > 0 >
—00, it follows by what we have just proved that X*__ € L' (£2,B, P). ]

Remark 19.66. Let us give a direct proof of the fact that X is uniformly inte-
grable if C' > —oo. We begin with Jensen’s inequality;

E|X,| = 2EX;" — EX, < 2EX} —EX, < 2EX] —C =K < o0, (19.63)

which shows that {X,,} -, is L' - bounded. For uniform integrability we will
use the following identity;

E[X]:[X|>AN=E[X:X>)\-E[X:X<-)
E[X:X>\—-(EX-E[X:X>-)\)
E

[X:X>)N+E[X:X>-)\-EX.

Taking X = X,, and k > n, we find
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E[|X,|: | Xn| > A =E[X,: X, >N +E[X,: X, >-)\-EX,

<E[Xg: X, > AN+E[X): X, > -\ -EX; + (EX, —EX,)
=E[Xy: X, >N -E[X;: X, <)+ (EX, —EX,)
=E[| Xk : [Xu] 2 Al + (EX) — EX,,).

Given € > 0 we may choose k = k. < Osuch thatifn < k, 0 < EX;—EX, <e
and hence

limsupsupE[| X, | : | Xn| > Al <limsupE[|Xg| : | Xn| > A +e<e
Aloo  n<k AToo

wherein we have used Eq. 7 Chebyschev’s inequality to conclude
P(|X,] > A) < K/X and then the uniform integrability of the singleton set,
{|Xk|} € L'(£2,B,P). From this it now easily follows that {X,}, ., is a
uniformly integrable.

Corollary 19.67. Suppose 1 < p < oo and M, in Theorem s an
L? - bounded martingale. Then M, — M_., in L? (P). Moreover M_, =
E [MO|B—OO]

Proof. Since M,, = E [My|B,,] for all n, it follows by cJensen that |M,,[” <
E[|My|” |B,] for all n. By Proposition {E[|Mo|" |B,]},, <o is uniformly
integrable and so is {|M,|"}, <, - By Theorem M, — M_, a.s.. Hence
we may now apply Corollary to see that M,, — M_, in L? (P). [

Ezample 19.68 (SLLN). In this example we are going to give another proof
of the strong law of large numbers in Theorem Let {X,} 2, be iid.
random variables such that EX,, = 0 and let S_,, := X; +--- + X,, and
B_, =0 (Sn, Sn+t1,Snt2,...) so that S, is B_,, measurable for all n.

1. For any permutation o of the set {1,2,...,n},

(X1, X Sy St 1y Sngs o) 2 (Xots -y Xoms Sns St 1y Sngas -

and in particular
(X;, Sy Snits S ) 2 (X1, 80, St Snpas ... ) for all j < n.
2. By Exercise we may conclude that

E [XJ|Sn, Sn+1, Sn+2, .. } =E [X1|Sn, Sn+1, Sn+2, .. ] for all j S n.
(19.64)
3. Summing Eq. (19.64) over j =1,2,...,n gives,
S, =E [Sn|Sna Sn+17 Sn+2; . } =nk [Xl‘Snv Sn-‘rla Sn+27 i ]
from which it follows that
Sh,
Mn = ? ::E[X1|Sn,5'n+1,5n+2,...] (1965)

and hence {Mn = %Sn} is a backwards martingale.



19.10 Appendix: Some Alternate Proofs 427

4. By Theorem we know;

S
lim == = lim M,, exists a.s.
n—oo N, n—oo

5. By Kolmogorov’s zero one law (Proposition ) we know that lim,, . %‘ =
c a.s. for some constant c.

6. Equation ((19.65]) along with Proposition shows {57“ }2021 is uniformly
integrable. Therefore,

lim S"a'zs‘c:E{lim S"} = lim E{S”] =EX,

n—oo n n—oo n n— o0 n

wherein we have use Theorem [11.31]to justify the interchange of the limit
with the expectation. This shows ¢ = EXj.

We have proved the strong law of large numbers.

19.10 Appendix: Some Alternate Proofs

This section may be safely omitted.
Proof. Alternate proof of Theorem [19.36] Let A € B,. Then

N—-1
E[X: - Xo: AJ=E | > lockerAp1 X : A
k=0

I
M=

EAX :An{o <k <T}].

£
Il

1

Since A € B,, AN{o < k} € By, and since {k < 7} = {7 < k}° € By, it follows
that AN {o <k < 7} € By. Hence we know that

<
E[Ar1 X : An{oc <k <71} % 0 respectively.

and hence that -

E[X, — X, : A] % 0 respectively.

Since this true for all A € B,, Eq. (19.21)) follows. ]

Lemma 19.69. Suppose (2,B8,{B,},—,, P) is a filtered probability space, 1 <
p < 00, and let Boo := V2B, = o (U2, B,). Then US2LP (£2,B8,, P) is
dense in LP (2, B, P) .
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Proof. Let M, := LP (£2,B,, P), then M, is an increasing sequence of
closed subspaces of My, = LP ({2, B, P). Further let A be the algebra of
functions consisting of those f € U2, M, such that f is bounded. As a
consequence of the density Theorem we know that A and hence UjZ; M,
is dense in Mo, = L? (§2, By, P). This completes the proof. However for the
readers convenience let us quickly review the proof of Theorem in this
context.

Let H denote those bounded B,, — measurable functions, f : 2 — R, for
which there exists {¢, },-; C A such that lim,, . ||f — @nllo(py = 0. A rou-
tine check shows H is a subspace of the bounded B,, —measurable R — valued
functions on 2,1 € H, A C H and H is closed under bounded convergence. To
verify the latter assertion, suppose f, € H and f, — f boundedly. Then, by
the dominated (or bounded) convergence theorem, limy, oo [|(f — fo)llo(p) =

OE| We may now choose ¢,, € A such that |l¢n — fullps(p) < 1 then

lim sup ||f - @nHLP(p) Shmnsugon(f_ fn)”Lp(P)

n—oo

+ hmnsggo 1fn = enll oy =0,
which implies f € H.
An application of Dynkin’s Multiplicative System Theorem 0.3 now shows
H contains all bounded o (A) = B, — measurable functions on 2. Since for any
feLP(£2,B,P), flif<n € H there exists ¢, € A such that || f, —pnll, <
n~!. Using the DCT we know that f,, — f in L? and therefore by Minikowski’s
inequality it follows that ¢,, — f in LP. [ ]

Theorem 19.70. Suppose (2,8,{B,},—,.P) is a filtered probability space,
1 <p < oo, and let By := V22 1B, = 0 (UX2B,). Then for every X €
Lr (2,B,P), X, = E[X|B,] is a martingale and X,, — Xo := E[X|Bo] in
L? (2,Bs, P) as n — oo.

Proof. We have already seen in Example that X,, = E[X|B,] is
always a martingale. Since conditional expectation is a contraction on LP it
follows that E|X,,|” <E|X|” < oo for all n € NU{oo}. So to finish the proof
we need to show X,, — X in LP (£2,B, P) as n — oo.

Let M,, := LP (2,8, P) and M, = L? (2, B, P). If X € U2 | M,,, then
X, = X for all sufficiently large n and for n = co. Now suppose that X € M,
and Y € U2 M,,. Then

IEs. X — EBnXHp < |Ep_ X — EBOOYHp +||Es Y — EBnY||p + |Eg, Y — EBnX”p
<2[X =Y, +|Es. Y - Eg, Y],
and hence
limsup [[Eg X —Ep, X[, <2[|X - Y|,.

" Tt is at this point that the proof would break down if p = oo.
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Using the density Lemma [T9.69 we may choose Y € U5 M,, as close to X €
Mo as we please and therefore it follows that limsup,, ., [Es.. X — Eg, X||, =
0.

For general X € LP (§2, B, P) it suffices to observe that X, := E [X|Bx] €
L? (2, B, P) and by the tower property of conditional expectations,

E[Xoo|By] = E[E[X|Buo] |By] = E [X|B,] = X,n.

So again X,, — X in L? as desired. ]
We are now ready to prove the converse of Theorem [19.70

Theorem 19.71. Suppose (2,B8,{B,},—,.P) is a filtered probability space,
1 <p < o0, Boo := V321 B, := 0 (U321B,), and {X,} >~ C LP(£2,B,P)
is a martingale. Further assume that sup,, || X, |, < oo and that {X,},~, is
uniformly integrable if p = 1. Then there exists Xo € LP (£2, B, P) such that
X, = E[X|Bo|. Moreover by Theorem we know that X,, — X in
L? (2, B, P) asn — oo and hence X is uniquely determined by {X, 1}, .

Proof. By Theorems [16.19| and [16.21} there exists X, € L? (§2, By, P)
and a subsequence, Y, = X,,, such that

lim E[Yih] = E[Xooh] for all h € L9 (2, Boo, P)

k—oo

where ¢ :=p(p — 1)71 . Using the martingale property, if h € (B,,), for some
n, it follows that E [Y,h] = E [X,,h] for all large k and therefore that

E[Xooh] = E[X,h] for all h € (B,),.
This implies that X,, = E [X|B,] as desired. |

Theorem 19.72 (Almost sure convergence). Suppose (12,B,{B,} —, , P)
is a filtered probability space, 1 < p < oo, and let Bs = VL B, =
o (U2 B,). Then for every X € L'(Q2,B,P), the martingale, X, =
E[X|B,], converges almost surely to Xoo := E[X|Bo] .

Before starting the proof, recall from Proposition if {an},., and
{b,,},2_, are two bounded sequences, then

limsup (an, + b,) — liminf (a,, + b,)

n— o0 n—00

<limsupa, + limsup b,, — (lim inf a,, 4+ lim inf bn)

n—oo n—oo n—oo n—oo
=limsupa, — liminf a,, + limsup b,, — liminf b,,.  (19.66)
—00 n—oo n—oo n— oo

Proof. Since

Xn=E [Xlgn] =E [E [X|B<>O] |Bn] =E [XOO|Bn] )
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there is no loss in generality in assuming X = X.. If X € M, =
LY (02,B,,P), then X,, = X, as. for all m > n and hence X,, — X
a.s. Therefore the theorem is valid for any X in the dense (by Lemma
of L' (2, Bs, P).

For general X € L' (£2,B,P), let Y; € UM, such that V; — X €
L' (2,B, P) and let Yj,, := E[Y;|B,] and X,, := E[X|B,]. We know that
Y;n — Yj o as. for each j € N and our goal is to show X,, — X as.
By Doob’s inequality in Corollary and the L' - contraction property of

conditional expectation we know that
. 1 1
P(X} >a) < ~E|Xy| < ~E[X]|
a a
and so passing to the limit as N — oo we learn that

1
P (sup | X | > a) < EE |X| for all a > 0. (19.67)

Letting a 1 oo then shows P (sup,, | X,,| = c0) = 0 and hence sup,, | X,| < o0
a.s. Hence we may use Eq. (19.66) with a,, = X,, =Y}, and b,, :== Y}, to find

D = limsup X,, — liminf X,

n— oo n—00

< limsup a,, — liminf a,, + lim sup b,, — lim inf b,,
n—oo n—oo n—oo n— o0

= limsupa,, — liminf a,, < 2sup|a,|
n— o0 n—00 n

=2sup|X,, — Yj.l,
n

wherein we have used limsup,,_, b, — liminf, . b, = 0 a.s. since Y;, —
Y oo a.s.

We now apply Doob’s inequality one more time, i.e. use Eq. with
Xn— X, —Y,,and X — X -7, to conclude,

2
P(Dza)SP(supan—lfj,nlz;> < -E[X —Yj[—0as j— oo.
n a

Since a > 0 is arbitrary here, it follows that D = 0 a.s., i.e. limsup,, ,.o X,, =
liminf, .. X, and hence lim, .., X, exists in R almost surely. Since we
already know that X, — X, in L!'(£2,B,P), we may conclude that
lim, 00 Xy = Xoo a.s. [ |
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Exercise 20.1. Let S,, be the total assets of an insurance company in year
n. Assume that for all n, we have S,, = S,,_1 + £,, where &, = ¢ — Z,, and
Z4,Zs,... are ii.d. random variables having the normal distribution with
mean u < c and variance o2. (The number c is to be interpreted as the yearly
premium.) Let R be the event that S, < 0 for some n. Show that if Sy > 0 is
constant, then

P(Ruin) = P(R) < e~ 2(c~m)S0/o"

Solution to Exercise 1} . Let us first fine A such that 1 = E [eAE"] . To
do this let N be a standard normal random variable in which case,

1 sgt E [e)\fn] —F |:e>\(C—/L—O'N):| — e)\(c—p.)e(o2k2)/2

)

leads to the equation for A;
2
%)\Q—F)\(c—u) =0.

Hence we should take A = —2(c— p) /02 — the other solution, A\ = 0, is
uninteresting. Since E [e)‘f"} =1, we know from Example [19.12| that

Y, = e% H e = exp (AS,)

j=1

is a non-negative B,, = 0(Z1,...,Z,) — martingale. By the super-martingale
or the sub-martingale convergence theorem, it follows that lim, .., Y, = Yoo
exists and 7 is any stopping time,
EY, =E lim Yy, < liminfEY,, = EYy = e %
n—oo n—oo
as follows from Fatou’s Lemma and the optional sampling theorem.

Let us now take 7 = inf{n : S,, < 0} and observe that S; < 0 on R =
{7 < c0}. Because A < 0, it follows that Y; = e** > 1 on R and therefore,

P(R) < EY, < ¢=*$0 = g=2(c-mSo/o”.
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20.1 A Polya Urn Model

Suppose that an urn contains r red balls and g green balls. At each time we
draw a ball out, then replace it and add ¢ more balls of the color drawn. Let
(7, gn) be the number of red and green balls in the earn at time n. Then we
have

P((TnJrlagn) = (T +c, g) | (T'rugn) = (7’79)) = r+g and
P((rns1,9n) = (.9 ) | (ra 90) = (r.9)) = .
Let us observe that 7, + g, = 70 + go + nc and hence
X, = O 9
Tn + gn To + go + nc
We now claim that {X,,} -, is a martingale. Indeed,
Tn dn gn gn +cC

E [Xn+1|Xn] =

Tn+gn T’n+gn+c Tn+gn rn+gn+c
gTL .Tn+gn+6:
Tm+9n Tn+gntc

ne

Since X,, > 0, we know that X, := lim, ., X, exists a.s. Our next goal is
to prove the following theorem.

Theorem 20.1. Let v := g/c and p := r/c and P o X' be the law of Xo.
Then Xoo is distributed according to the beta distribution on [0,1] with
parameters, vy, p, i.e.

I'(p+)
I'(p) I (v)

Proof. We will begin by computing the distribution of X,,. As an example,
the probability of drawing 3 greens and then 2 reds is

d(PoX") (dz) = 27 (1 —z) " dx for z €[0,1].

g g+c g+ 2c r r+c
r+g r+g+c r+g+2 r+g+3c r+g+4c

More generally, the probability of first drawing m greens and then n —m reds
is
9 (gte) (gt (=1 T ()t (n=m—1)0
(rtg)-(r+g+e)---(r+g+n-1¢ '

Since this is the same probability for any on of the (:1) — ways of drawing m
greens and n — m reds in n draws we have
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P (Draw m — greens)

_ <n>g~(g+0)~-~--(9+(m1)0)-7"-(7"+0) ----- (r+(n-—m-1)c
m (r+g9)-(r+g+c)----(r+g+n-1)c

_ <n>v-(7+1)-----(7+(m—1))-p~(p+1)--~--(p+(n—m—1)).
m (pt7)-(pty+1)---- (pty+(n—1)

(20.1)

Before going to the general case let us warm up with the special case, g =r =
¢ = 1. In this case Eq. (20.1) becomes,

1-2--com-1-2+--. - 1
P (Draw m — greens) = " m (n = m) = .
m 2:3----- (n+1) n+1
On the set, {Draw m — greens}, we have X,, = ?TZ and hence it follows that

(X)) =Y f (552) P raw o - s

= 24n
- 1+m 1 !

= [ - d
mz_of<2+n>n+1 /Of(x) v

from which it follows that X, has the uniform distribution on [0, 1].
For the general case, recall from Example that n! = I'(n 4+ 1) where

)= / '~ te " dx for t > 0.
[0,00)

Moreover we have

d
rit+1)= / e Taldr = 7/ —e . gldr = / e . —a'dx
[0,00) [0,00) 4 [0,00) dx

:t/ e @ xt dr =t (t)
[0,00)

and therefore for m € N,
'lz+m)=@@+m-1)(z+m—-2)...(x+ 1)zl (z). (20.2)
Another key fact about the I' function is Sterling’s formula which states
I (x) = V2r2" Y27 [1 +r (2)] (20.3)

where |r (2)] — 0 as z — 0.
On the set, {Draw m — greens} , we have

g+ mc . Y+m .

n — = = Tm,

r+g+nc p+y+n
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where p :=r/c and v := g/c. For later notice that A,,x = Wﬁ.
Using this notation we may rewrite Eq. (20.1]) as
P (Draw m — greens)
L(y+m)  IL(ptn—m)
_ (MY _ T I'(p)
“\m L(pty+n)
I(p+7)
_I'(p+7) I'(n+1) F'(y+m)I'(p+n—m)
F(p)I'(v) I'(m+1)I'(n—m+1) I'(p+~v+n)

Now by Stirling’s formula,

C(y+m)  (y+m)"" e Grm 1 4p (y 4 m)]

Fm+1)  (14+m)™ Y2 e=0nt) [14r (14 m)]

_ v-1 (Y Etm e (- ltry+m)
(v+m) e .
m+1 1+r(m+1)

— (o (L

We will keep m fairly large, so that

(i) e (e (1150
= exp ((m +1/2) (v/m — 1/m)) = &1,

1+r(m+1)

Hence we have
I'(y+m)

I'(m+1)
Similarly, keeping n — m fairly large, we also have
I'(p+n—m)
I'n—m+1)
I'(p+v+n)
I'(n+1)
Combining these estimates with Eq. (20.4) gives,

= (y+m) .

=(p+n—m)’" and

=(p+y+n)

P (Draw m — greens)

_T(p+y) (r+m) ' (ptn-—m)!

T I(p) I () (p+y+n) !
-1 —m p—1
_rpey () (85
I'(p) I (7) (p+~v+n)"!
_ I'(p+v)

1 —g,,) ! z.
STy A

. (20.4)

m+1/2
1+7/m) Y e—(7—1)1+r(7+m)
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Therefore it follows that

E[f (X)) = lim E[f (Xn)]

n—oo

:7EH;;§%f(xm);QthZ%~(anﬁbl-u-@nr—1Amx

/Olf(w)u(fv)dx

where
— Mggvfl —r p—1
wy_FWFW) (A=

20.2 Galton Watson Branching Process

See p. 245 —249 in Durrett.

Let {&" : i,n > 0} be a sequence of i.i.d. non-negative integer valued ran-
dom variables. Suppose that Z,, is the number of people in the n'" — generation
and &L g:l are the number of off spring of the Z,, people of generation
n. Then

PR

represents the number of people present in generation, n + 1. We complete
the description of the process, Z, by setting Zp =1 and Z,,41 =0if Z, =0,
i.e. once the population dies out it remains extinct forever after. The process
{Zn},,>0 is called a Galton-Watson process.

Let & 4 E", p := P (£ = k) be the off-spring distribution,

pi=EE=) kp,

k=0

and
By=0c(":i>1and 1 <m <n).

i

Ontheset {Z, =k}, Zni1 = &+ 4+&2 1! and therefore, on {Z, = k},

E[Zp|By] =E [T+ + B =E [T + - + ]
= pk = pZz,.

Since this is true for all &, it follows that
E[Zp11|Bn] = 12, a.s. (20.5)

So we have shown, M,, := Z,,/u™ is a martingale in the extended sense. From
this observation it follows that
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EZ,

1=EMy =EM, = ——,
ie. EZ, = pu™ < oo.
Theorem 20.2. If y < 1, then, almost surely, Z, =0 a.a.

Proof. When p < 1, we have
E EOO Dy = EOO M”:L<oo
n=0 n=0
and therefore that

oo
Z Zp < 00 a.8.
n=0

But this can only happen if Z,, =0 a.a. ]

Theorem 20.3. If u = 1 and P (&* =1) < 1, then again, almost surely,
Z, =0 a.a.

Proof. In this case {Zn}fbo=1 is a martingale which, being positive, is L' —
bounded. Therefore, lim,, .., Z, =: Z., exists. Because Z,, is integer valued,
it must happen that Z,, = Z, a.a. If £ € N, Since

{Zo=k}={Z,=kas}=UF_1{Z,=kforalln> N},
we have
P(Zoo:k):]\}im P(Z,=kforaln>N).
However,
P(Z,=kforaln>N)=P (' + -+ & =k foralln > N)
=[P+ + &G =R =0,
because,
P+ 4G =h <L

(Note that the only way P (§ +--- + &7 = k) = 1 would be for P ({! =1),
but we assumed P (£ = 1) < 1.) Therefore we have shown P (Z, =k) =0
for all £ > 0 and therefore, Z,, = 0 a.s. and hence almost surely, Z,, = 0 for
a.a. n. |

Remark 20.4. By the way, the branching process, {Z,} -, with g = 1 and
P (£ =1) <1 gives a nice example of a non regular martingale. Indeed, if Z
were regular, we would have

Z, =E [W}Enm Zm|8n} —E[0|B,] =0

which is clearly false.
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We now wish to consider the case where p := E [£]"] > 1. Let £ 4 & and

for s € (—1,00), let
p(s) =E[s] = Zpksk.
k>0

Then if |s| < 1, we have

’s):kak.s and ¢ ( Zk — 1) ppst2

k>0 k>0
with
li -E
im ' (s ;kpk [€] =: p and
0
lim" (s) =Y k(k—1)pr =E[£ (¢~ 1)].
sT1 k>0

Lemma 20.5. If u = ¢’ (1) > 1, there exists a unique p < 1 so that ¢ (p) = p.
Proof. See Figure below.

05T

Fig. 20.1. Figure associated to ¢ (s) = % (1+ 3s + 3s” + s”) which is relevant for
Exercise 3.13 of Durrett on p. 249. In this case p 2 0.236 07.

Theorem 20.6 (See Durrett, p. 247-248.). If u > 1, then
P ({Z, =0 for some n}) = p.

Proof. Since {Z,, =0} C {Z,+1 =0}, it follows that {Z,, =0} 1
{Z,, = 0 for some n} and therefore if
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then
P ({Z, =0 for some n}) = lim 6,,.

We now show; 6,, = ¢ (01,,—1) . To see this, conditioned on the set {Z; = k},
Zm = 0 iff all k£ — families die out in the remaining m —1 time units. Since each
family evolves independently, the probabilityﬂ of this event is 6%, ;. Combin-
ing this with, P ({Z, = k}) = P ({] = k) = py, allows us to conclude,

O =P (Zn =0)=> P(Zn =071 =k)
k=0

=3 P(Zn=01Z1=k)P(Z1=k)=> ppbl,_ =0 (0m1).
0 k=0

It is now easy to see that 6,,, T p as m | oo, again see Figure [20.2]

|
0 : — i é :
0 0.05 0.1 0.15 2 0.25 03
Co 9} 9[2/ O ’

X

Fig. 20.2. The graphical interpretation of 6,, = ¢ (6:,—1) starting with 6y = 0.

20.3 Kakutani’s Theorem

Proposition 20.7. Suppose that i and v are o — finite positive measures on
(X, M), v = v, + vs is the Lebesque decomposition of v relative to u, and

! The argument could use a little shoring up here.
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p: X —[0,00) is a measurable function such that dv, = pdy so that
dv = dv, + dvs = pdp + dvs.

If g : X — [0,00) is another measurable function such that gdp < dv, (i.e.
[ 9dp < v (B) for all B € M), then g < p, i — a.e.

Proof. Let A € M be chosen so that 1 (A°) = 0 and v, (A) = 0. Then,
for all B € M,

/gdu=/ ngSV(BﬂA)=/ pdu=/pdu.
B BNA BNA B
So by the comparison Lemma g <p. [

Ezample 20.8. This example generalizes Example Suppose (2, B,{B,},—,,P)
is a filtered probability space and @ is any another probability measure on
(2, B) . By the Raydon-Nikodym Theorem for each n € N we may write

dQ|Bn = XndP|Bn +dR,

where R, is a measure on ({2,5,) which is singular relative to P|g, and
0 < X, € L'(2,B,,,P). In this case the most we can say in general is that
X = {X,}, <. is a positive supermartingale. To verify this assertion, for
B € B, and n < m < oo, we have

Q(B)=E[Xp: B+ Ry (B) >E[X,n : B| =E[Eg, (X,n) : B

from which it follows that Eg, (X,,) - dP|p, < dQ

sition [20.7]

B, - S0 according to Propo-

Eg, (Xm) < X, (P —as.) foralln <m < 0. (20.6)

Proposition 20.9. Keeping the assumptions and notation used in Example
[20:8 then lim,, oo X, = Xoo a.s. and in particular the Lebesgue decomposi-
tion of Q|p., relative to P|p., may be written as

Qs = (nli_)ngo Xn) -dP|s. + dRo. (20.7)

Proof. By Example[20.8] we know that {X,,} ~, is a positive supermartin-
gale and by letting m = oo in Eq. (20.6]), we know

Ep, Xoo < X, a.s. (20.8)

By the supermartingale convergence Corollary [[9.54] or by the submartingale
convergence Corollary applied to —X,, we know that Xg := lim, . Xp
exists almost surely. From the regular martingale convergence Theorem
we also know that lim, .. Eg, Xoo = X a.s. as well. So passing to the limit
in Eq. implies X, < X a.s.
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To prove the reverse inequality, Xg < X, a.s., let B € B, and n > m.
Then

Q(B) =E[X, : B+ R, (B) > E[X,, : B]

and so by Fatou’s lemma,

E[Xo: B] = E |liminf X, : B} <liminfE[X, : B] < Q(B). (20.9)
Since m € N was arbitrary, we have proved E[Xy : B] < Q (B) for all B in
the algebra, A := U,enBinm- As a consequence of the regularity Theorem [5.10)

or of the monotone class Lemma or of Theorenf] it follows that
E[Xo:B] < Q(B) for all B € 0 (A) = Bx. An application of Proposition
[20.7] then implies Xy < X a.s. [ ]

Theorem 20.10. Let (2,B8,{B,},-,.P) be a filtered probability space and
Q be a probability measure on (§2,B) such that Q|g, < Plg, for allm € N.
Let M, = Z%;Z: be a version of the Raydon-Nikodym derivative of Q|p,
relative to P|g,, see Theorem . Recall from E:zrample that {M,} >,

s a positive martingale and let Mo, = lim,, o, M,, which exists a.s. Then the
following are equivalent;

1. Q|s.,. < P‘Bw’

2. EpM,, =1,

3. M,, —» My, in L* (P), and

4. {M,},°_, is uniformly integrable.

Proof. Recall from Proposition[20.9] (where X, is now M,,) that in general,
dQ|B°C =My - CZP|BOo + dRs (20.10)
where R is singular relative to P|g_ . Therefore, Q|p., <« P|p_, iff Roo =0

which happens iff Ry, (£2) =0, i.e. iff

1:@(9):/ My - dP|s.. = EpM,..
(%}

This proves the equivalence of items 1. and 2. If item 2. holds, then M,, — M,
by the DCT, Corollary with g, = fn = M,, and g = f = M and so
item 3. holds. The implication of 3. = 2. is easy and the equivalence of
items 3. and 4. follows from Theorem [IT.31] [

2 This theorem implies that for B € B,

E[Xo:B]=inf{E[X,: A]: A€ A,} and
Q(B)=inf{Q(A): Aec A;}

and since, by MCT, E [X, : A] < Q (A) for all A € A, it follows that Eq. (20.9)
holds for all B € B.
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Remark 20.11. Recall from Exercise that if 0 < a, <1, [[02, @, > 0 iff
S (1—ap) < oco. Indeed, [[)7, an, > 0 iff

n=1
—00 < In (ﬁ an> = ilnan —
n=1

n=1

oo

In(l—(1-ay,))

n=

and > 2 In(1—(1-a,)) > —oo iff Y 2 (1—a,) < oo. Recall that
In(1-(1-ay))=(1-a,) for a, near 1.

Theorem 20.12 (Kakutani’s Theorem). Let {X,} -, be independent

n=1
non-negative random variables with EX,, = 1 for all n. Further, let My = 1
and M, = X; - X5 ---- X, — a martingale relative to the filtration,

B, =0 (X1,...,X,) as was shown in Example|19.19 According to Corollary
My := lim,, .o M, exists a.s. and EM,, < 1. The following state-
ments are equivalent;

1LEM,, =1,
2. M,, - My, in L' (£2,B, P),

3. {M,} ", is uniformly integrable,
4 112 E(VX,) > 0,

55 (1 E (V) <

Moreover, if any one, and hence all of the above statements, fails to hold,

then P (M =0) = 1.

Proof. If a, := E (vX,), then 0 < a, and a2 < EX,, = 1 with equality
iff X,, =1 a.s. So Remark gives the equivalence of items 4. and 5.

The equivalence of items 1., 2. and 3. follow by the same techniques used
in the proof of Theorem above. We will now complete the proof by
showing 4. = 3. and not(4.) = P (My = 0) = 1 which clearly implies
not(1.) . For both pars of the argument, let Ng = 1 and N,, be the martingale
(again see Example defined by

(20.11)

Further observe that, in all cases, Noo = lim,_,o, N, exists in [0,00) u — a.s.,

see Corollary [19.46] or Corollary [19.54]

4. — 3. Since

n

X M,
2 k n
N2 =]] =,
k=1 k (ITe=1 ax)
EM, 1 1
E[N:] = = < < 00,

(Mroyan)®  (Mp—yan)® ([T ar)?

and hence {N,,} 7, is bounded in L?. Therefore, using
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n 2
_m:<H%>MkN5 (20.12)
k=1
and Doob’s inequality in Corollary we find

E [sup Mn] =E [sup Ng} <4supE [N?] < oo. (20.13)

Equation Eq. (20.13) certainly implies {M,} , is uniformly integrable, see
Proposition [11.29
Not(4.) — P (M. =0) =1 If

[[# (V) = i ITex =0
k=1

n=1

we may pass to the limit in Eq. (20.12)) to find

n 2 2
My = lim M, = lim | (] Wg:ﬁ@mM):M&
k=1

n—oo n—o0 n—oo

Definition 20.13. Two probability measures, p and v on a measure space,
(2, B) are said to be equivalent (written p ~ v) if p K v and v < p, i.e.
if p and v are absolutely continuous relative to one another. The Hellinger
integral of 1 and v is defined as

H (u,v) ::/ \/d—u~d—yd>\: “/ Vp-dv” (20.14)
o VdXh dX Q

where X is any measure (for example A = 3 (u+v) would work) on (2,B)
such that there exists, fil—‘)f and % in L' (£2,B,)\) such that du = %d)\ and
dv = 24X

Proposition 20.14. The Hellinger integral, H (u,v) , of two probability mea-
sures, u and v, is well defined. Moreover H (u,v) satisfies;
1.0 < H (p,v) <1,

2.H(p,v)=1iff p=v,
3. H(u,v)=04f p L v and
4. If p ~ v or more generally if v < p, then H (u,v) > 0.

Furthermorﬂ

n

}{th):inf{E:\/u(Aﬁu(Aﬁ:S?::iif% muinelw}. (20.15)

i=1

3 This statement and its proof may be safely omitted.
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Proof. Let ) be another measure such that p,v << X and let v := X + \.
Then N, A < 7 and therefore, d\ = pdy for some p > 0. Moreover, du =
%\‘d)\ = %pd’y and dv = g—f\d)\ = %pd’y and hence

/ dp dv _/‘/di.@d_/wdﬁ.dld
Nay T N T N a T a
dyp  dv
= [ % D
/Q axdx

By symmetry we also have

dp dv o, _ [ [dp dv _/ dp  dv
ax aw _/Q i T NV ™

which shows H (u, ) is well defined.

Items 1. and 2. are both an easy consequence of the Schwarz inequality and
its converse. For item 3., if H (i, v) = 0, then Z—’; . (%’\ =0, A — a.e.. Therefore,
if we let

dp
A=49—+#0
then % — 1Ad—“ — X —ae. and #14. = 9 — X — ae. Hence it follows that
ax ax dx dx

p(A°) =0 and v (A) =0 and hence p L v.
If v ~ p and in particular, v < u, then

dv du / dv
——dp= [ \[=—dp.
dudn™ = o\ du

For sake of contradiction, if H (u,v) = 0 then 4/ g—l’: = 0 and hence g—z =0, pu—
a.e. The later would imply v = 0 which is impossible. Therefore, H (i, v) > 0
if v < p. The last statement is left to the reader as Exercise [20.3 ]

Exercise 20.2. Find a counter example to the statement that H (u,v) > 0
implies v < p.

Exercise 20.3. Prove Eq. (20.15)).

Corollary 20.15 (Kakutani [6]). Let 2 = RN Y, (w) = w,, for allw €
and n € N; and B := Boo = 0 (Y, : n € N) be the product o — algebra on {2.
Further, let p:= Q52 1y, and v := @22 vy, be product measures on (§2, Bso)
associated to two sequences of probability measures, {pn}, -, and {vy}oo,

on (R,Bgr), see Theorem (take ju := Po (Y1,Ys,...)" ). Let us further
assume that v, < py for all n so that

dvy,
0 < H (i, Vn :/H—d,ungl.
( ) R dum

Then precisely one of the two cases below hold;
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1.5 (1= H (pn, v)) < 0o which happens iff [17—; H (pn,vn) > 0 which
happens iff v < p

or
2.5 (1= H (ptn, ) = 00 which happens iff [1,—, H (pin,vn) = 0 which
happens iff p L v.

In case 1. where v < . we have

dv = dv,
-— = — (Y, -a.s. 1

n=1

and in all cases we have
H(p,v) = H H (pn, vn) -
n=1

Proof. Let P=y, Q=v, B, :=0 (Y1,...,Y,), X, := & (V,), and

T dpg

_ dn
dpuy

dvn

M, = X;...Xn
1 djin

(1) (Ya).
If f:R™ — R is a bounded measurable function, then

E,(f (Y1,...,Y,)) = - F, -y yn)dvr (1) .. dvy, (yn)

diy dv,,
= e Un) == (1) - 2 () d o dun (yn
Rnf (1 Yn) e (y1) " (Yn) dpy (Y1) - - - dpin (Yn)
duy dvy,
=E Vi, Vo) 2 (V1) ... =2 (Y,
o 2w )

=E,[f (Y1,...,Y,) M,]
from which it follows that

dV|Bn = Mndu

B+

Hence by Theorem [20.10), M., := lim,,_. M, exists a.s. and the Lebesgue
decomposition of v is given by

dv = Myodp + dR

where R, L p. Moreover v < u iff Ry, = 0 which happens iff EM,, = 1 and
v L piff Ry = 0 which happens iff M, = 0. From Theorem

o oo d n o0
E, M =10 < [[E, (VX,) = H/ ﬁdun =TT H (o va)
n=1 R n n=1

n=1

and in this case
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s dyn
dv = Myodp = HXk . H d,u du.
k=1 n

On the other hand, if

ﬁ E, (x/)Tn) = ﬁ H (pin, vy) = 0,
n=1 n=1

Theorem [20.12] implies M, = 0, p — a.s. in which case Theorem [20.10|implies
vl1l .

(The rest of the argument may be safely omitted.) For the last assertion,
if T2, H (ftn, ) = 0 then p L v and hence H (u,v) = 0. Conversely if
[102, H (tn,vn) >0, then M,, — My in L' (1) and therefore

By || V3% - VI | < B, [| V3T - V3T | V3T + VT |
=E,[|M, — M| — 0 asn— oo.

Since dv = My,dp in this case, it follows that

Example 20.16. Suppose that v, = d§; for all n and p,, = (1 — pn) 8o + p2d1
with p, € (0,1). Then v,, < u, with

dv,
/m 1 -2

H (pin,vn) = / \ Lypn2dpn = \/pn’ - i = pn.
R

So in this case v < p iff Y07 | (1 —p,) < oo. Observe that u is never abso-
lutely continuous relative to v.

and

On the other hand; if we further assume in Corollary that p, ~ vy,
then either; p ~ v or u L v depending on whether []°7, H (un,v,) > 0 or
[1,2, H (ptn, vs) = 0 respectively.

For broad generalizations of the results in this section, see Chapter IV
of @] or [B]. In the next group of problems you will be given probability
measures, [, and v, on R and you will be asked to decide if p = ®9%;
and v 1= ®5L v, are equivalent. For the solutions of these problems you will
want to make use of the following Gaussian integral formula;
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2 2
/exp (—%xQ—FbJ;) dm:/exp (—g (J;— Z) +2a> dr
R R
—e%/ex (—gx2> dx—\/Q—ﬂeg%
o R P 2 o a

which is valide for all @ > 0 and b € R.

Exercise 20.4 (A Discrete Cameron-Martin Theorem). Suppose t > 0,

{a,} C R, du, (z) = \/%e_”’z/ztdx and dv, (z) = \/%e—(a%an)zmtdx Show

po~viff Y07 al < oo

Exercise 20.5. Suppose s,t > 0, {a,} C R, du, () = ﬁe’zg/%dx and
dvy, (x) = ﬁe_(“‘“")?/%dm. Show p L v if s # ¢.

Exercise 20.6. Suppose {t,} C (0,00), du,(z) = \/%6_7”2/2(1:3 and
dv, (z) = \/éritne_'”?/m”dx. If 5% | (t, — 1)* < 00 then p ~ v.

20.3.1 For the Future

See Section 15 on p.153 of Williams for more applications.
Exchangeable Random Variables, see Durrett and Fitzsimmons notes.
Kolmogorov’s 0-1 law, see p. 148 of Roger and Williams, Volume I.
Relationships to Markov’ chains.

Random walk applications in Resnick

Option Pricing schemes.

A
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Gaussian Random Vectors

Definition 21.1. A random variable, Y : 2 — R is said to be Gaussian if

; 1
EeY = exp (—2)\2 Var (Y) + MEY)

for all A € R.

Definition 21.2. A random vector, X : 2 — RY, is said to be Gaussian
if - X is a Gaussian random variable for all A\ € RN. Equivalently put,

X : 2 — RY is Gaussian provided
) 1
E [eMX] = exp (—2 Var (A - X) +iE (A - X)) VAeRN.

Definition 21.3. The mean and the covariance matrix
C1 Q11 ... Qin
c=|: and Q) = - :
CN QN1 ... QNN

of a random vector, X : 2 — RY, are defined by

C; = E [X7] and Qij := Cov (X“XJ) =E [(Xl - Ci) (XJ — Cj)] .

We will abbreviate Eq. (21.2)) by writing,

c::EXandQ:E[(X—C)(X—C)H};

(21.1)

(21.3)

where [EA];; := EA;;, when A : 2 — R™*" is a random matrix. With this

notation we have

Var(A.X):E[(A-(X_c))ﬂ :E[A.(X_c)(x—c)m} = X-Q\

or alternatively, if you prefer,

Var (A X) = Cov [ > XX, > NX; | = D Mid;Cov (X, X;) = QA+ A
i=1 j=1

ij=1
Therefore Eq. (21.1)) becomes,

~ 1
EeMX = exp <2Q)\ A+ c> .

(21.4)
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Definition 21.4. Given a Gaussian random wvector, X, we call the pair,
(Q,c) = (cov. matriz, mean), the characteristics of X. We will also ab-

breviate this by writing X N (Q,c).

Ezxample 21.5. Suppose {Xi}i]il are i.i.d. standard normal random variables,
then X := (Xq,..., X

~)" is Gaussian with characteristics, (7,0). Indeed,

‘ L e 1

E [e“\'X} = HE [e”‘f'xﬂ = H e 2N = exp <2)\ . A) .
j=1 j=1

Lemma 21.6. If X € RY is a Gaussian random vector with characteristics,
(Q,c), A: RN — RM s q linear transformation (i.e. a M x N matriz), and
b e RM then AX +b is a Gaussian random vector in RM with characteristics,
(AQA®™ b+ Ac), ie. if X N (Q,c) then AX +b N (AQA®™ b+ Ac). In
particular if X £ N (1,0), then AX +b iN (AA™ D).

Proof. The result is a consequence of the following computation;

E [ez‘X(AX-&-b)} — iNbR [eiA“XX} — e exp ( QAN - AT\ 4 i AT c)

1
2
1
= exp (—QAQA“)\ A+ Ac+ia- b) .

Remark 21.7. Recall that if @ is a real symmetric NV x N matrix, then the
spectral theorem asserts there exists an orthonormal basis, {u}j\]:1 , such that
Qu; = Aju; for some A\; € R. Moreover, A; > 0 for all j is equivalent to
@ being non-negative. Hence if @ > 0 and f : {}\;:j=1,2,...,N} — R,
we may define f (Q) to be the unique linear transformation on RY such that
Q) uj = Ajuy.

Ezample 21.8. When Q > 0 and f () := /z, we write Q*/2 or \/Q for f (Q).
Notice that Q72 > 0 and Q = Q'/2Q"/2.

Ezample 21.9. When (@ is symmetric and

1/zifx#0
f(x):{ 0 ifz=0

we will denote f(Q) by Q1. As the notation suggests, f (Q) is the inverse
of @ when @ is invertible which happens iff \; # 0 for all . When @ is not
invertible,

Q7' = 1(Q) = Qb P (21.5)

where P : RN — R be orthogonal projection onto the Ran (Q). Observe
that P = ¢ (Q) where g (z) = 1,40.
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Lemma 21.10. For any Q > 0 we can find a matriz, A, such that Q = AA®.
In fact it suffices to take A = QY/2.

Corollary 21.11. Given a N x N symmetric non-negative matriz, Q, and a
point, c € RN, there exists a Gaussian random vector, X, with characteristics,
(Q,¢). In particular, the laws of Gaussian random vectors (called Gaussian
measures) are in one to one correspondence with pairs, (Q,c), where Q >0
and c € RN,

Proof. By Example there exists a Gaussian random vector, Y : 2 —
RY such that Y £ N (1,0). Then according to Lemma we may take

X =QY* +e¢ (21.6)
[
Proposition 21.12. Suppose X N (Q,c) where c € RN and Q is a N x N

symmetric positive definite matriz. If p = pg.c) = Po X1 then

1 1
dp (z) = \/ﬁ exp (—262 (x—c¢) (z— c)) dx. (21.7)

Proof. If f : RY — R be a bounded measurable function and Y 4

N (1,0), then according to Example and Eq. (21.6)),

[ F@)du@) =B (0] =E £ (Q"?Y +¢)]

I\Y?
— /RNf (Q1/2y+0) (2’]1—) 6_5‘3!‘ dy

Making the change of variables, = Q'/2y + ¢, using
dz = det Q'?dy = \/det Qdy,

we conclude

N/2 R )
f(w)du(x)z/RNf(x) <217T> o 3lQ7 2 @0 \/::TQ

Q—wx—cy(x—@)dx

RN

—

1
= ) ———=exp| —=
'O o) p( 2
which gives Eq. (21.7). ]

We can find a similar formula for P o X! when @ is degenerate. In order
to do this, let k := dimRan (Q) and U : R¥ — R be a linear transforma-
tion such that Ran (U) = Ran(Q) and U : R¥ — Ran(Q) is an isometric
isomorphism. Letting A := Q'/2U, we again have
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AAT — Q1/2UUtrQl/2 — Q1/2PRan(Q)Q1/2 _ Q

Therefore, if Y = N (Ipx%,0), then X = AY + ¢ <N (Q,c). Observe that
X — ¢ = Q'Y2UY takes values in Ran (Q) and hence the Law of (X — ¢) is
a probability measure on RY which is concentrated on Ran (Q). From this
it follows that P o X! is a probability measure on measure on RY which is
concentrated on the affine space, ¢ + Ran (Q) .

Proposition 21.13. Suppose X = N (Q,c¢) with k = dimRan (Q). If u =
Q. c) = Po X_l, then

1 .
r@a@ = [ e (307 @90 ds
RN c+Ran(Q)
where dzx is now “Lebesque measure” on ¢+ Ran (Q) .

Proof. Proceeding as in the proof of Proposition [21.12

e = [ oo (L) ey

k/2

:/ka(Ql/2Uy+c> <217r) / e’%‘y|2dy.

Ql/QUy—l—c — UUtrQl/QUy+C,
we may make the change of variables, z = U*Q/2Uy, using

dz = \/det Qlraniydy = | [] Nidy

:A;#0

Since

and
—1 2 2
vt =) <o - (o s

= (Q_le, Uz)RN ,

RN

to find
k/2 -1,02
1 1 tr 1/ !
f(z)du(2) :/ fUz+¢) (2> e 5‘(U Q'/?v) Z| dz
k/2
= fUz+¢) 1 ;e_%(QflUZ’UZ)RN dz
- 2 det Q|Ran(Q)
=/ fw ! 5@V
_ - C) e rN dz
o \/det (27Qlran(e))
= | f(Uz+c 1 o~ HQ T W=, (Uste—0)) o g

)
RF \/det (2ﬁQ|Ran(Q))
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This completes the proof, since z = Uz + ¢ € ¢ + Ran (Q) is by definition
distributed as Lebesgue measure on ¢ + Ran (@) when z is distributed as
Lebesgue measure on R, [

Lemma 21.14. Suppose that Z = (X,Y)tr is a Gaussian random vector with
X €eR¥ and Y € RL. Then X is independent of Y iff Cov (X;,Y;) = 0 for all
1 <kandj<lI.

Proof. We know in general that if X; and Y; are independent, then
Cov (X;,Y;) = 0. For the converse direction, if Cov (X;,Y;) =0 forall i <k
and j <l and z € R*¥ and y € R, then

Var(z - X 4+y-Y)=Var(z - X)+Var(y-Y)+2Cov(z - X,y-Y)
=Var(z-X)+ Var(y-Y).

Therefore,
E[eXeWY] = E {ei(x»Xer-Y)]
1
= exp (—2Var(:1c-X+y~Y)+E(m.X+y.y))

= exp <—;Var(x~X)+iE(x~X) - ;Var(y~Y)+iE(y~Y))
=F [eia:-X] -E [eiyY] ,

and because x and y were arbitrary, we may conclude from this that X and
Y are independent. [

Theorem 21.15. Suppose that Z = (X, Y)tr is a mean zero Gaussian random
vector with X € R¥ and Y € Rl Let Q = Qx = E[XX"Y] and then let

W:=Y-E[YX"]Q'X

where Q1 is as in Example . Then (X, VV)tr is again a Gaussian random

vector and moreover W is independent of X. The covariance matriz for W is
EWW"] =E[YY"] -E[YX"]QT'E [XY"]. (21.8)

Proof. Let A be any k x | matrix and let W :=Y — AX. Since

X\ (1O X
w) \-AI Y )’
according to Lemma (X, W)tr is still Gaussian. So in order to make W

independent of X it suffices to choose A so that W and X are uncorrelated,
ie.
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0 = Cov (Wj,Xi) = Cov <Y} — ZAijk7Xi>
k

=K [}/JXZ] — Z AjkE (Xsz)
k

or in matrix notation, we want to choose A so that
E [YX”] =AE [XX”] . (21.9)

In the case @ := E [X X"] is non-degenerate, we see that A := E[Y X%"] Q!
is the desired solution. In fact this works for general Q where Q! is defined
in Example 21.9] To see this is correct, recall

v-Qu=v-E[XX"0] =E |:(’U-X)2:|
from which it follows that
Nul(Q) = {veR":v- X =0}.
Hence it follows that

E[YX"]v=AE [XX"]v for all v € Nul(Q)

no matter how A is chosen. On the other hand if v € Ran (Q) = Nul (Q)J‘
AE [XX"]v=E[YX"]Q 'Qu=E[YX"]v

as desired.
To prove Eq. (21.8) let B := E[Y X"] so that

W:=Y -BQ 'X.
‘We then have

thr

(v = BQ™'X) (v - BQ'X)"]
(Y BQ~ lX) (Ytr -~ XtrQ—lBtr)]

%YY“ YX"Q7'BY — BQT'XY" + BQT'XX"Q™'B"]
[Yytr] BQ 1Btr BQ—lBtr + BQ—lQQ—lBtr
[
[

Yytr] BQ 1 Btr

E
E
E
E
E
E[YY"] -E[YX"]QT'E [XY"].

Corollary 21.16. Suppose that Z = (X, Y)tr is a mean zero Gaussian ran-
dom vector with X € R¥ and Y € R,
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A=E[YX"] Q"
Qw =E[YY"] —E[YX"]Q'E[XY"],
and suppose W N (Qw,0). If f : RF x R! — R is a bounded measurable
function, then
Elf (X,Y)IX]=E[f (z, Az + W)][o=x.
As an important special case, if x € R* and y € R, then
E |:ei(z<X+y~Y)|X:| — ei(m-X+y<AX)67%Var(y-W) — ei(m-X#»y-AX)ef%QWy-y'
(21.10)
Proof. Using the notation in Theorem [21.15

Elf (X, Y)[X]=E[f (X, AX +W)[X]

where W £ N (Qw,0) and W is independent of X. The result now follows
by an application of Exercise [I8.4] Let us now specialize to the case where
f(X,Y) = /@ X+¥Y) in which case

E ei(x'X+y'Y>|X} —E [ei(w~w’+y~(Aw’+W))|X} |pr=x = el @XFVANE iy W]
— iz Xty AX) =5 Var(y- W) _ ji(z:X+y-AX) ,—3Qwyy_

Exercise 21.1. Suppose now that (X, Y, Z)tr is a mean zero Gaussian random
vector with X € R¥, Y € R, and Z € R™. Show for all y € R! and z € R™
that

Elexp(i(y-Y +2-2))|X]
=exp(—Cov (y-Wi,z-Wa)) -Elexp (iy-Y) | X] - E[exp (iz - Z) |X].

In performing these computations please use the following definitions,

Q:=Qx :=E[XX"],
e[ ] o - (BR8N < 4],

wee[] =[] o= [ A

and

Definition 21.17 (Conditional Independence). Let (12, B, P) be a proba-
bility space and B; C B be a sub-sigma algebra of B for i =1,2,3. We say that

B
B is independent of Bs conditioned on By (written By it Bs) provided,



456 21 Gaussian Random Vectors
P(ANB|B;) = P(A|B2) - P(B|B2) a.s.
for all A € By and B € Bs. This can be equivalently stated as
E(f - g|B2) =E(f|B2) - E(g|B2) a.s.

for all f € (B1), and g € (Bs),, where B, denotes the bounded B — mea-
surable functions. If X,Y,Z are measurable functions on (£2,B), we say

that X is independent of Z conditioned on'Y (written as X J_YJ_ Z) provided
o (X) ﬁi) o(2).
Exercise 21.2. Suppose M; C (B;), for i = 1 and i = 3 are multiplicative
systems such that B; — o (M;) . Show By L1 By iff

E(f-g|B2) =E(f|B2)-E(g|B2) a.s.V f €M; and g € M. (21.11)

Hint: Do this by two applications of the functional form of the multiplica-
tive systems theorem, see Theorems and of Chapter [9} For the first
application, fix an f € M and let

H:={g € (B3), : E(f-g|B2) = E(f|B2) - E(g|B2) as.}.

X
Exercise 21.3. Keeping the same notation as in Exercise|21.1} show Y L1 Z
iff

E[YZ"] =E[YX"]Q 'E[XZ"].
where
Q=Qx =E[XX"].
Definition 21.18. Let T be a set. A Gaussian random field indexed by T is
a collection of random variables, { X}, on some probability space (£2,8, P)

such that for any finite subset, A C; T, {X; :t € A} is a Gaussian random
vector.

Associated to a Gaussian random field, {X;}, ., are the two functions,
c:T—-Rand Q: T xT —R

defined by ¢ (t) := EX; and Q (s,t) := Cov (X, X;) . By the previous results,
the functions (@, c¢) uniquely determine the finite dimensional distributions
{X::t €T}, ie. the joint distribution of the random variables, {X; : t € A},
forall A Cy T.

Definition 21.19. Suppose T is a set and {X; : t € T'} is a random field. For
any A CT,let By: =0 (X¢:t€A).

Exercise 21.4. Suppose T' = [0,00) and {X; : t € T'} is a mean zero Gaussian
Xo
random field (process). Show that Bjg o) LL Bis o0 for all 0 < o < oo iff
Q(s,0)Q (0, t) =Q(0,0)Q(s,t) VO<s<o<t< 0. (21.12)
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Kolmolgorov’s Theorems

Theorem 22.1 (Inner-Outer Regularity). Suppose i is a probability mea-
sure on (RN, B]RN) , then for all B € Brn we have

w(B)=inf{pu(V): BCV and V is open} (22.1)

and

w(B) =sup{p(K): K C B with K compact} . (22.2)

Proof. In this proof, C, and C; will always denote a closed subset of R
and V, V; will always be open subsets of RY. Let F be the collection of sets,
A € B, such that for all £ > 0 there exists an open set V' and a closed set,
C, such that C C A C V and pu (V' \ C) < e. The key point of the proof is to
show F = B for this certainly implies Equation and also that

w(B) =sup{u(C): C C B with C closed} . (22.3)

Moreover by MCT, we know that if C'" is closed and K, = C N

x € t|z] < n}, then p(K 1 (C). This observation along with Eq.
22.3) shows Eq. 1 .2)) is Vahd as Well

To prove F = B, 1t suffices to show F is a ¢ — algebra which contains all
closed subsets of RN . To the prove the latter assertion, given a closed subset,
C CcRY, and e >0, let

Ce :=Ugec B (z,¢)

where B (z,¢) := {y € RV : |y — 2| < e} . Then C. is an open set and C. | C
as € | 0. (You prove.) Hence by the DCT, we know that p(C.\ C) | 0 form
which it follows that C' € F.

We will now show that F is an algebra. Clearly F contains the empty set
and if A€ FwithCCACVand u(V\C) <e¢g, then V¢ C A° C C° with
p(C\Ve) = u(V\C) < e. This shows A° € F. Similarly if A; € F for
i=1,2and C; C A; C V; with p(V; \ C;) < &, then

C=CiUCyCcAjUA; C VUV =V
and

p(VANC) <p(\C)+p(V2\C)

<
<pu(VA\Cr) +p(Va\C2) < 26
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This implies that A; U A3 € F and we have shown F is an algebra.

We now show that F is a o — algebra. To do this it suffices to show
A:=3"% A, e FifA, € Fwith A,NA,, =0form #n.Let C,, C A, C V,
with u (V, \ Cp,) < 27" for all n and let CV := U,,<nC,, and V := U2, V,.
Then CN ¢ AC V and

&S] N &S]
p(VACY) <SS p (VN CM) < ST\ G+ Y u(Va)
n=0 n=0 n=N+1

N 0
< Z 27" + Z [ (Ap) +e277]
n=0

n=N+1

=&+ Z 1(An)-

n=N+1

The last term is less that 2¢ for N sufficiently large because Y > 1 (A,)
p(A) < oo

Notation 22.2 Let I := [0,1], Q = IN, m; : Q — I be the projec-
tion map, m; (x) = x; (where x = (x1,%2,...,x5,...) for all j € N, and
Bgo =0 (m; : j € N) be the product ¢ — algebra on Q. Let us further say that
a sequence {x (m)},°_, C Q, where x (m) = (x1 (m),x2(m),...), converges
to x € Q iff limy, oo xj (M) = x; for all j € N. (This is just pointwise con-
vergence. )

Lemma 22.3 (Baby Tychonoff’s Theorem). The infinite dimensional
cube, Q, is compact, i.e. every sequence {x (m)} ~_, C Q has a convergent
subsequence,{x (my)}r; .

Proof. Since I is compact, it follows that for each j € N, {z; (m)} ~_, has
a convergent subsequence. It now follow by Cantor’s diagonalization method,
that there is a subsequence, {my},—,, of N such that limy_o z; (mg) € T

exists for all j € N. n

Corollary 22.4 (Finite Intersection Property). Suppose that K,, C Q
are sets which are, (i) closed under taking sequential limitsﬂ and (ii) have
the finite intersection property, (i.e. N _1 K, # 0 for all m € N), then
m70710:1](771 7é (Z)

Proof. By assumption, for each m € N, there exists « (m) € N_; K.
Hence by Lemma there exists a subsequence, x (my), such that z :=
limy— 00 2 (My) exists in Q. Since x (my,) € NI, _; K,y for all k large, and each
K,, is closed under sequential limits, it follows that x € K,, for all m. Thus
we have shown, z € N2_, K,,, and hence N_; K, # 0. [

! For example, if K,, = K}, x Q with K/,, being a closed subset of I"™, then K,, is
closed under sequential limits.
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22.1 Kolmogorov’s Extension Theorems
g

Theorem 22.5 (Kolmogorov’s Extension Theorem). Let I := [0,1].
For each n € N, let u, be a probability measure on (I™,Bn) such that
tnt1 (AXT) = pyn (A). Then there exists a unique measure, P on (Q,Bg)
such that
P (A Q) = pin (4) (22.4)
for all A € Bin and n € N.
Proof. Let A := UB,, where B,, .= {AxQ:A€Bm}=0(m,...,m),
where m; () = x; if x = (x1,22,...) € Q. Then define P on A by Eq.
(22.4) which is easily seen (Exercise[22.1]) to be a well defined finitely additive

measure on A. So to finish the proof it suffices to show if B,, € A is a decreasing
sequence such that

inf P (B,) = lim P(B,)=¢ >0,

n—oo

then B :=nNB, # 0.
To simplify notation, we may reduce to the case where B, € B, for all

n. To see this is permissible, Let us choose 1 < n; < ny < ng < .... such
that By, € B, for all k. (This is possible since B, is increasing in n.) We now
- o
define a new decreasing sequence of sets, {Bk}k as follows,
=1

ni1—1 times no—njp times nz—ns times n4—ng times

- o~ —_——
(Bl,BQ,...): 0...0.B...B.Ba... B> Bs.. DBa...

We then have B,, € B,, for all n, lim,,_o P (Bn) =e>0,and B = ﬂ;l’ozlén.

Hence we may replace B,, by B,, if necessary so as to have B,, € B,, for all n.

Since B,, € B, there exists B!, € Br» such that B, = B, x Q for all n.
Using the regularity Theorem there are compact sets, K/, C Bl C I",
such that pu, (B, \ K.,) < 27! for all n € N. Let K,, := K/, x Q, then
P (B, \ K,) <e27! for all n. Moreover,

P (Bn\ [Ny=1Km]) = P (U1 [Bn \ Kn]) < Z P (Bn\ Km)

n n
<Y PBu\Kpn) <) e27m 1 <e/2,
m=1 m=1

So, for all n € N,
P(M=1Km) = P(Bn) = P(Bn \ [M=1 Km]) 26 —¢/2=¢/2,

and in particular, N?,_; K,,, # 0. An application of Corollary now implies,
0 # N, K, CN,B,. m
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Exercise 22.1. Show that Eq. (22.4)) defines a well defined finitely additive
measure on A := UB,,.

The next result is an easy corollary of Theorem

Theorem 22.6. Suppose {(X,, Mp)}nen are standard Borel spaces, X :=
T Xn, 7o : X — X, be the n'* — projection map, B,, = o (7 : k <n),
neN
B=o(n,:neN), and T, := X411 X Xpy2 X .... Further suppose that for
each n € N we are given a probability measure, p, on M1 ® --- @ M, such
that

tnt1 (AX Xpt1) = pn (A) forallneNand Ac M1 ® -+ @ M,.

Then there exists a unique probability measure, P, on (X,B) such that
P(AxT,)=pn(A) foralAc M1 ® - @ M,.

Proof. Since each (X, M,) is measure theoretic isomorphic to a Borel
subset of I, we may assume that X,, € By and M,, = (Bj) x,, for all n. Given
A € Byn, let fin, (A) == pn (AN[X1 X -+ x X,,]) — a probability measure on
Bi». Furthermore,

fing1 (A X T) = pgr ([A X TN [Xy X -0 X Xpgq])
= Hn+1 ((Aﬂ [Xl X X XnD X XnJrl)
= pn (AN[X1 X+ x Xp])) = fin (4) -

Hence by Theorem there is a unique probability measure, P, on IN such
that

P(AxIY)=f,(A) foralln € N and A € Byn.

Fin
We will now check that P := p|®n°°:1 M,, is the desired measure. First off
we have

P(X): lim p(XlxxXnXIN): lim ﬂn(X1><><Xn)

n—oo

= lim p, (X3 x---x X,)=1
n—oo
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22.1.1 A little Markov Chain Theory

Lemma 22.7. Suppose that (X, M), (Y,F), and (Z,B) are measurable
spaces and Q : X x F — [0,1] and R: Y x B — [0,1] are probability kernels.
Then for every bounded measurable function, F : (Y x Z,F @ B) — (R, Br),
the map

ye/ZR@;dz)F(y,z)

is measurable. Moreover, if we define P (x;A) for A€ FQB and v € X by

P(a:,A>=/me;dy)/ZR(y;dz)u(y,z),

then P: X x F® B — [0,1] is a probability kernel such that

p@,p):LQ(x;dy>/ZR<y;dz)F(y,z)

for all bounded measurable functions, F : (Y x Z,F @ B) — (R, Br). We will
denote the kernel P by QR and write

(QR) (z;dy, dz) = Q (w; dy) R (y; dz) .
Proof. A routine exercise in using the multiplicative systems theorem. m

Example 22.8. Let (S,S) be a standard Borel space, 2 := SN for all n € Ny,
let
Xn (W) = Xp (Wo, w1, .oy Wnyeoo) = Wn

and B, = o (Xo,...,X,). Further let, B := By = 0 (X, :n € Ny) and
suppose ¢, : S x § — [0, 1] is a probability kernel for each n € Ny. Then to
each probability measure, v, on (S, S) there exists (by Theorem a unique
probability measure, P,, on (Q = SNO,B) satisfying

Ep, [f (Xo,..., Xn)]

:/ . f(zo,...,zn) dv (x0) g1 (x0,dx1) g2 (T1,dx2) . .. @ (Tp—1, dxy) .
Sn 1

which is supposed to hold for all n € N and all bounded measurable functions,
f : 8"t — R. That is the finite dimensional distributions of P, are the
measure,

Ay, (zo, - ., xn) = dv (x0) q1 (zo, dx1) g2 (x1,dx2) . .. @ (X1, dxy), (22.5)

i.e. Up =Vq1q2 - Qn-
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Notation 22.9 When x € S and v := §, we abbreviated, Ps, simply by P.
So for x € X,

}EPJC [f (X07 e ,Xn)}

= f ($, T1y.-- 7xn) q1 (IL’,d(ZZl) q2 (xlade) ... Qn (xn—lydxn) .
Sn

Exercise 22.2 (Markov Property I). Keeping then notation in Example
and letting E, denote the expectation relative to P,. Show {X,,}~ , has
the Markov property, i.e. if f : S — R is a bounded measurable function, then

E, [f (Xn+1) ‘Bn] = dn+1 (Xn> f) =E, [f (Xn+1) \Xn] P, —as.,
where

Qs (. f) = /S F (8) Gnsr (2, dy)

In the next exercise, we will continue the notation of Example but we
will further assume that there is a fixed probability kernel, ¢ : S x S — [0, 1]
such that ¢, = ¢ for all n. This is the so called time homogeneous case.
Let us also now define, for all n € Ny, the shift operator, 6, : 2 — (2, by

G'IL (wOawla"'7wnvwn+17"') = (wn7wn+17"')'

Since

X (0n (W) = [On ()]}, = Wkin = Xppin (W),
it follows that Xy 00, = X,,1x.

Exercise 22.3 (Markov Property II). For cach bounded measurable func-
tion, F': 2 — R, show

E, [F 0 0,|By] = [EoF]|o—x, = Ex, F as. (22.6)

Hint: First prove Eq. (22.6) when F = f(Xo,...,X,,) for some bounded
measurable function, f: S™*! — R.

Exercise 22.4 (The Strong Markov Property). Continue the notation
and assumptions in Exercise Suppose 7 : 2 — [0, 00] is a stopping time
as in Definition[I9.20] B; is the stopped o — algebra as in[19.26 and F': 2 — R
is a bounded measurable function. Show

E,[Fob,|B;]=Ex_F, P,as.on {1 <o0o}. (22.7)
More precisely you are to show
E,[Fo0:|B;]lrcoo = lrcoo - Ex F, P, as.

Hint: Use Lemma [19.20]
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22.1.2 Kolmogorov’s extension theorem in continuous time.

Theorem [22.0] also extends easily to the case where N is replaced by an arbi-
trary index set, T. Let us set up the notation for this theorem. Let T be an
arbitrary index set, {(X¢, M)}, o be a collection of standard Borel spaces,
X =1l,er Xt, M := ®er My, and for A C T let

(XA = H X, My = ®t€AMt>

teA

and 74 : X — X4 be the projection map, 74 (2) := z|s. If A C A’ C T, also
let w440 : X4 — X4 be the projection map, w4 4/ (x) := z|4 for all x € X 4.

Theorem 22.10 (Kolmogorov). For each A Cy T (ie. A C T and
#(A) < ), let pa be a probability measure on (X, Ma). We further sup-
pose {“A}Ach satisfy the following compatibility relations;

LAr O ﬂZ}A, =pa forallAC A CyT. (22.8)

Then there exists a unique probability measure, P, on (X, M) such that P o
7yt =pa forall ACy T.

Proof. (For slight variation on the proof of this theorem given here, see
Exercise [22.6]) Let
A= Upc,rmyt (My)

and for A =7, (A’) € A, let P (A) := 4 (A’). The compatibility conditions
in Eq. imply P is a well defined finitely additive measure on the algebra,
A — Exercise We now complete the proof by showing P is continuous on
A.

To this end, suppose 4,, := 7r71j (Al) € Awith A4, | D asn — oo. Let A :=
Use 1A, — a countable subset of 7. Owing to Theorem m there is a unique
probability measure, Py, on (X4, M) such that Py (7" (A)) = pr (A) for
all ' Cy A and A € M. Hence if we let A, := Taly, (An), we then have

P (Au) = pa, (A7) = Pa (An)
with A, | 0 as n — oo. Since P, is a measure, we may conclude

lim P(A,) = lim P, (An) =0.

n—0o0 n—oo

Exercise 22.5. Let us write A C. T to mean A C T and A is at most count-
able. Show
M =Uyc,rm,t (My). (22.9)

Hint: Verify Eq. (22.9) by showing Mg := Uac. 77! (M) is a 0 — algebra.
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Exercise 22.6. For each A C T, let M/, := 71, (M) =0 (m; :i € A) C M.
Show;

1.if U,V C T then My N M, = My

2. By Theorem if U,V C. T, there exists unique probability measures,
Py and Py on My, and M|, respectively such that Py o 7r711 = p, for all
ACy U and Py o71';11 = pa for all A C¢ V. Show Py = Py on My NM;,.
Hence for any A € M we may define P (A) := Py (A) provided A € My,.

3. Show P defined in the previous item is a countably additive measure on

M.

Corollary 22.11. Suppose T is a set and ¢ : T — R and Q : T xT — R
are given functions such that Q (s,t) = Q (t,s) for all s,t € T and for each
A Cyr T

D Qs )M (s)A(t) =0 forall A: A —R.

s,teA
Then there exists a probability space, (2,8, P), and random variables, Xy :
2 — R for each t € T such that {X;},.p is a Gaussian random process with

E[Xs] =c(s) and Cov (X, Xt) = Q (s,1) (22.10)
forall s,teT.

Proof. Since we will construct (2,5, P) by Kolmogorov’s theorem, let
2 :=R" B=Bgr, and X; (w) =w; forall t € T and w € 2. Given A Cs T,
let y4 be the unique Gaussian measure on (R%, B, := Bga) such that

/ ¢ Seea X020 gy ()
]RA

= exp —% Z Q(s,t) A (s) A (t) —I—iZc(s))\(s) .
siteA seA

The main point now is to show {(RA7 Ba, i A) is a consistent family of

}Ach
measures. For this, suppose A C I' Cy T and 7 : R — R4 is the projection
map, 7 (z) = z|4. For any A € R4, let A € R be defined so that A =\ on A
and A =0 on I\ A. We then have,
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/ ¢ Zeea X010 (ur o 77) (2)
RA
_ / ¢ eer XOT@ O gy, ()
RI"

_ / ¢ Sier MO2(0) g1 ()
RF

exp —% Z Q(S,t)j\(s)j\(t)+ZZC(S)S\(S)

s,tel’ sel’

= exp —% Z Q(s,t))\(s))\(t)+iZc(s))\(s)

s,teA s€A
_ / ¢ S ien MO0 gy (1)
R/\

Since this is valid for all A € R4, it follows that ur o 7~ = u, as desired.
Hence by Kolmogorov’s theorem, there exists a unique probability measure,
P on ({2, B) such that

/ f (@la)dP () = / f (@) dpa (2)
2 RA

for all A Cy T and all bounded measurable functions, f : R4 — R. In partic-
ular, it follows that

E [l Diea 00X = / ¢ iea OO P (1)
2

—exp [ 5 X QG NAHAD +i Y e(5)A(s)

s,teA seA

for all A € R, From this it follows that {X;},., is a Gaussian random field
satisfying Eq. . [
The path space, R”, is very large when T is uncountable. In many cases,
this is problematic and we would like to put the measure P on some smaller
space, for example continuous functions when T is a topological space. This
is problematic since the set of continuous functions in R” need not be a
measurable set. The next section is one way to address this issue.

22.2 Kolmogorov’s Continuity Criterion

For this section, let T € Nand D =[0,7T] C R,

D= {;n 2i,n € No} — the Dyadic Rationals in [0, 00),
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and (E, p) be a complete metric space. Suppose v € (0,1) and = : D — FE' is
a v — Holder continuous function, i.e. there exists K < oo such that

p(z(t),z(s)) < K|t —s|” forall s,t € D.

Then for any o € (0,7) and n > v :=n > (log, K) / (v — ) we have,

- ‘
P <x <Z + ) i <Z>) < K27 — g9-n(1—@)g-na < g-na
on on

provided 5 < T.

Lemma 22.12. Suppose that x : DND — FE is a given function. Assume
there exists v € N such that

p<:c (z;;l) ,a:<2ln>> <27 forallm > v (22.11)

provided 2% < T. Then,

plx(s),z(t) <Clt—s|* Vs, te DND with |t—s| <277,  (22.12)
where
142
C1—27a]
In particular x uniquely extends to a continuous function on D which is a—
Hélder continuous. Moreover, the extension, x, satisfies the Hélder estimate,

C=C(a)

p(x(s),z(t) < Cy(a,T)2"= |t —s|* for all s,t € D (22.13)

where
Cy (o, T) :=2C (a) T2, (22.14)

Proof. Let n > v and s € DN D and express s as,

. o0
(3 ag
s=on T > otk
k=1

where i =i, (s) € Ny is chosen so that 27" < s < (i4+1)2™", and a;, = 0 or
1 with ax = 0 for almost all k. Set

and notice that sy = 2% and s, = s for all m sufficiently large. Therefore
with mg sufficiently large, we have
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mo—l

p (w66 (57 ) ) =P olomaaton) < 3 oo (r) 2 (5).

k=0

Since spt1 — Sk = st < 277, it follows from Eq. (22.11) that

i > 1 “ 1 2«
v < _ 27a(n+1) _ g—an
p(:p(s),l‘<2n>) —kZO(Qn-H—Hc) 1_9-a 1_ 9«

If0<t—s <27 let n > v be chosen so that 2=("t1) < ¢ —s < 277,
For this choice of n, if i = iy, (s) then j =iy () € {i,i+ 1}, see Figure 22.1]

Therefore
Prssible +- locaﬁ\w/m

- ——

L < Le
N "

Fig. 22.1. The geometry of s and ¢ with 2= (D) y g <27,

p(x(s),z (b)) < p(x(s),z(i27")) + p(x(i27"), x(527")) + p((j27"), z(t))

27« 27« 1427«
< g—an 4 9—na g—an _ 9—na )
—1-2« + +1_2—a 1—2~«

Since
gne — 9o . g=(nFa g (p _ )

we may conclude that

1427¢

p(a(s),a(t) < (t—8)" 2% = C(a) |t — s

From this estimate it follows that z has an a—Ho6lder continuous extension to
D. We will continue to denote this extension by x.

If s,te DND with t —s > 27", choose k € N such that t — s = k27" +§
with 0 < 6 < 27%. It then follows that

p(x(s),z(t)=p(z(s),z(s+ k27" +6))

<Y (et G- 12 s+ 127)

p(x (s + k2_”) , X (s +k27V + 6))
C(a) (k27> +6%) <2C (a) k277",
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Since
E<2¥(t—s)<2V(t—s)*T' 2,

we may conclude
plx(s),z(t) <20 () 272" " |t — 5| = Cy (o, T) 2V~ |t — 5|*

where C; (o, T) is given as in Eq. (22.14). As x is continuous and D N D is
dense in D, the above estimate extends to all s, € D. [ |

Definition 22.13 (Versions). Suppose, X, : 2 — E and X, : 2 — E are
two processes defined on D. We say that X is a version or a modification
of X provided, for each t € D, X, = X, a.e.. (Notice that the null set may
depend on the parameter t in the uncountable set, D.)

Exercise 22.7. Suppose {Y;},- is a version of a process, {X;},~ . Further
suppose that ¢t — V; (w) and ¢ — X; (w) are both right continuous almost
surely. Show

P(Y. #X) =0,
ie. if
E={we R:Y;(w)# X (w) for some t € [0,00)}
= Ue[o,00) {w € 2: Y (w) # Xy (w)}
then P (E) = 0.

Theorem 22.14 (Kolmogorov’s Continuity Criteria). Suppose that X :
2 — FE is a process for t € D. Assume there exists positive constants, €, 3,
and C, such that

Elp(X;, X,)°] < C |t — s|'*7 (22.15)

for all s,t € D. Then for any o € (0,8/¢) there is a modification, X, of X
which is a—Hélder continuous. Moreover, there is a random variable K, such
that,

(X, Xy) < Ky |t —s|® forall s,t € D (22.16)

and EK? < oo for all p < Bl:cf.

Proof. Using Chebyshev’s inequality,
L .
Plo(x(=2) x (L)) >2me
2n 2n
. 1 . 13
Pe(r(5) () =)
2n 27L
. 1 . €
<omoe |, (x (2 x (L~
2n 2n

< g n+f—as) (22.17)
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1+ 1 )
= J— > 9 na
an={om o (3 (50) X (30)) 22
= Up<i<T2n -1 {p (X < on

it follows from Eq. (22.17)), that

e B (32 (2) )

< rone2nHh—aes) — opgmnBas), (22.18)

Letting

@
_|_
~
N———
b
7N
22| <.
N———
N———
IV
~
3
Q
R,_/

Since,

> 1
n=

it follows by the first Borel Cantelli lemma that P (A,, i.0.) = 0 or equivalently
put, if

11 .
2y :={A; aa.} = {o<igl%§z1p (X (Z; > , X <2Zn)> <27ne a.a.},

then P (£2) = 1.
For w € (2, let

v(w)=min{n:w e A{, for all m > n} < oo.

On (2, we know that

1 .
max p(X (z—l— >,X<z>> <2 foralln>v
0<i<T2n—1 AL 2n

and hence by Lemma [22.12

p(X¢, Xs) < |t —s|” when |t —s| <27V, (22.19)

Hence on (2, if we define X, = lim,epnp; +—¢ Xt, the resulting process, Xt,
will be a — Holder continuous on D. To complete the definition of X, fix a
point y € E and set X, (w) =y for all t € D and w ¢ 2.

For t € D and s € DN D, we have that

p(XtaXt) < p(XthS) + p(XSvXS) +p(XSaXt) = p(XhXS) + p(XsaXt) a.e.

By continuity, limg_.; XS = Xt and by Eq. 22.15~it follows that limg_; X, =
X;in measure and hence we may conclude that p(X;, X¢) = 0 a.s.,ie. X3 = X3
a.e. and X is a version of X.
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It is only left to prove the quantitative estimate in Eq. (22.16f). Because of
Eq. (22.13) we have the following estimate:

p(Xt, Xs) < Ko |t — s|* for all s,t € D, (22.20)

where
Ky :=1p, - Ci(a,T) gv(l=a),

Since {v > N} = U_yNA,, it follows from Eq. (22.18)), that

9—N(B—ae)

P>N)< Y P(An) < Y 02709 <0

m>N m>N

(22.21)

Using this estimate we find
EKZ = Cy (o, T)E |20

=Cy1(a, 7)Y 2"= PPy =)

n=0

<C (o, TP - (1 + i onl=Pp () > p — 1)))

n=1

C =
v, v n(1-a)pg—(n—1)(8—ae)
<Ci(a,T) (1 + T o= §_12 2 )

which is finite provided that (1 —a)p — (6 — ac) < 0. |
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Heuristics of Wiener Measure and the
Feynman-Kac Formula

Our next major theme is the study of “Brownian motion” or equivalently
“Wiener measure.” To motivate the definition of these objects we are going
to informally derive a probabilistic representation for solutions to the heat
equation. In the process of making this formula rigorous, we will be lead to
the notion of Brownian motion. The resulting probabilistic representation of
the solution to the heat equation will be the so called Feynman-Kac formula.
We begin with the heat equation.

23.1 The Heat Equation

Suppose that 2 C R? is a region of space filled with a material, p(z) is the
density of the material at € 2 and c(z) is the heat capacity. Let u(x,t)
denote the temperature at time ¢ € [0,00) at the spatial point € 2. Now
suppose that B C R? is a subregion in §2, B is the boundary of B, and Eg(t)
is the heat energy contained in the volume B at time ¢. Then

EB(t):/Bp(x)c(x)u(t,x)dm.

So on one hand (writing f (t) for aggt) ),
En(t) = LEp (1) = / p(2)e(@)i(t, 2)dz (23.1)
dt B ’
while on the other hand,
En(t) = /a (G Vu(t,a).n(a)do(a). (23.2)

where G(z) is a n x n—positive definite matrix representing the conduction
properties of the material, n(x) is the outward pointing normal to B at = €
0B, and do denotes surface measure on 0B. (We are using (-, -) to denote the

tr
standard dot product on R? and Vu (z,t) = (%;1’”, e %ﬁ:t) )

In order to see that we have the sign correct in Eq. (23.2]), suppose that
x € OB and

(G(x)Vu(t,z),n(z)) = (Vu(t, z), G(x)n(x)) > 0.
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QL

eA
G0

Fig. 23.1. The geometry of the test region, B C {2.

In this case temperature is increasing as one move from z in the direction of
G () n (z) and since (n (z),G(z)n(x)) > 0, G (z) n () is outward pointing to
B. Thus if (G(z)Vu(t,z),n(x)) > 0, near x, it is hotter outside B then inside
and hence heat energy is flowing into B in a neighborhood of the 9B near z,

see Figure 231]
Comparing Egs. (23.1) to (23.2)) after an application of the divergence
theorem shows that

/Bp(x)c(x)u(t,x)dx = /BV (G()Vu(t,))(z) dz. (23.3)

Since this holds for all nice volumes B C {2, we conclude that the temperature
functions should satisfy the following partial differential equation.

p@)el@)ilt, ) = ¥ - (G()Vult, ) (). (23.4)
or equivalently that

u(t,x) = ———=V - (G(z)Vu(t, x)). (23.5)
Setting ¢" (z) = Gyj(x)/(p(x)c(x)) and

n

A (x) = Z 0(Gij(@)/ (p(x)e(x)))/Oa'

the above equation may be written as:

u(t,x) = Lu(t, z), (23.6)
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where
(LA@) = Y0 @) o )+ Y @) f@). (23

The operator L is a prototypical example of a second order “elliptic” differ-
ential operator. In the next section we will consider the special case of the
standard Laplacian, A, on R%, i.e. 2/ =0 and ¢% = d;; so that

n 62
A= —. (23.8)
; (821)?

23.2 Solving the heat equation on R™.

Let
1

F0 =N = (57) [ s

be the Fourier transform of f and
Fl@)=(F ) @)= [ flk)e™dk
R

be the inverse Fourier transform. For f nice enough (or in the sense of tem-
pered distributions), we know that

f@)= | Fetede= (F7F) @),

Also recall that the Fourier transform and the convolution operation are re-
lated by;

m(k’) = (;ﬁ) /Rd e flz—y)g(y)e *dx dy

(1 " . e~k (@ +Y) g — (90 F(k)a
‘( ) /mdf( )9(v) dz dy = (2m)" f (k)3 (k).

27

Inverting this relation gives the relation,

F(f )@= (5) o

The heat equation for a function u : Ry xR™ — C is the partial differential
equation

(6t - ;Am) u(t,z) = 0 with u(0,2) = f(z), (23.9)
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where f is a given function on R™. By Fourier transforming Eq. (23.9)) in the x
— variables only, one finds (after some integration by parts) that (23.9) implies
that

1 .
<8t + 3 |k|2> a(t, k) =0 with a(0, k) = f(k). (23.10)
Solving for 4 (¢, k) gives
a(t, k) = e /2 (k).
Inverting the Fourier transform then shows that
276 4 1\" 2
o1 —tk2/2 _ (L 1 —t|k|?/2
u(t,z) = F (e f(k)) (z) = (277) (]-" (e ) * f) ().

(23.11)
Let

g (@) = (Fle 1) (2) = /Rd e~ B eikee g

Making the change of variables, k — k/ t1/2 and using a standard Gaussian
integral formula gives

1\"? "y
g(z)= <) / ez Ikl gtk /Vigy,
t Rd
n/2 n/2
() () e
T R4
n/2 2 n/2
27 1 27 1, 9
—(Z= ) e = (= - . (23.12
() en (1) - () "on( )
Using this result in Eq. (23.11)) implies

ut) = [ mile =)y

piz) = (217#)71/2 exp (—; |m|2> : (23.13)

This suggests the following theorem.

X

where

Theorem 23.1. Let p; (z) be the heat kernel on R™ defined in Eq. .
Then

1
<6t — ZAx) pel@=y) =0 and limpi(z —y) = da(y), (23.14)

where 6, is the & — function at x in R™. More precisely, if f is a bounded
continuous function on R™, then



23.2 Solving the heat equation on R™. 475
ut.o) = [ pile =)y (23.15)

is a solution to Eq. and limg o u(t,z) = f(z) uniformly for x € K,
where K is any compact subset of R™.

Proof. Direct computations show that (9, — %AI) pi(x —y) = 0 which
coupled with a few applications of Corollary shows (at — %Am) u(t,z) =0
for t > 0. After a making the changes of variables, y — x—y and then y — /%y,

Eq. may be written as
utia) = [ p)fe -y = [ pi(w)fe—Vig)dy

n

and therefore,

u(ta) = F@I=| [ n) [1 - Vi) - 1 @)] o

< [ nw)|fe-vi)-s@ld. @0
For R > 0,

sup [ mw)| 1= Vi)~ 1 @) dy < sy sup 1o~ Vi) )] = 0

€K z€K |y|<R

as t | O by the uniform continuity of f on compact sets. If M =
sup,ecrn | f ()], then by Chebyschev’s inequality,

[ lte—vi-s@lay<or [ iy <o
ly|>R ly|>R

where C := fR" ly| p1(y)dy. Hence we have shown,

2M
limsup sup |u (t,z) — f ()] < C— — 0 as R — oo.
t10  zeK R

This shows that lim; o u(¢,2) = f(x) uniformly on compact subsets of R™.
[

Notation 23.2 We will let (e'2/%f) (x) be defined by

(etA/2f> (x) = /n pe(z — ) f(y)dy = (p * f) ().

Hence for nice enough f (for example when f is bounded and continuous),
u(t,z) := (e!"?/2f) (z) solves the heat equation in Eq. .



476 23 Heuristics of Wiener Measure and the Feynman-Kac Formula

Exercise 23.1 (Semigroup Property). Verify the semi-group identity for

DPt;
Pers = Ps * pp Tor all s,t > 0. (23.17)

Proposition 23.3 (Properties of ¢!4/2). Let t € (0,00), then;
1. for f € LP(R™,dz) with 1 < p < oo, the function
(e22f) () = [ iy
n (2mt)n/2

is smoot/ﬂ in (t,x) fort >0 and z € R".
2. eA/2 qcts as a contraction on LP(R™, dx) for all p € [0,00] and t > 0.
3. Forp € [0,00), e!2/2f = p, x f — f in LP(R",dx) as t — 0.

Proof. Item 1. follows by multiple applications of Corollary
Ttem 2.

(e * ()] < / F@)lpe( — )dy

Rn

and hence with the aid of Jensen’s inequality we have,

o 15 < [ 150 = w)dud = 11,

So p; is a contraction V¢ > 0.
Item 3. First, let us suppose that f € C.(R™). From Eq. (23.16) along
with Jensen’s inequality, we find

| en@ = f@pdes [ o [ p]e—vin - 1@ a
— [y [ ds|fe- Vi - 1)
(23.18)

Since

g9(t,y) :=/n

and limy o g (¢,y) = 0, we may pass to the limit (using the DCT) in Eq. (23.18))
to find limy o [|pr * f — f]| = 0.
Now suppose g € L? (R") and f € C,. (R™), then

fa—Vig) - 1 @) de <200 [ @) do

n

e % g = gll, < llpex g =pex fll, +lpex £ = Fll, +1If = 9ll,
<2|f =gll, + llpe = f = fll,
! n fact, u(t,x) is real analytic for x € R™ and ¢ > 0. One just notices that

p+(z — y) analytically continues to Ret > 0 and € C™ and then shows that it is
permissible to differentiate under the integral.
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and therefore,
hntll%up ot * g —gll, <2[f —gll,-

Since this inequality is valid for all f € C. (R™) and, by Theorem C. (R")
is dense in L? (R™), we may conclude that limsup, o [[p: * g — ng =0. ]

Theorem 23.4 (Forced Heat Equation). Suppose g € Cy(R?) and f €
Cy?([0,00) x RY) then

t
u(t, x) = pg * g(x) +/0 pi—r * f(T,2)dT

solves

% fAu—i—f with u(0,-) = g.

Proof. Because of Theorem [23.1] we may without loss of generality assume
g = 0 in which case

t
u(t,x) = /0 pex f(t — 7, 2)dr.

Therefore

ou

t
0
G = f0.2)+ [ oo p(e—ra)ar

t
0
:pt*fo(x)—/ pT*a—f(t—T,x)dT
0 T
and

t
éu(t7 x) = / Py * éf(t —7,z)dT.
2 A 2

Hence we find, using integration by parts and approximate é — function argu-
ments, that

t
<88t — ?) u(t,x) = py * fo(x) +/ Dr * (—687_ - ;A> f(t —7,2)dr

= pt * fo(z)

+hm/ - <_ _ A) F(t =7, 2)dr

=p * fo(x) — limp, = f(t — T,$)|Z
el0

¢
+ lim <(9 - 1A) pr* f(t —T,2)dT

€l0 87‘ 2
= pit fol@) = po s fo(@) + lim o+ f(t = e,2)
= f(t, z).
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23.2.1 Extensions of Theorem [23.1]

Proposition 23.5. Suppose f : R? — R is a measurable function and there
exists constants ¢,C < 0o such that

|f(z)] < Ceslal”,

Then u(t, z) := py * f(x) is smooth for (t,z) € (0,c~1) x R and for all k € N
and all multi-indices «,

o (5) o= (00 (5) w) s

In particular u satisfies the heat equation uy = Au/2 on (0,c¢71) x R%.

Proof. The reader may check that

D (gt) kpt(:v) = q(t™", 2)p(x)

where ¢ is a polynomial in its variables. Let 29 € R? and € > 0 be small, then
for x € B(xg,¢) and any 3 > 0,

2 2 2 2 2 — 2 2
o=yl = [l = 2 fal gl + Iyl > [yl + [l — (572 fal* + 52 o)

> (1= ) lyl* = (572 = 1) (Jaol +2) -

k
gly) = sup{’D“ (;) pe(x —y) f(y) :Egtgc—s&xeB(xo,E)}

2
6_%‘1_",/'

T Cesh?
(2mt)"/?

q(t_lv T — y)

:E<t<C—€&:L‘€B(1‘0,E)}

el=3(1-8%)+ 5]l

(2mt)"™/?

_ e<t<c—e¢eand
Q(t 1am_y) : - - }

x € B(xo,¢)

S C(ﬁa .130,5) sup {

By choosing (3 close to 0, the reader should check using the above expressiozn
that for any 0 < § < (1/t — ¢) /2 there is a C' < oo such that g(y) < Ce=°lI",
In particular g € L? (]Rd) . Hence one is justified in differentiating past the

integrals in p; * f and this proves Eq. (23.19). [

Lemma 23.6. There exists a polynomial q,(x) such that for any 5 > 0 and

6 >0,
—Bly[2 n 1 _ 62
/Rd Liy|>s€ vl dy < 6"qy (5(52) e
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Proof. Making the change of variables y — dy and then passing to polar
coordinates shows

oo
/ Lyjzse " dy = 5”/ Lys1e P dy = o ($771) 6"/ e~ BT =1y,
Re Ra U7 )

Letting A = 362 and ¢,(\) = [ e~ rndr, integration by parts shows

r=1

00 —Ar2 00 —A\r2
n—1 € 1 - 1 (n—?)6
= = etz 1 ¢
dn(N) /Ter d < o > T 5 /TZl(n )r 3 dr

_1 _y n-—1
= Ty o

Iterating this equation implies

1 _ n—1 1 _ n—3
n(N) At < At 2)\¢n—4()\)>

" 2x \2)°
and continuing in this way shows

bn(A) = ePrn(A1) + %@(A)

where ¢ is the integer part of n/2, i =0 if n is even and ¢ = 1 if n is odd and
Ty is a polynomial. Since
[ee] [e'e] -\
%w:/ f“ﬁs%@z/ re Mdr = S
r=1 r=1 27
it follows that
$n(N) < e ga (A7)
for some polynomial q,. [
Proposition 23.7. Suppose f € C(RLR) such that |f(z)] < Cesl=l” then
pr % f — f uniformly on compact subsets as t | 0. In particular in view of
Proposition u(t,x) := pr * f(x) is a solution to the heat equation with
u(0,z) = f(x).
Proof. Let M > 0 be fixed and assume |z| < M throughout. By uniform
continuity of f on compact set, given € > 0 there exists § = §(¢) > 0 such

that | f(z) — f(y)| <eif |z —y| < and |z| < M. Therefore, choosing a > ¢/2
sufficiently small,

|m*ﬂw—f@n=L/mwwﬂm—w—fmn@\
S/m@ﬂﬂ%—@—f@ﬂ@

gf/) M@My+“75/‘[@“”F+ﬂ“ﬁf%Mwy
ly|<s (2mt) ly|>6

<e+C (27725)_”/2/ e_(i_a)w‘zdy.
ly|>4
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So by Lemma [23.6] it follows that
= - 1 1 2
b * f(z) — f(2)] < e+ C @2nt) 267, | ——— | e (z70)0
i)

and therefore

limsup sup |p:* f(z)— f(z)|<e—0ase 0.
10 |z|<M

Lemma 23.8. If ¢(x) is a polynomial on R?, then

[ le=watvyay = > )
Proof. Since
[t z) = /Rd pe(z —y)ay)dy = /Rd p(¥) Y aapr®y’dy = Cu(t)a®,

f(t,x) is a polynomial in x of degree no larger than that of ¢. Moreover
f(t,z) solves the heat equation and f(t,xz) — ¢(x) as t | 0. Since g(t,x) :=
Yo %%q(m) has the same properties of f and A is a bounded operator
when acting on polynomials of a fixed degree we conclude f(t,z) = g(¢,x). m

Example 23.9. Suppose q(x) = x115 + x4, then
t2
204

t
etA/Qq(gc) = 2129 + :vé +-A (mlxg + mé) + A? (£C1l‘2 + xﬁ)

2
4!

t t?
— 4 bty 2
= T12T2 + T3 + 212x3+ T

= 2120 + x5 + 6tzs + 32

Proposition 23.10. Suppose f € C*®(R?) and there exists a constant C < 0o

such that ,
> D% f(x)| < CeCll,
|a|=2N+2
then
N tk
(pr# f)(w) = €22 f(@)" =) =AFf(x) + O ") ast | 0
k=0
Proof. Fix z € R% and let
1
Iy) = D ()"

|| <2N+1
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Then by Taylor’s theorem with remainder

[f(z+y) — fn(y)] < C N sup eClotiv?
te[0,1]
< C|y‘2N+2 620[‘$|2+‘y‘2] < é|y|2N+2 320‘y|2

and thus
‘/ pe(y)f(z +y)dy — /Rd pt(y)fzv(y)dy’
< C/ |y|2N+2 eQC‘y‘2dy
= OV+! /Rd pi(y) [y T2 2Ol gy = otV Y.

Since f(x+y) and fn(y) agree to order 2N 41 for y near zero, it follows that

N N k
/det( Z:: kzz: kf f(z +y)|y:O
N
D

which completes the proof. [

23.3 Wiener Measure Heuristics and the Feynman-Kac
formula

Theorem 23.11 (Trotter Product Formula). Let A and B be d x d ma-

trices. Then e(A+B) = lim (e%e%) .

n—oo

Proof. By the chain rule,

Hence by Taylor’s theorem with remainder,
log(es4e"P) = c (A+ B) + O (¢?)
which is equivalent to

eeAesB _ 66(A+B)+O(62).

Taking € = 1/n and raising the result to the n'" — power gives
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(enflAenle)n

_ en_l(A+B)+O(n_2)i| "

_ eA+B+o(n*1) _, (A+B)

as n — 00.
[

Fact 23.12 (Trotter product formula) For “nice enough” V,
eT(A12=V) — strong— lim [e%Ae*TTLV}". (23.20)

n—oo

Lemma 23.13. Let V : R? — R be a continuous function which is bounded
from below, then

(52 B 1) o)

B / pr(wo,21)e” w VO L pr (g, @n)e” 7 VO f(an)day . day,

Rdn ’
dn
1 / —ar E Ti—xi—1|"— 5 E Vi(zi)
e i=1 i=1

/ T
27TE (Rd)n

Notation 23.14 Given T' > 0, and n € N, let Wy, 7 denote the set of piece-
wise C1 — paths, w : [0,T] — R? such that w(0) = 0 and W’ (1) = 0 if
T ¢ {%T}izo =: P, (T) - see Figure , Further let dm,, denote the unique
translation invariant measure on Wy r which is well defined up to a multi-
plicative constant.

%\ >
. = >

Fig. 23.2. A typical path in W, 7.

flzp)dxy ... dx,. (23.21)

With this notation we may rewrite Lemma [23.13] as follows.

Theorem 23.15. Let T > 0 and n € N be given. For 7 € [0,T], let 74 = AT
ifT € (%T7 ﬁT] Then Eq. (23.21) may be written as,
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(FareEY)" 1) o

1 — I3 (O +V (@otw(rs))|dr
= + ) dm
Zn (T) /Wn,T ) Flan w ey dm ()

where
Zn (T) ::/ ] 7 dm,, ().
Wn,T

Moreover, by Trotter’s product formula,

TA2-V) £ (3)
1 — T[4 ) P4V (@otw(r T
= lim 7/ I [3l P +VEotuio]d f(zo+w (T))dmy, (w).
n—oo Zn (T) Wit

(23.22)

Following Feynman, at an informal level (see Figure , Wor — Wrp

as n — 0o, where
Wr:={weC([0,T] =R :w(0)=0}.

Moreover, formally passing to the limit in Eq. (23.22)) leads us to the following

@é

A

| WM =20

\RJ

v v
"

Fig. 23.3. A typical path in Wr may be approximated better and better by paths
in Wy, as m — oo.

heuristic expression for (eT(A/Q_V)f) (z0);



484 23 Heuristics of Wiener Measure and the Feynman-Kac Formula

1 — (Tl (m)]? zo+w(T T
(6T(A/2—V)f) (mO) — o« = / e fo [%| ( )| +V (zo+w( ))]d f (mO +w (T)) D’
w.

Z(T)
(23.23)
where Dw is the non-existent Lebesgue measure on Wr, and Z (T) is the
“normalization” constant (or partition function) given by

Z(T) = / e 0 [ O drpy,
Wr
This expression may also be written in the Feynman — Kac form as

eT(A/va)f (z0) = /W e~ S V(mo+w(7))d7—f (20 +w (T)) dp (w),

where

dp (w) = “Z (T)ef% S |l @l drpy (23.24)

is the informal expression for Wiener measure on Wrp. Thus our immediate
goal is to make sense out of Eq. (23.24)).

Let
T
Hy = {hEWT:/ |h’(7')2d7'<oo}
0

with the convention that fOT |W (7)|? d := oo if h is not absolutely continuous.
Further let

T
(h, k) = / B (r) -k (r)dr for all h,k € Hy
0

and Xy, (w) := (h,w), for h € Hp. Since

1 1w
A () = e sllllir py, (23.25)

dp (w) should be a Gaussian measure on Hp and hence we expect,
E, [XyXy] = (h, k), for all h,k € Hr. (23.26)

According to Corollary [22.11] there exists a Gaussian random filed,

{Xn} e, » on some probability space, (£2, B, P), such that Eq. (23.26]) holds.
We are applying this corollary with 7' — Hyp, and Q (h, k) := (h, k), . Notice
that if A Cy Hy and A : A — R is a function, then

S AR

heA

2
> 0.
T

S QUK A)A(R) =

h,k€A

Heuristically, we are thinking that {2 should be the Hilbert space, Hr, and P
should be the “measure” in Eq. (23.25)). In this hypothetical setting, we could
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define, B; : Hr — R? to be the projection, B; (w) = w (t) for t € [0,T]. Hence
for a € R?,

T
a-B(w)=a-w(t)= /0 aljy (r)w(r)dr = (hat,w)p = Xn, , (W)
where -
hot (1) == /0 alpyg(u)du=a(tNT).

with and B? are independent process with Hence it follows from Eq. (23.26))
that
T
]EH [(a . Bt) (b . Bs)] = <ha,t7 hb,s>T = / a - bl[O,t] (T) 1[075] (T) dT
0

=a-b(sNt). (23.27)
With this as motivation, let B; = (Btl, . .7Btd)t]r : 2 — R be defined by,
Bl := X, ,,

is a mean zero Gaussian process with values in R? such that

where e; is the j' standard basis vector on RY. Then {B;},-,

E [BiBl] = ;s At.

Observe that {B?}jzl are i.i.d. mean zero Gaussian random fields such that

E [B{Bi] = s At for all i.
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Brownian Motion

Definition 24.1 (Pre-Brownian Motion). Let (£2,8,P) be a probability

space. A pre-Brownian motion {Bt} is a mean zero Gaussian random
t>0

process such that
E [Btés} =tAs forall s,t > 0. (24.1)

We have already demonstrated the existence of a pre-Brownian motion
above. Nevertheless, let us emphasize this point again. The main point is
to observe that @ (s,t) := s At is a positive semi-definite. To see this, let
hi (1) ==t AT be as above, A Cy Ry and A : A4 — R be a function. Then

Z Aihy

teA

2
>0

Z (S/\t) AsAht = Z <ht,h5>T)\s)\t =

s,teA s,teA

T

which shows @ is positive semi-definite. So according to Corollary we
may take 2 = RI>*) and B, (w) = w(t). The situation is not completely
satisfactory at this point, since, for fixed w € 2, the map t — By (w) has
no a priori regularity properties. Because of this we refine our definition of
Brownian motion as follows.

Definition 24.2 (Brownian Motion). A Brownian motion {B.},. is
a mean zero Gaussian random process on some probability space, (12,8, P),
satisfying; 1) for each w € 2, t — By (w) is continuous, and 2)

E[B:Bs| =t As forall s,t > 0. (24.2)

Theorem 24.3 (Wiener 1923). Brownian motions exists. Moreover for any
a€(0,1/2), t — By is o — Hélder continuous almost surely.

Proof. For 0 < s < t < o0, B, — B, is a mean zero Gaussian random
variable with

E[(Bt1§5>2] —E[B 4B 2B.B] =t+s-2=t-s.

Hence if N is a standard normal random variable, then Bt — Bs 4 Vvt —sN
and therefore, for any p € [1, ),
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E ‘Bt _ B =t —sPPE NP, (24.3)

Hence an application of Theorem [22.14| shows, with e = p > 2, 8 =p/2 — 1,
a € (0, p/z_l) = (0, % — 1/p) , there exists a modification, B of B such that

P
|B — Bs| < Cor |t — s|” for s,t €[0,T).

By applying this result with 7' = N € N, we find there exists a continuous
version, B, of B for all t € [0, 00) and this version is locally Holder continuous
with Holder constant o < 1/2. |

For the rest of this section, we will assume that {B;},-, is a Brownian
motion on some probability space, ({2, B, P). B

Notation 24.4 (Partitions) Given P := {0=to<t1 <---<t, =T}, a
partition of [0,T], let

AiB = Bti — Bti—l’ and Ait = ti — ti—l

for all i = 1,2,...,n. Further let mesh(P) := max; |A;t| denote the mesh of
the partition, P.

Exercise 24.1 (Independent increments). Let
P2:{0:t0<t1<"'<tn:T}

be a partition of [0,7]. Show {A;B}"_, are independent mean zero normal
random variables with Var (A;B) = A;t.

Exercise 24.2 (Markov Property). Let B; := o (Bs : s <t). Show B; —
B; is independent of B for all ¢ > s. Use this to show, for any bounded
measurable function, f : R — R that

E[f (B) B =E[f (B) |Bs] = (b + f) (By) = ("2/2f ) (By).

This problem verifies that {B;},., is a “Markov process” and shows that

%A = %j—; is its “infinitesimal generator.”

Exercise 24.3 (Finite Dimensional Distributions). Let
P={0=tg<tr1 <---<t, =T}

and f : R™ — R be a bounded measurable function. Show

E[f (Bt,...,Bt,)] = Rnf(xl,...,xn)qp (z) dx

where
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qp (x) = Dty ($1)pt2—t1 (332 - $1) . (ﬂﬁn - ﬂﬁn—1) .
Hint: Either use Exercise 24.1] by writing
[y, . .,on) =g (T1,22 — 21,23 — X2,..., Tp — Tp_1)

for some function, g or use Exercise 24.2] first for functions, f of the form,
n
flxe,...,zn) = H(pj (x;).
j=1

Better yet, do it by both methods!
Exercise 24.4 (Quadratic Variation). Let
Prm={0=1t <t <-- <ty =T}

be a sequence of partitions such that mesh (P,,) — 0 as m — oo. Further let

Nom, Nm

Qui=Y(arBP =Y (By — By ) . (24.4)

i=1 i=1

Show

lim E [(Qm - Tﬂ =0
and limy, oo Qm = T as. if Y °_ mesh(P,) < oo. This result is often
abbreviated by the writing, dB? = dt. Hint: it is useful to observe; 1)

Mm

Qu—T=>_[(ArB)* - A]

i=1

and 2) using Eq. (24.3)) there is a constant, ¢ < co such that
2 2 2
E [(A;”B) - Ait} = c(A)?.

Corollary 24.5 (Roughness of Brownian Paths). A Brownian motion,
{Bi},¢ s is not almost surely o — Hélder continuous for any o > 1/2.

Proof. According to Exercise we may choose partition, P,,, such
that mesh (P,,) — 0 and Q,,, — T a.s. If B were oo — Holder continuous for
some a > 1/2, then

N Mm, Mm,

Qu=> (A"B?<CY (A't)* < Cmax ([Ait]h_l) 3 A

i=1 i=1 i=1
< C'[mesh (P,)]** ™' T — 0 as m — oo

which contradicts the fact that @Q,, — T as m — oo. [
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Proposition 24.6. Suppose that {P,,} -_, is a sequence of partitions of [0, T
such that Pp, C Pps1 for all m and mesh (P,,) — 0 as m — oo. Then

Qm — T a.s. where Q.,, is defined as in Eq. .

Proof. It is always possible to find another sequence of partitions,
{P/},2,, of [0,T] such that P, C P,,,, mesh(P,) — 0 as n — oo,
# (PLy1) = #(P,) + 1, and P,, = P, where {n,},._, is a subsequence
of N. If we let @), denote the quadratic variations associated to P;, and we
can shown Q) — T a.s. then we will also have Q,, = Q;, — T a.s. as well.
So with these comments we may now assume that # (P,41) = # (Pn) + 1.

We already know form Exercisethat Qm — T in L? (P) . So it suffices
to show @, is almost surely convergent. We will do this by showing {Qy, },-_,

is a backwards martingale relative to the filtration,

Fn =0 (Qm, Qmt1,---)-

To do this, suppose that P41 = P, U {v} and v = ¢;_1,v = t;41 € Py, such
that u <v <w. Let X := B, — B, and Y := B,, — B,. Then

Qm = Qm+1 - (B’U - Bw)Q - (Bw - Bu)2 + (B’U - Bu)2
= Qi1 —X?—Y? 4+ (X +Y)?
= Qm+1 + 2XY
therefore,
E[Qm|Fm+1] = Qma1 + 2E [XY | Fpia] -

So to finish the proof it suffices to show E [XY|F,,4+1] =0 a.s.

To do this let
b By if t <w
Y7\ B, — (B, — By) if t > v,

that is after ¢ = v, the increments of b are the reflections of the increments
of B. Clearly b, is still a continuous process and it is easily verified that
E [bybs] = sAt. Thus {b:},~, is still a Brownian motion. Moreover, if Q,41, ()
is the quadratic variation of b relative to Py, then

Qmin (0) = Qumtn = Qmin (B) for all n € N.

On the other hand, under this transformation, X — X and ¥ — —Y. Since
(XY, Qum+s1,Qmaa,-.-) and (=X, Y, Qt1, @mto, - .. ) have the same distri-
bution, if we write

E[XY|Fni1] = f (Qmit, @iz, ) as. (24.5)

then it follows from Exercise that

B[-XY|Fns1] = [ (Qm+1, @m+2,-.-) as. (24.6)



24 Brownian Motion 491
Hence we may conclude,
E[XY[Fpi1] = B[ XY|Fia] = —E[XY|Fnia],
and thus E [XY|F,41] =0 as. |
Lemma 24.7. For any a > 1/2, limsup, | |By| /t* = o a.s.

Proof. If limsup, o |w¢| /t* < oo then there would exists C' < oo such that
|we| < Ct* for all t < 1 and in particular, wl/n’ < Cn~® for all n € N. Hence
we have shown

{limsup|Bt Jt¢ < oo} C UceN Mnen {|B1/n| < Cn_a}.
t10

This completes the proof because,

P (ﬁneN {|B1/n| < C’n_a}) < limsup P (‘Bl/n’ < C’n_o‘)

1

— limsup P (|B1\ < Cnl/%a) — P(|B1|=0)=0

n—oo

if o > 1/2. n

Theorem 24.8 (Nowhere differentiability). Let W := {w € C' ([0,00) — R) : w (0) = 0},
B denote the o - filed on W generated by the projection maps, by (w) = w (t)

for allt € [0,00), and u be Wiener measure on (W,B), i.e. i is the Law

of a Brownian motion. For a > 1/2 and E, denote the set of w € W :=

{w:[0,00) = R : w(0) =0} such that w is a—Hélder continuous at some point

t =t, € [0,1]. when p*(Ey) =0, i.e. there exists as set E, € B such that

E, = { inf limsup wit+h) —w @)
0<t<1

s Wa <oo}CE~a

and p (Ea) = 0. In particular, p is concentrated on EZ which is a subset of

the collection paths which are nowhere differentiable on [0,1].

Proof. Let a € (0,1) and v € N — to be chosen more specifically later. If
w € E,, then there exists, t € [0, 1], C' < oo, such that

lw(t) —w(s)| < Ct—s|” forall |s| <v+1.
For all n € N we may choose i > 0 so that [t — | < 1. By the triangle
inequality, for all j = 1,2,...,v, we have
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L(52) o (S52) s (52) w0

gc[’+3—4 n
n

i1
+‘w(t)w<z+‘7 )‘
n
1+ —t’]

<Cn “[lv+1|* +|v|*] =: Dn™?.

Therefore, w € E,, implies there exists D € N such that for all n € N there
exists 7 < n such that

C i
‘w<z+‘7) w(w)‘gDnanl,Q,...,y.

n n

Letting

L i
Ap = MpZy Uicn Njy {w : 'w (ZJF]) —w <Z+]>‘ SDna},
= n n

we have shown that F, C UpenAp. We now complete the proof by showing

P (Ap) = 0. To do this, we compute,
L i
o) e (<o)
n n

. . i+ i+j—1>‘ ﬂﬁ

< limsu Plw:|w —w|—— )| < Dn

<tmow ST P (o1 o (57) - (7)<
li [P(1 IN| < Dn™®

= limsupn — < Dn
n—oo \/ﬁ

= limsupn [P (|N\ < Dn%_"ﬂ

n—oo

n—oo

P (Ap) < limsup P (ui<n M {w :

v

< limsupn {Cn%_ar = C" lim sup plt(z—a)v, (24.7)

n—00 n—oo

wherein we have used

D=
8

1 2 1
N| <) = — 27 dpy < —=20.
u(IN| <) %/Me b

The last limit in Eq. 1' is zero provided we choose o > % and v (a — %) >
1. [ |

24.1 Scaling Properties of B. M.

Theorem 24.9 (Transformations preserving B. M.). Let {B;},-, be a
Brownian motion and By := o (Bs : s <t). Then; B

1. by = — By is again a Brownian motion.
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2.ifc>0 and by := c12B,, is again a Brownian motion.

3.by == tBy; for t > 0 and by = 0 is a Brownian motion. In particular,
limg o tByy =0 a.s.

4. for allT € (0,00), by := Byyr — By fort > 0 is again a Brownian motion
which is independent of Br.

5. for all T € (0,00), by := Br_y — By for 0 <t < T is again a Brownian
motion on [0,T].

Proof. It is clear that in each of the four cases above {b;},- is still a
Gaussian process. Hence to finish the proof it suffices to verify, E [b;bs] = s At
which is routine in all cases. Let us work out item 3. in detail to illustrate the
method. For 0 < s < t,

E[bsby] = stE[By-1B;-1] = st (s ' At™!) =st-t7' =s.

Notice that t — b; is continuous for ¢t > 0, so to finish the proof we must show
that lim;ob; = 0 a.s. However, this follows from Kolmogorov’s continuity
criteria. Since {b},~ is a pre-Brownian motion, we know there is a version,

b which is a.s. continuous for ¢ € [0, 00). By exercise [22.7] we know that
E = {wEQ:bt(w);«éBt(w) forsomet>0}

is a null set. Hence w ¢ F it follows that

ltlf{)l by (w) = ltllrél b (w) = 0.

Corollary 24.10 (B. M. Law of Large Numbers). Suppose {B;},~ is a
Brownian motion, then almost surely, for each § > 1/2, -

) |B:| [0 df B>1/2
limsup 55 = {oo ifBe(0,1/2). (248)

Proof. Since by := tB;/, for t > 0 and by = 0 is a Brownian motion, we
know that for all & < 1/2 there exists, Cy, (w) < 0o such that, almost surely,

t|Biye| = |tBii| = |be| < Cq [t|” forall t < 1.
Replacing ¢ by 1/t in this inequality implies, almost surely, that
1 C
n |B;| < ?3 for all ¢ > 1.

or equivalently that
|Bi| < Cut'~* for all t > 1. (24.9)

Hence if 8 > 1/2, let @ < 1/2 such that 8 < 1 — a. Then Eq. (24.8) follows
from Eq. (24.9).
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On the other hand, taking o > 1/2, we know by Lemma (or Theorem

518) that
By b
lim sup = limsup — = 00 a.s.
t10 e tlo  t¢

This may be expressed as saying

oo = limsup M = lim sup @ a.s
t—00 t—e oo tlm@ T
Since 8 := 1 — « is any number less that 1/2, the proof is complete. [

24.2 Markov Property for B. M.

Notation 24.11 In what follows, let 2 := C (R4,R) and let 0; : 2 — (2 and
By : 2 — R be defined by,

Oy (wW)=w(-+t) and

respectively. Further let By := 0c(Bs:s<t) and B := 0(Bs:s<00) =
VicooBt.

Definition 24.12. Let {X;},., be a Brownian motion on some probability
space, (Y, M,v). For x € R, let p, : Y — {2 be defined by,

¢z (y) == ([0,00) 3t =z + X, (y)) € 2.

Then @, is a measurable map and we let P, := v o @t for all x € R. When
x = 0, measure, Py, is called Wiener measure on (£2,B).

Definition 24.13. A function, F' : {2 — R is said to be a cylinder function
if there exists times,

O=to<ti <ty <. - <t, <o0,
and a measurable function, f: R"Tt — R such that
F = f(Bty,...,Bt,). (24.10)

In what follows we will often write p; (z,y), for p; (y — x) so that

1 1
pe(,y) =pe(y—a) = ﬁexp (—Zt|y—x|2>. (24.11)

Lemma 24.14. Suppose that F : {2 — R is a bounded measurable function,
then R 32 — P, (F) € R is a bounded measurable function, where

Py (F) = /Q F(w)dPs ().
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Proof. Let H denote the collection of bounded measurable functions, F :
2 — R, such that x — P, (F) is measurable. It is easily checked that H
is a linear space containing 1 which is closed under bounded convergence.
Furthermore if F'is a cylinder function as in Eq. with f being bounded,
then by Exercise we know

PI<F) :]EV[f({E+Bt07$+Bt1,...7$+Btn)]
=E,[f(z,x+ Bt,,...,x + By,)]

= fl,z+xr,...,x+x,) G (day, ..., dzy,) (24.12)
R’ﬂ

where
q(dwy, ... dxn) = pr,—1, (0,21)day - - Pto—tu—s (Tn-1,Zn) dp.
Making the change of variables, x; — z; — « for all ¢ in the above integral

allows us to write P, (F) as

P, (F)= A flryz,. . xn) q(z5day, ... dey) (24.13)

where now
q(x;dey, ..., dxy) = pyy—t, (T, x1)dxr - eyt (Tn—1,Zn) dr,. (24.14)

So in this case, it follows by Fubini’s theorem that z — P, (F') is measurable
and therefore H contains all bounded cylinder functions. Since the bounded
cylinder functions is a multiplicative class which generates, B, it follows that
H consists of all bounded B — measurable functions, see Theorem [9.3 ]

Notation 24.15 Suppose that (v is a measure on R, let P, := fR du (z) Py,
i.e. if A€ B= By,

P, (A) = /IR Py (A)du(z). (24.15)

Because of Lemma P, is well defined and it is an easy exercise to
check that P, is a measure on B. In these notes we will mostly restrict our
attention to the case where p is a probability measure on R.

Theorem 24.16 (Markov Property). Let i be a probability measure on R
and F € bB (the space of bounded B — measurable functions), then P, — a.s.,

IEH [FO 9t|Bt] = EBt [F] .

To be precise, for w € {2,

(Es, [F]) (@) = Eq [F] [s—p,(0) = /Q F (&) Py (do).
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Proof. Let F' be a bounded cylinder function of the form, F =
f(Bty,-..,Bt,), and G be a bounded cylinder function of the form, G =
g (Bsg, - .., Bs,,) where

O=sp<s1< <8, =t.

Then
F o) 9,5 = f (Bt+t0, ey Bt+tn)
and
BuFotGl= [ @ f @) a(d)d omidy)  (2016)
where z € R™*1, y ¢ R",
q (d$) =M (dx0>p81750 (.1'0,.'171) dxl et 'psmfsm,l (l‘mfhxm) dmm;

and
ql (xm§ dy) = Pt1—to (xma yl) dyy -+ - Pt —tn_1 (yn—la yn) dyn. (2417)
According to Eq. (24.13)),

S @my) @ (@i dy) =B, [F]

we may rewrite Eq. (24.16) as,

E,[Fob G| = /R g@)Ea, [Fla(d)
—E,[¢(Bu....,Bs,)Es. [F]] =E,[CG-Egp, [F]]. (24.18)

An application of the multiplicative systems Theorem completes the proof
by showing Eq. (24.18) holds for all F' € bB and G € bB;. [

Definition 24.17. Ford € N, we say a R? — valued process, {Bt = (Btl, cee Bf)tr} N
>0

. . . . . . ivd .
is a d — dimensional Brownian motion provided {B,’}i_l is an indepen-
dent collection of one dimensional Brownian motions.

Remark 24.18. Most everything we have done for 1 dimensional Brownian
motion goes over to d - dimensional Brownian motion with no essential change
other than to interpret, p; (z,y) as

1\ 42 1 ,
pe(z,y) = = exp | —= |z — ]
27t 2t

where |z|* = Zle z2.
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24.3 Measurability Issues

Before going on let us pause to say a few words about measurability issues
which will arise in this continuous time setting.

Exercise 24.5. Suppose ({2, F) is a measurable space, (S, p) is a separable
metric space, and S is the Borel o — algebra on S. If X, : {2 — S is a sequence
of F/S§ — measurable maps such that X (w) := lim, o X, (w) exists in S for
all w € £2, then the limiting function, X, is /S — measurable as well.

Solution to Exercise (24.5)). Let a € S and € > 0 be given and let

B(a,e):={s€ S:p(s,a) <e} and
Cla,e):={s€S:p(s,a)<e}.

Then X (w) € B(a,e) iff for all § < e there exists and N € N such that
Xn (w) € C(a,0) for all n > N. If we we take 0 to be of the form, § = 1/m
for some m € N with m > 1/e, we have shown

Xil (B (a,s)) = Nm>e-1t UNeN ngNX;1 (C (a7 1/m)) eF.

Since S is separable, any open subset, V C S, may be written as a countable
union of open balls, and hence we may conclude that X! (V) € F. Since
S := o (open sets), this shows that X is F/S — measurable.

Lemma 24.19. Suppose S is a separable metric space, S be the Borel o —
algebra on S, and (£2,F;, F) is a filtered measurable space. Further suppose
that Xy : 2 — S fort € [0,00) is an adapted right continuous process, i.e.
Xy is Fy /S— measurable for allt € [0,00) and t — Xy (w) is right continuous
for all w € 2. Then the map, ¢ : [0,00) X 2 — S defined by ¢ (t,w) = X; (w)
is [Blo,0o) ® F| /S — measurable. Moreover the process X is progressively
measurable, i.e. for every T € [0,00), the map @' : [0,T] x 2 — S defined
by T (t,w) := Xy (w) is Bjo,r) ® Fr/S — measurable.

Proof. To each n € N, let ¢, : [0,00) x £2 — S be defined by; ¢, (0,w) =
X (w) and

() if(k_1)<t§2£nforkeN.

2’ﬂ

on (tw) =X

ko
2n

Given, A € S, we have

_ _ o kE—-1) k _
et ()= [0} x5 (0] Ui | (Y5 g | > X () € By 07
for all n € N. Therefore, ¢, is [B[o,oo) ®.7:] /S — measurable. By the right

continuity of t — Xy, it follows that ¢, (t,w) — ¢ (t,w) as n — oo and hence
by Exercise @ is also [B[O,oo) ® .7-'] /S — measurable.
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The second assertion is proved similarly. In this case we let ¢, (0,w) =
Xy (w) and

k—1)T

kT
g <1< gy forke{l2....2).

on (t,w) == Xy (w) if

In this case

(k=1)T kT}

et () = [0 x X7 (oo | (B

X XT7k12," (A)} € Bjo,n®Fr
and therefore ¢, is [B[oj] ® }"T] /S and so is ¢! = lim,, ., ¢, by Exercise
[

Lemma 24.20. Suppose that T € (0,00), 210 := C([0,T],R), and Fr =
o (Bf :t<T), where Bl (w) =w (t) for allt € [0,T) and w € 27. Then;

1. The map, 7 : 2 — O defined by 7 (w) := w|jo,] is Br/Fr — measurable.

2. A function, F : 2 — R is By — measurable iff there exists a function,
[ 02r — R which is Fp — measurable such that F = f om.

3. Let ||wl|p = max,cjo,7) [w (t)| so that (27, |-||l;) is a Banach space. The
Borel o — algebra, Bg, on {27 is the same as Fr.

4. If F = fom where f: 20 — R is a ||-||; — continuous function, then F
18 By — measurable.

Proof. 1. Since B om = B, is Br — measurable for all t € [0, T], it follows
that 7 is measurable.

2. Clearly if f : 27 — R being Fr — measurable, then FF = forw : 2 —- R
is By — measurable. For the converse assertion, let H denote the bounded By
— measurable functions of the form F' = fox with f: 20 — R being Fpr —
measurable. It is a simple matter to check that H is a vector space which is
closed under bounded convergence and contains all cylinder functions of the
form, G (By,,...By,) = G(BL,... Bl ) o with {t;};_; C [0,T]. The latter
set of functions generates the o — algebra, Br, and so by the multiplicative
systems theorem, H contains all bounded Br — measurable functions. For a
general Br — measurable function, F' : {2 — R, the truncation by N € N,
Fy =—-NV (FAN), is of the form Fy = fy on for some Fr — measurable
function, fy : 20 — R. Since every w € {21 extends to an element of w € 2,
it follows that limy_,o fv (w) = limy_ oo Fiv (©) = F (&) exists. Hence if we
let f:=limy_ o fn, we will have F' = f ox with f being a Fpr — measurable
function.

3. Recall that By, = o (open sets). Since By : 2 — R is continuous for
all s, it follows that o (BL) C By, for all s and hence Fr C Bg,.. Conversely,
since

ol == sup |w()] = sup [B] (W),
teQnlo,T] teQnlo,T]
it follows that || —wo| = supeqno,1] |Bf —wo ()| is Fr — measurable

for every wp € 2. From this we conclude that the balls, B (wg,r) :=



24.4 Feynman Kac Formula Revisited 499

{w € 2 :||lw—wo|| < r} are Fr — measurable, i.e. Fr contains all open balls.

Since, by the classical Weierstrass approximation theorem, {2 is separable, it
follows that Fr contains all open subsets of {2 and hence B, C Fr.

4. Any continuous function, f : 2 — R is By, = Fr — measurable and

therefore, F' = f om is By — measurable since it is the composition of two
measurable functions. [

24.4 Feynman Kac Formula Revisited

Suppose that V : RY — R is a smooth function such that k := inf,cga V (7) >
—oo and for f > 0 or f bounded and measurable, 1e1E|

Tof () =B, [e" 0 VBT f (By)| = By e o VB f (44 By)]
Let us observe that for f > 0 and p,q € (1,00) such that p=t + ¢ 1 =1

(@) @] < B (B =™ [ 1£ )l )y

e IfIL, - e (2], (24.19)

ity = ([swra)”

In particular if f =0, m — a.e., then T} f () = 0 and we can use this to see
that (Tif) (x) is well defined for all f € LP. Since

where

I = [ =)y = [ o ay

d/2
= 41d 72 / e Ty = 171 72 (W>
(27t) "= Jra (2mt)™ q

—d/2 1
(27rt)d(q—1)/2’

Eq. (24.19) gives the quantitative estimate;

ITef ()| < C(p, ) I £l Lo gy » (24.20)

where
-4 —55 —kt
C(p,t) :==q 2a (2mt) 2 e . (24.21)

Theorem 24.21 (Feynman-Kac Formula). Suppose f € L? (Rd,m) and
t > 0. Then;

! In what follows, the reader feeling queasy about measurability issues should refer

back to Lemma @
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1. Ty is a bounded linear operator on L* (RY) with 1T, < ekt e,
ITeflly < e | flly for all f € L (RY,m).

2. Ty is self-adjoint, i.e. (Tyf,g) = (f,Trg) for all f,g € L* (R‘ﬂm) where

(F9)i= [ £@)3(a)dm a).

3. T}~ s a semi-group, i.e. Tyys = T, T, for all t,s > 0.
4. Ty is strongly continuous, i.e.

%HTJ— fllp2 =0 for all f € L* (R%,m) .

5. Let
Lif-f

t
for those f for which the limit exists. Then Af = (lA — V) f for all
f € C2(R?). The operator A with its natural domaz' is called the in-
finitesimal generator of {1}, -

d .
Af = %\M (T:f) =L *ltli%l

Remark 24.22. Some functional analysis along with basic “elliptic regularity”
shows, that u (t,z) = T;f (z) solves the heat equation,

ug (6, ) = %Au (t,x) =V (z)u(t,x) with ltilrgu (t,-) = f(-) in L%

Proof. To simplify notation a bit we will assume d = 1 in the proof below
and let [ £ == [ /]l L2 (gm) -

1. By Fubini’s theorem and simple estimates,
. 2
T2 = [ [ [e i Vet (o1 )|
R

dzr

t 2
< /]EO ‘e—fo V(x—i—BT)de (SL’ + Bt)‘
R

< e—thEO/ If (z + Bt)|2 dx = e 2 ||f||g .
R

2. We have

? The domain, D (A), of A consists of those f € L? (R, m) such that the limit
defining Af exists in the L? (]Rd, m) sense. So we are asserting that C2 (Rd) -
D(A) and Af = (§A-V) f forall f e C?(R?).
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(Tifg) = [ Ba[e BVErRI f oot By g (@) da
=Eq /]R e~ o V@+Bo)dr ¢ (2 4 B,) g () dx
=Ep /R e~ o V=B BT £ (3) g (2 — By) da.

Now let b, := B;_, — B; so that b, is another Brownian motion on [0, ¢]
and observe that b; = —B;. Hence we have

(Tif,9) = Eo / e o V(@tbi—r)dr ¢ () g (x + by) dx
R

=By [ e BVER @) (0 4 b) do
R

= ]Eo/ e Jo V@+Brdr g (4 B,) f (2) da
R

- / Eo [em i VE+Brg (o 4 B)| f (2) da
R
= (f7 Ttg) .

3. Using the Markov property in Theorem [24.16] we find,

(Tovsf) (@) = By [ 87 V@I f (B, )]
=E; {6_ fo VBdre= 70V (B ¢ (BtJrs)}
—E, o= s V(Br)dr [67 J3 V(B2 ¢ (Bs):| o Qt]
—E, ie— I V(Brydrg [e’ fe V(BT)d‘rf(Bs)H

=E, [ B VEI (T 1) (B)] = (TLf) (@)

4. From the estimate,

77 =517 = [ do[Bo [e VB o3y - s @)
R
< / Eo ‘e_ fo V(e+Br)dr ¢ (x + By) — f(x)‘zdx
R
= / Eo \ (e- Jo Vet Bridr _ 1) Fo+ B+ f@+B)— f () da,
R

it follows that

limsup | T3 f — f||2 < limsup D; + lim sup E;
t10 t10 t10

where
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+ 2
D, = 2/ E, ‘(e* JeVie+B)dr _ 1) Flr+ Bt)‘ dx
R

and
R

Let us now assume for the moment that f € C. (R). In this case, using
DCT twice, we learn that [, |f (z+ B) — f (z)|* dz — 0 boundedly and
hence that lim sup, | £; = 0. Similarly, if M is a bound on |f|, then

2
Dt§2/E0‘e_f0tV($+BT)dT—l de —0ast]O0.
R

So in this special case we have shown limy|o |13 f — f|| = 0.
For general f € L? and g € C, (R) we have

1irrt1f()up ITef — fIl < 1irrtllsoup 172 f — Tiegll + [ T2g — gll + [lg — fII]
< limsup 1Teg — gl + (L +e) lg = £

<@ +e ™) g -1l

This completes the proof because C, (R) is dense in L? (R, m) (see Exam-
ple and hence we may make ||f — g|| as small as we please.

5. Finally we sketch the computation of the infinitesimal generator, A, on
C? (R) . By the chain rule,

d d ¢

£\0+th($) = %|0+Ex [6_ Jo V(BT)de(Bt)}
= Lo, [ BV (30)] 4+ Lo ()
=B, [V (Bo)  (Bo)l + o (pu# ) (&)

= V(@) [ @)+ 50 ().
]

Exercise 24.6 (Ultracontractivity of 7;). Let BC (R?) denote the bounded
continuous functions on R¢ and define

l9llc = sup |g ()]
rERA

for g € BC (Rd) . Suppose 1 < p < oo and f € LP (Rd,m) . Show u (t,z) :=
(Tyf) (x) is continuous for (t,z) € (0,00) x R? and is bounded in x for fixed
t > 0. In particular, for any ¢ > 0, show T} maps LP (Rd,m) into BC' (Rd)
and

ITefllo < C(pst) ||fHLp(Rd) )

where C (p,t) is define as in Eq. (24.21). Hint: first verify the continuity of
u (t, ) under the additional assumption that f € C. (R?).
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24.5 A stronger Markov Property

Definition 24.23. Given a filtration, {Bi},~, on some set, £2, let B} :=
Biy = NgsiBs. So Biy peaks infinitesimally into the future.

Theorem 24.24 (Markov Property II). If F' € b3, then
]El, [F o 9t|Bt+] = ]EBt [F} = Ey [FO 0t|8t} Pl, - a.s.

Proof. Let F be a bounded cylinder function of the form, F =
f(Biy,.--,By,), where f : R**! — R is a bounded continuous function.
Then

t—>Fob(w)=f(w(t+ty), . .,w(ty+1t))

is continuous in ¢t > 0 for all w € (2. Since

EmF=/ f(@oyn, . un) 4 (@5 dy)
Rn+1
where

q (z3dy) = pry—1o (Ty1)dyr - Dy —try Yn—1,Yn) AYn,

we also see, by DCT, that x — E,F is continuous as well.
If G € bB;,, then by the DCT,

IE,,[FOHt~G]zli?tlEy[FOHT-G].

By Theorem [24:16] for 7 > ¢,

E,[Fob, G| =E,[E,[Fo0,|B,] G] =E, [Es, [F]-G].

-

Therefore, by another application of the DCT,

Eu[Foet'G]:hIlrtlEu[EBT [F]'G]:EV[EBt [F]G]

It now follows by an application of the multiplicative systems Theorem [9.3]
that
E,[F o, -G]=E, [Eg, [F]-G]

for all F' € b3 which completes the proof. [
Corollary 24.25. For all Z € bB, and t > 0,
E, [Z|B:i+] = E, [Z|B:], P, — a.s. (24.22)

(More precisely, if U is any version of E, [Z|Biy] and V is any version of
E, [Z|B:], then U =V, P, — a.s.) Moreover, to every A € By, there exists

A € B, such that P, (A A /1) =0.
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Proof. First suppose that Z = G - F' o 0; with F' € bB and G € bB;. In
this case, according to Theorem 24:24] P, — a.s.,

EV [Z‘Bt—i-} :El, [G FOHt\BH} = GEV [FOHt\BH]
:G]EBt [F} :GEV[FOQt‘Bt]
:EV [GFO&t‘Bt] :]El, [Z|Bt]

Another application of the multiplicative systems Theorem [9.3]then shows this

identity remains valid for all Z € bB. (Along the way in applying Theorem

you may want to make use of the conditional version of the DCT.)
Consequently, if Z € bB;,, then

7 =E,[Z|B.] =E,[Z|B)], P, - as.

and letting Z € bB; be a version of E, [Z|B:], we see that Z = Z € bBy, P,
— a.s. Applying this to Z = 14 with A € By implies 14 = Z, P, — a.s. If we

let A:={Z #0} € By, then
ANA= [{Z;ﬁo}my] U [Am{Z:OH
and 1, = Z, P, - a.s. implies
P (An{z=0}) =0and b, ({Z #0} nac) =0,
that is P, (A4 4) =0, .

Theorem 24.26 (Blumenthal 0—1 Law). The o — field, By is P, — trivial
for all x € R.

Proof. If A € By, then
E. [14|Bot] = Ez [14|Bo) = Epla = P (A), Pr — as.
Therefore,
Py (A) =Eq[1a-1a] = [1a - By [14Boy]] = Eo [1a - P (A)] = [P: (A))*.
|

Corollary 24.27 (Rapid oscillation of B. M.). Let Ty :=inf {t > 0: B; > 0},
T_:=inf{t >0: B, <0}, and Ty :=inf {¢ > 0: B, =0}. Then

Py(Ty=0)=1=P (T, =0).
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Proof. We first claim that the sets, {Tx = 0}, are in By;. For example,
for any m € N,

{T+ = 0} = ngm UTEQO(O,I/TL] {BT > O} € Bl/m

Since m is arbitrary, it follows that {T'y = 0} € N5o_1 By /m = Bo-

Since B £ —B under Py, it follows that Py (T}, = 0) = Py (T = 0) = A.
Moreover, if Ty > 0, then T_ =0, so

Q={T, =0} U{T, >0} ={T, =0} U{T_ >0}

from which it follows that 1 = Py (f2) < 2X and hence A > 1/2. Be-
cause {T} =0} € By;,we may apply Blumenthal’s 0-1 law to learn A\ =
Py (T} =0) € {0,1} and since A > 1/2, we conclude that Py (7T- =0) =
Py (T =0)=1.

Finally, if Ty (w) = 0 and T- (w) = 0, it follows by the intermediate value
theorem that Tp (w) = 0. Thus {T'y = 0}N{7T- = 0} C {Tp = 0} and therefore
P (Tp = 0) = 1 as well provided we can show {T = 0} is measurable. We take
care of this detail now.

If s € (0,00), then Ty (w) > s iff wy > 0 or wy < 0 for ¢ € (0, s]. The first
case happens iff for all € € (0,s), there exits 6 > 0 such that w; > ¢ for all
t € [e, s] . From this we learn that

{B: >0 for t € (0,s]} = Nps1/s Uprmy N {B: > 1/m} € B;.

teQn (L 5]
Similarly we show {B; < 0 for ¢ € (0, s]} € By and therefore
{Ty >s}={B;y>0fort e (0,s]}U{B; <0 forte(0,s]} € Bs.

Hence
{To =0} = N3y {To < 1/n} € Bos.

24.6 The Strong Markov Property

To Be Continued
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