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Math 280C Homework Problems

-2.1 Homework #1 (Due Friday, April 13, 2007)

• Look at the following Exercises from the Lecture Notes: 19.4, 19.16,
• Look at the following Exercises from Resnick Chapter 10: 19, 22-24,
• Hand in the following Exercises from the Lecture Notes: , 19.7, 19.8, 19.9,

19.15.

-2.2 Homework #2 (Due Friday, April 20, 2007)

• Look at the following Exercises from the Lecture Notes: 19.12, 19.13,
19.14

• Hand in the following Exercises from the Lecture Notes: , 19.6, 19.10,
19.11, 20.4, 20.5, 20.6.

-2.3 Homework #3 (Due Monday, April 30, 2007)

• Hand in the following Exercises from the Lecture Notes: 21.1, 21.2, 21.3,
21.4.

-2.4 Homework #4 (Due Monday, May 7, 2007)

• Look at the following Exercises from the Lecture Notes: 23.1
• Hand in the following Exercises from the Lecture Notes: 24.1, 24.3, 24.2,

24.4.

-2.5 Homework #5 (Due Monday, May 14, 2007)

• Look at the following Exercises from the Lecture Notes: 22.6, 22.7
• Hand in the following Exercises from the Lecture Notes: 22.2, 22.3, 22.4,

24.6.
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-1.1 Homework 1. Due Monday, January 22, 2007

• Hand in from p. 114 : 4.27
• Hand in from p. 196 : 6.5, 6.7
• Hand in from p. 234–246: 7.12, 7.16, 7.33, 7.36 (assume each Xn is inte-

grable!), 7.42

Hints and comments.

1. For 6.7, observe that Xn
d= σnN (0, 1) .

2. For 7.12, let {Un : n = 0, 1, 2, ...} be i.i.d. random variables uniformly
distributed on (0,1) and take X0 = U0 and then define Xn inductively so
that Xn+1 = Xn · Un+1.

3. For 7.36; use the assumptions to bound E [Xn] in terms of E[Xn : Xn ≤ x].
Then use the two series theorem.

-1.2 Homework 2. Due Monday, January 29, 2007

• Resnick Chapter 7: Hand in 7.9, 7.13.
• Resnick Chapter 7: look at 7.28. (For 28b, assume E[XiXj ] ≤ ρ(i− j) for

i ≥ j. Also you may find it easier to show Sn

n → 0 in L2 rather than the
weaker notion of in probability.)

• Hand in Exercise 13.2 from these notes.
• Resnick Chapter 8: Hand in 8.4a-d, 8.13 (Assume Var (Nn) > 0 for all

n.)

-1.3 Homework #3 Due Monday, February 5, 2007

• Resnick Chapter 8: Look at: 8.14, 8.20, 8.36
• Resnick Chapter 8: Hand in 8.7, 8.17, 8.31, 8.30* (Due 8.31 first), 8.34

*Ignore the part of the question referring to the moment generating func-
tion. Hint: use problem 8.31 and the convergence of types theorem.

• Also hand in Exercise 13.3 from these notes.
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-1.4 Homework #4 Due Friday, February 16, 2007

• Resnick Chapter 9: Look at: 9.22, 9.33
• Resnick Chapter 9: Hand in 9.5, 9.6, 9.9 a-e., 9.10
• Also hand in Exercise from these notes: 14.2, 14.3, and 14.4.

-1.5 Homework #5 Due Friday, February 23, 2007

• Resnick Chapter 9: Look at: 8
• Resnick Chapter 9: Hand in 11, 28, 34 (assume

∑
n σ

2
n > 0), 35 (hint:

show P [ξn 6= 0 i.o. ] = 0.), 38 (Hint: make use Proposition 7.25.)

-1.6 Homework #6 Due Monday, March 5, 2007

• Look at Resnick Chapter 10: 11
• Hand in the following Exercises from the Lecture Notes: 12.1, 18.1, 18.2,

18.3, 18.4
• Resnick Chapter 10: Hand in 2†, 5*, 7, 8**

†In part 2b, please explain what convention you are using when the de-
nominator is 0.

*A Poisson process, {N (t)}t≥0 , with parameter λ satisfies (by definition):
(i) N has independent increments, so that N(s) and N(t) − N(s) are inde-
pendent; (ii) if 0 ≤ u < v then N(v)−N(u) has the Poisson distribution with
parameter λ(v − u).

**Hint: use Exercise 12.1.

-1.7 Homework #7 Due Monday, March 12, 2007

• Hand in the following Exercises from the Lecture Notes: 18.5, 19.1, 19.2,
• Hand in Resnick Chapter 10: 14 (take Bn := σ (Y0, Y1, . . . , Yn) for the

filtration), 16

-1.8 Homework #8 Due Wednesday, March 21, 2007 by
11:00AM!

• Look at the following Exercise from the Lecture Notes: 19.5.
• Hand in the following Exercises from the Lecture Notes: 19.3.
• Resnick Chapter 10: Hand in 15, 28, and 33.

For #28, let Bn := σ (Y1, . . . , Yn) define the filtration. Hint: for part b
consider, lnXn.



0

Math 280A Homework Problems

Unless otherwise noted, all problems are from Resnick, S. A Probability Path,
Birkhauser, 1999.

0.1 Homework 1. Due Friday, September 29, 2006

• p. 20-27: Look at: 9, 12, ,19, 27, 30, 36
• p. 20-27: Hand in: 5, 17, 18, 23, 40, 41

0.2 Homework 2. Due Friday, October 6, 2006

• p. 63-70: Look at: 18
• p. 63-70: Hand in: 3, 6, 7, 11, 13 and the following problem.

Exercise 0.1 (280A-2.1). Referring to the setup in Problem 7 on p. 64 of
Resnick, compute the expected number of different coupons collected after
buying n boxes of cereal.

0.3 Homework 3. Due Friday, October 13, 2006

• Look at from p. 63-70: 5, 14, 19
• Look at lecture notes: exercise 4.4 and read Section 5.5
• Hand in from p. 63-70: 16
• Hand in lecture note exercises: 4.1 – 4.3, 5.1 and 5.2.

0.4 Homework 4. Due Friday, October 20, 2006

• Look at from p. 85–90: 3, 7, 12, 17, 21
• Hand in from p. 85–90: 4, 6, 8, 9, 15
• Also hand in the following exercise.

Exercise 0.2 (280A-4.1). Suppose {fn}∞n=1 is a sequence of Random Vari-
ables on some measurable space. Let B be the set of ω such that fn (ω) is
convergent as n → ∞. Show the set B is measurable, i.e. B is in the σ –
algebra.
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0.5 Homework 5. Due Friday, October 27, 2006

• Look at from p. 110–116: 3, 5
• Hand in from p. 110–116: 1, 6, 8, 18, 19

0.6 Homework 6. Due Friday, November 3, 2006

• Look at from p. 110–116: 3, 5, 28, 29
• Look at from p. 155–166: 6, 34
• Hand in from p. 110–116: 9, 11, 15, 25
• Hand in from p. 155–166: 7
• Hand in lecture note exercise: 7.1.

0.7 Homework 7. Due Monday, November 13, 2006

• Look at from p. 155–166: 13, 16, 37
• Hand in from p. 155–166: 11, 21, 26
• Hand in lecture note exercises: 8.1, 8.2, 8.19, 8.20.

0.7.1 Corrections and comments on Homework 7 (280A)

Problem 21 in Section 5.10 of Resnick should read,

d

ds
P (s) =

∞∑
k=1

kpks
k−1 for s ∈ [0, 1] .

Note that P (s) =
∑∞

k=0 pks
k is well defined and continuous (by DCT) for

s ∈ [−1, 1] . So the derivative makes sense to compute for s ∈ (−1, 1) with
no qualifications. When s = 1 you should interpret the derivative as the one
sided derivative

d

ds
|1P (s) := lim

h↓0

P (1)− P (1− h)
h

and you will need to allow for this limit to be infinite in case
∑∞

k=1 kpk = ∞.
In computing d

ds |1P (s) , you may wish to use the fact (draw a picture or give
a calculus proof) that

1− sk

1− s
increases to k as s ↑ 1.

Hint for Exercise 8.20: Start by observing that
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E
(
Sn

n
− µ

)4

dµ = E

(
1
n

n∑
k=1

(Xk − µ)

)4

=
1
n4

n∑
k,j,l,p=1

E [(Xk − µ)(Xj − µ)(Xl − µ)(Xp − µ)] .

Then analyze for which groups of indices (k, j, l, p);

E [(Xk − µ)(Xj − µ)(Xl − µ)(Xp − µ)] 6= 0.

0.8 Homework 8. Due Monday, November 27, 2006

• Look at from p. 155–166: 19, 34, 38
• Look at from p. 195–201: 19, 24
• Hand in from p. 155–166: 14, 18 (Hint: see picture given in class.), 22a-b
• Hand in from p. 195–201: 1a,b,d, 12, 13, 33 and 18 (Also assume EXn =

0)*
• Hand in lecture note exercises: 9.1.

* For Problem 18, please add the missing assumption that the random
variables should have mean zero. (The assertion to prove is false without
this assumption.) With this assumption, Var(X) = E[X2]. Also note that
Cov(X,Y ) = 0 is equivalent to E[XY ] = EX · EY.

0.9 Homework 9. Due Noon, on Wednesday, December
6, 2006

• Look at from p. 195–201: 3, 4, 14, 16, 17, 27, 30
• Hand in from p. 195–201: 15 (Hint: |a− b| = 2(a− b)+ − (a− b). )
• Hand in from p. 234–246: 1, 2 (Hint: it is just as easy to prove a.s. con-

vergence), 15





Part I

Background Material





1

Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R̄ := R∪{±∞} , i.e. it
is R with two new points called ∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞ · a = ±∞ if a ∈ R with a > 0, ±∞ · a = ∓∞ if a ∈ R with
a < 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ = ∞ and −∞−∞ = −∞ while
∞−∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞ (−∞) if
for all M ∈ R there exists m ∈ N such that an ≥M (an ≤M) for all n ≥ m.

Lemma 1.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,
then:

1. If an ≤ bn for1 a.a. n then limn→∞ an ≤ limn→∞ bn.
2. If c ∈ R, limn→∞ (can) = c limn→∞ an.
3. If {an + bn}∞n=1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (1.1)

provided the right side is not of the form ∞−∞.
4. {anbn}∞n=1 is convergent and

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn (1.2)

provided the right hand side is not of the for ±∞ · 0 of 0 · (±∞) .

Before going to the proof consider the simple example where an = n and
bn = −αn with α > 0. Then

lim (an + bn) =

 ∞ if α < 1
0 if α = 1
−∞ if α > 1

while
lim

n→∞
an + lim

n→∞
bn“ = ”∞−∞.

This shows that the requirement that the right side of Eq. (1.1) is not of form
∞ − ∞ is necessary in Lemma 1.2. Similarly by considering the examples
1 Here we use “a.a. n” as an abreviation for almost all n. So an ≤ bn a.a. n iff there

exists N < ∞ such that an ≤ bn for all n ≥ N.
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an = n and bn = n−α with α > 0 shows the necessity for assuming right hand
side of Eq. (1.2) is not of the form ∞ · 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (1.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1., suppose
b = ∞ in which case we must assume a > −∞. In this case, for every M > 0,
there exists N such that bn ≥M and an ≥ a−1 for all n ≥ N and this implies

an + bn ≥M + a− 1 for all n ≥ N.

Since M is arbitrary it follows that an + bn →∞ as n→∞. The cases where
b = −∞ or a = ±∞ are handled similarly. Case 2. If a, b ∈ R, then for every
ε > 0 there exists N ∈ N such that

|a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

Therefore,

|a+ b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

for all n ≥ N. Since n is arbitrary, it follows that limn→∞ (an + bn) = a+ b.
Proof of Eq. (1.2). It will be left to the reader to prove the case

where lim an and lim bn exist in R. I will only consider the case where
a = limn→∞ an 6= 0 and limn→∞ bn = ∞ here. Let us also suppose that
a > 0 (the case a < 0 is handled similarly) and let α := min

(
a
2 , 1
)
. Given

any M <∞, there exists N ∈ N such that an ≥ α and bn ≥M for all n ≥ N
and for this choice of N, anbn ≥ Mα for all n ≥ N. Since α > 0 is fixed and
M is arbitrary it follows that limn→∞ (anbn) = ∞ as desired.

For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound and
greatest lower bound of Λ respectively. The convention being that supΛ = ∞
if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ is
not bounded from below. We will also use the conventions that sup ∅ = −∞
and inf ∅ = +∞.

Notation 1.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

lim inf
n→∞

xn = lim
n→∞

inf{xk : k ≥ n} and (1.3)

lim sup
n→∞

xn = lim
n→∞

sup{xk : k ≥ n}. (1.4)

We will also write lim for lim infn→∞ and lim for lim sup
n→∞

.

Remark 1.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥
n}, then {ak} is an increasing sequence while {bk} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R̄ and

lim inf
n→∞

xn = sup
n

inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n

sup{xk : k ≥ n}.
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The following proposition contains some basic properties of liminfs and
limsups.

Proposition 1.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim sup
n→∞

an and limn→∞ an exists in R̄ iff

lim inf
n→∞

an = lim sup
n→∞

an ∈ R̄.

2. There is a subsequence {ank
}∞k=1 of {an}∞n=1 such that limk→∞ ank

=
lim sup

n→∞
an. Similarly, there is a subsequence {ank

}∞k=1 of {an}∞n=1 such

that limk→∞ ank
= lim infn→∞ an.

3.
lim sup

n→∞
(an + bn) ≤ lim sup

n→∞
an + lim sup

n→∞
bn (1.5)

whenever the right side of this equation is not of the form ∞−∞.
4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (1.6)

provided the right hand side of (1.6) is not of the form 0 · ∞ or ∞ · 0.

Proof. Item 1. will be proved here leaving the remaining items as an
exercise to the reader. Since

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Now suppose that lim infn→∞ an = lim sup
n→∞

an = a ∈ R. Then for all ε > 0,

there is an integer N such that

a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ ε,

i.e.
a− ε ≤ ak ≤ a+ ε for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a. If lim infn→∞ an = ∞,
then we know for all M ∈ (0,∞) there is an integer N such that

M ≤ inf{ak : k ≥ N}

and hence limn→∞ an = ∞. The case where lim sup
n→∞

an = −∞ is handled

similarly.
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Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for
every ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε),
i.e.

A− ε ≤ an ≤ A+ ε for all n ≥ N(ε).

From this we learn that

A− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A+ ε.

Since ε > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A,

i.e. that A = lim infn→∞ an = lim sup
n→∞

an. If A = ∞, then for all M > 0

there exists N = N(M) such that an ≥ M for all n ≥ N. This show that
lim infn→∞ an ≥M and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an.

The proof for the case A = −∞ is analogous to the A = ∞ case.

Proposition 1.6 (Tonelli’s theorem for sums). If {akn}∞k,n=1 is any se-
quence of non-negative numbers, then

∞∑
k=1

∞∑
n=1

akn =
∞∑

n=1

∞∑
k=1

akn.

Here we allow for one and hence both sides to be infinite.

Proof. Let

M := sup

{
K∑

k=1

N∑
n=1

akn : K,N ∈ N

}
= sup

{
N∑

n=1

K∑
k=1

akn : K,N ∈ N

}

and

L :=
∞∑

k=1

∞∑
n=1

akn.

Since

L =
∞∑

k=1

∞∑
n=1

akn = lim
K→∞

K∑
k=1

∞∑
n=1

akn = lim
K→∞

lim
N→∞

K∑
k=1

N∑
n=1

akn

and
∑K

k=1

∑N
n=1 akn ≤M for all K and N, it follows that L ≤M. Conversely,

K∑
k=1

N∑
n=1

akn ≤
K∑

k=1

∞∑
n=1

akn ≤
∞∑

k=1

∞∑
n=1

akn = L
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and therefore taking the supremum of the left side of this inequality over K
and N shows that M ≤ L. Thus we have shown

∞∑
k=1

∞∑
n=1

akn = M.

By symmetry (or by a similar argument), we also have that
∑∞

n=1

∑∞
k=1 akn =

M and hence the proof is complete.





2

Basic Probabilistic Notions

Definition 2.1. A sample space Ω is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, Ω = {0, 1} .

2. The sample space for flipping a coin N -times could be taken to be, Ω =
{0, 1}N and for flipping an infinite number of times,

Ω = {ω = (ω1, ω2, . . . ) : ωi ∈ {0, 1}} = {0, 1}N
.

3. If we have a roulette wheel with 40 entries, then we might take

Ω = {00, 0, 1, 2, . . . , 36}

for one spin,
Ω = {00, 0, 1, 2, . . . , 36}N

for N spins, and
Ω = {00, 0, 1, 2, . . . , 36}N

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

Ω = DR :=
{
(x, y) ∈ R2 : x2 + y2 ≤ R

}
for one throw,

Ω = DN
R

for N throws, and
Ω = DN

R

for an infinite number of throws.
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5. Suppose we release a perfume particle at location x ∈ R3 and follow its
motion for all time, 0 ≤ t <∞. In this case, we might take,

Ω =
{
ω ∈ C ([0,∞) ,R3) : ω (0) = x

}
.

Definition 2.3. An event is a subset of Ω.

Example 2.4. Suppose that Ω = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here ωn = 1 represents the fact that a head was
thrown on the nth – toss, while ωn = 0 represents a tail on the nth – toss.

1. A = {ω ∈ Ω : ω3 = 1} represents the event that the third toss was a head.
2. A = ∪∞i=1 {ω ∈ Ω : ωi = ωi+1 = 1} represents the event that (at least) two

heads are tossed twice in a row at some time.
3. A = ∩∞N=1 ∪n≥N {ω ∈ Ω : ωn = 1} is the event where there are infinitely

many heads tossed in the sequence.
4. A = ∪∞N=1 ∩n≥N {ω ∈ Ω : ωn = 1} is the event where heads occurs from

some time onwards, i.e. ω ∈ A iff there exists, N = N (ω) such that ωn = 1
for all n ≥ N.

Ideally we would like to assign a probability, P (A) , to all events A ⊂ Ω.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, ω (n) ∈ Ω for each
n ∈ N, then try to “define” P (A) by

P (A) = lim
N→∞

1
N

# {1 ≤ k ≤ N : ω (k) ∈ A} . (2.1)

That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {ω (k)}∞k=1 .

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we now that B has occurred. Thus we would
like to compute:

P (A|B) = lim
n→∞

# {k : 1 ≤ k ≤ n and ωk ∈ A ∩B}
# {k : 1 ≤ k ≤ n and ωk ∈ B}

,

which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

P (A|B) = lim
n→∞

1
n# {k : 1 ≤ k ≤ n and ωk ∈ A ∩B}

1
n# {k : 1 ≤ k ≤ n and ωk ∈ B}

=
P (A ∩B)
P (B)

.

Definition 2.5. If B is a non-null event, i.e. P (B) > 0, define the condi-
tional probability of A given B by,

P (A|B) :=
P (A ∩B)
P (B)

.
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There are of course a number of problems with this definition of P in
Eq. (2.1) including the fact that it is not mathematical nor necessarily well
defined. For example the limit may not exist. But ignoring these technicalities
for the moment, let us point out three key properties that P should have.

1. P (A) ∈ [0, 1] for all A ⊂ Ω.
2. P (∅) = 1 and P (Ω) = 1.
3. Additivity. If A and B are disjoint event, i.e. A ∩B = AB = ∅, then

P (A ∪B) = lim
N→∞

1
N

# {1 ≤ k ≤ N : ω (k) ∈ A ∪B}

= lim
N→∞

1
N

[# {1 ≤ k ≤ N : ω (k) ∈ A}+ # {1 ≤ k ≤ N : ω (k) ∈ B}]

= P (A) + P (B) .

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every ω ∈ Ω is equally likely, i.e. P ({ω}) = 1

2N .
Assuming this we are then forced to define

P (A) =
1

2N
# (A) .

Observe that this probability has the following property. Suppose that σ ∈
{0, 1}k is a given sequence, then

P ({ω : (ω1, . . . , ωk) = σ}) =
1

2N
· 2N−k =

1
2k
.

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Example 2.7. The previous example suggests that if we flip a fair coin an
infinite number of times, so that now Ω = {0, 1}N

, then we should define

P ({ω ∈ Ω : (ω1, . . . , ωk) = σ}) =
1
2k

(2.2)

for any k ≥ 1 and σ ∈ {0, 1}k
. Assuming there exists a probability, P : 2Ω →

[0, 1] such that Eq. (2.2) holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To
try to compute this, let

An = {ω ∈ Ω : ωn = 1} = {heads at time n}
BN := ∪n≥NAn = {at least one heads at time N or later}

and
B = ∩∞N=1BN = {An i.o.} = ∩∞N=1 ∪n≥N An.

Since
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Bc
N = ∩n≥NA

c
n ⊂ ∩M≥n≥NA

c
n = {ω ∈ Ω : ωN = · · · = ωM = 1} ,

we see that
P (Bc

N ) ≤ 1
2M−N

→ 0 as M →∞.

Therefore, P (BN ) = 1 for all N. If we assume that P is continuous under
taking decreasing limits we may conclude, using BN ↓ B, that

P (B) = lim
N→∞

P (BN ) = 1.

Without this continuity assumption we would not be able to compute P (B) .

The unfortunate fact is that we can not always assign a desired probability
function, P (A) , for all A ⊂ Ω. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z ∈ C : |z| = 1} be the unit
circle. Then there is no probability function, P : 2S → [0, 1] such that P (S) =
1, P is invariant under rotations, and P is continuous under taking decreasing
limits.

Proof. We are going to use the fact proved below in Lemma , that the
continuity condition on P is equivalent to the σ – additivity of P. For z ∈ S
and N ⊂ S let

zN := {zn ∈ S : n ∈ N}, (2.3)

that is to say eiθN is the set N rotated counter clockwise by angle θ. By
assumption, we are supposing that

P (zN) = P (N) (2.4)

for all z ∈ S and N ⊂ S.
Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

– a countable subgroup of S. As above R acts on S by rotations and divides
S up into equivalence classes, where z, w ∈ S are equivalent if z = rw for
some r ∈ R. Choose (using the axiom of choice) one representative point n
from each of these equivalence classes and let N ⊂ S be the set of these
representative points. Then every point z ∈ S may be uniquely written as
z = nr with n ∈ N and r ∈ R. That is to say

S =
∑
r∈R

(rN) (2.5)

where
∑

αAα is used to denote the union of pair-wise disjoint sets {Aα} . By
Eqs. (2.4) and (2.5),
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1 = P (S) =
∑
r∈R

P (rN) =
∑
r∈R

P (N). (2.6)

We have thus arrived at a contradiction, since the right side of Eq. (2.6) is
either equal to 0 or to ∞ depending on whether P (N) = 0 or P (N) > 0.

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2Ω . So we are going to only define P
on particular subsets, B ⊂ 2Ω . We will developed this below.





Part II

Formal Development





3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, N0 := N∪{0} be the non-negative integers
and Z = N0 ∪ (−N) – the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 .
If X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote
f ∈ Y N by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 3.2 More generally if {Xα : α ∈ A} is a collection of non-empty
sets, let XA =

∏
α∈A

Xα and πα : XA → Xα be the canonical projection map

defined by πα(x) = xα. If If Xα = X for some fixed space X, then we will
write

∏
α∈A

Xα as XA rather than XA.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice states that XA 6= ∅
provided that Xα 6= ∅ for each α ∈ A.

Notation 3.3 Given a set X, let 2X denote the power set of X – the col-
lection of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.

For A ∈ 2X let

Ac := X \A = {x ∈ X : x /∈ A}

and more generally if A,B ⊂ X let
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B \A := {x ∈ B : x /∈ A} = A ∩Bc.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .

As usual if {Aα}α∈I is an indexed collection of subsets of X we define the
union and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and
∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 3.4 We will also write
∑

α∈I Aα for ∪α∈IAα in the case that
{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For
example let {An}∞n=1 be a sequence of subsets from X and define

inf
k≥n

An := ∩k≥nAk,

sup
k≥n

An := ∪k≥nAk,

lim sup
n→∞

An := {An i.o.} := {x ∈ X : # {n : x ∈ An} = ∞}

and
lim inf
n→∞

An := {An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff

∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.

Definition 3.5. Given a set A ⊂ X, let

1A (x) =
{

1 if x ∈ A
0 if x /∈ A

be the characteristic function of A.
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Lemma 3.6. We have:

1. {An i.o.}c = {Ac
n a.a.} ,

2. lim sup
n→∞

An = {x ∈ X :
∑∞

n=1 1An
(x) = ∞} ,

3. lim infn→∞An =
{
x ∈ X :

∑∞
n=1 1Ac

n
(x) <∞

}
,

4. supk≥n 1Ak
(x) = 1∪k≥nAk

= 1supk≥n An ,
5. inf 1Ak

(x) = 1∩k≥nAk
= 1infk≥n Ak

,
6. 1lim sup

n→∞
An

= lim sup
n→∞

1An
, and

7. 1lim infn→∞ An
= lim infn→∞ 1An

.

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
3. A non-empty set X is countable iff there exists a surjective map, g : N →
X.

4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then
A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. 1. If f : X → N is an injective map then so is the restriction, f |A,
of f to the subset A. 2. Let f (1) = minΛ and define f inductively by

f(n+ 1) = min (Λ \ {f(1), . . . , f(n)}) .

Since Λ is infinite the process continues indefinitely. The function f : N → Λ
defined this way is a bijection.

3. If g : N → X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .

Then f : X → N is injective which combined with item
2. (taking Λ = f(X)) shows X is countable. Conversely if f : X → N is

injective let x0 ∈ X be a fixed point and define g : N → X by g(n) = f−1(n)
for n ∈ f (X) and g(n) = x0 otherwise.

4. Let us first construct a bijection, h, from N to N × N. To do this put
the elements of N× N into an array of the form

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

...
. . .
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and then “count” these elements by counting the sets {(i, j) : i+ j = k} one
at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2), h(4) =
(3, 1), h(5) = (2, 2), h(6) = (1, 3) and so on. If f : N →X and g : N →Y are
surjective functions, then the function (f × g) ◦ h : N →X × Y is surjective
where (f × g) (m,n) := (f (m), g(n)) for all (m,n) ∈ N× N.

5. If A = ∅ then A is countable by definition so we may assume A 6= ∅.
With out loss of generality we may assume A1 6= ∅ and by replacing Am by
A1 if necessary we may also assume Am 6= ∅ for all m. For each m ∈ N let
am : N →Am be a surjective function and then define f : N×N → ∪∞m=1Am by
f(m,n) := am(n). The function f is surjective and hence so is the composition,
f ◦ h : N → ∪∞m=1Am, where h : N → N× N is the bijection defined above.

6. Let us begin by showing 2N = {0, 1}N is uncountable. For sake of
contradiction suppose f : N → {0, 1}N is a surjection and write f (n) as
(f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈ {0, 1}N by an := 1 − fn(n). By
construction fn (n) 6= an for all n and so a /∈ f (N) . This contradicts the
assumption that f is surjective and shows 2N is uncountable. For the general
case, since Y X

0 ⊂ Y X for any subset Y0 ⊂ Y, if Y X
0 is uncountable then so

is Y X . In this way we may assume Y0 is a two point set which may as well
be Y0 = {0, 1} . Moreover, since X is an infinite set we may find an injective
map x : N → X and use this to set up an injection, i : 2N → 2X by setting
i (A) := {xn : n ∈ N} ⊂ X for all A ⊂ N. If 2X were countable we could find
a surjective map f : 2X → N in which case f ◦ i : 2N → N would be surjec-
tive as well. However this is impossible since we have already seed that 2N is
uncountable.

We end this section with some notation which will be used frequently in
the sequel.

Notation 3.9 If f : X → Y is a function and E ⊂ 2Y let

f−1E := f−1 (E) := {f−1(E)|E ∈ E}.

If G ⊂ 2X , let
f∗G := {A ∈ 2Y |f−1(A) ∈ G}.

Definition 3.10. Let E ⊂ 2X be a collection of sets, A ⊂ X, iA : A → X be
the inclusion map (iA(x) = x for all x ∈ A) and

EA = i−1
A (E) = {A ∩ E : E ∈ E} .

3.2 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of
Y, verify the following assertions.

Exercise 3.1. (∩i∈IAi)c = ∪i∈IA
c
i .



3.3 Algebraic sub-structures of sets 31

Exercise 3.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 3.3. f−1(∪i∈IAi) = ∪i∈If
−1(Ai).

Exercise 3.4. f−1(∩i∈IAi) = ∩i∈If
−1(Ai).

Exercise 3.5. Find a counterexample which shows that f(C ∩D) = f(C) ∩
f(D) need not hold.

Example 3.11. Let X = {a, b, c} and Y = {1, 2} and define f (a) = f (b) = 1
and f (c) = 2. Then ∅ = f ({a} ∩ {b}) 6= f ({a}) ∩ f ({b}) = {1} and {1, 2} =
f ({a}c) 6= f ({a})c = {2} .

3.3 Algebraic sub-structures of sets

Definition 3.12. A collection of subsets A of a set X is a π – system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.13. A collection of subsets A of a set X is an algebra (Field)
if

1. ∅, X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪· · ·∪An ∈
A.
In view of conditions 1. and 2., 3. is equivalent to

3′. A is closed under finite intersections.

Definition 3.14. A collection of subsets B of X is a σ – algebra (or some-
times called a σ – field) if B is an algebra which also closed under countable
unions, i.e. if {Ai}∞i=1 ⊂ B, then ∪∞i=1Ai ∈ B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable in-
tersections.)

Example 3.15. Here are some examples of algebras.

1. B = 2X , then B is a σ – algebra.
2. B = {∅, X} is a σ – algebra called the trivial σ – field.
3. Let X = {1, 2, 3}, then A = {∅, X, {1} , {2, 3}} is an algebra while, S :=
{∅, X, {2, 3}} is a not an algebra but is a π – system.

Proposition 3.16. Let E be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and σ – algebra σ(E) which contains E .
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Proof. Simply take

A(E) :=
⋂
{A : A is an algebra such that E ⊂ A}

and
σ(E) :=

⋂
{M : M is a σ – algebra such that E ⊂M}.

Example 3.17. Suppose X = {1, 2, 3} and E = {∅, X, {1, 2}, {1, 3}}, see Figure
3.1. Then

Fig. 3.1. A collection of subsets.

A(E) = σ(E) = 2X .

On the other hand if E = {{1, 2}} , then A (E) = {∅, X, {1, 2}, {3}}.

Exercise 3.6. Suppose that Ei ⊂ 2X for i = 1, 2. Show that A (E1) = A (E2)
iff E1 ⊂ A (E2) and E2 ⊂ A (E1) . Similarly show, σ (E1) = σ (E2) iff E1 ⊂ σ (E2)
and E2 ⊂ σ (E1) . Give a simple example where A (E1) = A (E2) while E1 6= E2.

Definition 3.18. Let X be a set. We say that a family of sets F ⊂ 2X is a
partition of X if distinct members of F are disjoint and if X is the union
of the sets in F .

Example 3.19. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}

where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

# (A(E)) = #(2{1,2,...,n}) = 2n.
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Example 3.20. Suppose that X is a finite set and that A ⊂ 2X is an algebra.
For each x ∈ X let

Ax = ∩{A ∈ A : x ∈ A} ∈ A,

wherein we have used A is finite to insure Ax ∈ A. Hence Ax is the smallest
set in A which contains x. Let C = Ax ∩ Ay ∈ A. I claim that if C 6= ∅,
then Ax = Ay. To see this, let us first consider the case where {x, y} ⊂ C. In
this case we must have Ax ⊂ C and Ay ⊂ C and therefore Ax = Ay. Now
suppose either x or y is not in C. For definiteness, say x /∈ C, i.e. x /∈ y. Then
x ∈ Ax \Ay ∈ A from which it follows that Ax = Ax \Ay, i.e. Ax ∩Ay = ∅.

Let us now define {Bi}k
i=1 to be an enumeration of {Ax}x∈X . It is now a

straightforward exercise to show

A = {∪i∈ΛBi : Λ ⊂ {1, 2, . . . , k}} .

Proposition 3.21. Suppose that B ⊂ 2X is a σ – algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F ⊂ B and every element B ∈ B is of the form

B = ∪{A ∈ F : A ⊂ B} . (3.1)

In particular B is actually a finite set and # (B) = 2n for some n ∈ N.

Proof. We proceed as in Example 3.20. For each x ∈ X let

Ax = ∩{A ∈ B : x ∈ A} ∈ B,

wherein we have used B is a countable σ – algebra to insure Ax ∈ B. Just as
above either Ax ∩ Ay = ∅ or Ax = Ay and therefore F = {Ax : x ∈ X} ⊂ B
is a (necessarily countable) partition of X for which Eq. (3.1) holds for all
B ∈ B.

Enumerate the elements of F as F = {Pn}N
n=1 where N ∈ N or N = ∞.

If N = ∞, then the correspondence

a ∈ {0, 1}N → Aa = ∪{Pn : an = 1} ∈ B

is bijective and therefore, by Lemma 3.8, B is uncountable. Thus any countable
σ – algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader.

Example 3.22 (Countable/Co-countable σ – Field). Let X = R and E :=
{{x} : x ∈ R} . Then σ (E) consists of those subsets, A ⊂ R, such that A
is countable or Ac is countable. Similarly, A (E) consists of those subsets,
A ⊂ R, such that A is finite or Ac is finite. More generally we have the
following exercise.
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Exercise 3.7. Let X be a set, I be an infinite index set, and E = {Ai}i∈I

be a partition of X. Prove the algebra, A (E) , and that σ – algebra, σ (E) ,
generated by E are given by

A(E) = {∪i∈ΛAi : Λ ⊂ I with # (Λ) <∞ or # (Λc) <∞}

and
σ(E) = {∪i∈ΛAi : Λ ⊂ I with Λ countable or Λc countable}

respectively. Here we are using the convention that ∪i∈ΛAi := ∅ when Λ = ∅.

Proposition 3.23. Let X be a set and E ⊂ 2X . Let Ec := {Ac : A ∈ E} and
Ec := E ∪ {X, ∅} ∪ Ec Then

A(E) := {finite unions of finite intersections of elements from Ec}. (3.2)

Proof. Let A denote the right member of Eq. (3.2). From the definition of
an algebra, it is clear that E ⊂ A ⊂ A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing thatA is closed under complementation. To checkA is closed
under complementation, let Z ∈ A be expressed as

Z =
N⋃

i=1

K⋂
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Ac
ij ∈ Ec, we find that

Zc =
N⋂

i=1

K⋃
j=1

Bij =
K⋃

j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN
) ∈ A

wherein we have used the fact that B1j1 ∩B2j2 ∩ · · · ∩BNjN
is a finite inter-

section of sets from Ec.

Remark 3.24. One might think that in general σ(E) may be described as the
countable unions of countable intersections of sets in Ec. However this is in
general false, since if

Z =
∞⋃

i=1

∞⋂
j=1

Aij

with Aij ∈ Ec, then

Zc =
∞⋃

j1=1,j2=1,...jN=1,...

( ∞⋂
`=1

Ac
`,j`

)

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe σ(E), see Proposition
1.23 on page 39 of Folland for details. Also see Proposition 3.21.
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Exercise 3.8. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F ∩ V where F is closed and V is open.

Solution to Exercise (3.8). In this case τc is the collection of sets which
are either open or closed. Now if Vi ⊂o X and Fj @ X for each j, then
(∩n

i=1Vi) ∩
(
∩m

j=1Fj

)
is simply a set of the form V ∩ F where V ⊂o X and

F @ X. Therefore the result is an immediate consequence of Proposition 3.23.

Definition 3.25. The Borel σ – field, B = BR = B (R) , on R is the smallest
σ -field containing all of the open subsets of R.

Exercise 3.9. Verify the σ – algebra, BR, is generated by any of the following
collection of sets:

1. {(a,∞) : a ∈ R} , 2. {(a,∞) : a ∈ Q} or 3. {[a,∞) : a ∈ Q} .

Hint: make use of Exercise 3.6.

Exercise 3.10. Suppose f : X → Y is a function, F ⊂ 2Y and B ⊂ 2X . Show
f−1F and f∗B (see Notation 3.9) are algebras (σ – algebras) provided F and
B are algebras (σ – algebras).

Lemma 3.26. Suppose that f : X → Y is a function and E ⊂ 2Y and A ⊂ Y
then

σ
(
f−1(E)

)
= f−1(σ(E)) and (3.3)

(σ(E))A = σ(EA ), (3.4)

where BA := {B ∩A : B ∈ B} . (Similar assertion hold with σ (·) being re-
placed by A (·) .)

Proof. By Exercise 3.10, f−1(σ(E)) is a σ – algebra and since E ⊂ F ,
f−1(E) ⊂ f−1(σ(E)). It now follows that

σ(f−1(E)) ⊂ f−1(σ(E)).

For the reverse inclusion, notice that

f∗σ
(
f−1(E)

)
:=
{
B ⊂ Y : f−1(B) ∈ σ

(
f−1(E)

)}
is a σ – algebra which contains E and thus σ(E) ⊂ f∗σ

(
f−1(E)

)
. Hence for

every B ∈ σ(E) we know that f−1(B) ∈ σ
(
f−1(E)

)
, i.e.

f−1(σ(E)) ⊂ σ
(
f−1(E)

)
.

Applying Eq. (3.3) with X = A and f = iA being the inclusion map
implies

(σ(E))A = i−1
A (σ(E)) = σ(i−1

A (E)) = σ(EA).
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Example 3.27. Let E = {(a, b] : −∞ < a < b <∞} and B = σ (E) be the Borel
σ – field on R. Then

E(0,1] = {(a, b] : 0 ≤ a < b ≤ 1}

and we have
B(0,1] = σ

(
E(0,1]

)
.

In particular, if A ∈ B such that A ⊂ (0, 1], then A ∈ σ
(
E(0,1]

)
.

Definition 3.28. A function, f : Ω → Y is said to be simple if f (Ω) ⊂ Y is
a finite set. If A ⊂ 2Ω is an algebra, we say that a simple function f : Ω → Y
is measurable if {f = y} := f−1 ({y}) ∈ A for all y ∈ Y. A measurable
simple function, f : Ω → C, is called a simple random variable relative to
A.

Notation 3.29 Given an algebra, A ⊂ 2Ω , let S(A) denote the collection of
simple random variables from Ω to C. For example if A ∈ A, then 1A ∈ S (A)
is a measurable simple function.

Lemma 3.30. For every algebra A ⊂ 2Ω , the set simple random variables,
S (A) , forms an algebra.

Proof. Let us observe that 1Ω = 1 and 1∅ = 0 are in S (A) . If f, g ∈ S (A)
and c ∈ C\ {0} , then

{f + cg = λ} =
⋃

a,b∈C:a+cb=λ

({f = a} ∩ {g = b}) ∈ A (3.5)

and
{f · g = λ} =

⋃
a,b∈C:a·b=λ

({f = a} ∩ {g = b}) ∈ A (3.6)

from which it follows that f + cg and f · g are back in S (A) .

Definition 3.31. A simple function algebra, S, is a subalgebra of the
bounded complex functions on X such that 1 ∈ S and each function, f ∈ S, is
a simple function. If S is a simple function algebra, let

A (S) := {A ⊂ X : 1A ∈ S} .

(It is easily checked that A (S) is a sub-algebra of 2X .)

Lemma 3.32. Suppose that S is a simple function algebra, f ∈ S and α ∈
f (X) . Then {f = α} ∈ A (S) .

Proof. Let {λi}n
i=0 be an enumeration of f (X) with λ0 = α. Then

g :=

[
n∏

i=1

(α− λi)

]−1 n∏
i=1

(f − λi1) ∈ S.

Moreover, we see that g = 0 on ∪n
i=1 {f = λi} while g = 1 on {f = α} . So we

have shown g = 1{f=α} ∈ S and therefore that {f = α} ∈ A.
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Exercise 3.11. Continuing the notation introduced above:

1. Show A (S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A ∈
{
Algebras ⊂ 2X

}
→ S (A) ∈ {simple function algebras on X}

is bijective and the map, S → A (S) , is the inverse map.

Solution to Exercise (3.11).

1. Since 0 = 1∅, 1 = 1X ∈ S, it follows that ∅ and X are in A (S) . If A ∈
A (S) , then 1Ac = 1− 1A ∈ S and so Ac ∈ A (S) . Finally, if A,B ∈ A (S)
then 1A∩B = 1A · 1B ∈ S and thus A ∩B ∈ A (S) .

2. If f, g ∈ S (A) and c ∈ F, then

{f + cg = λ} =
⋃

a,b∈F:a+cb=λ

({f = a} ∩ {g = b}) ∈ A

and
{f · g = λ} =

⋃
a,b∈F:a·b=λ

({f = a} ∩ {g = b}) ∈ A

from which it follows that f + cg and f · g are back in S (A) .
3. If f : Ω → C is a simple function such that 1{f=λ} ∈ S for all λ ∈ C,

then f =
∑

λ∈C λ1{f=λ} ∈ S. Conversely, by Lemma 3.32, if f ∈ S then
1{f=λ} ∈ S for all λ ∈ C. Therefore, a simple function, f : X → C is in S
iff 1{f=λ} ∈ S for all λ ∈ C. With this preparation, we are now ready to
complete the verification.
First off,

A ∈ A (S (A)) ⇐⇒ 1A ∈ S (A) ⇐⇒ A ∈ A

which shows that A (S (A)) = A. Similarly,

f ∈ S (A (S)) ⇐⇒ {f = λ} ∈ A (S) ∀ λ ∈ C
⇐⇒ 1{f=λ} ∈ S ∀ λ ∈ C
⇐⇒ f ∈ S

which shows S (A (S)) = S.
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Finitely Additive Measures

Definition 4.1. Suppose that E ⊂ 2X is a collection of subsets of X and
µ : E → [0,∞] is a function. Then

1. µ is monotonic if µ (A) ≤ µ (B) for all A,B ∈ E with A ⊂ B.
2. µ is sub-additive (finitely sub-additive) on E if

µ(E) ≤
n∑

i=1

µ(Ei)

whenever E =
⋃n

i=1Ei ∈ E with n ∈ N∪{∞} (n ∈ N).
3. µ is super-additive (finitely super-additive) on E if

µ(E) ≥
n∑

i=1

µ(Ei) (4.1)

whenever E =
∑n

i=1Ei ∈ E with n ∈ N∪{∞} (n ∈ N).
4. µ is additive or finitely additive on E if

µ(E) =
n∑

i=1

µ(Ei) (4.2)

whenever E =
∑n

i=1Ei ∈ E with Ei ∈ E for i = 1, 2, . . . , n <∞.
5. If E = A is an algebra, µ (∅) = 0, and µ is finitely additive on A, then µ

is said to be a finitely additive measure.
6. µ is σ – additive (or countable additive) on E if item 4. holds even

when n = ∞.
7. If E = A is an algebra, µ (∅) = 0, and µ is σ – additive on A then µ is

called a premeasure on A.
8. A measure is a premeasure, µ : B → [0,∞] , where B is a σ – algebra.

We say that µ is a probability measure if µ (X) = 1.

4.1 Finitely Additive Measures

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose µ is a finitely additive measure on an algebra, A ⊂ 2X , E, F ∈ A with
E ⊂ Fand {Ej}n

j=1 ⊂ A, then :
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1. (µ is monotone) µ (E) ≤ µ(F ) if E ⊂ F.
2. For A,B ∈ A, the following strong additivity formula holds;

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (4.3)

3. (µ is finitely subbadditive) µ(∪n
j=1Ej) ≤

∑n
j=1 µ(Ej).

4. µ is sub-additive on A iff

µ(A) ≤
∞∑

i=1

µ(Ai) for A =
∞∑

i=1

Ai (4.4)

where A ∈ A and {Ai}∞i=1 ⊂ A are pairwise disjoint sets.
5. (µ is countably superadditive) If A =

∑∞
i=1Ai with Ai, A ∈ A, then

µ

( ∞∑
i=1

Ai

)
≥
∞∑

i=1

µ (Ai) .

6. A finitely additive measure, µ, is a premeasure iff µ is sub-additve.

Proof.

1. Since F is the disjoint union of E and (F \ E) and F \ E = F ∩ Ec ∈ A
it follows that

µ(F ) = µ(E) + µ(F \ E) ≥ µ(E).

2. Since
A ∪B = [A \ (A ∩B)]

∑
[B \ (A ∩B)]

∑
A ∩B,

µ (A ∪B) = µ (A ∪B \ (A ∩B)) + µ (A ∩B)
= µ (A \ (A ∩B)) + µ (B \ (A ∩B)) + µ (A ∩B) .

Adding µ (A ∩B) to both sides of this equation proves Eq. (4.3).
3. Let Ẽj = Ej \ (E1∪· · ·∪Ej−1) so that the Ẽj ’s are pair-wise disjoint and
E = ∪n

j=1Ẽj . Since Ẽj ⊂ Ej it follows from the monotonicity of µ that

µ(E) =
∑

µ(Ẽj) ≤
∑

µ(Ej).

4. If A =
⋃∞

i=1Bi with A ∈ A and Bi ∈ A, then A =
∑∞

i=1Ai where Ai :=
Bi \ (B1 ∪ . . . Bi−1) ∈ A and B0 = ∅. Therefore using the monotonicity of
µ and Eq. (4.4)

µ(A) ≤
∞∑

i=1

µ(Ai) ≤
∞∑

i=1

µ(Bi).

5. Suppose that A =
∑∞

i=1Ai with Ai, A ∈ A, then
∑n

i=1Ai ⊂ A for all
n and so by the monotonicity and finite additivity of µ,

∑n
i=1 µ (Ai) ≤

µ (A) . Letting n→∞ in this equation shows µ is superadditive.
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6. This is a combination of items 5. and 6.

Proposition 4.3. Suppose that P is a finitely additive probability measure on
an algebra, A ⊂ 2Ω . Then the following are equivalent:

1. P is σ – additive on A.
2. For all An ∈ A such that An ↑ A ∈ A, P (An) ↑ P (A) .
3. For all An ∈ A such that An ↓ A ∈ A, P (An) ↓ P (A) .
4. For all An ∈ A such that An ↑ Ω, P (An) ↑ 1.
5. For all An ∈ A such that An ↓ Ω, P (An) ↓ 1.

Proof. We will start by showing 1 ⇐⇒ 2 ⇐⇒ 3.
1 =⇒ 2. Suppose An ∈ A such that An ↑ A ∈ A. Let A′n := An \ An−1

with A0 := ∅. Then {A′n}
∞
n=1 are disjoint, An = ∪n

k=1A
′
k and A = ∪∞k=1A

′
k.

Therefore,

P (A) =
∞∑

k=1

P (A′k) = lim
n→∞

n∑
k=1

P (A′k) = lim
n→∞

P (∪n
k=1A

′
k) = lim

n→∞
P (An) .

2 =⇒ 1. If {An}∞n=1 ⊂ A are disjoint and A := ∪∞n=1An ∈ A, then
∪N

n=1An ↑ A. Therefore,

P (A) = lim
N→∞

P
(
∪N

n=1An

)
= lim

N→∞

N∑
n=1

P (An) =
∞∑

n=1

P (An) .

2 =⇒ 3. If An ∈ A such that An ↓ A ∈ A, then Ac
n ↑ Ac and therefore,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Ac
n) = P (Ac) = 1− P (A) .

3 =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then Ac
n ↓ Ac and therefore we

again have,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Ac
n) = P (Ac) = 1− P (A) .

It is clear that 2 =⇒ 4 and that 3 =⇒ 5. To finish the proof we will
show 5 =⇒ 2 and 5 =⇒ 3.

5 =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then A \An ↓ ∅ and therefore

lim
n→∞

[P (A)− P (An)] = lim
n→∞

P (A \An) = 0.

5 =⇒ 3. If An ∈ A such that An ↓ A ∈ A, then An \A ↓ ∅. Therefore,

lim
n→∞

[P (An)− P (A)] = lim
n→∞

P (An \A) = 0.
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Remark 4.4. Observe that the equivalence of items 1. and 2. in the above
proposition hold without the restriction that P (Ω) = 1 and in fact P (Ω) = ∞
may be allowed for this equivalence.

Definition 4.5. Let (Ω,B) be a measurable space, i.e. B ⊂ 2Ω is a σ –
algebra. A probability measure on (Ω,B) is a finitely additive probability
measure, P : B → [0, 1] such that any and hence all of the continuity properties
in Proposition 4.3 hold. We will call (Ω,B, P ) a probability space.

Lemma 4.6. Suppose that (Ω,B, P ) is a probability space, then P is countably
sub-additive.

Proof. Suppose that An ∈ B and let A
′

1 := A1 and for n ≥ 2, let A′n :=
An \ (A1 ∪ . . . An−1) ∈ B. Then

P (∪∞n=1An) = P (∪∞n=1A
′
n) =

∞∑
n=1

P (A′n) ≤
∞∑

n=1

P (An) .

4.2 Examples of Measures

Most σ – algebras and σ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe
explicitly what is going on.

Example 4.7. Suppose that Ω is a finite set, B := 2Ω , and p : Ω → [0, 1] is a
function such that ∑

ω∈Ω

p (ω) = 1.

Then
P (A) :=

∑
ω∈A

p (ω) for all A ⊂ Ω

defines a measure on 2Ω .

Example 4.8. Suppose that X is any set and x ∈ X is a point. For A ⊂ X, let

δx(A) =
{

1 if x ∈ A
0 if x /∈ A.

Then µ = δx is a measure on X called the Dirac delta measure at x.

Example 4.9. Suppose that µ is a measure on X and λ > 0, then λ ·µ is also a
measure on X. Moreover, if {µj}j∈J are all measures on X, then µ =

∑∞
j=1 µj ,

i.e.
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µ(A) =
∞∑

j=1

µj(A) for all A ⊂ X

is a measure on X. (See Section 3.1 for the meaning of this sum.) To prove
this we must show that µ is countably additive. Suppose that {Ai}∞i=1 is a
collection of pair-wise disjoint subsets of X, then

µ(∪∞i=1Ai) =
∞∑

i=1

µ(Ai) =
∞∑

i=1

∞∑
j=1

µj(Ai)

=
∞∑

j=1

∞∑
i=1

µj(Ai) =
∞∑

j=1

µj(∪∞i=1Ai)

= µ(∪∞i=1Ai)

wherein the third equality we used Theorem 1.6 and in the fourth we used
that fact that µj is a measure.

Example 4.10. Suppose that X is a set λ : X → [0,∞] is a function. Then

µ :=
∑
x∈X

λ(x)δx

is a measure, explicitly
µ(A) =

∑
x∈A

λ(x)

for all A ⊂ X.

Example 4.11. Suppose that F ⊂ 2X is a countable or finite partition of X
and B ⊂ 2X is the σ – algebra which consists of the collection of sets A ⊂ X
such that

A = ∪{α ∈ F : α ⊂ A} . (4.5)

Any measure µ : B → [0,∞] is determined uniquely by its values on F .
Conversely, if we are given any function λ : F → [0,∞] we may define, for
A ∈ B,

µ(A) =
∑

α∈F3α⊂A

λ(α) =
∑
α∈F

λ(α)1α⊂A

where 1α⊂A is one if α ⊂ A and zero otherwise. We may check that µ is a
measure on B. Indeed, if A =

∑∞
i=1Ai and α ∈ F , then α ⊂ A iff α ⊂ Ai for

one and hence exactly one Ai. Therefore 1α⊂A =
∑∞

i=1 1α⊂Ai
and hence

µ(A) =
∑
α∈F

λ(α)1α⊂A =
∑
α∈F

λ(α)
∞∑

i=1

1α⊂Ai

=
∞∑

i=1

∑
α∈F

λ(α)1α⊂Ai =
∞∑

i=1

µ(Ai)
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as desired. Thus we have shown that there is a one to one correspondence
between measures µ on B and functions λ : F → [0,∞].

The following example explains what is going on in a more typical case of
interest to us in the sequel.

Example 4.12. Suppose that Ω = R, A consists of those sets, A ⊂ R which
may be written as finite disjoint unions from

S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} .

We will show below the following:

1. A is an algebra. (Recall that BR = σ (A) .)
2. To every increasing function, F : R → [0, 1] such that

F (−∞) := lim
x→−∞

F (x) = 0 and

F (+∞) := lim
x→∞

F (x) = 1

there exists a finitely additive probability measure, P = PF on A such
that

P ((a, b] ∩ R) = F (b)− F (a) for all −∞ ≤ a ≤ b ≤ ∞.

3. P is σ – additive on A iff F is right continuous.
4. P extends to a probability measure on BR iff F is right continuous.

Let us observe directly that if F (a+) := limx↓a F (x) 6= F (a) , then (a, a+
1/n] ↓ ∅ while

P ((a, a+ 1/n]) = F (a+ 1/n)− F (a) ↓ F (a+)− F (a) > 0.

Hence P can not be σ – additive on A in this case.

4.3 Simple Integration

Definition 4.13 (Simple Integral). Suppose now that P is a finitely addi-
tive probability measure on an algebra A ⊂ 2X . For f ∈ S (A) the integral
or expectation, E(f) = EP (f), is defined by

EP (f) =
∑
y∈C

yP (f = y). (4.6)

Example 4.14. Suppose that A ∈ A, then

E1A = 0 · P (Ac) + 1 · P (A) = P (A) . (4.7)



4.3 Simple Integration 45

Remark 4.15. Let us recall that our intuitive notion of P (A) was given as in
Eq. (2.1) by

P (A) = lim
N→∞

1
N

# {1 ≤ k ≤ N : ω (k) ∈ A}

where ω (k) ∈ Ω was the result of the kth “independent” experiment. If we
use this interpretation back in Eq. (4.6), we arrive at

E(f) =
∑
y∈C

yP (f = y) = lim
N→∞

1
N

∑
y∈C

y ·# {1 ≤ k ≤ N : f (ω (k)) = y}

= lim
N→∞

1
N

∑
y∈C

y ·
N∑

k=1

1f(ω(k))=y = lim
N→∞

1
N

N∑
k=1

∑
y∈C

f (ω (k)) · 1f(ω(k))=y

= lim
N→∞

1
N

N∑
k=1

f (ω (k)) .

Thus informally, Ef should represent the average of the values of f over many
“independent” experiments.

Proposition 4.16. The expectation operator, E = EP , satisfies:

1. If f ∈ S(A) and λ ∈ C, then

E(λf) = λE(f). (4.8)

2. If f, g ∈ S (A) , then

E(f + g) = E(g) + E(f). (4.9)

3. E is positive, i.e. E(f) ≥ 0 if f is a non-negative measurable simple
function.

4. For all f ∈ S (A) ,
|Ef | ≤ E |f | . (4.10)

Proof.

1. If λ 6= 0, then

E(λf) =
∑

y∈C∪{∞}

y P (λf = y) =
∑

y∈C∪{∞}

y P (f = y/λ)

=
∑

z∈C∪{∞}

λz P (f = z) = λE(f).

The case λ = 0 is trivial.
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2. Writing {f = a, g = b} for f−1({a}) ∩ g−1({b}), then

E(f + g) =
∑
z∈C

z P (f + g = z)

=
∑
z∈C

z P (∪a+b=z {f = a, g = b})

=
∑
z∈C

z
∑

a+b=z

P ({f = a, g = b})

=
∑
z∈C

∑
a+b=z

(a+ b)P ({f = a, g = b})

=
∑
a,b

(a+ b)P ({f = a, g = b}) .

But ∑
a,b

aP ({f = a, g = b}) =
∑

a

a
∑

b

P ({f = a, g = b})

=
∑

a

aP (∪b {f = a, g = b})

=
∑

a

aP ({f = a}) = Ef

and similarly, ∑
a,b

bP ({f = a, g = b}) = Eg.

Equation (4.9) is now a consequence of the last three displayed equations.
3. If f ≥ 0 then

E(f) =
∑
a≥0

aP (f = a) ≥ 0.

4. First observe that
|f | =

∑
λ∈C

|λ| 1f=λ

and therefore,

E |f | = E
∑
λ∈C

|λ| 1f=λ =
∑
λ∈C

|λ|E1f=λ =
∑
λ∈C

|λ|P (f = λ) ≤ max |f | .

On the other hand,

|Ef | =

∣∣∣∣∣∑
λ∈C

λP (f = λ)

∣∣∣∣∣ ≤∑
λ∈C

|λ|P (f = λ) = E |f | .
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Remark 4.17. Every simple measurable function, f : Ω → C, may be written
as f =

∑N
j=1 λj1Aj

for some λj ∈ C and some Aj ∈ C. Moreover if f is
represented this way, then

Ef = E

 N∑
j=1

λj1Aj

 =
N∑

j=1

λjE1Aj =
N∑

j=1

λjP (Aj) .

Remark 4.18 (Chebyshev’s Inequality). Suppose that f ∈ S(A), ε > 0, and
p > 0, then

P ({|f | ≥ ε}) = E
[
1|f |≥ε

]
≤ E

[
|f |p

εp
1|f |≥ε

]
≤ ε−pE |f |p . (4.11)

Observe that
|f |p =

∑
λ∈C

|λ|p 1{f=λ}

is a simple random variable and {|f | ≥ ε} =
∑
|λ|≥ε {f = λ} ∈ A as well.

Therefore, |f |
p

εp 1|f |≥ε is still a simple random variable.

Lemma 4.19 (Inclusion Exclusion Formula). If An ∈ A for n =
1, 2, . . . ,M such that µ

(
∪M

n=1An

)
<∞, then

µ
(
∪M

n=1An

)
=

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank
) . (4.12)

Proof. This may be proved inductively from Eq. (4.3). We will give a
different and perhaps more illuminating proof here. Let A := ∪M

n=1An.
Since Ac =

(
∪M

n=1An

)c = ∩M
n=1A

c
n, we have

1− 1A = 1Ac =
M∏

n=1

1Ac
n

=
M∏

n=1

(1− 1An
)

=
M∑

k=0

(−1)k
∑

0≤n1<n2<···<nk≤M

1An1
· · · 1Ank

=
M∑

k=0

(−1)k
∑

0≤n1<n2<···<nk≤M

1An1∩···∩Ank

from which it follows that

1∪M
n=1An

= 1A =
M∑

k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank
. (4.13)

Taking expectations of this equation then gives Eq. (4.12).
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Remark 4.20. Here is an alternate proof of Eq. (4.13). Let ω ∈ Ω and by
relabeling the sets {An} if necessary, we may assume that ω ∈ A1 ∩ · · · ∩Am

and ω /∈ Am+1 ∪ · · · ∪AM for some 0 ≤ m ≤M. (When m = 0, both sides of
Eq. (4.13) are zero and so we will only consider the case where 1 ≤ m ≤M.)
With this notation we have

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank
(ω)

=
m∑

k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤m

1An1∩···∩Ank
(ω)

=
m∑

k=1

(−1)k+1

(
m

k

)

= 1−
m∑

k=0

(−1)k (1)n−k

(
m

k

)
= 1− (1− 1)m = 1.

This verifies Eq. (4.13) since 1∪M
n=1An

(ω) = 1.

Example 4.21 (Coincidences). Let Ω be the set of permutations (think of card
shuffling), ω : {1, 2, . . . , n} → {1, 2, . . . , n} , and define P (A) := #(A)

n! to
be the uniform distribution (Haar measure) on Ω. We wish to compute the
probability of the event, B, that a random permutation fixes some index i.
To do this, let Ai := {ω ∈ Ω : ω (i) = i} and observe that B = ∪n

i=1Ai. So by
the Inclusion Exclusion Formula, we have

P (B) =
n∑

k=1

(−1)k+1
∑

1≤i1<i2<i3<···<ik≤n

P (Ai1 ∩ · · · ∩Aik
) .

Since

P (Ai1 ∩ · · · ∩Aik
) = P ({ω ∈ Ω : ω (i1) = i1, . . . , ω (ik) = ik})

=
(n− k)!
n!

and

# {1 ≤ i1 < i2 < i3 < · · · < ik ≤ n} =
(
n

k

)
,

we find

P (B) =
n∑

k=1

(−1)k+1

(
n

k

)
(n− k)!
n!

=
n∑

k=1

(−1)k+1 1
k!
.

For large n this gives,
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P (B) = −
n∑

k=1

(−1)k 1
k!
∼= −

(
e−1 − 1

) ∼= 0.632.

Example 4.22. Continue the notation in Example 4.21. We now wish to com-
pute the expected number of fixed points of a random permutation, ω, i.e.
how many cards in the shuffled stack have not moved on average. To this end,
let

Xi = 1Ai

and observe that

N (ω) =
n∑

i=1

Xi (ω) =
n∑

i=1

1ω(i)=i = # {i : ω (i) = i} .

denote the number of fixed points of ω. Hence we have

EN =
n∑

i=1

EXi =
n∑

i=1

P (Ai) =
n∑

i=1

(n− 1)!
n!

= 1.

Let us check the above formula when n = 6. In this case we have

ω N (ω)
1 2 3 3
1 3 2 1
2 1 3 1
2 3 1 0
3 1 2 0
3 2 1 1

and so
P (∃ a fixed point) =

4
6

=
2
3

while
3∑

k=1

(−1)k+1 1
k!

= 1− 1
2

+
1
6

=
2
3

and
EN =

1
6

(3 + 1 + 1 + 0 + 0 + 1) = 1.

4.4 Simple Independence and the Weak Law of Large
Numbers

For the next two problems, let Λ be a finite set, n ∈ N, Ω = Λn, and Xi :
Ω → Λ be defined by Xi (ω) = ωi for ω ∈ Ω and i = 1, 2, . . . , n. We further
suppose p : Ω → [0, 1] is a function such that
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ω∈Ω

p (ω) = 1

and P : 2Ω → [0, 1] is the probability measure defined by

P (A) :=
∑
ω∈A

p (ω) for all A ∈ 2Ω . (4.14)

Exercise 4.1 (Simple Independence 1.). Suppose qi : Λ→ [0, 1] are func-
tions such that

∑
λ∈Λ qi (λ) = 1 for i = 1, 2, . . . , n and If p (ω) =

∏n
i=1 qi (ωi) .

Show for any functions, fi : Λ→ R that

EP

[
n∏

i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] =
n∏

i=1

EQi
fi

where Qi (γ) =
∑

λ∈γ qi (λ) for all γ ⊂ Λ.

Exercise 4.2 (Simple Independence 2.). Prove the converse of the previ-
ous exercise. Namely, if

EP

[
n∏

i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] (4.15)

for any functions, fi : Λ → R, then there exists functions qi : Λ → [0, 1] with∑
λ∈Λ qi (λ) = 1, such that p (ω) =

∏n
i=1 qi (ωi) .

Exercise 4.3 (A Weak Law of Large Numbers). Suppose that Λ ⊂ R
is a finite set, n ∈ N, Ω = Λn, p (ω) =

∏n
i=1 q (ωi) where q : Λ → [0, 1] such

that
∑

λ∈Λ q (λ) = 1, and let P : 2Ω → [0, 1] be the probability measure
defined as in Eq. (4.14). Further let Xi (ω) = ωi for i = 1, 2, . . . , n, ξ := EXi,

σ2 := E (Xi − ξ)2 , and

Sn =
1
n

(X1 + · · ·+Xn) .

1. Show, ξ =
∑

λ∈Λ λ q (λ) and

σ2 =
∑
λ∈Λ

(λ− ξ)2 q (λ) =
∑
λ∈Λ

λ2q (λ)− ξ2. (4.16)

2. Show, ESn = ξ.
3. Let δij = 1 if i = j and δij = 0 if i 6= j. Show

E [(Xi − ξ) (Xj − ξ)] = δijσ
2.

4. Using Sn − ξ may be expressed as, 1
n

∑n
i=1 (Xi − ξ) , show

E (Sn − ξ)2 =
1
n
σ2. (4.17)
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5. Conclude using Eq. (4.17) and Remark 4.18 that

P (|Sn − ξ| ≥ ε) ≤ 1
nε2

σ2. (4.18)

So for large n, Sn is concentrated near ξ = EXi with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Exercise 4.4 (Bernoulli Random Variables). Let Λ = {0, 1} , , X : Λ →
R be defined by X (0) = 0 and X (1) = 1, x ∈ [0, 1] , and define Q = xδ1 +
(1− x) δ0, i.e. Q ({0}) = 1− x and Q ({1}) = x. Verify,

ξ (x) := EQX = x and

σ2 (x) := EQ (X − x)2 = (1− x)x ≤ 1/4.

Theorem 4.23 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f ∈ C([0, 1] ,C) and

pn (x) :=
n∑

k=0

(
n

k

)
f

(
k

n

)
xk (1− x)n−k

.

Then
lim

n→∞
sup

x∈[0,1]

|f (x)− pn (x)| = 0.

(See Theorem 14.42 for a multi-dimensional generalization of this theorem.)

Proof. Let x ∈ [0, 1] , Λ = {0, 1} , q (0) = 1− x, q (1) = x, Ω = Λn, and

Px ({ω}) = q (ω1) . . . q (ωn) = x
Pn

i=1 ωi · (1− x)1−
Pn

i=1 ωi .

As above, let Sn = 1
n (X1 + · · ·+Xn) , where Xi (ω) = ωi and observe that

Px

(
Sn =

k

n

)
=
(
n

k

)
xk (1− x)n−k

.

Therefore, writing Ex for EPx
, we have

Ex [f (Sn)] =
n∑

k=0

f

(
k

n

)(
n

k

)
xk (1− x)n−k = pn (x) .

Hence we find

|pn (x)− f (x)| = |Exf (Sn)− f (x)| = |Ex [f (Sn)− f (x)]|
≤ Ex |f (Sn)− f (x)|
= Ex [|f (Sn)− f (x)| : |Sn − x| ≥ ε]

+ Ex [|f (Sn)− f (x)| : |Sn − x| < ε]
≤ 2M · Px (|Sn − x| ≥ ε) + δ (ε)
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where

M := max
y∈[0,1]

|f (y)| and

δ (ε) := sup {|f(y)− f(x)| : x, y ∈ [0, 1] and |y − x| ≤ ε}

is the modulus of continuity of f. Now by the above exercises,

Px (|Sn − x| ≥ ε) ≤ 1
4nε2

(see Figure 4.1)

and hence we may conclude that

max
x∈[0,1]

|pn (x)− f (x)| ≤ M

2nε2
+ δ (ε)

and therefore, that

lim sup
n→∞

max
x∈[0,1]

|pn (x)− f (x)| ≤ δ (ε) .

This completes the proof, since by uniform continuity of f, δ (ε) ↓ 0 as ε ↓ 0.

Fig. 4.1. Plots of Px (Sn = k/n) versus k/n for n = 100 with x = 1/4 (black),
x = 1/2 (red), and x = 5/6 (green).

4.5 Constructing Finitely Additive Measures

Definition 4.24. A set S ⊂ 2X is said to be an semialgebra or elementary
class provided that
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• ∅ ∈ S
• S is closed under finite intersections
• if E ∈ S, then Ec is a finite disjoint union of sets from S. (In particular

X = ∅c is a finite disjoint union of elements from S.)

Example 4.25. Let X = R, then

S :=
{
(a, b] ∩ R : a, b ∈ R̄

}
= {(a, b] : a ∈ [−∞,∞) and a < b <∞} ∪ {∅,R}

is a semi-field

Exercise 4.5. Let A ⊂ 2X and B ⊂ 2Y be semi-fields. Show the collection

E := {A×B : A ∈ A and B ∈ B}

is also a semi-field.

Proposition 4.26. Suppose S ⊂ 2X is a semi-field, then A = A(S) consists
of sets which may be written as finite disjoint unions of sets from S.

Proof. Let A denote the collection of sets which may be written as finite
disjoint unions of sets from S. Clearly S ⊂ A ⊂ A(S) so it suffices to show A is
an algebra since A(S) is the smallest algebra containing S. By the properties
of S, we know that ∅, X ∈ A. Now suppose that Ai =

∑
F∈Λi

F ∈ A where,
for i = 1, 2, . . . , n, Λi is a finite collection of disjoint sets from S. Then

n⋂
i=1

Ai =
n⋂

i=1

(∑
F∈Λi

F

)
=

⋃
(F1,,...,Fn)∈Λ1×···×Λn

(F1 ∩ F2 ∩ · · · ∩ Fn)

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections. Similarly, if A =

∑
F∈Λ F with Λ being a

finite collection of disjoint sets from S, then Ac =
⋂

F∈Λ F
c. Since by assump-

tion F c ∈ A for F ∈ Λ ⊂ S and A is closed under finite intersections, it
follows that Ac ∈ A.

Example 4.27. Let X = R and S :=
{
(a, b] ∩ R : a, b ∈ R̄

}
be as in Example

4.25. Then A(S) may be described as being those sets which are finite disjoint
unions of sets from S.

Proposition 4.28 (Construction of Finitely Additive Measures). Sup-
pose S ⊂ 2X is a semi-algebra (see Definition 4.24) and A = A(S) is the
algebra generated by S. Then every additive function µ : S → [0,∞] such that
µ (∅) = 0 extends uniquely to an additive measure (which we still denote by
µ) on A.
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Proof. Since (by Proposition 4.26) every element A ∈ A is of the form
A =

∑
iEi for a finite collection of Ei ∈ S, it is clear that if µ extends to a

measure then the extension is unique and must be given by

µ(A) =
∑

i

µ(Ei). (4.19)

To prove existence, the main point is to show that µ(A) in Eq. (4.19) is well
defined; i.e. if we also have A =

∑
j Fj with Fj ∈ S, then we must show∑

i

µ(Ei) =
∑

j

µ(Fj). (4.20)

But Ei =
∑

j (Ei ∩ Fj) and the additivity of µ on S implies µ(Ei) =
∑

j µ(Ei∩
Fj) and hence∑

i

µ(Ei) =
∑

i

∑
j

µ(Ei ∩ Fj) =
∑
i,j

µ(Ei ∩ Fj).

Similarly, ∑
j

µ(Fj) =
∑
i,j

µ(Ei ∩ Fj)

which combined with the previous equation shows that Eq. (4.20) holds. It
is now easy to verify that µ extended to A as in Eq. (4.19) is an additive
measure on A.

Proposition 4.29. Let X = R, S be a semi-algebra

S = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}, (4.21)

and A = A(S) be the algebra formed by taking finite disjoint unions of ele-
ments from S, see Proposition 4.26. To each finitely additive probability mea-
sures µ : A → [0,∞], there is a unique increasing function F : R̄ → [0, 1] such
that F (−∞) = 0, F (∞) = 1 and

µ((a, b] ∩ R) = F (b)− F (a) ∀ a ≤ b in R̄. (4.22)

Conversely, given an increasing function F : R̄ → [0, 1] such that F (−∞) = 0,
F (∞) = 1 there is a unique finitely additive measure µ = µF on A such that
the relation in Eq. (4.22) holds.

Proof. Given a finitely additive probability measure µ, let

F (x) := µ ((−∞, x] ∩ R) for all x ∈ R̄.

Then F (∞) = 1, F (−∞) = 0 and for b > a,

F (b)− F (a) = µ ((−∞, b] ∩ R)− µ ((−∞, a]) = µ ((a, b] ∩ R) .
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Conversely, suppose F : R̄ → [0, 1] as in the statement of the theorem is
given. Define µ on S using the formula in Eq. (4.22). The argument will be
completed by showing µ is additive on S and hence, by Proposition 4.28, has
a unique extension to a finitely additive measure on A. Suppose that

(a, b] =
n∑

i=1

(ai, bi].

By reordering (ai, bi] if necessary, we may assume that

a = a1 < b1 = a2 < b2 = a3 < · · · < bn−1 = an < bn = b.

Therefore, by the telescoping series argument,

µ((a, b] ∩ R) = F (b)− F (a) =
n∑

i=1

[F (bi)− F (ai)] =
n∑

i=1

µ((ai, bi] ∩ R).
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Countably Additive Measures

5.1 Distribution Function for Probability Measures on
(R, BR)

Definition 5.1. Given a probability measure, P on BR, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = FP :
R → [0, 1] given as

F (x) := P ((−∞, x]) .

Example 5.2. Suppose that

P = pδ−1 + qδ1 + rδπ

with p, q, r > 0 and p+ q + r = 1. In this case,

F (x) =


0 for x < −1
p for −1 ≤ x < 1

p+ q for 1 ≤ x < π
1 for π ≤ x <∞

.

Lemma 5.3. If F = FP : R → [0, 1] is a distribution function for a probability
measure, P, on BR, then:

1. F (−∞) := limx→−∞ F (x) = 0,
2. F (∞) := limx→∞ F (x) = 1,
3. F is non-decreasing, and
4. F is right continuous.

Theorem 5.4. To each function F : R → [0, 1] satisfying properties 1. – 4. in
Lemma 5.3, there exists a unique probability measure, PF , on BR such that

PF ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞.

Proof. The uniqueness assertion in the theorem is covered in Exercise 5.1
below. The existence portion of the Theorem follows from Proposition 5.7 and
Theorem 5.19 below.

Example 5.5 (Uniform Distribution). The function,
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F (x) :=

 0 for x ≤ 0
x for 0 ≤ x < 1
1 for 1 ≤ x <∞

,

is the distribution function for a measure, m on BR which is concentrated
on (0, 1]. The measure, m is called the uniform distribution or Lebesgue
measure on (0, 1].

Recall from Definition 3.14 that B ⊂ 2X is a σ – algebra on X if B is an
algebra which is closed under countable unions and intersections.

5.2 Construction of Premeasures

Proposition 5.6. Suppose that S ⊂ 2X is a semi-algebra, A = A(S) and
µ : A → [0,∞] is a finitely additive measure. Then µ is a premeasure on A
iff µ is sub-additive on S.

Proof. Clearly if µ is a premeasure on A then µ is σ - additive and hence
sub-additive on S. Because of Proposition 4.2, to prove the converse it suffices
to show that the sub-additivity of µ on S implies the sub-additivity of µ on
A.

So suppose A =
∞∑

n=1
An with A ∈ A and each An ∈ A which we express

as A =
∑k

j=1Ej with Ej ∈ S and An =
∑Nn

i=1En,i with En,i ∈ S. Then

Ej = A ∩ Ej =
∞∑

n=1

An ∩ Ej =
∞∑

n=1

Nn∑
i=1

En,i ∩ Ej

which is a countable union and hence by assumption,

µ(Ej) ≤
∞∑

n=1

Nn∑
i=1

µ (En,i ∩ Ej) .

Summing this equation on j and using the finite additivity of µ shows

µ(A) =
k∑

j=1

µ(Ej) ≤
k∑

j=1

∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej)

=
∞∑

n=1

Nn∑
i=1

k∑
j=1

µ (En,i ∩ Ej) =
∞∑

n=1

Nn∑
i=1

µ (En,i) =
∞∑

n=1

µ (An) ,

which proves (using Proposition 4.2) the sub-additivity of µ on A.
Now suppose that F : R → R be an increasing function, F (±∞) :=

limx→±∞ F (x) and µ = µF be the finitely additive measure on (R,A) de-
scribed in Proposition 4.29. If µ happens to be a premeasure on A, then,
letting An = (a, bn] with bn ↓ b as n→∞, implies
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F (bn)− F (a) = µ((a, bn]) ↓ µ((a, b]) = F (b)− F (a).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
limy↓b F (y) = F (b), i.e. F is right continuous. The next proposition shows the
converse is true as well. Hence premeasures on A which are finite on bounded
sets are in one to one correspondences with right continuous increasing func-
tions which vanish at 0.

Proposition 5.7. To each right continuous increasing function F : R → R
there exists a unique premeasure µ = µF on A such that

µF ((a, b]) = F (b)− F (a) ∀ −∞ < a < b <∞.

Proof. As above, let F (±∞) := limx→±∞ F (x) and µ = µF be as in
Proposition 4.29. Because of Proposition 5.6, to finish the proof it suffices to
show µ is sub-additive on S.

First suppose that −∞ < a < b < ∞, J = (a, b], Jn = (an, bn] such that

J =
∞∑

n=1
Jn. We wish to show

µ(J) ≤
∞∑

n=1

µ(Jn). (5.1)

To do this choose numbers ã > a, b̃n > bn in which case I := (ã, b] ⊂ J,

J̃n := (an, b̃n] ⊃ J̃o
n := (an, b̃n) ⊃ Jn.

Since Ī = [ã, b] is compact and Ī ⊂ J ⊂
∞⋃

n=1
J̃o

n there exists1 N <∞ such that

I ⊂ Ī ⊂
N⋃

n=1

J̃o
n ⊂

N⋃
n=1

J̃n.

Hence by finite sub-additivity of µ,

F (b)− F (ã) = µ(I) ≤
N∑

n=1

µ(J̃n) ≤
∞∑

n=1

µ(J̃n).

Using the right continuity of F and letting ã ↓ a in the above inequality,

1 To see this, let c := sup
n

x ≤ b : [ã, x] is finitely covered by
n

J̃o
n

o∞
n=1

o
. If c < b,

then c ∈ J̃o
m for some m and there exists x ∈ J̃o

m such that [ã, x] is finitely covered

by
n

J̃o
n

o∞
n=1

, say by
n

J̃o
n

oN

n=1
. We would then have that

n
J̃o

n

omax(m,N)

n=1
finitely

covers [a, c′] for all c′ ∈ J̃o
m. But this contradicts the definition of c.
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µ (J) = µ((a, b]) = F (b)− F (a) ≤
∞∑

n=1

µ
(
J̃n

)
=
∞∑

n=1

µ (Jn) +
∞∑

n=1

µ(J̃n \ Jn). (5.2)

Given ε > 0, we may use the right continuity of F to choose b̃n so that

µ(J̃n \ Jn) = F (b̃n)− F (bn) ≤ ε2−n ∀ n ∈ N.

Using this in Eq. (5.2) shows

µ(J) = µ((a, b]) ≤
∞∑

n=1

µ (Jn) + ε

which verifies Eq. (5.1) since ε > 0 was arbitrary.
The hard work is now done but we still have to check the cases where

a = −∞ or b = ∞. For example, suppose that b = ∞ so that

J = (a,∞) =
∞∑

n=1

Jn

with Jn = (an, bn] ∩ R. Then

IM := (a,M ] = J ∩ IM =
∞∑

n=1

Jn ∩ IM

and so by what we have already proved,

F (M)− F (a) = µ(IM ) ≤
∞∑

n=1

µ(Jn ∩ IM ) ≤
∞∑

n=1

µ(Jn).

Now let M →∞ in this last inequality to find that

µ((a,∞)) = F (∞)− F (a) ≤
∞∑

n=1

µ(Jn).

The other cases where a = −∞ and b ∈ R and a = −∞ and b = ∞ are
handled similarly.

Before continuing our development of the existence of measures, we will
pause to show that measures are often uniquely determined by their values
on a generating sub-algebra. This detour will also have the added benefit of
motivating Carathoedory’s existence proof to be given below.
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5.3 Regularity and Uniqueness Results

Definition 5.8. Given a collection of subsets, E , of X, let Eσ denote the col-
lection of subsets of X which are finite or countable unions of sets from E .
Similarly let Eδ denote the collection of subsets of X which are finite or count-
able intersections of sets from E . We also write Eσδ = (Eσ)δ and Eδσ = (Eδ)σ ,
etc.

Lemma 5.9. Suppose that A ⊂ 2X is an algebra. Then:

1. Aσ is closed under taking countable unions and finite intersections.
2. Aδ is closed under taking countable intersections and finite unions.
3. {Ac : A ∈ Aσ} = Aδ and {Ac : A ∈ Aδ} = Aσ.

Proof. By construction Aσ is closed under countable unions. Moreover if
A = ∪∞i=1Ai and B = ∪∞j=1Bj with Ai, Bj ∈ A, then

A ∩B = ∪∞i,j=1Ai ∩Bj ∈ Aσ,

which shows that Aσ is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3.

Theorem 5.10 (Finite Regularity Result). Suppose A ⊂ 2X is an al-
gebra, B = σ (A) and µ : B → [0,∞) is a finite measure, i.e. µ (X) < ∞.
Then for every ε > 0 and B ∈ B there exists A ∈ Aδ and C ∈ Aσ such that
A ⊂ B ⊂ C and µ (C \A) < ε.

Proof. Let B0 denote the collection of B ∈ B such that for every ε > 0
there here exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C and µ (C \A) < ε.
It is now clear that A ⊂ B0 and that B0 is closed under complementation. Now
suppose that Bi ∈ B0 for i = 1, 2, . . . and ε > 0 is given. By assumption there
exists Ai ∈ Aδ and Ci ∈ Aσ such that Ai ⊂ Bi ⊂ Ci and µ (Ci \Ai) < 2−iε.

Let A := ∪∞i=1Ai, A
N := ∪N

i=1Ai ∈ Aδ, B := ∪∞i=1Bi, and C := ∪∞i=1Ci ∈
Aσ. Then AN ⊂ A ⊂ B ⊂ C and

C \A = [∪∞i=1Ci] \A = ∪∞i=1 [Ci \A] ⊂ ∪∞i=1 [Ci \Ai] .

Therefore,

µ (C \A) = µ (∪∞i=1 [Ci \A]) ≤
∞∑

i=1

µ (Ci \A) ≤
∞∑

i=1

µ (Ci \Ai) < ε.

Since C \AN ↓ C \A, it also follows that µ
(
C \AN

)
< ε for sufficiently large

N and this shows B = ∪∞i=1Bi ∈ B0. Hence B0 is a sub-σ-algebra of B = σ (A)
which contains A which shows B0 = B.

Many theorems in the sequel will require some control on the size of a
measure µ. The relevant notion for our purposes (and most purposes) is that
of a σ – finite measure defined next.
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Definition 5.11. Suppose X is a set, E ⊂ B ⊂ 2X and µ : B → [0,∞] is a
function. The function µ is σ – finite on E if there exists En ∈ E such that
µ(En) <∞ and X = ∪∞n=1En. If B is a σ – algebra and µ is a measure on B
which is σ – finite on B we will say (X,B, µ) is a σ – finite measure space.

The reader should check that if µ is a finitely additive measure on an
algebra, B, then µ is σ – finite on B iff there exists Xn ∈ B such that Xn ↑ X
and µ(Xn) <∞.

Corollary 5.12 (σ – Finite Regularity Result). Theorem 5.10 continues
to hold under the weaker assumption that µ : B → [0,∞] is a measure which
is σ – finite on A.

Proof. LetXn ∈ A such that ∪∞n=1Xn = X and µ(Xn) <∞ for all n.Since
A ∈ B →µn (A) := µ (Xn ∩A) is a finite measure on A ∈ B for each n, by
Theorem 5.10, for every B ∈ B there exists Cn ∈ Aσ such that B ⊂ Cn and
µ (Xn ∩ [Cn \B]) = µn (Cn \B) < 2−nε. Now let C := ∪∞n=1 [Xn ∩ Cn] ∈ Aσ

and observe that B ⊂ C and

µ (C \B) = µ (∪∞n=1 ([Xn ∩ Cn] \B))

≤
∞∑

n=1

µ ([Xn ∩ Cn] \B) =
∞∑

n=1

µ (Xn ∩ [Cn \B]) < ε.

Applying this result to Bc shows there exists D ∈ Aσ such that Bc ⊂ D and

µ (B \Dc) = µ (D \Bc) < ε.

So if we let A := Dc ∈ Aδ, then A ⊂ B ⊂ C and

µ (C \A) = µ ([B \A] ∪ [(C \B) \A]) ≤ µ (B \A) + µ (C \B) < 2ε

and the result is proved.

Exercise 5.1. Suppose A ⊂ 2X is an algebra and µ and ν are two measures
on B = σ (A) .

a. Suppose that µ and ν are finite measures such that µ = ν on A. Show
µ = ν.

b. Generalize the previous assertion to the case where you only assume that
µ and ν are σ – finite on A.

Corollary 5.13. Suppose A ⊂ 2X is an algebra and µ : B = σ (A) → [0,∞] is
a measure which is σ – finite on A. Then for all B ∈ B, there exists A ∈ Aδσ

and C ∈ Aσδ such that A ⊂ B ⊂ C and µ (C \A) = 0.

Proof. By Theorem 5.10, given B ∈ B, we may choose An ∈ Aδ and
Cn ∈ Aσ such that An ⊂ B ⊂ Cn and µ(Cn \B) ≤ 1/n and µ(B \An) ≤ 1/n.
By replacing AN by ∪N

n=1An and CN by ∩N
n=1Cn, we may assume that An ↑
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and Cn ↓ as n increases. Let A = ∪An ∈ Aδσ and C = ∩Cn ∈ Aσδ, then
A ⊂ B ⊂ C and

µ(C \A) = µ(C \B) + µ(B \A) ≤ µ(Cn \B) + µ(B \An)
≤ 2/n→ 0 as n→∞.

Exercise 5.2. Let B = BRn = σ ({open subsets of Rn}) be the Borel σ –
algebra on Rn and µ be a probability measure on B. Further, let B0 denote
those sets B ∈ B such that for every ε > 0 there exists F ⊂ B ⊂ V such that
F is closed, V is open, and µ (V \ F ) < ε. Show:

1. B0 contains all closed subsets of B. Hint: given a closed subset,
F ⊂ Rn and k ∈ N, let Vk := ∪x∈FB (x, 1/k) , where B (x, δ) :=
{y ∈ Rn : |y − x| < δ} . Show, Vk ↓ F as k →∞.

2. Show B0 is a σ – algebra and use this along with the first part of this
exercise to conclude B = B0. Hint: follow closely the method used in the
first step of the proof of Theorem 5.10.

3. Show for every ε > 0 and B ∈ B, there exist a compact subset,
K ⊂ Rn, such that K ⊂ B and µ (B \K) < ε. Hint: take K :=
F ∩ {x ∈ Rn : |x| ≤ n} for some sufficiently large n.

5.4 Construction of Measures

Remark 5.14. Let us recall from Proposition 4.3 and Remark 4.4 that a finitely
additive measure µ : A → [0,∞] is a premeasure on A iff µ (An) ↑ µ(A) for
all {An}∞n=1 ⊂ A such that An ↑ A ∈ A. Furthermore if µ (X) <∞, then µ is
a premeasure on A iff µ(An) ↓ 0 for all {An}∞n=1 ⊂ A such that An ↓ ∅.

Proposition 5.15. Let µ be a premeasure on an algebra A, then µ has a
unique extension (still called µ) to a function on Aσ satisfying the following
properties.

1. (Continuity) If An ∈ A and An ↑ A ∈ Aσ, then µ (An) ↑ µ (A) as
n→∞.

2. (Monotonicity) If A,B ∈ Aσ with A ⊂ B then µ (A) ≤ µ (B) .
3. (Strong Additivity) If A,B ∈ Aσ, then

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (5.3)

4. (Sub-Additivity on Aσ) The function µ is sub-additive on Aσ, i.e. if
{An}∞n=1 ⊂ Aσ, then

µ (∪∞n=1An) ≤
∞∑

n=1

µ (An) . (5.4)
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5. (σ - Additivity on Aσ) The function µ is countably additive on Aσ.

Proof. Let A,B be sets in Aσ such that A ⊂ B and suppose {An}∞n=1

and {Bn}∞n=1 are sequences in A such that An ↑ A and Bn ↑ B as n → ∞.
Since Bm ∩An ↑ An as m→∞, the continuity of µ on A implies,

µ (An) = lim
m→∞

µ (Bm ∩An) ≤ lim
m→∞

µ (Bm) .

We may let n→∞ in this inequality to find,

lim
n→∞

µ (An) ≤ lim
m→∞

µ (Bm) . (5.5)

Using this equation when B = A, implies, limn→∞ µ (An) = limm→∞ µ (Bm)
whenever An ↑ A and Bn ↑ A. Therefore it is unambiguous to define µ (A)
by;

µ (A) = lim
n→∞

µ (An)

for any sequence {An}∞n=1 ⊂ A such that An ↑ A. With this definition, the
continuity of µ is clear and the monotonicity of µ follows from Eq. (5.5).

Suppose that A,B ∈ Aσ and {An}∞n=1 and {Bn}∞n=1 are sequences in A
such that An ↑ A and Bn ↑ B as n→∞. Then passing to the limit as n→∞
in the identity,

µ (An ∪Bn) + µ (An ∩Bn) = µ (An) + µ (Bn)

proves Eq. (5.3). In particular, it follows that µ is finitely additive on Aσ.
Let {An}∞n=1 be any sequence in Aσ and choose {An,i}∞i=1 ⊂ A such that

An,i ↑ An as i→∞. Then we have,

µ
(
∪N

n=1An,N

)
≤

N∑
n=1

µ (An,N ) ≤
N∑

n=1

µ (An) ≤
∞∑

n=1

µ (An) . (5.6)

Since A 3 ∪N
n=1An,N ↑ ∪∞n=1An ∈ Aσ, we may let N → ∞ in Eq. (5.6) to

conclude Eq. (5.4) holds.
If we further assume that {An}∞n=1 ⊂ Aσ is a disjoint sequence, by the

finite additivity and monotonicity of µ on Aσ, we have

∞∑
n=1

µ (An) = lim
N→∞

N∑
n=1

µ (An) = lim
N→∞

µ
(
∪N

n=1An

)
≤ µ (∪∞n=1An) .

The previous two inequalities show µ is σ – additive on Aσ.
Suppose µ is a finite premeasure on an algebra, A ⊂ 2X , and A ∈ Aδ∩Aσ.

Since A,Ac ∈ Aσ and X = A ∪ Ac, it follows that µ (X) = µ (A) + µ (Ac) .
From this observation we may extend µ to a function on Aδ ∪Aσ by defining

µ (A) := µ (X)− µ (Ac) for all A ∈ Aδ. (5.7)
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Lemma 5.16. Suppose µ is a finite premeasure on an algebra, A ⊂ 2X , and
µ has been extended to Aδ∪Aσ as described in Proposition 5.15 and Eq. (5.7)
above.

1. If A ∈ Aδ and An ∈ A such that An ↓ A, then µ (A) = limn→∞ µ (An) .
2. µ is additive when restricted to Aδ.
3. If A ∈ Aδ and C ∈ Aσ such that A ⊂ C, then µ (C \A) = µ (C)− µ (A) .

Proof.

1. Since Ac
n ↑ Ac ∈ Aσ, by the definition of µ (A) and Proposition 5.15 it

follows that

µ (A) = µ (X)− µ (Ac) = µ (X)− lim
n→∞

µ (Ac
n)

= lim
n→∞

[µ (X)− µ (Ac
n)] = lim

n→∞
µ (An) .

2. Suppose A,B ∈ Aδ are disjoint sets and An, Bn ∈ A such that An ↓ A
and Bn ↓ B, then An ∪Bn ↓ A ∪B and therefore,

µ (A ∪B) = lim
n→∞

µ (An ∪Bn) = lim
n→∞

[µ (An) + µ (Bn)− µ (An ∩Bn)]

= µ (A) + µ (B)

wherein the last equality we have used Proposition 4.3.
3. By assumption, X = Ac ∪ C. So applying the strong additivity of µ on
Aσ in Eq. (5.3) with A→ Ac ∈ Aσ and B → C ∈ Aσ shows

µ (X) + µ (C \A) = µ (Ac ∪ C) + µ (Ac ∩ C)
= µ (Ac) + µ (C) = µ (X)− µ (A) + µ (C) .

Definition 5.17 (Measurable Sets). Suppose µ is a finite premeasure on
an algebra A ⊂ 2X . We say that B ⊂ X is measurable if for all ε > 0 there
exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C and µ (C \A) < ε. We will
denote the collection of measurable subsets of X by B = B (µ) . We also define
µ̄ : B → [0, µ (X)] by

µ̄ (B) = inf {µ (C) : B ⊂ C ∈ Aσ} . (5.8)

Remark 5.18. If B ∈ B, ε > 0, A ∈ Aδ and C ∈ Aσ are such that A ⊂ B ⊂ C
and µ (C \A) < ε, then µ (A) ≤ µ̄ (B) ≤ µ (C) and in particular,

0 ≤ µ̄ (B)− µ (A) < ε, and 0 ≤ µ (C)− µ̄ (B) < ε. (5.9)

Indeed, if C ′ ∈ Aσ with B ⊂ C ′, then A ⊂ C ′ and so by Lemma 5.16,

µ (A) ≤ µ (C ′ \A) + µ (A) = µ (C ′)

from which it follows that µ (A) ≤ µ̄ (B) . The fact that µ̄ (B) ≤ µ (C) follows
directly from Eq. (5.8).
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Theorem 5.19 (Finite Premeasure Extension Theorem). Suppose µ is
a finite premeasure on an algebra A ⊂ 2X . Then B is a σ – algebra on X
which contains A and µ̄ is a σ – additive measure on B. Moreover, µ̄ is the
unique measure on B such that µ̄|A = µ.

Proof. It is clear that A ⊂ B and that B is closed under complementation.
Now suppose that Bi ∈ B for i = 1, 2 and ε > 0 is given. We may then
choose Ai ⊂ Bi ⊂ Ci such that Ai ∈ Aδ, Ci ∈ Aσ, and µ (Ci \Ai) < ε for
i = 1, 2. Then with A = A1 ∪ A2, B = B1 ∪ B2 and C = C1 ∪ C2, we have
Aδ 3 A ⊂ B ⊂ C ∈ Aσ. Since

C \A = (C1 \A) ∪ (C2 \A) ⊂ (C1 \A1) ∪ (C2 \A2) ,

it follows from the sub-additivity of µ that with

µ (C \A) ≤ µ (C1 \A1) + µ (C2 \A2) < 2ε.

Since ε > 0 was arbitrary, we have shown that B ∈ B. Hence we now know
that B is an algebra.

Because B is an algebra, to verify that B is a σ – algebra it suffices to
show that B =

∑∞
n=1Bn ∈ B whenever {Bn}∞n=1 is a disjoint sequence in

B. To prove B ∈ B, let ε > 0 be given and choose Ai ⊂ Bi ⊂ Ci such that
Ai ∈ Aδ, Ci ∈ Aσ, and µ (Ci \Ai) < ε2−i for all i. Since the {Ai}∞i=1 are
pairwise disjoint we may use Lemma 5.16 to show,

n∑
i=1

µ (Ci) =
n∑

i=1

(µ (Ai) + µ (Ci \Ai))

= µ (∪n
i=1Ai) +

n∑
i=1

µ (Ci \Ai) ≤ µ (X) +
n∑

i=1

ε2−i.

Passing to the limit, n→∞, in this equation then shows
∞∑

i=1

µ (Ci) ≤ µ (X) + ε <∞. (5.10)

Let B = ∪∞i=1Bi, C := ∪∞i=1Ci ∈ Aσ and for n ∈ N let An :=
∑n

i=1Ai ∈
Aδ. Then Aδ 3 An ⊂ B ⊂ C ∈ Aσ, C \An ∈ Aσ and

C \An = ∪∞i=1 (Ci \An) ⊂ [∪n
i=1 (Ci \Ai)] ∪

[
∪∞i=n+1Ci

]
∈ Aσ.

Therefore, using the sub-additivity of µ on Aσ and the estimate (5.10),

µ (C \An) ≤
n∑

i=1

µ (Ci \Ai) +
∞∑

i=n+1

µ (Ci)

≤ ε+
∞∑

i=n+1

µ (Ci) → ε as n→∞.
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Since ε > 0 is arbitrary, it follows that B ∈ B. Moreover by repeated use of
Remark 5.18, we find

|µ̄ (B)− µ (An)| < ε+
∞∑

i=n+1

µ (Ci) and∣∣∣∣∣
n∑

i=1

µ̄ (Bi)− µ (An)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

[µ̄ (Bi)− µ (Ai)]

∣∣∣∣∣ ≤
n∑

i=1

|µ̄ (Bi)− µ (Ai)| ≤ ε
n∑

i=1

2−i < ε.

Combining these estimates shows∣∣∣∣∣µ̄ (B)−
n∑

i=1

µ̄ (Bi)

∣∣∣∣∣ < 2ε+
∞∑

i=n+1

µ (Ci)

which upon letting n→∞ gives,∣∣∣∣∣µ̄ (B)−
∞∑

i=1

µ̄ (Bi)

∣∣∣∣∣ ≤ 2ε.

Since ε > 0 is arbitrary, we have shown µ̄ (B) =
∑∞

i=1 µ̄ (Bi) . This completes
the proof that B is a σ - algebra and that µ̄ is a measure on B.

Theorem 5.20. Suppose that µ is a σ – finite premeasure on an algebra A.
Then

µ̄ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} ∀ B ∈ σ (A) (5.11)

defines a measure on σ (A) and this measure is the unique extension of µ on
A to a measure on σ (A) .

Proof. Let {Xn}∞n=1 ⊂ A be chosen so that µ (Xn) < ∞ for all n and
Xn ↑ X as n→∞ and let

µn (A) := µn (A ∩Xn) for all A ∈ A.

Each µn is a premeasure (as is easily verified) on A and hence by Theorem
5.19 each µn has an extension, µ̄n, to a measure on σ (A) . Since the measure
µ̄n are increasing, µ̄ := limn→∞ µ̄n is a measure which extends µ.

The proof will be completed by verifying that Eq. (5.11) holds. Let B ∈
σ (A) , Bm = Xm ∩ B and ε > 0 be given. By Theorem 5.19, there exists
Cm ∈ Aσ such that Bm ⊂ Cm ⊂ Xm and µ̄(Cm\Bm) = µ̄m(Cm\Bm) < ε2−n.
Then C := ∪∞m=1Cm ∈ Aσ and

µ̄(C \B) ≤ µ̄

( ∞⋃
m=1

(Cm \B)

)
≤
∞∑

m=1

µ̄(Cm \B) ≤
∞∑

m=1

µ̄(Cm \Bm) < ε.

Thus
µ̄ (B) ≤ µ̄ (C) = µ̄ (B) + µ̄(C \B) ≤ µ̄ (B) + ε

which, since ε > 0 is arbitrary, shows µ̄ satisfies Eq. (5.11). The uniqueness
of the extension µ̄ is proved in Exercise 5.1.
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Example 5.21. If F (x) = x for all x ∈ R, we denote µF by m and call m
Lebesgue measure on (R,BR) .

Theorem 5.22. Lebesgue measure m is invariant under translations, i.e. for
B ∈ BR and x ∈ R,

m(x+B) = m(B). (5.12)

Moreover, m is the unique measure on BR such that m((0, 1]) = 1 and Eq.
(5.12) holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

m(λB) = |λ|m(B) (5.13)

where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.
Proof. Let mx(B) := m(x + B), then one easily shows that mx is a

measure on BR such that mx((a, b]) = b− a for all a < b. Therefore, mx = m
by the uniqueness assertion in Exercise 5.1. For the converse, suppose that m
is translation invariant and m((0, 1]) = 1. Given n ∈ N, we have

(0, 1] = ∪n
k=1(

k − 1
n

,
k

n
] = ∪n

k=1

(
k − 1
n

+ (0,
1
n

]
)
.

Therefore,

1 = m((0, 1]) =
n∑

k=1

m

(
k − 1
n

+ (0,
1
n

]
)

=
n∑

k=1

m((0,
1
n

]) = n ·m((0,
1
n

]).

That is to say

m((0,
1
n

]) = 1/n.

Similarly, m((0, l
n ]) = l/n for all l, n ∈ N and therefore by the translation

invariance of m,

m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and
an ↑ a, then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞

m((an, bn]) = lim
n→∞

(bn − an) = b− a,

i.e. m is Lebesgue measure. To prove Eq. (5.13) we may assume that λ 6= 0
since this case is trivial to prove. Now let mλ(B) := |λ|−1

m(λB). It is easily
checked that mλ is again a measure on BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1
m ([λb, λa)) = − |λ|−1 (λb− λa) = b− a

if λ < 0. Hence mλ = m.
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5.5 Completions of Measure Spaces

Definition 5.23. A set E ⊂ X is a null set if E ∈ B and µ(E) = 0. If P is
some “property” which is either true or false for each x ∈ X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E := {x ∈ X : P is false for x}

is a null set. For example if f and g are two measurable functions on (X,B, µ),
f = g a.e. means that µ(f 6= g) = 0.

Definition 5.24. A measure space (X,B, µ) is complete if every subset of
a null set is in B, i.e. for all F ⊂ X such that F ⊂ E ∈ B with µ(E) = 0
implies that F ∈ B.

Proposition 5.25 (Completion of a Measure). Let (X,B, µ) be a measure
space. Set

N = N µ := {N ⊂ X : ∃ F ∈ B such that N ⊂ F and µ(F ) = 0} ,
B = B̄µ := {A ∪N : A ∈ B and N ∈ N} and

µ̄(A ∪N) := µ(A) for A ∈ B and N ∈ N ,

see Fig. 5.1. Then B̄ is a σ – algebra, µ̄ is a well defined measure on B̄, µ̄
is the unique measure on B̄ which extends µ on B, and (X, B̄, µ̄) is complete
measure space. The σ-algebra, B̄, is called the completion of B relative to µ
and µ̄, is called the completion of µ.

Proof. Clearly X, ∅ ∈ B̄. Let A ∈ B and N ∈ N and choose F ∈ B such

Fig. 5.1. Completing a σ – algebra.

that N ⊂ F and µ(F ) = 0. Since N c = (F \N) ∪ F c,

(A ∪N)c = Ac ∩N c = Ac ∩ (F \N ∪ F c)
= [Ac ∩ (F \N)] ∪ [Ac ∩ F c]
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where [Ac ∩ (F \ N)] ∈ N and [Ac ∩ F c] ∈ B. Thus B̄ is closed under
complements. If Ai ∈ B and Ni ⊂ Fi ∈ B such that µ(Fi) = 0 then
∪(Ai ∪ Ni) = (∪Ai) ∪ (∪Ni) ∈ B̄ since ∪Ai ∈ B and ∪Ni ⊂ ∪Fi and
µ(∪Fi) ≤

∑
µ(Fi) = 0. Therefore, B̄ is a σ – algebra. Suppose A∪N1 = B∪N2

with A,B ∈ B and N1, N2,∈ N . Then A ⊂ A ∪N1 ⊂ A ∪N1 ∪ F2 = B ∪ F2

which shows that
µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A ∪
N) := µ(A) is well defined. It is left as an exercise to show µ̄ is a measure,
i.e. that it is countable additive.

5.6 A Baby Version of Kolmogorov’s Extension Theorem

For this section, let Λ be a finite set, Ω := Λ∞ := ΛN, and let A denote the
collection of cylinder subsets of Ω, where A ⊂ Ω is a cylinder set iff there
exists n ∈ N and B ⊂ Λn such that

A = B × Λ∞ := {ω ∈ Ω : (ω1, . . . , ωn) ∈ B} .

Observe that we may also write A as A = B′×Λ∞ where B′ = B×Λk ⊂ Λn+k

for any k ≥ 0.

Exercise 5.3. Show A is an algebra.

Lemma 5.26. Suppose {An}∞n=1 ⊂ A is a decreasing sequence of non-empty
cylinder sets, then ∩∞n=1An 6= ∅.

Proof. Since An ∈ A, we may find Nn ∈ N and Bn ⊂ ΛNn such that
An = Bn × Λ∞. Using the observation just prior to this Lemma, we may
assume that {Nn}∞n=1 is a strictly increasing sequence.

By assumption, there exists ω (n) = (ω1 (n) , ω2 (n) , . . . ) ∈ Ω such that
ω (n) ∈ An for all n. Moreover, since ω (n) ∈ An ⊂ Ak for all k ≤ n, it follows
that

(ω1 (n) , ω2 (n) , . . . , ωNk
(n)) ∈ Bk for all k ≤ n. (5.14)

Since Λ is a finite set, we may find a λ1 ∈ Λ and an infinite subset, Γ1 ⊂ N
such that ω1 (n) = λ1 for all n ∈ Γ1. Similarly, there exists λ2 ∈ Λ and an
infinite set, Γ2 ⊂ Γ1, such that ω2 (n) = λ2 for all n ∈ Γ2. Continuing this
procedure inductively, there exists (for all j ∈ N) infinite subsets, Γj ⊂ N and
points λj ∈ Λ such that Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ . . . and ωj (n) = λj for all n ∈ Γj .

We are now going to complete the proof by showing that λ := (λ1, λ2, . . . )
is in ∩∞n=1An. By the construction above, for all N ∈ N we have

(ω1 (n) , . . . , ωN (n)) = (λ1, . . . , λN ) for all n ∈ ΓN .

Taking N = Nk and n ∈ ΓNk
with n ≥ k, we learn from Eq. (5.14) that
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(λ1, . . . , λNk
) = (ω1 (n) , . . . , ωNk

(n)) ∈ Bk.

But this is equivalent to showing λ ∈ Ak. Since k ∈ N was arbitrary it follows
that λ ∈ ∩∞n=1An.

Theorem 5.27 (Kolmogorov’s Extension Theorem I.). Continuing the
notation above, every finitely additive probability measure, P : A → [0, 1] , has
a unique extension to a probability measure on σ (A) .

Proof. From Theorem 5.19, it suffices to show limn→∞ P (An) = 0 when-
ever {An}∞n=1 ⊂ A with An ↓ ∅. However, by Lemma 5.26, if An ∈ A and
An ↓ ∅, we must have that An = ∅ for a.a. n and in particular P (An) = 0 for
a.a. n. This certainly implies limn→∞ P (An) = 0.

Given a probability measure, P : σ (A) → [0, 1] and n ∈ N and
(λ1, . . . , λn) ∈ Λn, let

pn (λ1, . . . , λn) := P ({ω ∈ Ω : ω1 = λ1, . . . , ωn = λn}) . (5.15)

Exercise 5.4 (Consistency Conditions). If pn is defined as above, show:

1.
∑

λ∈Λ p1 (λ) = 1 and
2. for all n ∈ N and (λ1, . . . , λn) ∈ Λn,

pn (λ1, . . . , λn) =
∑
λ∈Λ

pn+1 (λ1, . . . , λn, λ) .

Exercise 5.5 (Converse to 5.4). Suppose for each n ∈ N we are given
functions, pn : Λn → [0, 1] such that the consistency conditions in Exercise
5.4 hold. Then there exists a unique probability measure, P on σ (A) such
that Eq. (5.15) holds for all n ∈ N and (λ1, . . . , λn) ∈ Λn.

Example 5.28 (Existence of iid simple R.V.s). Suppose now that q : Λ→ [0, 1]
is a function such that

∑
λ∈Λ q (λ) = 1. Then there exists a unique probability

measure P on σ (A) such that, for all n ∈ N and (λ1, . . . , λn) ∈ Λn, we have

P ({ω ∈ Ω : ω1 = λ1, . . . , ωn = λn}) = q (λ1) . . . q (λn) .

This is a special case of Exercise 5.5 with pn (λ1, . . . , λn) := q (λ1) . . . q (λn) .
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Random Variables

6.1 Measurable Functions

Definition 6.1. A measurable space is a pair (X,M), where X is a set
and M is a σ – algebra on X.

To motivate the notion of a measurable function, suppose (X,M, µ) is a
measure space and f : X → R+ is a function. Roughly speaking, we are going
to define

∫
X

fdµ as a certain limit of sums of the form,

∞∑
0<a1<a2<a3<...

aiµ(f−1(ai, ai+1]).

For this to make sense we will need to require f−1((a, b]) ∈ M for all a <
b. Because of Corollary 6.7 below, this last condition is equivalent to the
condition f−1(BR) ⊂M.

Definition 6.2. Let (X,M) and (Y,F) be measurable spaces. A function f :
X → Y is measurable of more precisely, M/F – measurable or (M,F) –
measurable, if f−1(F) ⊂M, i.e. if f−1 (A) ∈M for all A ∈ F .

Remark 6.3. Let f : X → Y be a function. Given a σ – algebra F ⊂ 2Y , the
σ – algebra M := f−1(F) is the smallest σ – algebra on X such that f is
(M,F) - measurable . Similarly, if M is a σ - algebra on X then

F = f∗M ={A ∈ 2Y |f−1(A) ∈M}

is the largest σ – algebra on Y such that f is (M,F) - measurable.

Example 6.4 (Characteristic Functions). Let (X,M) be a measurable space
and A ⊂ X. Then 1A is (M,BR) – measurable iff A ∈M. Indeed, 1−1

A (W ) is
either ∅, X, A or Ac for any W ⊂ R with 1−1

A ({1}) = A.

Example 6.5. Suppose f : X → Y with Y being a finite set and F = 2Ω . Then
f is measurable iff f−1 ({y}) ∈M for all y ∈ Y.

Proposition 6.6. Suppose that (X,M) and (Y,F) are measurable spaces and
further assume E ⊂ F generates F , i.e. F = σ (E) . Then a map, f : X → Y
is measurable iff f−1 (E) ⊂M.
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Proof. If f isM/F measurable, then f−1 (E) ⊂ f−1 (F) ⊂M. Conversely
if f−1 (E) ⊂M, then, using Lemma 3.26,

f−1 (F) = f−1 (σ (E)) = σ
(
f−1 (E)

)
⊂M.

Corollary 6.7. Suppose that (X,M) is a measurable space. Then the follow-
ing conditions on a function f : X → R are equivalent:

1. f is (M,BR) – measurable,
2. f−1((a,∞)) ∈M for all a ∈ R,
3. f−1((a,∞)) ∈M for all a ∈ Q,
4. f−1((−∞, a]) ∈M for all a ∈ R.

Exercise 6.1. Prove Corollary 6.7. Hint: See Exercise 3.9.

Exercise 6.2. If M is the σ – algebra generated by E ⊂ 2X , then M is the
union of the σ – algebras generated by countable subsets F ⊂ E .

Exercise 6.3. Let (X,M) be a measure space and fn : X → R be a sequence
of measurable functions on X. Show that {x : limn→∞ fn(x) exists in R} ∈
M.

Exercise 6.4. Show that every monotone function f : R → R is (BR,BR) –
measurable.

Definition 6.8. Given measurable spaces (X,M) and (Y,F) and a subset
A ⊂ X. We say a function f : A → Y is measurable iff f is MA/F –
measurable.

Proposition 6.9 (Localizing Measurability). Let (X,M) and (Y,F) be
measurable spaces and f : X → Y be a function.

1. If f is measurable and A ⊂ X then f |A : A→ Y is measurable.
2. Suppose there exist An ∈ M such that X = ∪∞n=1An and f |An is MAn

measurable for all n, then f is M – measurable.

Proof. 1. If f : X → Y is measurable, f−1(B) ∈ M for all B ∈ F and
therefore

f |−1
A (B) = A ∩ f−1(B) ∈MA for all B ∈ F .

2. If B ∈ F , then

f−1(B) = ∪∞n=1

(
f−1(B) ∩An

)
= ∪∞n=1f |−1

An
(B).

Since each An ∈M,MAn ⊂M and so the previous displayed equation shows
f−1(B) ∈M.

The proof of the following exercise is routine and will be left to the reader.
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Proposition 6.10. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞]
by ν(A) := µ(f−1(A)) for all A ∈ F . Then ν is a measure on (Y,F) . (In the
future we will denote ν by f∗µ or µ ◦ f−1 and call f∗µ the push-forward of
µ by f or the law of f under µ.

Theorem 6.11. Given a distribution function, F : R → [0, 1] let G :
(0, 1)→ R be defined (see Figure 6.1) by,

G (y) := inf {x : F (x) ≥ y} .

Then G : (0, 1)→ R is Borel measurable and G∗m = µF where µF is the
unique measure on (R,BR) such that µF ((a, b]) = F (b)−F (a) for all −∞ <
a < b <∞.

Fig. 6.1. A pictorial definition of G.

Proof. Since G : (0, 1) → R is a non-decreasing function, G is measurable.
We also claim that, for all x0 ∈ R, that

G−1 ((0, x0]) = {y : G (y) ≤ x0} = (0, F (x0)] ∩ R, (6.1)

see Figure 6.2.
To give a formal proof of Eq. (6.1), G (y) = inf {x : F (x) ≥ y} ≤ x0, there

exists xn ≥ x0 with xn ↓ x0 such that F (xn) ≥ y. By the right continuity of
F, it follows that F (x0) ≥ y. Thus we have shown

{G ≤ x0} ⊂ (0, F (x0)] ∩ (0, 1) .

For the converse, if y ≤ F (x0) then G (y) = inf {x : F (x) ≥ y} ≤ x0, i.e.
y ∈ {G ≤ x0} . Indeed, y ∈ G−1 ((−∞, x0]) iff G (y) ≤ x0. Observe that

G (F (x0)) = inf {x : F (x) ≥ F (x0)} ≤ x0
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Fig. 6.2. As can be seen from this picture, G (y) ≤ x0 iff y ≤ F (x0) and similalry,
G (y) ≤ x1 iff y ≤ x1.

and hence G (y) ≤ x0 whenever y ≤ F (x0) . This shows that

(0, F (x0)] ∩ (0, 1) ⊂ G−1 ((0, x0]) .

As a consequence we have G∗m = µF . Indeed,

(G∗m) ((−∞, x]) = m
(
G−1 ((−∞, x])

)
= m ({y ∈ (0, 1) : G (y) ≤ x})

= m ((0, F (x)] ∩ (0, 1)) = F (x) .

See section 2.5.2 on p. 61 of Resnick for more details.

Theorem 6.12 (Durret’s Version). Given a distribution function, F :
R → [0, 1] let Y : (0, 1)→ R be defined (see Figure 6.3) by,

Y (x) := sup {y : F (y) < x} .

Then Y : (0, 1)→ R is Borel measurable and Y∗m = µF where µF is the
unique measure on (R,BR) such that µF ((a, b]) = F (b)−F (a) for all −∞ <
a < b <∞.

Proof. Since Y : (0, 1) → R is a non-decreasing function, Y is measurable.
Also observe, if y < Y (x) , then F (y) < x and hence,

F (Y (x)−) = lim
y↑Y (x)

F (y) ≤ x.

For y > Y (x) , we have F (y) ≥ x and therefore,

F (Y (x)) = F (Y (x) +) = lim
y↓Y (x)

F (y) ≥ x

and so we have shown

F (Y (x)−) ≤ x ≤ F (Y (x)) .
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Fig. 6.3. A pictorial definition of Y (x) .

We will now show

{x ∈ (0, 1) : Y (x) ≤ y0} = (0, F (y0)] ∩ (0, 1) . (6.2)

For the inclusion “⊂,” if x ∈ (0, 1) and Y (x) ≤ y0, then x ≤ F (Y (x)) ≤
F (y0), i.e. x ∈ (0, F (y0)]∩ (0, 1) . Conversely if x ∈ (0, 1) and x ≤ F (y0) then
(by definition of Y (x)) y0 ≥ Y (x) .

From the identity in Eq. (6.2), it follows that Y is measurable and

(Y∗m) ((−∞, y0)) = m
(
Y −1(−∞, y0)

)
= m ((0, F (y0)] ∩ (0, 1)) = F (y0) .

Therefore, Law (Y ) = µF as desired.

Lemma 6.13 (Composing Measurable Functions). Suppose that (X,M), (Y,F)
and (Z,G) are measurable spaces. If f : (X,M) → (Y,F) and g : (Y,F) →
(Z,G) are measurable functions then g ◦f : (X,M) → (Z,G) is measurable as
well.

Proof. By assumption g−1(G) ⊂ F and f−1 (F) ⊂M so that

(g ◦ f)−1 (G) = f−1
(
g−1 (G)

)
⊂ f−1 (F) ⊂M.

Definition 6.14 (σ – Algebras Generated by Functions). Let X be a
set and suppose there is a collection of measurable spaces {(Yα,Fα) : α ∈ A}
and functions fα : X → Yα for all α ∈ A. Let σ(fα : α ∈ A) denote the
smallest σ – algebra on X such that each fα is measurable, i.e.

σ(fα : α ∈ A) = σ(∪αf
−1
α (Fα)).
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Example 6.15. Suppose that Y is a finite set, F = 2Y , and X = Y N for some
N ∈ N. Let πi : Y N → Y be the projection maps, πi (y1, . . . , yN ) = yi. Then,
as the reader should check,

σ (π1, . . . , πn) =
{
A× ΛN−n : A ⊂ Λn

}
.

Proposition 6.16. Assuming the notation in Definition 6.14 and addition-
ally let (Z,M) be a measurable space and g : Z → X be a function. Then g
is (M, σ(fα : α ∈ A)) – measurable iff fα ◦ g is (M,Fα)–measurable for all
α ∈ A.

Proof. (⇒) If g is (M, σ(fα : α ∈ A)) – measurable, then the composition
fα ◦ g is (M,Fα) – measurable by Lemma 6.13. (⇐) Let

G = σ(fα : α ∈ A) = σ
(
∪α∈Af

−1
α (Fα)

)
.

If fα ◦ g is (M,Fα) – measurable for all α, then

g−1f−1
α (Fα) ⊂M∀α ∈ A

and therefore

g−1
(
∪α∈Af

−1
α (Fα)

)
= ∪α∈Ag

−1f−1
α (Fα) ⊂M.

Hence

g−1 (G) = g−1
(
σ
(
∪α∈Af

−1
α (Fα)

))
= σ(g−1

(
∪α∈Af

−1
α (Fα)

)
⊂M

which shows that g is (M,G) – measurable.

Definition 6.17. A function f : X → Y between two topological spaces is
Borel measurable if f−1(BY ) ⊂ BX .

Proposition 6.18. Let X and Y be two topological spaces and f : X → Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma 3.26 and BY = σ(τY ),

f−1(BY ) = f−1(σ(τY )) = σ(f−1(τY )) ⊂ σ(τX) = BX .

Example 6.19. For i = 1, 2, . . . , n, let πi : Rn → R be defined by πi (x) = xi.
Then each πi is continuous and therefore BRn/BR – measurable.

Lemma 6.20. Let E denote the collection of open rectangle in Rn, then
BRn = σ (E) . We also have that BRn = σ (π1, . . . , πn) and in particular,
A1 × · · · × An ∈ BRn whenever Ai ∈ BR for i = 1, 2, . . . , n. Therefore BRn

may be described as the σ algebra generated by {A1 × · · · ×An : Ai ∈ BR} .
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Proof. Assertion 1. Since E ⊂ BRn , it follows that σ (E) ⊂ BRn . Let

E0 := {(a, b) : a, b ∈ Qn 3 a < b} ,

where, for a, b ∈ Rn, we write a < b iff ai < bi for i = 1, 2, . . . , n and let

(a, b) = (a1, b1)× · · · × (an, bn) . (6.3)

Since every open set, V ⊂ Rn, may be written as a (necessarily) countable
union of elements from E0, we have

V ∈ σ (E0) ⊂ σ (E) ,

i.e. σ (E0) and hence σ (E) contains all open subsets of Rn. Hence we may
conclude that

BRn = σ (open sets) ⊂ σ (E0) ⊂ σ (E) ⊂ BRn .

Assertion 2. Since each πi is BRn/BR – measurable, it follows that
σ (π1, . . . , πn) ⊂ BRn . Moreover, if (a, b) is as in Eq. (6.3), then

(a, b) = ∩n
i=1π

−1
i ((ai, bi)) ∈ σ (π1, . . . , πn) .

Therefore, E ⊂ σ (π1, . . . , πn) and BRn = σ (E) ⊂ σ (π1, . . . , πn) .
Assertion 3. If Ai ∈ BR for i = 1, 2, . . . , n, then

A1 × · · · ×An = ∩n
i=1π

−1
i (Ai) ∈ σ (π1, . . . , πn) = BRn .

Corollary 6.21. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) – measurable iff fi : X → R is (M,BR) – measurable for each
i. In particular, a function f : X → C is (M,BC) – measurable iff Re f and
Im f are (M,BR) – measurable.

Proof. This is an application of Lemma 6.20 and Proposition 6.16.

Corollary 6.22. Let (X,M) be a measurable space and f, g : X → C be
(M,BC) – measurable functions. Then f ± g and f · g are also (M,BC) –
measurable.

Proof. Define F : X → C × C, A± : C × C → C and M : C × C −→ C
by F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A±
and M are continuous and hence (BC2 ,BC) – measurable. Also F is (M,BC2)
– measurable since π1 ◦ F = f and π2 ◦ F = g are (M,BC) – measurable.
Therefore A± ◦ F = f ± g and M ◦ F = f · g, being the composition of
measurable functions, are also measurable.
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Lemma 6.23. Let α ∈ C, (X,M) be a measurable space and f : X → C be a
(M,BC) – measurable function. Then

F (x) :=
{ 1

f(x) if f(x) 6= 0
α if f(x) = 0

is measurable.

Proof. Define i : C → C by

i(z) =
{

1
z if z 6= 0
0 if z = 0.

For any open set V ⊂ C we have

i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \{0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty
set or the one point set {0} . Therefore i−1(τC) ⊂ BC and hence i−1(BC) =
i−1(σ(τC)) = σ(i−1(τC)) ⊂ BC which shows that i is Borel measurable. Since
F = i ◦ f is the composition of measurable functions, F is also measurable.

Remark 6.24. For the real case of Lemma 6.23, define i as above but now take
z to real. From the plot of i, Figure 6.24, the reader may easily verify that
i−1 ((−∞, a]) is an infinite half interval for all a and therefore i is measurable. 1

x

We will often deal with functions f : X → R̄ = R∪{±∞} . When talking
about measurability in this context we will refer to the σ – algebra on R̄
defined by

BR̄ := σ ({[a,∞] : a ∈ R}) . (6.4)

Proposition 6.25 (The Structure of BR̄). Let BR and BR̄ be as above, then

BR̄ = {A ⊂ R̄ : A ∩ R ∈BR}. (6.5)

In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.
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Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,

{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R → R̄ be the inclusion map,

i−1 (BR̄) = σ
(
i−1

({
[a,∞] : a ∈ R̄

}))
= σ

({
i−1 ([a,∞]) : a ∈ R̄

})
= σ

({
[a,∞] ∩ R : a ∈ R̄

})
= σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i−1 (BR̄) = {A ∩ R : A ∈ BR̄}.

This implies:

1. A ∈ BR̄ =⇒ A ∩ R ∈BR and
2. if A ⊂ R̄ is such that A ∩ R ∈BR there exists B ∈ BR̄ such that A ∩ R =
B ∩ R. Because A∆B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude
that A ∈ BR̄ as well.

This proves Eq. (6.5).
The proofs of the next two corollaries are left to the reader, see Exercises

6.5 and 6.6.

Corollary 6.26. Let (X,M) be a measurable space and f : X → R̄ be a
function. Then the following are equivalent

1. f is (M,BR̄) - measurable,
2. f−1((a,∞]) ∈M for all a ∈ R,
3. f−1((−∞, a]) ∈M for all a ∈ R,
4. f−1({−∞}) ∈M, f−1({∞}) ∈M and f0 : X → R defined by

f0 (x) := 1R (f (x)) =
{
f (x) if f (x) ∈ R

0 if f (x) ∈ {±∞}

is measurable.

Corollary 6.27. Let (X,M) be a measurable space, f, g : X → R̄ be functions
and define f ·g : X → R̄ and (f + g) : X → R̄ using the conventions, 0 ·∞ = 0
and (f + g) (x) = 0 if f (x) = ∞ and g (x) = −∞ or f (x) = −∞ and
g (x) = ∞. Then f · g and f + g are measurable functions on X if both f and
g are measurable.

Exercise 6.5. Prove Corollary 6.26 noting that the equivalence of items 1. –
3. is a direct analogue of Corollary 6.7. Use Proposition 6.25 to handle item
4.

Exercise 6.6. Prove Corollary 6.27.



82 6 Random Variables

Proposition 6.28 (Closure under sups, infs and limits). Suppose that
(X,M) is a measurable space and fj : (X,M) → R for j ∈ N is a sequence
of M/BR – measurable functions. Then

supjfj , infjfj , lim sup
j→∞

fj and lim inf
j→∞

fj

are all M/BR – measurable functions. (Note that this result is in generally
false when (X,M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define g+(x) := sup jfj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈ M

so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈ M.

Since

lim sup
j→∞

fj = inf
n

sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n

inf {fj : j ≥ n}

we are done by what we have already proved.

Definition 6.29. Given a function f : X → R̄ let f+(x) := max {f(x), 0}
and f− (x) := max (−f(x), 0) = −min (f(x), 0) . Notice that f = f+ − f−.

Corollary 6.30. Suppose (X,M) is a measurable space and f : X → R̄ is a
function. Then f is measurable iff f± are measurable.

Proof. If f is measurable, then Proposition 6.28 implies f± are measur-
able. Conversely if f± are measurable then so is f = f+ − f−.

Definition 6.31. Let (X,M) be a measurable space. A function ϕ : X → F
(F denotes either R, C or [0,∞] ⊂ R̄) is a simple function if ϕ is M – BF
measurable and ϕ(X) contains only finitely many elements.

Any such simple functions can be written as

ϕ =
n∑

i=1

λi1Ai
with Ai ∈M and λi ∈ F. (6.6)

Indeed, take λ1, λ2, . . . , λn to be an enumeration of the range of ϕ and Ai =
ϕ−1({λi}). Note that this argument shows that any simple function may be
written intrinsically as
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ϕ =
∑
y∈F

y1ϕ−1({y}). (6.7)

The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 6.32 (Approximation Theorem). Let f : X → [0,∞] be mea-
surable and define, see Figure 6.4,

ϕn(x) :=
n2n−1∑

k=0

k

2n
1f−1(( k

2n , k+1
2n ])(x) + n1f−1((n2n,∞])(x)

=
n2n−1∑

k=0

k

2n
1{ k

2n <f≤ k+1
2n }(x) + n1{f>n2n}(x)

then ϕn ≤ f for all n, ϕn(x) ↑ f(x) for all x ∈ X and ϕn ↑ f uniformly on
the sets XM := {x ∈ X : f(x) ≤M} with M <∞.

Moreover, if f : X → C is a measurable function, then there exists simple
functions ϕn such that limn→∞ ϕn(x) = f(x) for all x and |ϕn| ↑ |f | as
n→∞.

Fig. 6.4. Constructing simple functions approximating a function, f : X → [0,∞].

Proof. Since

(
k

2n
,
k + 1
2n

] = (
2k

2n+1
,
2k + 1
2n+1

] ∪ (
2k + 1
2n+1

,
2k + 2
2n+1

],

if x ∈ f−1
(
( 2k
2n+1 ,

2k+1
2n+1 ]

)
then ϕn(x) = ϕn+1(x) = 2k

2n+1 and if x ∈
f−1

(
( 2k+1

2n+1 ,
2k+2
2n+1 ]

)
then ϕn(x) = 2k

2n+1 <
2k+1
2n+1 = ϕn+1(x). Similarly
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(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],

and so for x ∈ f−1((2n+1,∞]), ϕn(x) = 2n < 2n+1 = ϕn+1(x) and for
x ∈ f−1((2n, 2n+1]), ϕn+1(x) ≥ 2n = ϕn(x). Therefore ϕn ≤ ϕn+1 for all
n. It is clear by construction that ϕn(x) ≤ f(x) for all x and that 0 ≤
f(x) − ϕn(x) ≤ 2−n if x ∈ X2n . Hence we have shown that ϕn(x) ↑ f(x) for
all x ∈ X and ϕn ↑ f uniformly on bounded sets. For the second assertion,
first assume that f : X → R is a measurable function and choose ϕ±n to be
simple functions such that ϕ±n ↑ f± as n → ∞ and define ϕn = ϕ+

n − ϕ−n .
Then

|ϕn| = ϕ+
n + ϕ−n ≤ ϕ+

n+1 + ϕ−n+1 = |ϕn+1|

and clearly |ϕn| = ϕ+
n +ϕ−n ↑ f++f− = |f | and ϕn = ϕ+

n −ϕ−n → f+−f− = f
as n→∞. Now suppose that f : X → C is measurable. We may now choose
simple function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f
and vn → Im f as n→∞. Let ϕn = un + ivn, then

|ϕn|2 = u2
n + v2

n ↑ |Re f |2 + |Im f |2 = |f |2

and ϕn = un + ivn → Re f + i Im f = f as n→∞.

6.2 Factoring Random Variables

Lemma 6.33. Suppose that (Y,F) is a measurable space and Y : Ω → Y is
a map. Then to every (σ(Y ),BR̄) – measurable function, H : Ω → R̄, there is
a (F ,BR̄) – measurable function h : Y → R̄ such that H = h ◦ Y.

Proof. First suppose that H = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma
is valid in this case with h = 1B . More generally if H =

∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai
= 1Bi

◦Y and henceH = h◦Y
with h :=

∑
ai1Bi

– a simple function on R̄.
For a general (F ,BR̄) – measurable function, H, from Ω → R̄, choose

simple functions Hn converging to H. Let hn : Y → R̄ be simple functions
such that Hn = hn ◦ Y. Then it follows that

H = lim
n→∞

Hn = lim sup
n→∞

Hn = lim sup
n→∞

hn ◦ Y = h ◦ Y

where h := lim sup
n→∞

hn – a measurable function from Y to R̄.

The following is an immediate corollary of Proposition 6.16 and Lemma
6.33.

Corollary 6.34. Let X and A be sets, and suppose for α ∈ A we are give a
measurable space (Yα,Fα) and a function fα : X → Yα. Let Y :=

∏
α∈A Yα,

F := ⊗α∈AFα be the product σ – algebra on Y and M := σ(fα : α ∈ A)
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be the smallest σ – algebra on X such that each fα is measurable. Then the
function F : X → Y defined by [F (x)]α := fα(x) for each α ∈ A is (M,F)
– measurable and a function H : X → R̄ is (M,BR̄) – measurable iff there
exists a (F ,BR̄) – measurable function h from Y to R̄ such that H = h ◦ F.
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Independence

7.1 π – λ and Monotone Class Theorems

Definition 7.1. Let C ⊂ 2X be a collection of sets.

1. C is a monotone class if it is closed under countable increasing unions
and countable decreasing intersections,

2. C is a π – class if it is closed under finite intersections and
3. C is a λ–class if C satisfies the following properties:

a) X ∈ C
b) If A,B ∈ C and A ⊂ B, then B \ A ∈ C. (Closed under proper

differences.)
c) If An ∈ C and An ↑ A, then A ∈ C. (Closed under countable increasing

unions.)

Remark 7.2. If C is a collection of subsets of Ω which is both a λ – class and
a π – system then C is a σ – algebra. Indeed, since Ac = X \ A, we see that
any λ - system is closed under complementation. If C is also a π – system,
it is closed under intersections and therefore C is an algebra. Since C is also
closed under increasing unions, C is a σ – algebra.

Lemma 7.3 (Alternate Axioms for a λ – System*). Suppose that L ⊂
2Ω is a collection of subsets Ω. Then L is a λ – class iff λ satisfies the following
postulates:

1. X ∈ L
2. A ∈ L implies Ac ∈ L. (Closed under complementation.)
3. If {An}∞n=1 ⊂ L are disjoint, then

∑∞
n=1An ∈ L. (Closed under disjoint

unions.)

Proof. Suppose that L satisfies a. – c. above. Clearly then postulates 1.
and 2. hold. Suppose that A,B ∈ L such that A ∩B = ∅, then A ⊂ Bc and

Ac ∩Bc = Bc \A ∈ L.

Taking compliments of this result shows A ∪B ∈ L as well. So by induction,
Bm :=

∑m
n=1An ∈ L. Since Bm ↑

∑∞
n=1An it follows from postulate c. that∑∞

n=1An ∈ L.
Now suppose that L satisfies postulates 1. – 3. above. Notice that ∅ ∈ L and

by postulate 3., L is closed under finite disjoint unions. Therefore if A,B ∈ L
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with A ⊂ B, then Bc ∈ L and A ∩ Bc = ∅ allows us to conclude that
A ∪Bc ∈ L. Taking complements of this result shows B \A = Ac ∩B ∈ L as
well, i.e. postulate b. holds. If An ∈ L with An ↑ A, then Bn := An \An−1 ∈ L
for all n, where by convention A0 = ∅. Hence it follows by postulate 3 that
∪∞n=1An =

∑∞
n=1Bn ∈ L.

Theorem 7.4 (Dynkin’s π – λ Theorem). If L is a λ class which contains
a contains a π – class, P, then σ(P) ⊂ L.

Proof. We start by proving the following assertion; for any element C ∈ L,
the collection of sets,

LC := {D ∈ L : C ∩D ∈ L} ,

is a λ – system. To prove this claim, observe that: a. X ∈ LC , b. if A ⊂ B
with A,B ∈ LC , then A ∩ C, B ∩ C ∈ L with A ∩ C ⊂ B \ C and

(B \A) ∩ C = [B ∩ C] \A = [B ∩ C] \ [A ∩ C] ∈ L.

Therefore LC is closed under proper differences. Finally, c. if An ∈ LC with
An ↑ A, then An ∩ C ∈ L and An ∩ C ↑ A ∩ C ∈ L, i.e. A ∈ LC . Hence we
have verified LC is still a λ – system.

For the rest of the proof, we may assume without loss of generality that L
is the smallest λ – class containing P – if not just replace L by the intersection
of all λ – classes containing P. Then for C ∈ P we know that LC ⊂ L is a
λ - class containing P and hence LC = L. Since C ∈ P was arbitrary, we
have shown, C ∩ D ∈ L for all C ∈ P and D ∈ L. We may now conclude
that if C ∈ L, then P ⊂ LC ⊂ L and hence again LC = L. Since C ∈ L is
arbitrary, we have shown C ∩D ∈ L for all C,D ∈ L, i.e. L is a π – system.
So by Remark 7.2, L is a σ algebra. Since σ (P) is the smallest σ – algebra
containing P it follows that σ (P) ⊂ L.

As an immediate corollary, we have the following uniqueness result.

Proposition 7.5. Suppose that P ⊂ 2Ω is a π – system. If P and Q are two
probability1 measures on σ (P) such that P = Q on P, then P = Q on σ (P) .

Proof. Let L := {A ∈ σ (P) : P (A) = Q (A)} . One easily shows L is a λ
– class which contains P by assumption. Indeed, Ω ∈ P ⊂ L, if A,B ∈ L with
A ⊂ B, then

P (B \A) = P (B)− P (A) = Q (B)−Q (A) = Q (B \A)

so that B\A ∈ L, and if An ∈ L with An ↑ A, then P (A) = limn→∞ P (An) =
limn→∞Q (An) = Q (A) which shows A ∈ L. Therefore σ (P) ⊂ L = σ (P)
and the proof is complete.
1 More generally, P and Q could be two measures such that P (Ω) = Q (Ω) < ∞.
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Example 7.6. Let Ω := {a, b, c, d} and let µ and ν be the probability measure
on 2Ω determined by, µ ({x}) = 1

4 for all x ∈ Ω and ν ({a}) = ν ({d}) = 1
8

and ν ({b}) = ν ({c}) = 3/8. In this example,

L :=
{
A ∈ 2Ω : P (A) = Q (A)

}
is λ – system which is not an algebra. Indeed, A = {a, b} and B = {a, c} are
in L but A ∩B /∈ L.

Exercise 7.1. Suppose that µ and ν are two measure on a measure space,
(Ω,B) such that µ = ν on a π – system, P. Further assume B = σ (P) and
there exists Ωn ∈ P such that; i) µ (Ωn) = ν (Ωn) < ∞ for all n and ii)
Ωn ↑ Ω as n ↑ ∞. Show µ = ν on B.

Hint: Consider the measures, µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) .

Solution to Exercise (7.1). Let µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) for all A ∈ B. Then µn and νn are finite measure such µn (Ω) =
νn (Ω) and µn = νn on P. Therefore by Proposition 7.5, µn = νn on B. So by
the continuity properties of µ and ν, it follows that

µ (A) = lim
n→∞

µ (A ∩Ωn) = lim
n→∞

µn (A) = lim
n→∞

νn (A) = lim
n→∞

ν (A ∩Ωn) = ν (A)

for all A ∈ B.

Corollary 7.7. A probability measure, P, on (R,BR) is uniquely determined
by its distribution function,

F (x) := P ((−∞, x]) .

Definition 7.8. Suppose that {Xi}n
i=1 is a sequence of random variables on

a probability space, (Ω,B, P ) . The measure, µ = P ◦ (X1, . . . , Xn)−1 on BRn

is called the joint distribution of (X1, . . . , Xn) . To be more explicit,

µ (B) := P ((X1, . . . , Xn) ∈ B) := P ({ω ∈ Ω : (X1 (ω) , . . . , Xn (ω)) ∈ B})

for all B ∈ BRn .

Corollary 7.9. The joint distribution, µ is uniquely determined from the
knowledge of

P ((X1, . . . , Xn) ∈ A1 × · · · ×An) for all Ai ∈ BR

or from the knowledge of

P (X1 ≤ x1, . . . , Xn ≤ xn) for all Ai ∈ BR

for all x = (x1, . . . , xn) ∈ Rn.
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Proof. Apply Proposition 7.5 with P being the π – systems defined by

P := {A1 × · · · ×An ∈ BRn : Ai ∈ BR}

for the first case and

P := {(−∞, x1]× · · · × (−∞, xn] ∈ BRn : xi ∈ R}

for the second case.

Definition 7.10. Suppose that {Xi}n
i=1 and {Yi}n

i=1 are two finite sequences
of random variables on two probability spaces, (Ω,B, P ) and (X,F , Q) respec-
tively. We write (X1, . . . , Xn) d= (Y1, . . . , Yn) if (X1, . . . , Xn) and (Y1, . . . , Yn)
have the same distribution, i.e. if

P ((X1, . . . , Xn) ∈ B) = Q ((Y1, . . . , Yn) ∈ B) for all B ∈ BRn .

More generally, if {Xi}∞i=1 and {Yi}∞i=1 are two sequences of random variables

on two probability spaces, (Ω,B, P ) and (X,F , Q) we write {Xi}∞i=1
d= {Yi}∞i=1

iff (X1, . . . , Xn) d= (Y1, . . . , Yn) for all n ∈ N.

Exercise 7.2. Let {Xi}∞i=1 and {Yi}∞i=1 be two sequences of random variables

such that {Xi}∞i=1
d= {Yi}∞i=1 . Let {Sn}∞n=1 and {Tn}∞n=1 be defined by, Sn :=

X1 + · · ·+Xn and Tn := Y1 + · · ·+ Yn. Prove the following assertions.

1. Suppose that f : Rn → Rk is a BRn/BRk – measurable function, then
f (X1, . . . , Xn) d= f (Y1, . . . , Yn) .

2. Use your result in item 1. to show {Sn}∞n=1
d= {Tn}∞n=1 .

Hint: apply item 1. with k = n and a judiciously chosen function, f :
Rn → Rn.

3. Show lim sup
n→∞

Xn
d= lim sup

n→∞
Yn and similarly that lim infn→∞Xn

d=

lim infn→∞ Yn.
Hint: with the aid of the set identity,{

lim sup
n→∞

Xn ≥ x

}
= {Xn ≥ x i.o.} ,

show

P

(
lim sup

n→∞
Xn ≥ x

)
= lim

n→∞
lim

m→∞
P (∪m

k=n {Xk ≥ x}) .

To use this identity you will also need to find B ∈ BRm such that

∪m
k=n {Xk ≥ x} = {(X1, . . . , Xm) ∈ B} .
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7.1.1 The Monotone Class Theorem

This subsection may be safely skipped!

Lemma 7.11 (Monotone Class Theorem*). Suppose A ⊂ 2X is an alge-
bra and C is the smallest monotone class containing A. Then C = σ(A).

Proof. For C ∈ C let

C(C) = {B ∈ C : C ∩B,C ∩Bc, B ∩ Cc ∈ C},

then C(C) is a monotone class. Indeed, if Bn ∈ C(C) and Bn ↑ B, then
Bc

n ↓ Bc and so

C 3 C ∩Bn ↑ C ∩B
C 3 C ∩Bc

n ↓ C ∩Bc and
C 3 Bn ∩ Cc ↑ B ∩ Cc.

Since C is a monotone class, it follows that C ∩ B,C ∩ Bc, B ∩ Cc ∈ C,
i.e. B ∈ C(C). This shows that C(C) is closed under increasing limits and
a similar argument shows that C(C) is closed under decreasing limits. Thus
we have shown that C(C) is a monotone class for all C ∈ C. If A ∈ A ⊂ C,
then A ∩ B,A ∩ Bc, B ∩ Ac ∈ A ⊂ C for all B ∈ A and hence it follows
that A ⊂ C(A) ⊂ C. Since C is the smallest monotone class containing A and
C(A) is a monotone class containing A, we conclude that C(A) = C for any
A ∈ A. Let B ∈ C and notice that A ∈ C(B) happens iff B ∈ C(A). This
observation and the fact that C(A) = C for all A ∈ A implies A ⊂ C(B) ⊂ C
for all B ∈ C. Again since C is the smallest monotone class containing A and
C(B) is a monotone class we conclude that C(B) = C for all B ∈ C. That is
to say, if A,B ∈ C then A ∈ C = C(B) and hence A ∩B, A ∩Bc, Ac ∩B ∈ C.
So C is closed under complements (since X ∈ A ⊂ C) and finite intersections
and increasing unions from which it easily follows that C is a σ – algebra.

Exercise 7.3. Suppose that A ⊂ 2Ω is an algebra, B := σ (A) , and P is
a probability measure on B. Show, using the π – λ theorem, that for every
B ∈ B there exists A ∈ A such that that P (A4B) < ε. Here

A4B := (A \B) ∪ (B \A)

is the symmetric difference of A and B.
Hints:

1. It may be useful to observe that

1A4B = |1A − 1B |

so that P (A4B) = E |1A − 1B | .
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2. Also observe that if B = ∪Bi and A = ∪iAi, then

B \A ⊂ ∪i (Bi \Ai) ⊂ ∪iAi 4Bi and
A \B ⊂ ∪i (Ai \Bi) ⊂ ∪iAi 4Bi

so that
A4B ⊂ ∪i (Ai 4Bi) .

3. We also have

(B2 \B1) \ (A2 \A1) = B2 ∩Bc
1 ∩ (A2 \A1)

c

= B2 ∩Bc
1 ∩ (A2 ∩Ac

1)
c

= B2 ∩Bc
1 ∩ (Ac

2 ∪A1)
= [B2 ∩Bc

1 ∩Ac
2] ∪ [B2 ∩Bc

1 ∩A1]
⊂ (B2 \A2) ∪ (A1 \B1)

and similarly,

(A2 \A1) \ (B2 \B1) ⊂ (A2 \B2) ∪ (B1 \A1)

so that

(A2 \A1)4 (B2 \B1) ⊂ (B2 \A2) ∪ (A1 \B1) ∪ (A2 \B2) ∪ (B1 \A1)
= (A1 4B1) ∪ (A2 4B2) .

4. Observe that An ∈ B and An ↑ A, then

P (B 4An) = P (B \An)+P (An \B) → P (B \A)+P (A \B) = P (A4B) .

5. Let L be the collection of sets B for which the assertion of the theorem
holds. Show L is a λ – system which contains A.

Solution to Exercise (7.3). Since L contains the π – system, A it suffices
by the π – λ theorem to show L is a λ – system. Clearly, Ω ∈ L since
Ω ∈ A ⊂ L. If B1 ⊂ B2 with Bi ∈ L and ε > 0, there exists Ai ∈ A such that
P (Bi 4Ai) = E |1Ai − 1Bi | < ε/2 and therefore,

P ((B2 \B1)4 (A2 \A1)) ≤ P ((A1 4B1) ∪ (A2 4B2))
≤ P ((A1 4B1)) + P ((A2 4B2)) < ε.

Also if Bn ↑ B with Bn ∈ L, there exists An ∈ A such that P (Bn 4An) <
ε2−n and therefore,

P ([∪nBn]4 [∪nAn]) ≤
∞∑

n=1

P (Bn 4An) < ε.

Moreover, if we let B := ∪nBn and AN := ∪N
n=1An, then

P
(
B 4AN

)
= P

(
B \AN

)
+P

(
AN \B

)
→ P (B \A)+P (A \B) = P (B 4A)

where A := ∪nAn. Hence it follows for N large enough that P
(
B 4AN

)
< ε.
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7.2 Basic Properties of Independence

For this section we will suppose that (Ω,B, P ) is a probability space.

Definition 7.12. We say that A is independent of B is P (A|B) = P (A) or
equivalently that

P (A ∩B) = P (A)P (B) .

We further say a finite sequence of collection of sets, {Ci}n
i=1 , are independent

if
P (∩j∈JAj) =

∏
j∈J

P (Aj)

for all Ai ∈ Ci and J ⊂ {1, 2, . . . , n} .

Observe that if {Ci}n
i=1 , are independent classes then so are {Ci ∪ {X}}n

i=1 .
Moreover, if we assume that X ∈ Ci for each i, then {Ci}n

i=1 , are independent
iff

P
(
∩n

j=1Aj

)
=

n∏
j=1

P (Aj) for all (A1, . . . , An) ∈ C1 × · · · × Cn.

Theorem 7.13. Suppose that {Ci}n
i=1 is a finite sequence of independent π –

classes. Then {σ (Ci)}n
i=1 are also independent.

Proof. As mentioned above, we may always assume without loss of gen-
erality that X ∈ Ci. Fix, Aj ∈ Cj for j = 2, 3, . . . , n. We will begin by showing
that

P (A ∩A2 ∩ · · · ∩An) = P (A)P (A2) . . . P (An) for all A ∈ σ (C1) . (7.1)

Since it is clear that this identity holds if P (Aj) = 0 for some j = 2, . . . , n,
we may assume that P (Aj) > 0 for j ≥ 2. In this case we may define,

Q (A) =
P (A ∩A2 ∩ · · · ∩An)
P (A2) . . . P (An)

=
P (A ∩A2 ∩ · · · ∩An)
P (A2 ∩ · · · ∩An)

= P (A|A2 ∩ · · · ∩An) for all A ∈ σ (C1) .

Then equation Eq. (7.1) is equivalent to P (A) = Q (A) on σ (C1) . But this is
true by Proposition 7.5 using the fact that Q = P on the π – system, C1.

Since (A2, . . . , An) ∈ C2 × · · · × Cn were arbitrary we may now conclude
that σ (C1) , C2, . . . , Cn are independent.

By applying the result we have just proved to the sequence, C2, . . . , Cn, σ (C1)
shows that σ (C2) , C3, . . . , Cn, σ (C1) are independent. Similarly we show induc-
tively that

σ (Cj) , Cj+1, . . . , Cn, σ (C1) , . . . , σ (Cj−1)

are independent for each j = 1, 2, . . . , n. The desired result occurs at j = n.
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Definition 7.14. A collection of subsets of B, {Ct}t∈T is said to be indepen-
dent iff {Ct}t∈Λ are independent for all finite subsets, Λ ⊂ T. More explicitly,
we are requiring

P (∩t∈ΛAt) =
∏
t∈Λ

P (At)

whenever Λ is a finite subset of T and At ∈ Ct for all t ∈ Λ.

Corollary 7.15. If {Ct}t∈T is a collection of independent classes such that
each Ct is a π – system, then {σ (Ct)}t∈T are independent as well.

Example 7.16. Suppose that Ω = Λn where Λ is a finite set, B = 2Ω ,
P ({ω}) =

∏n
j=1 qj (ωj) where qj : Λ → [0, 1] are functions such that∑

λ∈Λ qj (λ) = 1. Let Ci :=
{
Λi−1 ×A× Λn−i : A ⊂ Λ

}
. Then {Ci}n

i=1 are
independent. Indeed, if Bi := Λi−1 ×Ai × Λn−i, then

∩Bi = A1 ×A2 × · · · ×An

and we have

P (∩Bi) =
∑

ω∈A1×A2×···×An

n∏
i=1

qi (ωi) =
n∏

i=1

∑
λ∈Ai

qi (λ)

while

P (Bi) =
∑

ω∈Λi−1×Ai×Λn−i

n∏
i=1

qi (ωi) =
∑

λ∈Ai

qi (λ) .

Definition 7.17. A collections of random variables, {Xt : t ∈ T} are inde-
pendent iff {σ (Xt) : t ∈ T} are independent.

Theorem 7.18. Let X := {Xt : t ∈ T} be a collection of random variables.
Then the following are equivalent:

1. The collection X,
2.

P (∩t∈Λ {Xt ∈ At}) =
∏
t∈Λ

P (Xt ∈ At)

for all finite subsets, Λ ⊂ T, and all At ∈ BR for t ∈ Λ.
3.

P (∩t∈Λ {Xt ≤ xt}) =
∏
t∈Λ

P (Xt ≤ xt)

for all finite subsets, Λ ⊂ T, and all xt ∈ R for t ∈ Λ.

Proof. The equivalence of 1. and 2. follows almost immediately form the
definition of independence and the fact that σ (Xt) = {{Xt ∈ A} : A ∈ BR} .
Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary
7.15 with Ct := {{Xt ≤ a} : a ∈ R} and making use the observations that Ct

is a π – system for all t and that σ (Ct) = σ (Xt) .
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Example 7.19. Continue the notation of Example 7.16 and further assume that
Λ ⊂ R and let Xi : Ω → Λ be defined by, Xi (ω) = ωi. Then {Xi}n

i=1 are
independent random variables. Indeed, σ (Xi) = Ci with Ci as in Example
7.16.

Alternatively, from Exercise 4.1, we know that

EP

[
n∏

i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)]

for all fi : Λ → R. Taking Ai ⊂ Λ and fi := 1Ai in the above identity shows
that

P (X1 ∈ A1, . . . , Xn ∈ An) = EP

[
n∏

i=1

1Ai (Xi)

]
=

n∏
i=1

EP [1Ai (Xi)]

=
n∏

i=1

P (Xi ∈ Ai)

as desired.

Corollary 7.20. A sequence of random variables, {Xj}k
j=1 with countable

ranges are independent iff

P
(
∩k

j=1 {Xj = xj}
)

=
k∏

j=1

P (Xj = xj) (7.2)

for all xj ∈ R.

Proof. Observe that both sides of Eq. (7.2) are zero unless xj is in the
range of Xj for all j. Hence it suffices to verify Eq. (7.2) for those xj ∈
Ran(Xj) =: Rj for all j. Now if {Xj}k

j=1 are independent, then {Xj = xj} ∈
σ (Xj) for all xj ∈ R and therefore Eq. (7.2) holds.

Conversely if Eq. (7.2) and Vj ∈ BR, then



96 7 Independence

P
(
∩k

j=1 {Xj ∈ Vj}
)

= P

∩k
j=1

 ∑
xj∈Vj∩Rj

{Xj = xj}


= P

 ∑
(x1,...,xk)∈

Qk
j=1 Vj∩Rj

[
∩k

j=1 {Xj = xj}
]

=
∑

(x1,...,xk)∈
Qk

j=1 Vj∩Rj

P
([
∩k

j=1 {Xj = xj}
])

=
∑

(x1,...,xk)∈
Qk

j=1 Vj∩Rj

k∏
j=1

P (Xj = xj)

=
k∏

j=1

∑
xj∈Vj∩Rj

P (Xj = xj) =
k∏

j=1

P (Xj ∈ Vj) .

Definition 7.21. As sequences of random variables, {Xn}∞n=1 , on a proba-
bility space, (Ω,B, P ), are i.i.d. (= independent and identically dis-
tributed) if they are independent and (Xn)∗ P = (Xk)∗ P for all k, n. That
is we should have

P (Xn ∈ A) = P (Xk ∈ A) for all k, n ∈ N and A ∈ BR.

Observe that {Xn}∞n=1 are i.i.d. random variables iff

P (X1 ∈ A1, . . . , Xn ∈ An) =
n∏

j=1

P (Xi ∈ Ai) =
n∏

j=1

P (X1 ∈ Ai) =
n∏

j=1

µ (Ai)

(7.3)
where µ = (X1)∗ P. The identity in Eq. (7.3) is to hold for all n ∈ N and all
Ai ∈ BR.

Theorem 7.22 (Existence of i.i.d simple R.V.’s). Suppose that {qi}n
i=0

is a sequence of positive numbers such that
∑n

i=0 qi = 1. Then there ex-
ists a sequence {Xk}∞k=1 of simple random variables taking values in Λ =
{0, 1, 2 . . . , n} on ((0, 1],B,m) such that

m ({X1 = i1, . . . , Xk = ii}) = qi1 . . . qik

for all i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n} and all k ∈ N. (See Theorem 7.27 below
for the general case of this theorem.)

Proof. For i = 0, 1, . . . , n, let σ−1 = 0 and σj :=
∑j

i=0 qi and for any
interval, (a, b], let
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Ti ((a, b]) := (a+ σi−1 (b− a) , a+ σi (b− a)].

Given i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n}, let

Ji1,i2,...,ik
:= Tik

(
Tik−1 (. . . Ti1 ((0, 1]))

)
and define {Xk}∞k=1 on (0, 1] by

Xk :=
∑

i1,i2,...,ik∈{0,1,2,...,n}

ik1Ji1,i2,...,ik
,

see Figure 7.1. Repeated applications of Corollary 6.22 shows the functions,
Xk : (0, 1] → R are measurable.

Fig. 7.1. Here we suppose that p0 = 2/3 and p1 = 1/3 and then we construct Jl

and Jl,k for l, k ∈ {0, 1} .

Observe that

m (Ti ((a, b])) = qi (b− a) = qim ((a, b]) , (7.4)

and so by induction,

m (Ji1,i2,...,ik
) = qik

qik−1 . . . qi1 .
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The reader should convince herself/himself that

{X1 = i1, . . . Xk = ii} = Ji1,i2,...,ik

and therefore, we have

m ({X1 = i1, . . . , Xk = ii}) = m (Ji1,i2,...,ik
) = qik

qik−1 . . . qi1

as desired.

Corollary 7.23 (Independent variables on product spaces). Suppose
Λ = {0, 1, 2 . . . , n} , qi > 0 with

∑n
i=0 qi = 1, Ω = Λ∞ = ΛN, and for i ∈

N, let Yi : Ω → R be defined by Yi (ω) = ωi for all ω ∈ Ω. Further let
B := σ (Y1, Y2, . . . , Yn, . . . ) . Then there exists a unique probability measure,
P : B → [0, 1] such that

P ({Y1 = i1, . . . , Yk = ii}) = qi1 . . . qik
.

Proof. Let {Xi}n
i=1 be as in Theorem 7.22 and define T : (0, 1] → Ω by

T (x) = (X1 (x) , X2 (x) , . . . , Xk (x) , . . . ) .

Observe that T is measurable since Yi ◦ T = Xi is measurable for all i. We
now define, P := T∗m. Then we have

P ({Y1 = i1, . . . , Yk = ii}) = m
(
T−1 ({Y1 = i1, . . . , Yk = ii})

)
= m ({Y1 ◦ T = i1, . . . , Yk ◦ T = ii})
= m ({X1 = i1, . . . , Xk = ii}) = qi1 . . . qik

.

Theorem 7.24. Given a finite subset, Λ ⊂ R and a function q : Λ → [0, 1]
such that

∑
λ∈Λ q (λ) = 1, there exists a probability space, (Ω,B, P ) and an

independent sequence of random variables, {Xn}∞n=1 such that P (Xn = λ) =
q (λ) for all λ ∈ Λ.

Proof. Use Corollary 7.20 to shows that random variables constructed in
Example 5.28 or Theorem 7.22 fit the bill.

Proposition 7.25. Suppose that {Xn}∞n=1 is a sequence of i.i.d. random
variables with distribution, P (Xn = 0) = P (Xn = 1) = 1

2 . If we let U :=∑∞
n=1 2−nXn, then P (U ≤ x) = (0 ∨ x) ∧ 1, i.e. U has the uniform distribu-

tion on [0, 1] .

Proof. Let us recall that P (Xn = 0 a.a.) = P (Xn = 1 a.a.) . Hence
we may, by shrinking Ω if necessary, assume that {Xn = 0 a.a.} = ∅ =
{Xn = 1 a.a.} . With this simplification, we have
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U <

1
2

}
= {X1 = 0} ,{

U <
1
4

}
= {X1 = 0, X2 = 0} and{

1
2
≤ U <

3
4

}
= {X1 = 1, X2 = 0}

and hence that {
U <

3
4

}
=
{
U <

1
2

}
∪
{

1
2
≤ U <

3
4

}
= {X1 = 0} ∪ {X1 = 1, X2 = 0} .

From these identities, it follows that

P (U < 0) = 0, P
(
U <

1
4

)
=

1
4
, P

(
U <

1
2

)
=

1
2
, and P

(
U <

3
4

)
=

3
4
.

More generally, we claim that if x =
∑n

j=1 εj2−j with εj ∈ {0, 1} , then

P (U < x) = x. (7.5)

The proof is by induction on n. Indeed, we have already verified (7.5) when
n = 1, 2. Suppose we have verified (7.5) up to some n ∈ N and let x =∑n

j=1 εj2−j and consider

P
(
U < x+ 2−(n+1)

)
= P (U < x) + P

(
x ≤ U < x+ 2−(n+1)

)
= x+ P

(
x ≤ U < x+ 2−(n+1)

)
.

Since {
x ≤ U < x+ 2−(n+1)

}
=
[
∩n

j=1 {Xj = εj}
]
∩ {Xn+1 = 0}

we see that
P
(
x ≤ U < x+ 2−(n+1)

)
= 2−(n+1)

and hence
P
(
U < x+ 2−(n+1)

)
= x+ 2−(n+1)

which completes the induction argument.
Since x → P (U < x) is left continuous we may now conclude that

P (U < x) = x for all x ∈ (0, 1) and since x → x is continuous we may
also deduce that P (U ≤ x) = x for all x ∈ (0, 1) . Hence we may conclude
that

P (U ≤ x) = (0 ∨ x) ∧ 1.
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Lemma 7.26. Suppose that {Bt : t ∈ T} is an independent family of σ –
fields. And further assume that T =

∑
s∈S Ts and let

BTs
= ∨t∈Ts

Bs = σ (∪t∈Ts
Bs) .

Then {BTs}s∈S is an independent family of σ fields.

Proof. Let

Cs = {∩α∈KBα : Bα ∈ Bα, K ⊂⊂ Ts} .

It is now easily checked that {Cs}s∈S is an independent family of π – systems.
Therefore {BTs

= σ (Cs)}s∈S is an independent family of σ – algebras.
We may now show the existence of independent random variables with

arbitrary distributions.

Theorem 7.27. Suppose that {µn}∞n=1 are a sequence of probability measures
on (R,BR) . Then there exists a probability space, (Ω,B, P ) and a sequence
{Yn}∞n=1 independent random variables with Law (Yn) := P ◦ Y −1

n = µn for
all n.

Proof. By Theorem 7.24, there exists a sequence of i.i.d. random variables,
{Zn}∞n=1 , such that P (Zn = 1) = P (Zn = 0) = 1

2 . These random variables
may be put into a two dimensional array, {Xi,j : i, j ∈ N} , see the proof of

Lemma 3.8. For each i, let Ui :=
∑∞

j=1 2−iXi,j – σ
(
{Xi,j}∞j=1

)
– measurable

random variable. According to Proposition 7.25, Ui is uniformly distributed
on [0, 1] . Moreover by the grouping Lemma 7.26,

{
σ
(
{Xi,j}∞j=1

)}∞
i=1

are

independent σ – algebras and hence {Ui}∞i=1 is a sequence of i.i.d.. random
variables with the uniform distribution.

Finally, let Fi (x) := µ ((−∞, x]) for all x ∈ R and let Gi (y) =
inf {x : Fi (x) ≥ y} . Then according to Theorem 6.11, Yi := Gi (Ui) has µi as
its distribution. Moreover each Yi is σ

(
{Xi,j}∞j=1

)
– measurable and therefore

the {Yi}∞i=1 are independent random variables.

7.2.1 An Example of Ranks

Let {Xn}∞n=1 be i.i.d. with common continuous distribution function, F. In
this case we have, for any i 6= j, that

P (Xi = Xj) = µF ⊗ µF ({(x, x) : x ∈ R}) = 0.

This may be proved directly with some work or will be an easy consequence
of Fubini’s theorem to be considered later, see Example 10.11 below. For the
direct proof, let {al}∞l=−∞ be a sequence such that, al < al+1 for all l ∈ Z,
liml→∞ al = ∞ and liml→−∞ al = −∞. Then
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{(x, x) : x ∈ R} ⊂ ∪l∈Z [(al, al+1]× (al, al+1]]

and therefore,

P (Xi = Xj) ≤
∑
l∈Z

P (Xi ∈ (al, al+1], Xj ∈ (al, al+1]) =
∑
l∈Z

[F (al+1)− F (al)]
2

≤ sup
l∈Z

[F (al+1)− F (al)]
∑
l∈Z

[F (al+1)− F (al)] = sup
l∈Z

[F (al+1)− F (al)] .

Since F is continuous and F (∞+) = 1 and F (∞−) = 0, it is easily seen that
F is uniformly continuous on R. Therefore, if we choose al = l

N , we have

P (Xi = Xj) ≤ lim sup
N→∞

sup
l∈Z

[
F

(
l + 1
N

)
− F

(
l

N

)]
= 0.

Let Rn denote the “rank” of Xn in the list (X1, . . . , Xn) , i.e.

Rn :=
n∑

j=1

1Xj>Xn = # {j ≤ n : Xj > Xn} .

For example if (X1, X2, X3, X4, X5, . . . ) = (9,−8, 3, 7, 23, . . . ) , we have R1 =
1, R2 = 2, R3 = 2, and R4 = 2, R5 = 1. Observe that rank order, from
lowest to highest, of (X1, X2, X3, X4, X5) is (X2, X3, X4, X1, X5) . This can
be determined by the values of Ri for i = 1, 2, . . . , 5 as follows. Since R5 = 1,
we must have X5 in the last slot, i.e. (∗, ∗, ∗, ∗, X5) . Since R4 = 2, we know
out of the remaining slots, X4 must be in the second from the far most right,
i.e. (∗, ∗, X4, ∗, X5) . Since R3 = 2, we know that X3 is again the second
from the right of the remaining slots, i.e. we now know, (∗, X3, X4, ∗, X5) .
Similarly, R2 = 2 implies (X2, X3, X4, ∗, X5) and finally R1 = 1 gives,
(X2, X3, X4, X1, X5) . As another example, if Ri = i for i = 1, 2, . . . , n, then
Xn < Xn−1 < · · · < X1.

Theorem 7.28 (Renyi Theorem). Let {Xn}∞n=1 be i.i.d. and assume that
F (x) := P (Xn ≤ x) is continuous. The {Rn}∞n=1 is an independent sequence,

P (Rn = k) =
1
n

for k = 1, 2, . . . , n,

and the events, An = {Xn is a record} = {Rn = 1} are independent as n
varies and

P (An) = P (Rn = 1) =
1
n
.

Proof. By Problem 6 on p. 110 of Resnick, (X1, . . . , Xn) and (Xσ1, . . . , Xσn)
have the same distribution for any permutation σ.

Since F is continuous, it now follows that up to a set of measure zero,

Ω =
∑

σ

{Xσ1 < Xσ2 < · · · < Xσn}
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and therefore

1 = P (Ω) =
∑

σ

P ({Xσ1 < Xσ2 < · · · < Xσn}) .

Since P ({Xσ1 < Xσ2 < · · · < Xσn}) is independent of σ we may now conclude
that

P ({Xσ1 < Xσ2 < · · · < Xσn}) =
1
n!

for all σ. As observed before the statement of the theorem, to each realization
(ε1, . . . , εn) , (here εi ∈ N with εi ≤ i) of (R1, . . . , Rn) there is a permutation,
σ = σ (ε1, . . . , εn) such that Xσ1 < Xσ2 < · · · < Xσn. From this it follows
that

{(R1, . . . , Rn) = (ε1, . . . , εn)} = {Xσ1 < Xσ2 < · · · < Xσn}

and therefore,

P ({(R1, . . . , Rn) = (ε1, . . . , εn)}) = P (Xσ1 < Xσ2 < · · · < Xσn) =
1
n!
.

Since

P ({Rn = εn}) =
∑

(ε1,...εn−1)

P ({(R1, . . . , Rn) = (ε1, . . . , εn)})

=
∑

(ε1,...εn−1)

1
n!

= (n− 1)! · 1
n!

=
1
n

we have shown that

P ({(R1, . . . , Rn) = (ε1, . . . , εn)}) =
1
n!

=
n∏

j=1

1
j

=
n∏

j=1

P ({Rj = εj}) .

7.3 Borel-Cantelli Lemmas

Lemma 7.29 (First Borel Cantelli-Lemma). Suppose that {An}∞n=1 are
measurable sets. If

∞∑
n=1

P (An) <∞, (7.6)

then
P ({An i.o.}) = 0.
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Proof. First Proof. We have

P ({An i.o.}) = P (∩∞n=1 ∪k≥n Ak) = lim
n→∞

P (∪k≥nAk) ≤ lim
n→∞

∑
k≥n

P (Ak) = 0.

(7.7)
Second Proof. (Warning: this proof require integration theory which is

developed below.) Equation (7.6) is equivalent to

E

[ ∞∑
n=1

1An

]
<∞

from which it follows that
∞∑

n=1

1An
<∞ a.s.

which is equivalent to P ({An i.o.}) = 0.

Example 7.30. Suppose that {Xn} are Bernoulli random variables with
P (Xn = 1) = pn and P (Xn = 0) = 1− pn. If∑

pn <∞

then
P (Xn = 1 i.o.) = 0

and hence
P (Xn = 0 a.a.) = 1.

In particular,
P
(

lim
n→∞

Xn = 0
)

= 1.

Figure 7.2 below serves as motivation for the following elementary lemma
on convex functions.

Lemma 7.31 (Convex Functions). Suppose that ϕ ∈ PC2 ((a, b) → R)2

with ϕ′′ (x) ≥ 0 for almost all x ∈ (a, b) . Then ϕ satisfies;

1. for all x0, x ∈ (a, b) ,

ϕ (x0) + ϕ′ (x0) (x− x0) ≤ ϕ (x)

and
2 PC2 denotes the space of piecewise C2 – functions, i.e. ϕ ∈ PC2 ((a, b) → R)

means the ϕ is C1 and there are a finite number of points,

{a = a0 < a1 < a2 < · · · < an−1 < an = b} ,

such that ϕ|[aj−1,aj ]∩(a,b) is C2 for all j = 1, 2, . . . , n.
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Fig. 7.2. A convex function, ϕ, along with a cord and a tangent line. Notice that
the tangent line is always below ϕ and the cord lies above ϕ between the points of
intersection of the cord with the graph of ϕ.

2. for all u ≤ v with u, v ∈ (a, b) ,

ϕ (u+ t (v − u)) ≤ ϕ (u) + t (ϕ (v)− ϕ (u)) ∀ t ∈ [0, 1] .

(This lemma applies to the functions, eλx for all λ ∈ R, |x|α for α > 1,
and − lnx to name a few examples. See Appendix 11.7 below for much more
on convex functions.)

Proof. 1. Let

f (x) := ϕ (x)− [ϕ (x0) + ϕ′ (x0) (x− x0)] .

Then f (x0) = f ′ (x0) = 0 while f ′′ (x) ≥ 0 a.e. and so by the fundamental
theorem of calculus,

f ′ (x) = ϕ′ (x)− ϕ′ (x0) =
∫ x

x0

ϕ′′ (y) dy.

Hence it follows that f ′ (x) ≥ 0 for x > x0 and f ′ (x) ≤ 0 for x < x0 and
therefore, f (x) ≥ 0 for all x ∈ (a, b) .

2. Let

f (t) := ϕ (u) + t (ϕ (v)− ϕ (u))− ϕ (u+ t (v − u)) .

Then f (0) = f (1) = 0 with f̈ (t) = − (v − u)2 ϕ′′ (u+ t (v − u)) ≤ 0 for
almost all t. By the mean value theorem, there exists, t0 ∈ (0, 1) such that
ḟ (t0) = 0 and then by the fundamental theorem of calculus it follows that

ḟ (t) =
∫ t

t0

f̈ (τ) dt.
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In particular, ḟ (t) ≤ 0 for t > t0 and ḟ (t) ≥ 0 for t < t0 and hence f (t) ≥
f (1) = 0 for t ≥ t0 and f (t) ≥ f (0) = 0 for t ≤ t0, i.e. f (t) ≥ 0.

Example 7.32. Taking ϕ (x) := e−x, we learn (see Figure 7.3),

1− x ≤ e−x for all x ∈ R (7.8)

and taking ϕ (x) = e−2x we learn that

1− x ≥ e−2x for 0 ≤ x ≤ 1/2. (7.9)

Fig. 7.3. A graph of 1− x and e−x showing that 1− x ≤ e−x for all x.

Fig. 7.4. A graph of 1− x and e−2x showing that 1− x ≥ e−2x for all x ∈ [0, 1/2] .
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Exercise 7.4. For {an}∞n=1 ⊂ [0, 1] , let

∞∏
n=1

(1− an) := lim
N→∞

N∏
n=1

(1− an) .

(The limit exists since,
∏N

n=1 (1− an) ↓ as N ↑ .) Show that if {an}∞n=1 ⊂
[0, 1), then

∞∏
n=1

(1− an) = 0 iff
∞∑

n=1

an = ∞.

Solution to Exercise (7.4). On one hand we have

N∏
n=1

(1− an) ≤
N∏

n=1

e−an = exp

(
−

N∑
n=1

an

)
which upon passing to the limit as N →∞ gives

∞∏
n=1

(1− an) ≤ exp

(
−
∞∑

n=1

an

)
.

Hence if
∑∞

n=1 an = ∞ then
∏∞

n=1 (1− an) = 0.
Conversely, suppose that

∑∞
n=1 an < ∞. In this case an → 0 as n → ∞

and so there exists an m ∈ N such that an ∈ [0, 1/2] for all n ≥ m. With this
notation we then have for N ≥ m that

N∏
n=1

(1− an) =
m∏

n=1

(1− an) ·
N∏

n=m+1

(1− an)

≥
m∏

n=1

(1− an) ·
N∏

n=m+1

e−2an =
m∏

n=1

(1− an) · exp

(
−2

N∑
n=m+1

an

)

≥
m∏

n=1

(1− an) · exp

(
−2

∞∑
n=m+1

an

)
.

So again letting N →∞ shows,

∞∏
n=1

(1− an) ≥
m∏

n=1

(1− an) · exp

(
−2

∞∑
n=m+1

an

)
> 0.

Lemma 7.33 (Second Borel-Cantelli Lemma). Suppose that {An}∞n=1

are independent sets. If
∞∑

n=1

P (An) = ∞, (7.10)

then
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P ({An i.o.}) = 1. (7.11)

Combining this with the first Borel Cantelli Lemma gives the (Borel) Zero-One
law,

P (An i.o.) =
{

0 if
∑∞

n=1 P (An) <∞
1 if

∑∞
n=1 P (An) = ∞ .

Proof. We are going to prove Eq. (7.11) by showing,

0 = P ({An i.o.}c) = P ({Ac
n a.a}) = P (∪∞n=1 ∩k≥n A

c
k) .

Since ∩k≥nA
c
k ↑ ∪∞n=1 ∩k≥n A

c
k as n → ∞ and ∩m

k=nA
c
k ↓ ∩∞n=1 ∪k≥n Ak as

m→∞,

P (∪∞n=1 ∩k≥n A
c
k) = lim

n→∞
P (∩k≥nA

c
k) = lim

n→∞
lim

m→∞
P (∩m≥k≥nA

c
k) .

Making use of the independence of {Ak}∞k=1 and hence the independence of
{Ac

k}
∞
k=1 , we have

P (∩m≥k≥nA
c
k) =

∏
m≥k≥n

P (Ac
k) =

∏
m≥k≥n

(1− P (Ak)) . (7.12)

Using the simple inequality in Eq. (7.8) along with Eq. (7.12) shows

P (∩m≥k≥nA
c
k) ≤

∏
m≥k≥n

e−P (Ak) = exp

(
−

m∑
k=n

P (Ak)

)
.

Using Eq. (7.10), we find from the above inequality that limm→∞ P (∩m≥k≥nA
c
k) =

0 and hence

P (∪∞n=1 ∩k≥n A
c
k) = lim

n→∞
lim

m→∞
P (∩m≥k≥nA

c
k) = lim

n→∞
0 = 0

as desired.

Example 7.34 (Example 7.30 continued). Suppose that {Xn} are now indepen-
dent Bernoulli random variables with P (Xn = 1) = pn and P (Xn = 0) = 1−
pn. Then P (limn→∞Xn = 0) = 1 iff

∑
pn <∞. Indeed, P (limn→∞Xn = 0) =

1 iff P (Xn = 0 a.a.) = 1 iff P (Xn = 1 i.o.) = 0 iff
∑
pn =

∑
P (Xn = 1) <

∞.

Proposition 7.35 (Extremal behaviour of iid random variables). Sup-
pose that {Xn}∞n=1 is a sequence of i.i.d. random variables and cn is an in-
creasing sequence of positive real numbers such that for all α > 1 we have

∞∑
n=1

P
(
X1 > α−1cn

)
= ∞ (7.13)

while
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∞∑
n=1

P (X1 > αcn) <∞. (7.14)

Then
lim sup

n→∞

Xn

cn
= 1 a.s. (7.15)

Proof. By the second Borel-Cantelli Lemma, Eq. (7.13) implies

P
(
Xn > α−1cn i.o. n

)
= 1

from which it follows that

lim sup
n→∞

Xn

cn
≥ α−1 a.s..

Taking α = αk = 1 + 1/k, we find

P

(
lim sup

n→∞

Xn

cn
≥ 1
)

= P

(
∩∞k=1

{
lim sup

n→∞

Xn

cn
≥ 1
αk

})
= 1.

Similarly, by the first Borel-Cantelli lemma, Eq. (7.14) implies

P (Xn > αcn i.o. n) = 0

or equivalently,
P (Xn ≤ αcn a.a. n) = 1.

That is to say,

lim sup
n→∞

Xn

cn
≤ α a.s.

and hence working as above,

P

(
lim sup

n→∞

Xn

cn
≤ 1
)

= P

(
∩∞k=1

{
lim sup

n→∞

Xn

cn
≤ αk

})
= 1.

Hence,

P

(
lim sup

n→∞

Xn

cn
= 1
)

= P

({
lim sup

n→∞

Xn

cn
≥ 1
}
∩
{

lim sup
n→∞

Xn

cn
≤ 1
})

= 1.

Example 7.36. Let {En}∞n=1 be a sequence of independent random variables
with exponential distributions determined by

P (En > x) = e−(x∨0) or P (En ≤ x) = 1− e−(x∨0).

(Observe that P (En ≤ 0) = 0) so that En > 0 a.s.) Then for cn > 0 and
α > 0, we have
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∞∑
n=1

P (En > αcn) =
∞∑

n=1

e−αcn =
∞∑

n=1

(
e−cn

)α
.

Hence if we choose cn = lnn so that e−cn = 1/n, then we have

∞∑
n=1

P (En > α lnn) =
∞∑

n=1

(
1
n

)α

which is convergent iff α > 1. So by Proposition 7.35, it follows that

lim sup
n→∞

En

lnn
= 1 a.s.

Example 7.37. Suppose now that {Xn}∞n=1 are i.i.d. distributed by the Poisson
distribution with intensity, λ, i.e.

P (X1 = k) =
λk

k!
e−λ.

In this case we have

P (X1 ≥ n) = e−λ
∞∑

k=n

λk

k!
≥ λn

n!
e−λ

and
∞∑

k=n

λk

k!
e−λ =

λn

n!
e−λ

∞∑
k=n

n!
k!
λk−n

=
λn

n!
e−λ

∞∑
k=0

n!
(k + n)!

λk ≤ λn

n!
e−λ

∞∑
k=0

1
k!
λk =

λn

n!
.

Thus we have shown that

λn

n!
e−λ ≤ P (X1 ≥ n) ≤ λn

n!
.

Thus in terms of convergence issues, we may assume that

P (X1 ≥ x) ∼ λx

x!
∼ λx

√
2πxe−xxx

wherein we have used Stirling’s formula,

x! ∼
√

2πxe−xxx.

Now suppose that we wish to choose cn so that

P (X1 ≥ cn) ∼ 1/n.
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This suggests that we need to solve the equation, xx = n. Taking logarithms
of this equation implies that

x =
lnn
lnx

and upon iteration we find,

x =
lnn

ln
(

ln n
ln x

) =
lnn

`2 (n)− `2 (x)
=

lnn
`2 (n)− `2

(
ln n
ln x

)
=

lnn
`2 (n)− `3 (n) + `3 (x)

.

where `k =

k - times︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln. Since, x ≤ ln (n) , it follows that `3 (x) ≤ `3 (n)

and hence that

x =
ln (n)

`2 (n) +O (`3 (n))
=

ln (n)
`2 (n)

(
1 +O

(
`3 (n)
`2 (n)

))
.

Thus we are lead to take cn := ln(n)
`2(n) . We then have, for α ∈ (0,∞) that

(αcn)αcn = exp (αcn [lnα+ ln cn])

= exp
(
α

ln (n)
`2 (n)

[lnα+ `2 (n)− `3 (n)]
)

= exp
(
α

[
lnα− `3 (n)

`2 (n)
+ 1
]

ln (n)
)

= nα(1+εn(α))

where

εn (α) :=
lnα− `3 (n)

`2 (n)
.

Hence we have

P (X1 ≥ αcn) ∼ λαcn

√
2παcne−αcn (αcn)αcn

∼ (λ/e)αcn

√
2παcn

1
nα(1+εn(α))

.

Since

ln (λ/e)αcn = αcn ln (λ/e) = α
lnn
`2 (n)

ln (λ/e) = lnnα
ln(λ/e)
`2(n) ,

it follows that
(λ/e)αcn = n

α
ln(λ/e)
`2(n) .

Therefore,

P (X1 ≥ αcn) ∼ n
α

ln(λ/e)
`2(n)√
ln(n)
`2(n)

1
nα(1+εn(α))

=

√
`2 (n)
ln (n)

1
nα(1+δn(α))
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where δn (α) → 0 as n→∞. From this observation, we may show,

∞∑
n=1

P (X1 ≥ αcn) <∞ if α > 1 and

∞∑
n=1

P (X1 ≥ αcn) = ∞ if α < 1

and so by Proposition 7.35 we may conclude that

lim sup
n→∞

Xn

ln (n) /`2 (n)
= 1 a.s.

7.4 Kolmogorov and Hewitt-Savage Zero-One Laws

Let {Xn}∞n=1 be a sequence of random variables on a measurable space, (Ω,B) .
Let Bn := σ (X1, . . . , Xn) ,B∞ := σ (X1, X2, . . . ) , Tn := σ (Xn+1, Xn+2, . . . ) ,
and T := ∩∞n=1Tn ⊂ B∞. We call T the tail σ – field and events, A ∈ T , are
called tail events.

Example 7.38. Let Sn := X1 + · · · + Xn and {bn}∞n=1 ⊂ (0,∞) such that
bn ↑ ∞. Here are some example of tail events and tail measurable random
variables:

1. {
∑∞

n=1Xn converges} ∈ T . Indeed,{ ∞∑
k=1

Xk converges

}
=

{ ∞∑
k=n+1

Xk converges

}
∈ Tn

for all n ∈ N.
2. both lim sup

n→∞
Xn and lim infn→∞Xn are T – measurable as are lim sup

n→∞

Sn

bn

and lim infn→∞
Sn

bn
.

3.
{
limXn exists in R̄

}
=
{

lim sup
n→∞

Xn = lim infn→∞Xn

}
∈ T and simi-

larly, {
lim

Sn

bn
exists in R̄

}
=
{

lim sup
n→∞

Sn

bn
= lim inf

n→∞

Sn

bn

}
∈ T

and{
lim

Sn

bn
exists in R

}
=
{
−∞ < lim sup

n→∞

Sn

bn
= lim inf

n→∞

Sn

bn
<∞

}
∈ T .
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4.
{

limn→∞
Sn

bn
= 0
}
∈ T . Indeed, for any k ∈ N,

lim
n→∞

Sn

bn
= lim

n→∞

(Xk+1 + · · ·+Xn)
bn

from which it follows that
{

limn→∞
Sn

bn
= 0
}
∈ Tk for all k.

Definition 7.39. Let (Ω,B, P ) be a probability space. A σ – field, F ⊂ B is
almost trivial iff P (F) = {0, 1} , i.e. P (A) ∈ {0, 1} for all A ∈ F .

Lemma 7.40. Suppose that X : Ω → R̄ is a random variable which is F
measurable, where F ⊂ B is almost trivial. Then there exists c ∈ R̄ such that
X = c a.s.

Proof. Since {X = ∞} and {X = −∞} are in F , if P (X = ∞) > 0
or P (X = −∞) > 0, then P (X = ∞) = 1 or P (X = −∞) = 1 respec-
tively. Hence, it suffices to finish the proof under the added condition that
P (X ∈ R) = 1.

For each x ∈ R, {X ≤ x} ∈ F and therefore, P (X ≤ x) is either 0 or
1. Since the function, F (x) := P (X ≤ x) ∈ {0, 1} is right continuous, non-
decreasing and F (−∞) = 0 and F (+∞) = 1, there is a unique point c ∈ R
where F (c) = 1 and F (c−) = 0. At this point, we have P (X = c) = 1.

Proposition 7.41 (Kolmogorov’s Zero-One Law). Suppose that P is a
probability measure on (Ω,B) such that {Xn}∞n=1 are independent random
variables. Then T is almost trivial, i.e. P (A) ∈ {0, 1} for all A ∈ T .

Proof. Let A ∈ T ⊂ B∞. Since A ∈ Tn for all n and Tn is independent of
Bn, it follows that A is independent of ∪∞n=1Bn for all n. Since the latter set
is a multiplicative set, it follows that A is independent of B∞ = σ (∪Bn) =
∨∞n=1Bn. But A ∈ B and hence A is independent of itself, i.e.

P (A) = P (A ∩A) = P (A)P (A) .

Since the only x ∈ R, such that x = x2 is x = 0 or x = 1, the result is proved.
In particular the tail events in Example 7.38 have probability either 0 or 1.

Corollary 7.42. Keeping the assumptions in Proposition 7.41 and let {bn}∞n=1 ⊂
(0,∞) such that bn ↑ ∞. Then lim sup

n→∞
Xn, lim infn→∞Xn, lim sup

n→∞

Sn

bn
,

and lim infn→∞
Sn

bn
are all constant almost surely. In particular, either

P
({

lim
n→∞

Sn

bn
exists

})
= 0 or P

({
lim

n→∞
Sn

bn
exists

})
= 1 and in the latter

case lim
n→∞

Sn

bn
= c a.s for some c ∈ R̄.

Let us now suppose that Ω := R∞ = RN, Xn (ω) = ωn for all ω ∈ Ω,
and B := σ (X1, X2, . . . ) . We say a permutation (i.e. a bijective map on
N), π : N → N is finite if π (n) = n for a.a. n. Define Tπ : Ω → Ω by
Tπ (ω) = (ωπ1, ωπ2, . . . ) .



7.4 Kolmogorov and Hewitt-Savage Zero-One Laws 113

Definition 7.43. The permutation invariant σ – field, S ⊂ B, is the col-
lection of sets, A ∈ B such that T−1

π (A) = A for all finite permutations π.

In the proof below we will use the identities,

1A4B = |1A − 1B | and P (A4B) = E |1A − 1B | .

Proposition 7.44 (Hewitt-Savage Zero-One Law). Let P be a probability
measure on (Ω,B) such that {Xn}∞n=1 is an i.i.d. sequence. Then S is almost
trivial.

Proof. Let B0 := ∪∞n=1σ (X1, X2, . . . , Xn) . Then B0 is an algebra and
σ (B0) = B. By the regularity Theorem 5.10, for any B ∈ B and ε > 0, there
exists An ∈ B0 such that An ↑ C ∈ (B0)σ , B ⊂ C, and P (C \B) < ε. Since

P (An∆B) = P ([An \B] ∪ [B \An]) = P (An \B) + P (B \An)
→ P (C \B) + P (B \ C) < ε,

for sufficiently large n, we have P (A∆B) < ε where A = An ∈ B0.
Now suppose that B ∈ S, ε > 0, and A ∈ σ (X1, X2, . . . , Xn) ⊂ B0 such

that P (A∆B) < ε. Let π : N → N be the permutation defined by π (j) = j+n,
π (j + n) = j for j = 1, 2, . . . , n, and π (j + 2n) = j + 2n for all j ∈ N. Since

B = {(X1, . . . , Xn) ∈ B′} = {ω : (ω1, . . . , ωn) ∈ B′}

for some B′ ∈ BRn , we have

T−1
π (B) = {ω : ((Tπ (ω))1 , . . . , (Tπ (ω))n) ∈ B′}

= {ω : (ωπ1, . . . , ωπn) ∈ B′}
= {ω : (ωn+1, . . . , ωn+n) ∈ B′}
= {(Xn+1, . . . , Xn+n) ∈ B′} ∈ σ (Xn+1, . . . , Xn+n) ,

it follows that B and T−1
π (B) are independent with P (B) = P

(
T−1

π (B)
)
.

Therefore P
(
B ∩ T−1

π B
)

= P (B)2 . Combining this observation with the
identity, P (A) = P (A ∩A) = P

(
A ∩ T−1

π A
)
, we find∣∣∣P (A)− P (B)2

∣∣∣ = ∣∣P (A ∩ T−1
π A

)
− P

(
B ∩ T−1

π B
)∣∣ = ∣∣∣E [1A∩T−1

π A − 1B∩T−1
π B

]∣∣∣
≤ E

∣∣∣1A∩T−1
π A − 1B∩T−1

π B

∣∣∣
= E

∣∣∣1A1T−1
π A − 1B1T−1

π B

∣∣∣
= E

∣∣∣[1A − 1B ] 1T−1
π A + 1B

[
1T−1

π A − 1T−1
π B

]∣∣∣
≤ E |[1A − 1B ]|+ E

∣∣∣1T−1
π A − 1T−1

π B

∣∣∣
= P (A∆B) + P

(
T−1

π A∆T−1
π B

)
< 2ε.
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Since |P (A)− P (B)| ≤ P (A∆B) < ε, it follows that∣∣∣P (A)− [P (A) +O (ε)]2
∣∣∣ < ε.

Since ε > 0 was arbitrary, we may conclude that P (A) = P (A)2 for all A ∈ S.

Example 7.45 (Some Random Walk 0−1 Law Results). Continue the notation
in Proposition 7.44.

1. As above, if Sn = X1 + · · · + Xn, then P (Sn ∈ B i.o.) ∈ {0, 1} for all
B ∈ BR. Indeed, if π is a finite permutation,

T−1
π ({Sn ∈ B i.o.}) = {Sn ◦ Tπ ∈ B i.o.} = {Sn ∈ B i.o.} .

Hence {Sn ∈ B i.o.} is in the permutation invariant σ – field. The same
goes for {Sn ∈ B a.a.}

2. If P (X1 6= 0) > 0, then lim sup
n→∞

Sn = ∞ a.s. or lim sup
n→∞

Sn = −∞ a.s.

Indeed,

T−1
π

{
lim sup

n→∞
Sn ≤ x

}
=
{

lim sup
n→∞

Sn ◦ Tπ ≤ x

}
=
{

lim sup
n→∞

Sn ≤ x

}
which shows that lim sup

n→∞
Sn is S – measurable. Therefore, lim sup

n→∞
Sn = c

a.s. for some c ∈ R̄. Since, a.s.,

c = lim sup
n→∞

Sn+1 = lim sup
n→∞

(Sn +X1) = lim sup
n→∞

Sn +X1 = c+X1,

we must have either c ∈ {±∞} or X1 = 0 a.s. Since the latter is not
allowed, lim sup

n→∞
Sn = ∞ or lim sup

n→∞
Sn = −∞ a.s.

3. Now assume that P (X1 6= 0) > 0 and X1
d= −X1, i.e. P (X1 ∈ A) =

P (−X1 ∈ A) for all A ∈ BR. From item 2. we know that and from what
we have already proved, we know lim sup

n→∞
Sn = c a.s. with c ∈ {±∞} .

Since {Xn}∞n=1 and {−Xn}∞n=1 are i.i.d. and −Xn
d= Xn, it follows

that {Xn}∞n=1
d= {−Xn}∞n=1 .The results of Exercise 7.2 then imply that

lim sup
n→∞

Sn
d= lim sup

n→∞
(−Sn) and in particular lim sup

n→∞
(−Sn) = c a.s. as

well. Thus we have

c = lim sup
n→∞

(−Sn) = − lim inf
n→∞

Sn ≥ − lim sup
n→∞

Sn = −c.

Since the c = −∞ does not satisfy, c ≥ −c, we must c = ∞. Hence in this
symmetric case we have shown,
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lim sup
n→∞

Sn = ∞ and lim sup
n→∞

(−Sn) = ∞ a.s.

or equivalently that

lim sup
n→∞

Sn = ∞ and lim inf
n→∞

Sn = −∞ a.s.
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Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section 4.3 above. Recall there that if (Ω,B, µ) was
measurable space and f : Ω → [0,∞] was a measurable simple function, then
we let

Eµf :=
∑

λ∈[0,∞]

λµ (f = λ) .

8.1 A Quick Introduction to Lebesgue Integration
Theory

Theorem 8.1 (Extension to positive functions). For a positive measur-
able function, f : Ω → [0,∞] , the integral of f with respect to µ is defined
by ∫

X

f (x) dµ (x) := sup {Eµϕ : ϕ is simple and ϕ ≤ f} .

This integral has the following properties.

1. This integral is linear in the sense that∫
Ω

(f + λg) dµ =
∫

Ω

fdµ+ λ

∫
Ω

gdµ

whenever f, g ≥ 0 are measurable functions and λ ∈ [0,∞).
2. The integral is continuous under increasing limits, i.e. if 0 ≤ fn ↑ f, then∫

Ω

f dµ =
∫

Ω

lim
n→∞

fn dµ = lim
n→∞

∫
Ω

fn dµ.

See the monotone convergence Theorem 8.15 below.

Remark 8.2. Given f : Ω → [0,∞] measurable, we know from the approxima-
tion Theorem 6.32 ϕn ↑ f where

ϕn :=
n2n−1∑

k=0

k

2n
1{ k

2n <f≤ k+1
2n } + n1{f>n2n}.

Therefore by the monotone convergence theorem,
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Ω

fdµ = lim
n→∞

∫
Ω

ϕndµ

= lim
n→∞

[
n2n−1∑

k=0

k

2n
µ

(
k

2n
< f ≤ k + 1

2n

)
+ nµ (f > n2n)

]
.

We call a function, f : Ω → R̄, integrable if it is measurable and∫
Ω
|f | dµ <∞. We will denote the space of µ –integrable functions by L1 (µ)

Theorem 8.3 (Extension to integrable functions). The integral extends
to a linear function from L1 (µ) → R. Moreover this extension is continuous
under dominated convergence (see Theorem 8.34). That is if fn ∈ L1 (µ) and
there exists g ∈ L1 (µ) such that |fn| ≤ g and f := limn→∞ fn exists pointwise,
then ∫

Ω

f dµ =
∫

Ω

lim
n→∞

fn dµ = lim
n→∞

fn

∫
Ω

dµ.

Notation 8.4 We write
∫

A
fdµ :=

∫
Ω

1Af dµ for all A ∈ B where f is a
measurable function such that 1Af is either non-negative or integrable.

Notation 8.5 If m is Lebesgue measure on BR, f is a non-negative Borel
measurable function and a < b with a, b ∈ R̄, we will often write

∫ b

a
f (x) dx

or
∫ b

a
fdm for

∫
(a,b]∩R fdm.

Example 8.6. Suppose −∞ < a < b <∞, f ∈ C([a, b],R) and m be Lebesgue
measure on R. Given a partition,

π = {a = a0 < a1 < · · · < an = b},

let
mesh(π) := max{|aj − aj−1| : j = 1, . . . , n}

and

fπ (x) :=
n−1∑
l=0

f (al) 1(al,al+1](x).

Then ∫ b

a

fπ dm =
n−1∑
l=0

f (al)m ((al, al+1]) =
n−1∑
l=0

f (al) (al+1 − al)

is a Riemann sum. Therefore if {πk}∞k=1 is a sequence of partitions with
limk→∞mesh(πk) = 0, we know that

lim
k→∞

∫ b

a

fπk
dm =

∫ b

a

f (x) dx (8.1)

where the latter integral is the Riemann integral. Using the (uniform) con-
tinuity of f on [a, b] , it easily follows that limk→∞ fπk

(x) = f (x) and
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that |fπk
(x)| ≤ g (x) := M1(a,b] (x) for all x ∈ (a, b] where M :=

maxx∈[a,b] |f (x)| <∞. Since
∫

R gdm = M (b− a) <∞, we may apply D.C.T.
to conclude,

lim
k→∞

∫ b

a

fπk
dm =

∫ b

a

lim
k→∞

fπk
dm =

∫ b

a

f dm.

This equation with Eq. (8.1) shows∫ b

a

f dm =
∫ b

a

f (x) dx

whenever f ∈ C([a, b],R), i.e. the Lebesgue and the Riemann integral agree on
continuous functions. See Theorem 8.51 below for a more general statement
along these lines.

Theorem 8.7 (The Fundamental Theorem of Calculus). Suppose
−∞ < a < b <∞, f ∈ C((a, b),R)∩L1((a, b),m) and F (x) :=

∫ x

a
f(y)dm(y).

Then

1. F ∈ C([a, b],R) ∩ C1((a, b),R).
2. F ′(x) = f(x) for all x ∈ (a, b).
3. If G ∈ C([a, b],R) ∩ C1((a, b),R) is an anti-derivative of f on (a, b) (i.e.
f = G′|(a,b)) then ∫ b

a

f(x)dm(x) = G(b)−G(a).

Proof. Since F (x) :=
∫

R 1(a,x)(y)f(y)dm(y), limx→z 1(a,x)(y) = 1(a,z)(y)
for m – a.e. y and

∣∣1(a,x)(y)f(y)
∣∣ ≤ 1(a,b)(y) |f(y)| is an L1 – function, it

follows from the dominated convergence Theorem 8.34 that F is continuous
on [a, b]. Simple manipulations show,

∣∣∣∣F (x+ h)− F (x)
h

− f(x)
∣∣∣∣ = 1

|h|


∣∣∣∫ x+h

x
[f(y)− f(x)] dm(y)

∣∣∣ if h > 0∣∣∣∫ x

x+h
[f(y)− f(x)] dm(y)

∣∣∣ if h < 0

≤ 1
|h|

{∫ x+h

x
|f(y)− f(x)| dm(y) if h > 0∫ x

x+h
|f(y)− f(x)| dm(y) if h < 0

≤ sup {|f(y)− f(x)| : y ∈ [x− |h| , x+ |h|]}

and the latter expression, by the continuity of f, goes to zero as h→ 0 . This
shows F ′ = f on (a, b).

For the converse direction, we have by assumption that G′(x) = F ′(x) for
x ∈ (a, b). Therefore by the mean value theorem, F−G = C for some constant
C. Hence
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a

f(x)dm(x) = F (b) = F (b)− F (a)

= (G(b) + C)− (G(a) + C) = G(b)−G(a).

We can use the above results to integrate some non-Riemann integrable
functions:

Example 8.8. For all λ > 0,∫ ∞
0

e−λxdm(x) = λ−1 and
∫

R

1
1 + x2

dm(x) = π.

The proof of these identities are similar. By the monotone convergence the-
orem, Example 8.6 and the fundamental theorem of calculus for Riemann
integrals (or Theorem 8.7 below),∫ ∞

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdx

= − lim
N→∞

1
λ
e−λx|N0 = λ−1

and ∫
R

1
1 + x2

dm(x) = lim
N→∞

∫ N

−N

1
1 + x2

dm(x) = lim
N→∞

∫ N

−N

1
1 + x2

dx

= lim
N→∞

[
tan−1(N)− tan−1(−N)

]
= π.

Let us also consider the functions x−p,∫
(0,1]

1
xp

dm(x) = lim
n→∞

∫ 1

0

1( 1
n ,1](x)

1
xp
dm(x)

= lim
n→∞

∫ 1

1
n

1
xp
dx = lim

n→∞

x−p+1

1− p

∣∣∣∣1
1/n

=
{ 1

1−p if p < 1
∞ if p > 1

If p = 1 we find∫
(0,1]

1
xp

dm(x) = lim
n→∞

∫ 1

1
n

1
x
dx = lim

n→∞
ln(x)|11/n = ∞.

Exercise 8.1. Show ∫ ∞
1

1
xp
dm (x) =

{
∞ if p ≤ 1
1

p−1 if p > 1 .
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Example 8.9. The following limit holds,

lim
n→∞

∫ n

0

(
1− x

n

)n

dm(x) = 1.

To verify this, let fn(x) :=
(
1− x

n

)n 1[0,n](x). Then limn→∞ fn(x) = e−x for
all x ≥ 0 and by taking logarithms of Eq. (7.8),

ln (1− x) ≤ −x for x < 1.

Therefore, for x < n, we have(
1− x

n

)n

= en ln(1− x
n ) ≤ e−n( x

n ) = e−x

from which it follows that

0 ≤ fn(x) ≤ e−x for all x ≥ 0.

From Example 8.8, we know∫ ∞
0

e−xdm(x) = 1 <∞,

so that e−x is an integrable function on [0,∞). Hence by the dominated con-
vergence theorem,

lim
n→∞

∫ n

0

(
1− x

n

)n

dm(x) = lim
n→∞

∫ ∞
0

fn(x)dm(x)

=
∫ ∞

0

lim
n→∞

fn(x)dm(x) =
∫ ∞

0

e−xdm(x) = 1.

The limit in the above example may also be computed using the monotone
convergence theorem. To do this we must show that n→ fn (x) is increasing
in n for each x and for this it suffices to consider n > x. But for n > x,

d

dn
ln fn (x) =

d

dn

[
n ln

(
1− x

n

)]
= ln

(
1− x

n

)
+

n

1− x
n

x

n2

= ln
(
1− x

n

)
+

x
n

1− x
n

= h (x/n)

where, for 0 ≤ y < 1,

h (y) := ln(1− y) +
y

1− y
.

Since h (0) = 0 and

h′ (y) = − 1
1− y

+
1

1− y
+

y

(1− y)2
> 0

it follows that h ≥ 0. Thus we have shown, fn (x) ↑ e−x as n→∞ as claimed.
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Example 8.10 (Jordan’s Lemma). In this example, let us consider the limit;

lim
n→∞

∫ π

0

cos
(

sin
θ

n

)
e−n sin(θ)dθ.

Let

fn (θ) := 1(0,π] (θ) cos
(

sin
θ

n

)
e−n sin(θ).

Then
|fn| ≤ 1(0,π] ∈ L1 (m)

and
lim

n→∞
fn (θ) = 1(0,π] (θ) 1{π} (θ) = 1{π} (θ) .

Therefore by the D.C.T.,

lim
n→∞

∫ π

0

cos
(

sin
θ

n

)
e−n sin(θ)dθ =

∫
R

1{π} (θ) dm (θ) = m ({π}) = 0.

Exercise 8.2 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

1. lim
n→∞

∫∞
0

sin( x
n )

(1+ x
n )n dx.

2. lim
n→∞

∫ 1

0
1+nx2

(1+x2)n dx

3. lim
n→∞

∫∞
0

n sin(x/n)
x(1+x2) dx

4. For all a ∈ R compute,

f (a) := lim
n→∞

∫ ∞
a

n(1 + n2x2)−1dx.

Now that we have an overview of the Lebesgue integral, let us proceed to
the formal development of the facts stated above.

8.2 Integrals of positive functions

Definition 8.11. Let L+ = L+ (B) = {f : X → [0,∞] : f is measurable}.
Define∫

X

f (x) dµ (x) =
∫

X

fdµ := sup {Eµϕ : ϕ is simple and ϕ ≤ f} .

We say the f ∈ L+ is integrable if
∫

X
fdµ <∞. If A ∈ B, let∫

A

f (x) dµ (x) =
∫

A

fdµ :=
∫

X

1Af dµ.
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Remark 8.12. Because of item 3. of Proposition 4.16, if ϕ is a non-negative
simple function,

∫
X
ϕdµ = Eµϕ so that

∫
X

is an extension of Eµ.

Lemma 8.13. Let f, g ∈ L+ (B) . Then:

1. if λ ≥ 0, then ∫
X

λfdµ = λ

∫
X

fdµ

wherein λ
∫

X
fdµ ≡ 0 if λ = 0, even if

∫
X
fdµ = ∞.

2. if 0 ≤ f ≤ g, then ∫
X

fdµ ≤
∫

X

gdµ. (8.2)

3. For all ε > 0 and p > 0,

µ(f ≥ ε) ≤ 1
εp

∫
X

fp1{f≥ε}dµ ≤
1
εp

∫
X

fpdµ. (8.3)

The inequality in Eq. (8.3) is called Chebyshev’s Inequality for p = 1 and
Markov’s inequality for p = 2.

4. If
∫

X
fdµ <∞ then µ(f = ∞) = 0 (i.e. f <∞ a.e.) and the set {f > 0}

is σ – finite.

Proof. 1. We may assume λ > 0 in which case,∫
X

λfdµ = sup {Eµϕ : ϕ is simple and ϕ ≤ λf}

= sup
{
Eµϕ : ϕ is simple and λ−1ϕ ≤ f

}
= sup {Eµ [λψ] : ψ is simple and ψ ≤ f}
= sup {λEµ [ψ] : ψ is simple and ψ ≤ f}

= λ

∫
X

fdµ.

2. Since

{ϕ is simple and ϕ ≤ f} ⊂ {ϕ is simple and ϕ ≤ g} ,

Eq. (8.2) follows from the definition of the integral.
3. Since 1{f≥ε} ≤ 1{f≥ε}

1
εf ≤

1
εf we have

1{f≥ε} ≤ 1{f≥ε}

(
1
ε
f

)p

≤
(

1
ε
f

)p

and by monotonicity and the multiplicative property of the integral,

µ(f ≥ ε) =
∫

X

1{f≥ε}dµ ≤
(

1
ε

)p ∫
X

1{f≥ε}f
pdµ ≤

(
1
ε

)p ∫
X

fpdµ.
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4. If µ (f = ∞) > 0, then ϕn := n1{f=∞} is a simple function such that
ϕn ≤ f for all n and hence

nµ (f = ∞) = Eµ (ϕn) ≤
∫

X

fdµ

for all n. Letting n → ∞ shows
∫

X
fdµ = ∞. Thus if

∫
X
fdµ < ∞ then

µ (f = ∞) = 0.
Moreover,

{f > 0} = ∪∞n=1 {f > 1/n}

with µ (f > 1/n) ≤ n
∫

X
fdµ <∞ for each n.

Lemma 8.14 (Sums as Integrals). Let X be a set and ρ : X → [0,∞] be a
function, let µ =

∑
x∈X ρ(x)δx on B = 2X , i.e.

µ(A) =
∑
x∈A

ρ(x).

If f : X → [0,∞] is a function (which is necessarily measurable), then∫
X

fdµ =
∑
X

fρ.

Proof. Suppose that ϕ : X → [0,∞) is a simple function, then ϕ =∑
z∈[0,∞) z1{ϕ=z} and∑

X

ϕρ =
∑
x∈X

ρ(x)
∑

z∈[0,∞)

z1{ϕ=z}(x) =
∑

z∈[0,∞)

z
∑
x∈X

ρ(x)1{ϕ=z}(x)

=
∑

z∈[0,∞)

zµ({ϕ = z}) =
∫

X

ϕdµ.

So if ϕ : X → [0,∞) is a simple function such that ϕ ≤ f, then∫
X

ϕdµ =
∑
X

ϕρ ≤
∑
X

fρ.

Taking the sup over ϕ in this last equation then shows that∫
X

fdµ ≤
∑
X

fρ.

For the reverse inequality, let Λ ⊂⊂ X be a finite set and N ∈ (0,∞).
Set fN (x) = min {N, f(x)} and let ϕN,Λ be the simple function given by
ϕN,Λ(x) := 1Λ(x)fN (x). Because ϕN,Λ(x) ≤ f(x),∑

Λ

fNρ =
∑
X

ϕN,Λρ =
∫

X

ϕN,Λdµ ≤
∫

X

fdµ.
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Since fN ↑ f as N →∞, we may let N →∞ in this last equation to concluded∑
Λ

fρ ≤
∫

X

fdµ.

Since Λ is arbitrary, this implies∑
X

fρ ≤
∫

X

fdµ.

Theorem 8.15 (Monotone Convergence Theorem). Suppose fn ∈ L+

is a sequence of functions such that fn ↑ f (f is necessarily in L+) then∫
fn ↑

∫
f as n→∞.

Proof. Since fn ≤ fm ≤ f, for all n ≤ m <∞,∫
fn ≤

∫
fm ≤

∫
f

from which if follows
∫
fn is increasing in n and

lim
n→∞

∫
fn ≤

∫
f. (8.4)

For the opposite inequality, let ϕ : X → [0,∞) be a simple function such
that 0 ≤ ϕ ≤ f, α ∈ (0, 1) and Xn := {fn ≥ αϕ} . Notice that Xn ↑ X and
fn ≥ α1Xn

ϕ and so by definition of
∫
fn,∫

fn ≥ Eµ [α1Xn
ϕ] = αEµ [1Xn

ϕ] . (8.5)

Then using the continuity of µ under increasing unions,

lim
n→∞

Eµ [1Xnϕ] = lim
n→∞

∫
1Xn

∑
y>0

y1{ϕ=y}

= lim
n→∞

∑
y>0

yµ(Xn ∩ {ϕ = y})

finite sum=
∑
y>0

y lim
n→∞

µ(Xn ∩ {ϕ = y})

=
∑
y>0

y lim
n→∞

µ({ϕ = y}) = Eµ [ϕ]

This identity allows us to let n→∞ in Eq. (8.5) to conclude limn→∞
∫
fn ≥

αEµ [ϕ] and since α ∈ (0, 1) was arbitrary we may further conclude,Eµ [ϕ] ≤
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limn→∞
∫
fn. The latter inequality being true for all simple functions ϕ with

ϕ ≤ f then implies that ∫
f ≤ lim

n→∞

∫
fn,

which combined with Eq. (8.4) proves the theorem.

Corollary 8.16. If fn ∈ L+ is a sequence of functions then∫ ∞∑
n=1

fn =
∞∑

n=1

∫
fn.

In particular, if
∑∞

n=1

∫
fn <∞ then

∑∞
n=1 fn <∞ a.e.

Proof. First off we show that∫
(f1 + f2) =

∫
f1 +

∫
f2

by choosing non-negative simple function ϕn and ψn such that ϕn ↑ f1 and
ψn ↑ f2. Then (ϕn +ψn) is simple as well and (ϕn +ψn) ↑ (f1 + f2) so by the
monotone convergence theorem,∫

(f1 + f2) = lim
n→∞

∫
(ϕn + ψn) = lim

n→∞

(∫
ϕn +

∫
ψn

)
= lim

n→∞

∫
ϕn + lim

n→∞

∫
ψn =

∫
f1 +

∫
f2.

Now to the general case. Let gN :=
N∑

n=1
fn and g =

∞∑
1
fn, then gN ↑ g and so

again by monotone convergence theorem and the additivity just proved,

∞∑
n=1

∫
fn := lim

N→∞

N∑
n=1

∫
fn = lim

N→∞

∫ N∑
n=1

fn

= lim
N→∞

∫
gN =

∫
g =:

∫ ∞∑
n=1

fn.

Remark 8.17. It is in the proof of this corollary (i.e. the linearity of the in-
tegral) that we really make use of the assumption that all of our functions
are measurable. In fact the definition

∫
fdµ makes sense for all functions

f : X → [0,∞] not just measurable functions. Moreover the monotone conver-
gence theorem holds in this generality with no change in the proof. However,
in the proof of Corollary 8.16, we use the approximation Theorem 6.32 which
relies heavily on the measurability of the functions to be approximated.
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Example 8.18. Suppose, Ω = N, B := 2N, and µ (A) = # (A) for A ⊂ Ω is the
counting measure on B. Then for f : N → [0,∞), the function

fN (·) :=
N∑

n=1

f (n) 1{n}

is a simple function with fN ↑ f as N →∞. So by the monotone convergence
theorem, ∫

N
fdµ = lim

N→∞

∫
N
fNdµ = lim

N→∞

N∑
n=1

f (n)µ ({n})

= lim
N→∞

N∑
n=1

f (n) =
∞∑

n=1

f (n) .

Exercise 8.3. Suppose that µn : B → [0,∞] are measures on B for n ∈ N.
Also suppose that µn(A) is increasing in n for all A ∈ B. Prove that µ :
B → [0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure. Hint: use
Example 8.18 and the monotone convergence theorem.

Proposition 8.19. Suppose that f ≥ 0 is a measurable function. Then∫
X
fdµ = 0 iff f = 0 a.e. Also if f, g ≥ 0 are measurable functions such that

f ≤ g a.e. then
∫
fdµ ≤

∫
gdµ. In particular if f = g a.e. then

∫
fdµ =

∫
gdµ.

Proof. If f = 0 a.e. and ϕ ≤ f is a simple function then ϕ = 0 a.e.
This implies that µ(ϕ−1({y})) = 0 for all y > 0 and hence

∫
X
ϕdµ = 0 and

therefore
∫

X
fdµ = 0. Conversely, if

∫
fdµ = 0, then by (Lemma 8.13),

µ(f ≥ 1/n) ≤ n

∫
fdµ = 0 for all n.

Therefore, µ(f > 0) ≤
∑∞

n=1 µ(f ≥ 1/n) = 0, i.e. f = 0 a.e. For the second
assertion let E be the exceptional set where f > g, i.e. E := {x ∈ X : f(x) >
g(x)}. By assumption E is a null set and 1Ecf ≤ 1Ecg everywhere. Because
g = 1Ecg + 1Eg and 1Eg = 0 a.e.,∫

gdµ =
∫

1Ecgdµ+
∫

1Egdµ =
∫

1Ecgdµ

and similarly
∫
fdµ =

∫
1Ecfdµ. Since 1Ecf ≤ 1Ecg everywhere,∫

fdµ =
∫

1Ecfdµ ≤
∫

1Ecgdµ =
∫
gdµ.

Corollary 8.20. Suppose that {fn} is a sequence of non-negative measurable
functions and f is a measurable function such that fn ↑ f off a null set, then∫

fn ↑
∫
f as n→∞.



128 8 Integration Theory

Proof. Let E ⊂ X be a null set such that fn1Ec ↑ f1Ec as n→∞. Then
by the monotone convergence theorem and Proposition 8.19,∫

fn =
∫
fn1Ec ↑

∫
f1Ec =

∫
f as n→∞.

Lemma 8.21 (Fatou’s Lemma). If fn : X → [0,∞] is a sequence of mea-
surable functions then ∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, ∫
gk ≤

∫
fn for all n ≥ k

and therefore ∫
gk ≤ lim inf

n→∞

∫
fn for all k.

We may now use the monotone convergence theorem to let k →∞ to find∫
lim inf

n→∞
fn =

∫
lim

k→∞
gk

MCT= lim
k→∞

∫
gk ≤ lim inf

n→∞

∫
fn.

The following Lemma and the next Corollary are simple applications of
Corollary 8.16.

Lemma 8.22 (The First Borell – Carntelli Lemma). Let (X,B, µ) be a
measure space, An ∈ B, and set

{An i.o.} = {x ∈ X : x ∈ An for infinitely many n’s} =
∞⋂

N=1

⋃
n≥N

An.

If
∑∞

n=1 µ(An) <∞ then µ({An i.o.}) = 0.

Proof. (First Proof.) Let us first observe that

{An i.o.} =

{
x ∈ X :

∞∑
n=1

1An(x) = ∞

}
.

Hence if
∑∞

n=1 µ(An) <∞ then

∞ >
∞∑

n=1

µ(An) =
∞∑

n=1

∫
X

1An dµ =
∫

X

∞∑
n=1

1An dµ
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implies that
∞∑

n=1
1An(x) < ∞ for µ - a.e. x. That is to say µ({An i.o.}) = 0.

(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

µ(An i.o.) = lim
N→∞

µ

 ⋃
n≥N

An


≤ lim

N→∞

∑
n≥N

µ(An)

and the last limit is zero since
∑∞

n=1 µ(An) <∞.

Corollary 8.23. Suppose that (X,B, µ) is a measure space and {An}∞n=1 ⊂ B
is a collection of sets such that µ(Ai ∩Aj) = 0 for all i 6= j, then

µ (∪∞n=1An) =
∞∑

n=1

µ(An).

Proof. Since

µ (∪∞n=1An) =
∫

X

1∪∞n=1An
dµ and

∞∑
n=1

µ(An) =
∫

X

∞∑
n=1

1An
dµ

it suffices to show
∞∑

n=1

1An
= 1∪∞n=1An

µ – a.e. (8.6)

Now
∑∞

n=1 1An
≥ 1∪∞n=1An

and
∑∞

n=1 1An
(x) 6= 1∪∞n=1An

(x) iff x ∈ Ai∩Aj for
some i 6= j, that is{

x :
∞∑

n=1

1An
(x) 6= 1∪∞n=1An

(x)

}
= ∪i<jAi ∩Aj

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (8.6) and hence the corollary.

Example 8.24. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =
∞∑

n=1

2−n 1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.
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Since, By Theorem 8.7,∫ 1

0

1√
|x− rn|

dx =
∫ 1

rn

1√
x− rn

dx+
∫ rn

0

1√
rn − x

dx

= 2
√
x− rn|1rn

− 2
√
rn − x|rn

0 = 2
(√

1− rn −
√
rn
)

≤ 4,

we find∫
[0,1]

f(x)dm(x) =
∞∑

n=1

2−n

∫
[0,1]

1√
|x− rn|

dx ≤
∞∑

n=1

2−n4 = 4 <∞.

In particular, m(f = ∞) = 0, i.e. that f <∞ for almost every x ∈ [0, 1] and
this implies that

∞∑
n=1

2−n 1√
|x− rn|

<∞ for a.e. x ∈ [0, 1].

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0, 1].

8.3 Integrals of Complex Valued Functions

Definition 8.25. A measurable function f : X → R̄ is integrable if f+ :=
f1{f≥0} and f− = −f 1{f≤0} are integrable. We write L1 (µ; R) for the space
of real valued integrable functions. For f ∈ L1 (µ; R) , let∫

fdµ =
∫
f+dµ−

∫
f−dµ

Convention: If f, g : X → R̄ are two measurable functions, let f + g
denote the collection of measurable functions h : X → R̄ such that h(x) =
f(x)+g(x) whenever f(x)+g(x) is well defined, i.e. is not of the form∞−∞ or
−∞+∞. We use a similar convention for f −g. Notice that if f, g ∈ L1 (µ; R)
and h1, h2 ∈ f + g, then h1 = h2 a.e. because |f | <∞ and |g| <∞ a.e.

Notation 8.26 (Abuse of notation) We will sometimes denote the inte-
gral

∫
X
fdµ by µ (f) . With this notation we have µ (A) = µ (1A) for all A ∈ B.

Remark 8.27. Since
f± ≤ |f | ≤ f+ + f−,

a measurable function f is integrable iff
∫
|f | dµ <∞. Hence

L1 (µ; R) :=
{
f : X → R̄ : f is measurable and

∫
X

|f | dµ <∞
}
.
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If f, g ∈ L1 (µ; R) and f = g a.e. then f± = g± a.e. and so it follows from
Proposition 8.19 that

∫
fdµ =

∫
gdµ. In particular if f, g ∈ L1 (µ; R) we may

define ∫
X

(f + g) dµ =
∫

X

hdµ

where h is any element of f + g.

Proposition 8.28. The map

f ∈ L1 (µ; R) →
∫

X

fdµ ∈ R

is linear and has the monotonicity property:
∫
fdµ ≤

∫
gdµ for all f, g ∈

L1 (µ; R) such that f ≤ g a.e.

Proof. Let f, g ∈ L1 (µ; R) and a, b ∈ R. By modifying f and g on a null
set, we may assume that f, g are real valued functions. We have af + bg ∈
L1 (µ; R) because

|af + bg| ≤ |a| |f |+ |b| |g| ∈ L1 (µ; R) .

If a < 0, then
(af)+ = −af− and (af)− = −af+

so that ∫
af = −a

∫
f− + a

∫
f+ = a(

∫
f+ −

∫
f−) = a

∫
f.

A similar calculation works for a > 0 and the case a = 0 is trivial so we have
shown that ∫

af = a

∫
f.

Now set h = f + g. Since h = h+ − h−,

h+ − h− = f+ − f− + g+ − g−

or
h+ + f− + g− = h− + f+ + g+.

Therefore, ∫
h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+

and hence∫
h =

∫
h+ −

∫
h− =

∫
f+ +

∫
g+ −

∫
f− −

∫
g− =

∫
f +

∫
g.

Finally if f+ − f− = f ≤ g = g+ − g− then f+ + g− ≤ g+ + f− which implies
that
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f+ +

∫
g− ≤

∫
g+ +

∫
f−

or equivalently that∫
f =

∫
f+ −

∫
f− ≤

∫
g+ −

∫
g− =

∫
g.

The monotonicity property is also a consequence of the linearity of the in-
tegral, the fact that f ≤ g a.e. implies 0 ≤ g − f a.e. and Proposition 8.19.

Definition 8.29. A measurable function f : X → C is integrable if∫
X
|f | dµ <∞. Analogously to the real case, let

L1 (µ; C) :=
{
f : X → C : f is measurable and

∫
X

|f | dµ <∞
}
.

denote the complex valued integrable functions. Because, max (|Re f | , |Im f |) ≤
|f | ≤

√
2 max (|Re f | , |Im f |) ,

∫
|f | dµ <∞ iff∫

|Re f | dµ+
∫
|Im f | dµ <∞.

For f ∈ L1 (µ; C) define∫
f dµ =

∫
Re f dµ+ i

∫
Im f dµ.

It is routine to show the integral is still linear on L1 (µ; C) (prove!). In the
remainder of this section, let L1 (µ) be either L1 (µ; C) or L1 (µ; R) . If A ∈ B
and f ∈ L1 (µ; C) or f : X → [0,∞] is a measurable function, let∫

A

fdµ :=
∫

X

1Afdµ.

Proposition 8.30. Suppose that f ∈ L1 (µ; C) , then∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ∫
X

|f | dµ. (8.7)

Proof. Start by writing
∫

X
f dµ = Reiθ with R ≥ 0. We may assume that

R =
∣∣∫

X
fdµ

∣∣ > 0 since otherwise there is nothing to prove. Since

R = e−iθ

∫
X

f dµ =
∫

X

e−iθf dµ =
∫

X

Re
(
e−iθf

)
dµ+ i

∫
X

Im
(
e−iθf

)
dµ,

it must be that
∫

X
Im
[
e−iθf

]
dµ = 0. Using the monotonicity in Proposition

8.19, ∣∣∣∣∫
X

fdµ

∣∣∣∣ = ∫
X

Re
(
e−iθf

)
dµ ≤

∫
X

∣∣Re
(
e−iθf

)∣∣ dµ ≤ ∫
X

|f | dµ.
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Proposition 8.31. Let f, g ∈ L1 (µ) , then

1. The set {f 6= 0} is σ – finite, in fact {|f | ≥ 1
n} ↑ {f 6= 0} and µ(|f | ≥

1
n ) <∞ for all n.

2. The following are equivalent
a)
∫

E
f =

∫
E
g for all E ∈ B

b)
∫
X

|f − g| = 0

c) f = g a.e.

Proof. 1. By Chebyshev’s inequality, Lemma 8.13,

µ(|f | ≥ 1
n

) ≤ n

∫
X

|f | dµ <∞

for all n.
2. (a) =⇒ (c) Notice that∫

E

f =
∫

E

g ⇔
∫

E

(f − g) = 0

for all E ∈ B. Taking E = {Re(f − g) > 0} and using 1E Re(f − g) ≥ 0, we
learn that

0 = Re
∫

E

(f − g)dµ =
∫

1E Re(f − g) =⇒ 1E Re(f − g) = 0 a.e.

This implies that 1E = 0 a.e. which happens iff

µ ({Re(f − g) > 0}) = µ(E) = 0.

Similar µ(Re(f−g) < 0) = 0 so that Re(f−g) = 0 a.e. Similarly, Im(f−g) = 0
a.e and hence f − g = 0 a.e., i.e. f = g a.e. (c) =⇒ (b) is clear and so is (b)
=⇒ (a) since ∣∣∣∣∫

E

f −
∫

E

g

∣∣∣∣ ≤ ∫ |f − g| = 0.

Definition 8.32. Let (X,B, µ) be a measure space and L1(µ) = L1(X,B, µ)
denote the set of L1 (µ) functions modulo the equivalence relation; f ∼ g iff
f = g a.e. We make this into a normed space using the norm

‖f − g‖L1 =
∫
|f − g| dµ

and into a metric space using ρ1(f, g) = ‖f − g‖L1 .

Warning: in the future we will often not make much of a distinction
between L1(µ) and L1 (µ) . On occasion this can be dangerous and this danger
will be pointed out when necessary.
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Remark 8.33. More generally we may define Lp(µ) = Lp(X,B, µ) for p ∈
[1,∞) as the set of measurable functions f such that∫

X

|f |p dµ <∞

modulo the equivalence relation; f ∼ g iff f = g a.e.

We will see in later that

‖f‖Lp =
(∫

|f |p dµ
)1/p

for f ∈ Lp(µ)

is a norm and (Lp(µ), ‖·‖Lp) is a Banach space in this norm.

Theorem 8.34 (Dominated Convergence Theorem). Suppose fn, gn, g ∈
L1 (µ) , fn → f a.e., |fn| ≤ gn ∈ L1 (µ) , gn → g a.e. and

∫
X
gndµ→

∫
X
gdµ.

Then f ∈ L1 (µ) and ∫
X

fdµ = lim
h→∞

∫
X

fndµ.

(In most typical applications of this theorem gn = g ∈ L1 (µ) for all n.)

Proof. Notice that |f | = limn→∞ |fn| ≤ limn→∞ |gn| ≤ g a.e. so that
f ∈ L1 (µ) . By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,∫

X

(g ± f)dµ =
∫

X

lim inf
n→∞

(gn ± fn) dµ ≤ lim inf
n→∞

∫
X

(gn ± fn) dµ

= lim
n→∞

∫
X

gndµ+ lim inf
n→∞

(
±
∫

X

fndµ

)
=
∫

X

gdµ+ lim inf
n→∞

(
±
∫

X

fndµ

)
Since lim infn→∞(−an) = − lim sup

n→∞
an, we have shown,

∫
X

gdµ±
∫

X

fdµ ≤
∫

X

gdµ+

{
lim infn→∞

∫
X
fndµ

− lim sup
n→∞

∫
X
fndµ

and therefore

lim sup
n→∞

∫
X

fndµ ≤
∫

X

fdµ ≤ lim inf
n→∞

∫
X

fndµ.

This shows that lim
n→∞

∫
X
fndµ exists and is equal to

∫
X
fdµ.
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Exercise 8.4. Give another proof of Proposition 8.30 by first proving Eq.
(8.7) with f being a simple function in which case the triangle inequality for
complex numbers will do the trick. Then use the approximation Theorem 6.32
along with the dominated convergence Theorem 8.34 to handle the general
case.

Proposition 8.35. Suppose that (Ω,B, P ) is a probability space and {Zj}n
j=1

are independent integrable random variables. Then
∏n

j=1 Zj is also integrable
and

E

 n∏
j=1

Zj

 =
n∏

j=1

EZj .

Proof. By definition, {Zj}n
j=1 are independent iff {σ (Zj)}n

j=1 are inde-
pendent. Then as we have seen in a homework problem,

E [1A1 . . . 1An ] = E [1A1 ] . . .E [1An ] when Ai ∈ σ (Zi) for each i.

By multi-linearity it follows that

E [ϕ1 . . . ϕn] = E [ϕ1] . . .E [ϕn]

whenever ϕi are bounded σ (Zi) – measurable simple functions. By approx-
imation by simple functions and the monotone and dominated convergence
theorem,

E [Y1 . . . Yn] = E [Y1] . . .E [Yn]

whenever Yi is σ (Zi) – measurable and either Yi ≥ 0 or Yi is bounded. Taking
Yi = |Zi| then implies that

E

 n∏
j=1

|Zj |

 =
n∏

j=1

E |Zj | <∞

so that
∏n

j=1 Zj is integrable. Moreover, for K > 0, let ZK
i = Zi1|Zi|≤K , then

E

 n∏
j=1

Zj1|Zj |≤K

 =
n∏

j=1

E
[
Zj1|Zj |≤K

]
.

Now apply the dominated convergence theorem, n+ 1 – times, to conclude

E

 n∏
j=1

Zj

 = lim
K→∞

E

 n∏
j=1

Zj1|Zj |≤K

 =
n∏

j=1

lim
K→∞

E
[
Zj1|Zj |≤K

]
=

n∏
j=1

EZj .

The dominating functions used here are
∏n

j=1 |Zj | , and {|Zj |}n
j=1 respectively.
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Corollary 8.36. Let {fn}∞n=1 ⊂ L1 (µ) be a sequence such that
∑∞

n=1 ‖fn‖L1(µ) <

∞, then
∑∞

n=1 fn is convergent a.e. and∫
X

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

∫
X

fndµ.

Proof. The condition
∑∞

n=1 ‖fn‖L1(µ) < ∞ is equivalent to
∑∞

n=1 |fn| ∈
L1 (µ) . Hence

∑∞
n=1 fn is almost everywhere convergent and if SN :=∑N

n=1 fn, then

|SN | ≤
N∑

n=1

|fn| ≤
∞∑

n=1

|fn| ∈ L1 (µ) .

So by the dominated convergence theorem,∫
X

( ∞∑
n=1

fn

)
dµ =

∫
X

lim
N→∞

SNdµ = lim
N→∞

∫
X

SNdµ

= lim
N→∞

N∑
n=1

∫
X

fndµ =
∞∑

n=1

∫
X

fndµ.

Example 8.37 (Integration of Power Series). Suppose R > 0 and {an}∞n=0 is a
sequence of complex numbers such that

∑∞
n=0 |an| rn < ∞ for all r ∈ (0, R).

Then∫ β

α

( ∞∑
n=0

anx
n

)
dm(x) =

∞∑
n=0

an

∫ β

α

xndm(x) =
∞∑

n=0

an
βn+1 − αn+1

n+ 1

for all −R < α < β < R. Indeed this follows from Corollary 8.36 since

∞∑
n=0

∫ β

α

|an| |x|n dm(x) ≤
∞∑

n=0

(∫ |β|
0

|an| |x|n dm(x) +
∫ |α|

0

|an| |x|n dm(x)

)

≤
∞∑

n=0

|an|
|β|n+1 + |α|n+1

n+ 1
≤ 2r

∞∑
n=0

|an| rn <∞

where r = max(|β| , |α|).

Corollary 8.38 (Differentiation Under the Integral). Suppose that J ⊂
R is an open interval and f : J ×X → C is a function such that

1. x→ f(t, x) is measurable for each t ∈ J.
2. f(t0, ·) ∈ L1(µ) for some t0 ∈ J.
3. ∂f

∂t (t, x) exists for all (t, x).
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4. There is a function g ∈ L1 (µ) such that
∣∣∣∂f

∂t (t, ·)
∣∣∣ ≤ g for each t ∈ J.

Then f(t, ·) ∈ L1 (µ) for all t ∈ J (i.e.
∫

X
|f(t, x)| dµ(x) < ∞), t →∫

X
f(t, x)dµ(x) is a differentiable function on J and

d

dt

∫
X

f(t, x)dµ(x) =
∫

X

∂f

∂t
(t, x)dµ(x).

Proof. By considering the real and imaginary parts of f separately, we
may assume that f is real. Also notice that

∂f

∂t
(t, x) = lim

n→∞
n(f(t+ n−1, x)− f(t, x))

and therefore, for x → ∂f
∂t (t, x) is a sequential limit of measurable functions

and hence is measurable for all t ∈ J. By the mean value theorem,

|f(t, x)− f(t0, x)| ≤ g(x) |t− t0| for all t ∈ J (8.8)

and hence

|f(t, x)| ≤ |f(t, x)− f(t0, x)|+ |f(t0, x)| ≤ g(x) |t− t0|+ |f(t0, x)| .

This shows f(t, ·) ∈ L1 (µ) for all t ∈ J. Let G(t) :=
∫

X
f(t, x)dµ(x), then

G(t)−G(t0)
t− t0

=
∫

X

f(t, x)− f(t0, x)
t− t0

dµ(x).

By assumption,

lim
t→t0

f(t, x)− f(t0, x)
t− t0

=
∂f

∂t
(t, x) for all x ∈ X

and by Eq. (8.8),∣∣∣∣f(t, x)− f(t0, x)
t− t0

∣∣∣∣ ≤ g(x) for all t ∈ J and x ∈ X.

Therefore, we may apply the dominated convergence theorem to conclude

lim
n→∞

G(tn)−G(t0)
tn − t0

= lim
n→∞

∫
X

f(tn, x)− f(t0, x)
tn − t0

dµ(x)

=
∫

X

lim
n→∞

f(tn, x)− f(t0, x)
tn − t0

dµ(x)

=
∫

X

∂f

∂t
(t0, x)dµ(x)

for all sequences tn ∈ J \ {t0} such that tn → t0. Therefore, Ġ(t0) =
limt→t0

G(t)−G(t0)
t−t0

exists and

Ġ(t0) =
∫

X

∂f

∂t
(t0, x)dµ(x).
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Example 8.39. Recall from Example 8.8 that

λ−1 =
∫

[0,∞)

e−λxdm(x) for all λ > 0.

Let ε > 0. For λ ≥ 2ε > 0 and n ∈ N there exists Cn(ε) <∞ such that

0 ≤
(
− d

dλ

)n

e−λx = xne−λx ≤ C(ε)e−εx.

Using this fact, Corollary 8.38 and induction gives

n!λ−n−1 =
(
− d

dλ

)n

λ−1 =
∫

[0,∞)

(
− d

dλ

)n

e−λxdm(x)

=
∫

[0,∞)

xne−λxdm(x).

That is n! = λn
∫
[0,∞)

xne−λxdm(x). Recall that

Γ (t) :=
∫

[0,∞)

xt−1e−xdx for t > 0.

(The reader should check that Γ (t) < ∞ for all t > 0.) We have just shown
that Γ (n+ 1) = n! for all n ∈ N.

Remark 8.40. Corollary 8.38 may be generalized by allowing the hypothesis
to hold for x ∈ X \ E where E ∈ B is a fixed null set, i.e. E must be
independent of t. Consider what happens if we formally apply Corollary 8.38
to g(t) :=

∫∞
0

1x≤tdm(x),

ġ(t) =
d

dt

∫ ∞
0

1x≤tdm(x) ?=
∫ ∞

0

∂

∂t
1x≤tdm(x).

The last integral is zero since ∂
∂t1x≤t = 0 unless t = x in which case it is

not defined. On the other hand g(t) = t so that ġ(t) = 1. (The reader should
decide which hypothesis of Corollary 8.38 has been violated in this example.)

8.4 Densities and Change of Variables Theorems

Exercise 8.5. Let (X,M, µ) be a measure space and ρ : X → [0,∞] be a
measurable function. For A ∈M, set ν(A) :=

∫
A
ρdµ.

1. Show ν : M→ [0,∞] is a measure.
2. Let f : X → [0,∞] be a measurable function, show∫

X

fdν =
∫

X

fρdµ. (8.9)

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.
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3. Show that a measurable function f : X → C is in L1(ν) iff |f | ρ ∈ L1(µ)
and if f ∈ L1(ν) then Eq. (8.9) still holds.

Solution to Exercise (8.5). The fact that ν is a measure follows easily from
Corollary 8.16. Clearly Eq. (8.9) holds when f = 1A by definition of ν. It then
holds for positive simple functions, f, by linearity. Finally for general f ∈ L+,
choose simple functions, ϕn, such that 0 ≤ ϕn ↑ f. Then using MCT twice we
find∫

X

fdν = lim
n→∞

∫
X

ϕndν = lim
n→∞

∫
X

ϕnρdµ =
∫

X

lim
n→∞

ϕnρdµ =
∫

X

fρdµ.

By what we have just proved, for all f : X → C we have∫
X

|f | dν =
∫

X

|f | ρdµ

so that f ∈ L1 (µ) iff |f | ρ ∈ L1(µ). If f ∈ L1 (µ) and f is real,∫
X

fdν =
∫

X

f+dν −
∫

X

f−dν =
∫

X

f+ρdµ−
∫

X

f−ρdµ

=
∫

X

[f+ρ− f−ρ] dµ =
∫

X

fρdµ.

The complex case easily follows from this identity.

Notation 8.41 It is customary to informally describe ν defined in Exercise
8.5 by writing dν = ρdµ.

Exercise 8.6. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞]
by ν(A) := µ(f−1(A)) for all A ∈ F .

1. Show ν is a measure. (We will write ν = f∗µ or ν = µ ◦ f−1.)
2. Show ∫

Y

gdν =
∫

X

(g ◦ f) dµ (8.10)

for all measurable functions g : Y → [0,∞]. Hint: see the hint from
Exercise 8.5.

3. Show a measurable function g : Y → C is in L1(ν) iff g ◦ f ∈ L1(µ) and
that Eq. (8.10) holds for all g ∈ L1(ν).

Solution to Exercise (8.6). The fact that ν is a measure is a direct check
which will be left to the reader. The key computation is to observe that if
A ∈ F and g = 1A, then∫

Y

gdν =
∫

Y

1Adν = ν (A) = µ
(
f−1 (A)

)
=
∫

X

1f−1(A)dµ.
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Moreover, 1f−1(A) (x) = 1 iff x ∈ f−1 (A) which happens iff f (x) ∈ A and
hence 1f−1(A) (x) = 1A (f (x)) = g (f (x)) for all x ∈ X. Therefore we have∫

Y

gdν =
∫

X

(g ◦ f) dµ

whenever g is a characteristic function. This identity now extends to non-
negative simple functions by linearity and then to all non-negative measurable
functions by MCT. The statements involving complex functions follows as in
the solution to Exercise 8.5.

Remark 8.42. If X is a random variable on a probability space, (Ω,B, P ) , and
F (x) := P (X ≤ x) . Then

E [f (X)] =
∫

R
f (x) dF (x) (8.11)

where dF (x) is shorthand for dµF (x) and µF is the unique probability mea-
sure on (R,BR) such that µF ((−∞, x]) = F (x) for all x ∈ R. Moreover if
F : R → [0, 1] happens to be C1-function, then

dµF (x) = F ′ (x) dm (x) (8.12)

and Eq. (8.11) may be written as

E [f (X)] =
∫

R
f (x)F ′ (x) dm (x) . (8.13)

To verify Eq. (8.12) it suffices to observe, by the fundamental theorem of
calculus, that

µF ((a, b]) = F (b)− F (a) =
∫ b

a

F ′ (x) dx =
∫

(a,b]

F ′dm.

From this equation we may deduce that µF (A) =
∫

A
F ′dm for all A ∈ BR.

Exercise 8.7. Let F : R → R be a C1-function such that F ′(x) > 0 for all
x ∈ R and limx→±∞ F (x) = ±∞. (Notice that F is strictly increasing so that
F−1 : R → R exists and moreover, by the inverse function theorem that F−1

is a C1 – function.) Let m be Lebesgue measure on BR and

ν(A) = m(F (A)) = m(
(
F−1

)−1
(A)) =

(
F−1
∗ m

)
(A)

for all A ∈ BR. Show dν = F ′dm. Use this result to prove the change of
variable formula, ∫

R
h ◦ F · F ′dm =

∫
R
hdm (8.14)

which is valid for all Borel measurable functions h : R → [0,∞].
Hint: Start by showing dν = F ′dm on sets of the form A = (a, b] with

a, b ∈ R and a < b. Then use the uniqueness assertions in Exercise 5.1 to
conclude dν = F ′dm on all of BR. To prove Eq. (8.14) apply Exercise 8.6 with
g = h ◦ F and f = F−1.
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Solution to Exercise (8.7). Let dµ = F ′dm and A = (a, b], then

ν((a, b]) = m(F ((a, b])) = m((F (a), F (b)]) = F (b)− F (a)

while

µ((a, b]) =
∫

(a,b]

F ′dm =
∫ b

a

F ′(x)dx = F (b)− F (a).

It follows that both µ = ν = µF – where µF is the measure described in
Proposition 5.7. By Exercise 8.6 with g = h ◦ F and f = F−1, we find∫

R
h ◦ F · F ′dm =

∫
R
h ◦ Fdν =

∫
R
h ◦ Fd

(
F−1
∗ m

)
=
∫

R
(h ◦ F ) ◦ F−1dm

=
∫

R
hdm.

This result is also valid for all h ∈ L1(m).

Lemma 8.43. Suppose that X is a standard normal random variable, i.e.

P (X ∈ A) =
1√
2π

∫
A

e−x2/2dx for all A ∈ BR,

then
P (X ≥ x) ≤ 1

x

1√
2π
e−x2/2 (8.15)

and1

lim
x→∞

P (X ≥ x)
1
x

1√
2π
e−x2/2

= 1. (8.16)

Proof. We begin by observing that

P (X ≥ x) =
∫ ∞

x

1√
2π
e−y2/2dy ≤

∫ ∞
x

1√
2π

y

x
e−y2/2dy = − 1√

2π
1
x
e−y2/2|−∞x

from which Eq. (8.15) follows. To prove Eq. (8.16), let α > 1, then

P (X ≥ x) =
∫ ∞

x

1√
2π
e−y2/2dy ≥

∫ αx

x

1√
2π
e−y2/2dy

≥
∫ αx

x

1√
2π

y

αx
e−y2/2dy = − 1√

2π
1
αx

e−y2/2|αx
x

=
1√
2π

1
αx

[
e−x2/2 − e−α2x2/2

]
.

1 See, Gordon, Robert D. Values of Mills’ ratio of area to bounding ordinate and
of the normal probability integral for large values of the argument. Ann. Math.
Statistics 12, (1941). 364–366. (Reviewer: Z. W. Birnbaum) 62.0X
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Hence

P (X ≥ x)
1
x

1√
2π
e−x2/2

≥

∫ αx

x
1√
2π
e−y2/2dy

1
x

1√
2π
e−x2/2

≥ 1
α

[
e−x2/2 − e−α2x2/2

e−x2/2

]
=

1
α

[
1− e−(α2−1)x2/2

]
.

From this equation it follows that

lim inf
x→∞

P (X ≥ x)
1
x

1√
2π
e−x2/2

≥ 1
α
.

Since α > 1 was arbitrary, it follows that

lim inf
x→∞

P (X ≥ x)
1
x

1√
2π
e−x2/2

= 1.

Since Eq. (8.15) implies that

lim sup
x→∞

P (X ≥ x)
1
x

1√
2π
e−x2/2

= 1

we are done.
Additional information: Suppose that we now take

α = 1 + x−p =
1 + xp

xp
.

Then (
α2 − 1

)
x2 =

(
x−2p + 2x−p

)
x2 =

(
x2−2p + 2x2−p

)
.

Hence if p = 2− δ, we find(
α2 − 1

)
x2 =

(
x2(−1+δ) + 2xδ

)
≤ 3xδ

so that

1 ≥ P (X ≥ x)
1
x

1√
2π
e−x2/2

≥ 1
1 + x−(2−δ)

[
1− e−3xδ/2

]
for x sufficiently large.

Example 8.44. Let {Xn}∞n=1 be i.i.d. standard normal random variables. Then

P (Xn ≥ αcn) ∼ 1
αcn

e−α2c2
n/2.

Now, suppose that we take cn so that

e−c2
n/2 =

C

n
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or equivalently,
c2n/2 = ln (n/C)

or
cn =

√
2 ln (n)− 2 ln (C).

(We now take C = 1.) It then follows that

P (Xn ≥ αcn) ∼ 1
α
√

2 ln (n)
e−α2 ln(n) =

1
α
√

2 ln (n)
1

n−α2

and therefore
∞∑

n=1

P (Xn ≥ αcn) = ∞ if α < 1

and
∞∑

n=1

P (Xn ≥ αcn) <∞ if α > 1.

Hence an application of Proposition 7.35 shows

lim sup
n→∞

Xn√
2 lnn

= 1 a.s..

8.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 8.45. Suppose that (X,B, µ) is a complete measure space2 and
f : X → R is measurable.

1. If g : X → R is a function such that f(x) = g(x) for µ – a.e. x, then g is
measurable.

2. If fn : X → R are measurable and f : X → R is a function such that
limn→∞ fn = f, µ - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) 6= g(x)} which is assumed to be in B and
µ(E) = 0. Then g = 1Ecf + 1Eg since f = g on Ec. Now 1Ecf is measurable
so g will be measurable if we show 1Eg is measurable. For this consider,

(1Eg)−1(A) =
{
Ec ∪ (1Eg)−1(A \ {0}) if 0 ∈ A
(1Eg)−1(A) if 0 /∈ A (8.17)

Since (1Eg)−1(B) ⊂ E if 0 /∈ B and µ(E) = 0, it follow by completeness
of B that (1Eg)−1(B) ∈ B if 0 /∈ B. Therefore Eq. (8.17) shows that 1Eg is
2 Recall this means that if N ⊂ X is a set such that N ⊂ A ∈ M and µ(A) = 0,

then N ∈M as well.
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measurable. 2. Let E = {x : lim
n→∞

fn(x) 6= f(x)} by assumption E ∈ B and

µ(E) = 0. Since g := 1Ef = limn→∞ 1Ecfn, g is measurable. Because f = g
on Ec and µ(E) = 0, f = g a.e. so by part 1. f is also measurable.

The above results are in general false if (X,B, µ) is not complete. For
example, let X = {0, 1, 2}, B = {{0}, {1, 2}, X, ϕ} and µ = δ0. Take g(0) =
0, g(1) = 1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 8.46. Suppose that (X,M, µ) is a measure space and M̄ is the com-
pletion of M relative to µ and µ̄ is the extension of µ to M̄. Then a function
f : X → R is (M̄,B = BR) – measurable iff there exists a function g : X → R
that is (M,B) – measurable such E = {x : f(x) 6= g(x)} ∈ M̄ and µ̄ (E) = 0,
i.e. f(x) = g(x) for µ̄ – a.e. x. Moreover for such a pair f and g, f ∈ L1(µ̄)
iff g ∈ L1(µ) and in which case∫

X

fdµ̄ =
∫

X

gdµ.

Proof. Suppose first that such a function g exists so that µ̄(E) = 0. Since
g is also (M̄,B) – measurable, we see from Proposition 8.45 that f is (M̄,B)
– measurable. Conversely if f is (M̄,B) – measurable, by considering f± we
may assume that f ≥ 0. Choose (M̄,B) – measurable simple function ϕn ≥ 0
such that ϕn ↑ f as n→∞. Writing

ϕn =
∑

ak1Ak

with Ak ∈ M̄, we may choose Bk ∈M such that Bk ⊂ Ak and µ̄(Ak\Bk) = 0.
Letting

ϕ̃n :=
∑

ak1Bk

we have produced a (M,B) – measurable simple function ϕ̃n ≥ 0 such that
En := {ϕn 6= ϕ̃n} has zero µ̄ – measure. Since µ̄ (∪nEn) ≤

∑
n µ̄ (En) , there

exists F ∈M such that ∪nEn ⊂ F and µ(F ) = 0. It now follows that

1F · ϕ̃n = 1F · ϕn ↑ g := 1F f as n→∞.

This shows that g = 1F f is (M,B) – measurable and that {f 6= g} ⊂ F has µ̄
– measure zero. Since f = g, µ̄ – a.e.,

∫
X
fdµ̄ =

∫
X
gdµ̄ so to prove Eq. (8.18)

it suffices to prove ∫
X

gdµ̄ =
∫

X

gdµ. (8.18)

Because µ̄ = µ on M, Eq. (8.18) is easily verified for non-negative M –
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 6.32 it holds for all M – measurable functions
g : X → [0,∞]. The rest of the assertions follow in the standard way by
considering (Re g)± and (Im g)± .
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8.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let −∞ < a < b < ∞ and f : [a, b] → R be a
bounded function. A partition of [a, b] is a finite subset π ⊂ [a, b] containing
{a, b}. To each partition

π = {a = t0 < t1 < · · · < tn = b} (8.19)

of [a, b] let
mesh(π) := max{|tj − tj−1| : j = 1, . . . , n},

Mj = sup{f(x) : tj ≤ x ≤ tj−1}, mj = inf{f(x) : tj ≤ x ≤ tj−1}

Gπ = f(a)1{a} +
n∑
1

Mj1(tj−1,tj ], gπ = f(a)1{a} +
n∑
1

mj1(tj−1,tj ] and

Sπf =
∑

Mj(tj − tj−1) and sπf =
∑

mj(tj − tj−1).

Notice that

Sπf =
∫ b

a

Gπdm and sπf =
∫ b

a

gπdm.

The upper and lower Riemann integrals are defined respectively by∫ b

a

f(x)dx = inf
π
Sπf and

∫ a

b

f(x)dx = sup
π

sπf.

Definition 8.47. The function f is Riemann integrable iff
∫ b

a
f =

∫ b

a
f ∈ R

and which case the Riemann integral
∫ b

a
f is defined to be the common value:

∫ b

a

f(x)dx =
∫ b

a

f(x)dx =
∫ b

a

f(x)dx.

The proof of the following Lemma is left to the reader as Exercise 8.18.

Lemma 8.48. If π′ and π are two partitions of [a, b] and π ⊂ π′ then

Gπ ≥ Gπ′ ≥ f ≥ gπ′ ≥ gπ and
Sπf ≥ Sπ′f ≥ sπ′f ≥ sπf.

There exists an increasing sequence of partitions {πk}∞k=1 such that mesh(πk) ↓
0 and

Sπk
f ↓

∫ b

a

f and sπk
f ↑

∫ b

a

f as k →∞.



146 8 Integration Theory

If we let
G := lim

k→∞
Gπk

and g := lim
k→∞

gπk
(8.20)

then by the dominated convergence theorem,∫
[a,b]

gdm = lim
k→∞

∫
[a,b]

gπk
= lim

k→∞
sπk

f =
∫ b

a

f(x)dx (8.21)

and∫
[a,b]

Gdm = lim
k→∞

∫
[a,b]

Gπk
= lim

k→∞
Sπk

f =
∫ b

a

f(x)dx. (8.22)

Notation 8.49 For x ∈ [a, b], let

H(x) = lim sup
y→x

f(y) := lim
ε↓0

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} and

h(x) = lim inf
y→x

f(y) := lim
ε↓0

inf {f(y) : |y − x| ≤ ε, y ∈ [a, b]}.

Lemma 8.50. The functions H,h : [a, b] → R satisfy:

1. h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b] and h(x) = H(x) iff f is continuous
at x.

2. If {πk}∞k=1 is any increasing sequence of partitions such that mesh(πk) ↓ 0
and G and g are defined as in Eq. (8.20), then

G(x) = H(x) ≥ f(x) ≥ h(x) = g(x) ∀ x /∈ π := ∪∞k=1πk. (8.23)

(Note π is a countable set.)
3. H and h are Borel measurable.

Proof. Let Gk := Gπk
↓ G and gk := gπk

↑ g.

1. It is clear that h(x) ≤ f(x) ≤ H(x) for all x and H(x) = h(x) iff lim
y→x

f(y)

exists and is equal to f(x). That is H(x) = h(x) iff f is continuous at x.
2. For x /∈ π,

Gk(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ gk(x) ∀ k

and letting k →∞ in this equation implies

G(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ g(x) ∀ x /∈ π. (8.24)

Moreover, given ε > 0 and x /∈ π,

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} ≥ Gk(x)

for all k large enough, since eventually Gk(x) is the supremum of f(y)
over some interval contained in [x−ε, x+ε]. Again letting k →∞ implies

sup
|y−x|≤ε

f(y) ≥ G(x) and therefore, that
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H(x) = lim sup
y→x

f(y) ≥ G(x)

for all x /∈ π. Combining this equation with Eq. (8.24) then impliesH(x) =
G(x) if x /∈ π. A similar argument shows that h(x) = g(x) if x /∈ π and
hence Eq. (8.23) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set π,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 8.51. Let f : [a, b] → R be a bounded function. Then∫ b

a

f =
∫

[a,b]

Hdm and
∫ b

a

f =
∫

[a,b]

hdm (8.25)

and the following statements are equivalent:

1. H(x) = h(x) for m -a.e. x,
2. the set

E := {x ∈ [a, b] : f is discontinuous at x}
is an m̄ – null set.

3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measurable3, i.e. f is L/B –
measurable where L is the Lebesgue σ – algebra and B is the Borel σ – algebra
on [a, b]. Moreover if we let m̄ denote the completion of m, then∫

[a,b]

Hdm =
∫ b

a

f(x)dx =
∫

[a,b]

fdm̄ =
∫

[a,b]

hdm. (8.26)

Proof. Let {πk}∞k=1 be an increasing sequence of partitions of [a, b] as
described in Lemma 8.48 and let G and g be defined as in Lemma 8.50. Since
m(π) = 0, H = G a.e., Eq. (8.25) is a consequence of Eqs. (8.21) and (8.22).
From Eq. (8.25), f is Riemann integrable iff∫

[a,b]

Hdm =
∫

[a,b]

hdm

and because h ≤ f ≤ H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {x : H(x) 6= h(x)}, this last condition is equivalent to E being a m – null
set. In light of these results and Eq. (8.23), the remaining assertions including
Eq. (8.26) are now consequences of Lemma 8.46.

Notation 8.52 In view of this theorem we will often write
∫ b

a
f(x)dx for∫ b

a
fdm.

3 f need not be Borel measurable.
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8.7 Exercises

Exercise 8.8. Let µ be a measure on an algebra A ⊂ 2X , then µ(A)+µ(B) =
µ(A ∪B) + µ(A ∩B) for all A,B ∈ A.

Exercise 8.9 (From problem 12 on p. 27 of Folland.). Let (X,M, µ)
be a finite measure space and for A,B ∈ M let ρ(A,B) = µ(A∆B) where
A∆B = (A \B) ∪ (B \A) . It is clear that ρ (A,B) = ρ (B,A) . Show:

1. ρ satisfies the triangle inequality:

ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈M.

2. Define A ∼ B iff µ(A∆B) = 0 and notice that ρ (A,B) = 0 iff A ∼ B.
Show “∼ ” is an equivalence relation.

3. Let M/ ∼ denote M modulo the equivalence relation, ∼, and let
[A] := {B ∈M : B ∼ A} . Show that ρ̄ ([A] , [B]) := ρ (A,B) is gives a
well defined metric on M/ ∼ .

4. Similarly show µ̃ ([A]) = µ (A) is a well defined function on M/ ∼ and
show µ̃ : (M/ ∼) → R+ is ρ̄ – continuous.

Exercise 8.10. Suppose that µn : M → [0,∞] are measures on M for n ∈
N. Also suppose that µn(A) is increasing in n for all A ∈ M. Prove that
µ : M→ [0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Exercise 8.11. Now suppose that Λ is some index set and for each λ ∈ Λ,
µλ : M → [0,∞] is a measure on M. Define µ : M → [0,∞] by µ(A) =∑

λ∈Λ µλ(A) for each A ∈M. Show that µ is also a measure.

Exercise 8.12. Let (X,M, µ) be a measure space and {An}∞n=1 ⊂M, show

µ({An a.a.}) ≤ lim inf
n→∞

µ (An)

and if µ (∪m≥nAm) <∞ for some n, then

µ({An i.o.}) ≥ lim sup
n→∞

µ (An) .

Exercise 8.13 (Folland 2.13 on p. 52.). Suppose that {fn}∞n=1 is a se-
quence of non-negative measurable functions such that fn → f pointwise and

lim
n→∞

∫
fn =

∫
f <∞.

Then ∫
E

f = lim
n→∞

∫
E

fn

for all measurable sets E ∈M. The conclusion need not hold if limn→∞
∫
fn =∫

f. Hint: “Fatou times two.”
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Exercise 8.14. Give examples of measurable functions {fn} on R such that
fn decreases to 0 uniformly yet

∫
fndm = ∞ for all n. Also give an example

of a sequence of measurable functions {gn} on [0, 1] such that gn → 0 while∫
gndm = 1 for all n.

Exercise 8.15. Suppose {an}∞n=−∞ ⊂ C is a summable sequence (i.e.∑∞
n=−∞ |an| < ∞), then f(θ) :=

∑∞
n=−∞ ane

inθ is a continuous function
for θ ∈ R and

an =
1
2π

∫ π

−π

f(θ)e−inθdθ.

Exercise 8.16. For any function f ∈ L1 (m) , show x ∈ R →
∫
(−∞,x]

f (t) dm (t)
is continuous in x. Also find a finite measure, µ, on BR such that x →∫
(−∞,x]

f (t) dµ (t) is not continuous.

Exercise 8.17. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is
wrong by a factor of −1 and the sum is on k = 1 to ∞. In part (e), s should
be taken to be a. You may also freely use the Taylor series expansion

(1− z)−1/2 =
∞∑

n=0

(2n− 1)!!
2nn!

zn =
∞∑

n=0

(2n)!
4n (n!)2

zn for |z| < 1.

Exercise 8.18. Prove Lemma 8.48.

8.7.1 Laws of Large Numbers Exercises

For the rest of the problems of this section, let (Ω,B, P ) be a probability
space, {Xn}∞n=1 be a sequence if i.i.d. random variables, and Sn :=

∑n
k=1Xk.

If E |Xn| = E |X1| <∞ let

µ := EXn – be the mean of Xn,

if E
[
|Xn|2

]
= E

[
|X1|2

]
<∞, let

σ2 := E
[
(Xn − µ)2

]
= E

[
X2

n

]
− µ2 – be the standard deviation of Xn

and if E
[
|Xn|4

]
<∞, let

γ := E
[
|Xn − µ|4

]
.

Exercise 8.19 (A simple form of the Weak Law of Large Numbers).

Assume E
[
|X1|2

]
<∞. Show
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E
[
Sn

n

]
= µ,

E
(
Sn

n
− µ

)2

=
σ2

n
, and

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ > ε

)
≤ σ2

nε2

for all ε > 0 and n ∈ N.

Exercise 8.20 (A simple form of the Strong Law of Large Numbers).

Suppose now that E
[
|X1|4

]
<∞. Show for all ε > 0 and n ∈ N that

E

[(
Sn

n
− µ

)4
]

=
1
n4

(
nγ + 3n(n− 1)σ4

)
=

1
n2

[
n−1γ + 3

(
1− n−1

)
σ4
]

and use this along with Chebyshev’s inequality to show

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ > ε

)
≤
n−1γ + 3

(
1− n−1

)
σ4

ε4n2
.

Conclude from the last estimate and the first Borel Cantelli Lemma 8.22 that
limn→∞

Sn

n = µ a.s.
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Functional Forms of the π – λ Theorem

Notation 9.1 Let Ω be a set and H be a subset of the bounded real valued
functions on H. We say that H is closed under bounded convergence if;
for every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that |fn (ω)| ≤M for all ω ∈ Ω and n ∈ N,
2. f (ω) := limn→∞ fn (ω) exists for all ω ∈ Ω,

then f ∈ H. Similarly we say that H is closed under monotone con-
vergence if; for every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that 0 ≤ fn (ω) ≤M for all ω ∈ Ω and n ∈ N,
2. fn (ω) is increasing in n for all ω ∈ Ω,

then f := limn→∞ fn ∈ H.

Clearly if H is closed under bounded convergence then it is also closed
under monotone convergence.

Proposition 9.2. Let Ω be a set. Suppose that H is a vector subspace of
bounded real valued functions from Ω to R which is closed under mono-
tone convergence. Then H is closed under uniform convergence. as well, i.e.
{fn}∞n=1 ⊂ H with supn∈N supω∈Ω |fn (ω)| <∞ and fn → f, then f ∈ H.

Proof. Let us first assume that {fn}∞n=1 ⊂ H such that fn converges
uniformly to a bounded function, f : Ω → R. Let ‖f‖∞ := supω∈Ω |f (ω)| .
Let ε > 0 be given. By passing to a subsequence if necessary, we may assume
‖f − fn‖∞ ≤ ε2−(n+1). Let

gn := fn − δn +M

with δn and M constants to be determined shortly. We then have

gn+1 − gn = fn+1 − fn + δn − δn+1 ≥ −ε2−(n+1) + δn − δn+1.

Taking δn := ε2−n, then δn−δn+1 = ε2−n (1− 1/2) = ε2−(n+1) in which case
gn+1 − gn ≥ 0 for all n. By choosing M sufficiently large, we will also have
gn ≥ 0 for all n. Since H is a vector space containing the constant functions,
gn ∈ H and since gn ↑ f +M, it follows that f = f +M −M ∈ H. So we have
shown that H is closed under uniform convergence.
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Theorem 9.3 (Dynkin’s Multiplicative System Theorem). Suppose
that H is a vector subspace of bounded functions from Ω to R which con-
tains the constant functions and is closed under monotone convergence. If M
is multiplicative system (i.e. M is a subset of H which is closed under
pointwise multiplication), then H contains all bounded σ (M) – measurable
functions.

Proof. Let
L := {A ⊂ Ω : 1A ∈ H} .

We then have Ω ∈ L since 1Ω = 1 ∈ H, if A,B ∈ L with A ⊂ B then B\A ∈ L
since 1B\A = 1B − 1A ∈ H, and if An ∈ L with An ↑ A, then A ∈ L because
1An ∈ H and 1An ↑ 1A ∈ H. Therefore L is λ – system.

Let ϕn (x) = 0 ∨ [(nx) ∧ 1] (see Figure 9.1 below) so that ϕn (x) ↑ 1x>0.
Given f1, f2, . . . , fk ∈ M and a1, . . . , ak ∈ R, let

Fn :=
k∏

i=1

ϕn (fi − ai)

and let
M := sup

i=1,...,k
sup

ω
|fi (ω)− ai| .

By the Weierstrass approximation Theorem 4.23, we may find polynomial
functions, pl (x) such that pl → ϕn uniformly on [−M,M ] .Since pl is a poly-
nomial it is easily seen that

∏k
i=1 pl ◦ (fi − ai) ∈ H. Moreover,

k∏
i=1

pl ◦ (fi − ai) → Fn uniformly as l→∞,

from with it follows that Fn ∈ H for all n. Since,

Fn ↑
k∏

i=1

1{fi>ai} = 1∩k
i=1{fi>ai}

it follows that 1∩k
i=1{fi>ai} ∈ H or equivalently that ∩k

i=1 {fi > ai} ∈ L.
Therefore L contains the π – system, P, consisting of finite intersections of
sets of the form, {f > a} with f ∈ M and a ∈ R.

As a consequence of the above paragraphs and the π – λ Theorem 7.4, L
contains σ (P) = σ (M) . In particular it follows that 1A ∈ H for all A ∈ σ (M) .
Since any positive σ (M) – measurable function may be written as a increasing
limit of simple functions, it follows that H contains all non-negative bounded
σ (M) – measurable functions. Finally, since any bounded σ (M) – measurable
functions may be written as the difference of two such non-negative simple
functions, it follows that H contains all bounded σ (M) – measurable functions.
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Fig. 9.1. Plots of ϕ1, ϕ2 and ϕ3.

Corollary 9.4. Suppose that H is a vector subspace of bounded functions from
Ω to R which contains the constant functions and is closed under bounded con-
vergence. If M is a subset of H which is closed under pointwise multiplication,
then H contains all bounded σ (M) – measurable functions.

Proof. This is of course a direct consequence of Theorem 9.3. Moreover,
under the assumptions here, the proof of Theorem 9.3 simplifies in that Propo-
sition 9.2 is no longer needed. For fun, let us give another self-contained proof
of this corollary which does not even refer to the π – λ theorem.

In this proof, we will assume that H is the smallest subspace of bounded
functions on Ω which contains the constant functions, contains M, and is
closed under bounded convergence. (As usual such a space exists by taking
the intersection of all such spaces.)

For f ∈ H, let Hf := {g ∈ H : gf ∈ H} . The reader will now easily verify
that Hf is a linear subspace of H, 1 ∈ Hf , and Hf is closed under bounded
convergence. Moreover if f ∈ M, then M ⊂ Hf and so by the definition of
H, H = Hf , i.e. fg ∈ H for all f ∈ M and g ∈ H. Having proved this it now
follows for any f ∈ H that M ⊂ Hf and therefore fg ∈ H whenever f, g ∈ H,
i.e. H is now an algebra of functions.

We will now show that B := {A ⊂ Ω : 1A ∈ H} is σ – algebra. Using the
fact that H is an algebra containing constants, the reader will easily verify that
B is closed under complementation, finite intersections, and contains Ω, i.e.
B is an algebra. Using the fact that H is closed under bounded convergence,
it follows that B is closed under increasing unions and hence that B is σ –
algebra.

Since H is a vector space, H contains all B – measurable simple functions.
Since every bounded B – measurable function may be written as a bounded
limit of such simple functions, it follows that H contains all bounded B –
measurable functions. The proof is now completed by showing B contains
σ (M) as was done in second paragraph of the proof of Theorem 9.3.
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Exercise 9.1. Let (Ω,B, P ) be a probability space and X,Y : Ω → R be a
pair of random variables such that

E [f (X) g (Y )] = E [f (X) g (X)]

for every pair of bounded measurable functions, f, g : R → R. Show
P (X = Y ) = 1. Hint: Let H denote the bounded Borel measurable func-
tions, h : R2 → R such that

E [h (X,Y )] = E [h (X,X)] .

Use Corollary 9.4 to show H is the vector space of all bounded Borel measur-
able functions. Then take h (x, y) = 1{x=y}.

Corollary 9.5. Suppose H is a real subspace of bounded functions such that
1 ∈ H and H is closed under bounded convergence. If P ⊂ 2Ω is a multiplica-
tive class such that 1A ∈ H for all A ∈ P, then H contains all bounded σ(P)
– measurable functions.

Proof. Let M = {1} ∪ {1A : A ∈ P} . Then M ⊂ H is a multiplicative
system and the proof is completed with an application of Theorem 9.3.

Example 9.6. Suppose µ and ν are two probability measure on (Ω,B) such
that ∫

Ω

fdµ =
∫

Ω

fdν (9.1)

for all f in a multiplicative subset, M, of bounded measurable functions on
Ω. Then µ = ν on σ (M) . Indeed, apply Theorem 9.3 with H being the
bounded measurable functions on Ω such that Eq. (9.1) holds. In particular
if M = {1} ∪ {1A : A ∈ P} with P being a multiplicative class we learn that
µ = ν on σ (M) = σ (P) .

Corollary 9.7. The smallest subspace of real valued functions, H, on R which
contains Cc (R,R) (the space of continuous functions on R with compact sup-
port) is the collection of bounded Borel measurable function on R.

Proof. By a homework problem, for −∞ < a < b < ∞, 1(a,b] may be
written as a bounded limit of continuous functions with compact support
from which it follows that σ (Cc(R,R)) = BR. It is also easy to see that 1
is a bounded limit of functions in Cc(R,R) and hence 1 ∈ H. The corollary
now follows by an application of The result now follows by an application of
Theorem 9.3 with M := Cc(R,R).

For the rest of this chapter, recall for p ∈ [1,∞) that Lp(µ) = Lp(X,B, µ) is
the set of measurable functions f : Ω → R such that ‖f‖Lp :=

(∫
|f |p dµ

)1/p
<

∞. It is easy to see that ‖λf‖p = |λ| ‖f‖p for all λ ∈ R and we will show below
that

‖f + g‖p ≤ ‖f‖p + ‖g‖p for all f, g ∈ Lp (µ) ,

i.e. ‖·‖p satisfies the triangle inequality.
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Theorem 9.8 (Density Theorem). Let p ∈ [1,∞), (Ω,B, µ) be a measure
space and M be an algebra of bounded R – valued measurable functions such
that

1. M ⊂ Lp (µ,R) and σ (M) = B.
2. There exists ψk ∈ M such that ψk → 1 boundedly.

Then to every function f ∈ Lp (µ,R) , there exist ϕn ∈ M such that
limn→∞ ‖f − ϕn‖Lp(µ) = 0, i.e. M is dense in Lp (µ,R) .

Proof. Fix k ∈ N for the moment and let H denote those bounded B –
measurable functions, f : Ω → R, for which there exists {ϕn}∞n=1 ⊂ M such
that limn→∞ ‖ψkf − ϕn‖Lp(µ) = 0. A routine check shows H is a subspace of
the bounded measurable R – valued functions on Ω, 1 ∈ H, M ⊂ H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn ∈ H and fn → f boundedly. Then, by the dominated convergence theorem,
limn→∞ ‖ψk (f − fn)‖Lp(µ) = 0.1 (Take the dominating function to be g =
[2C |ψk|]p where C is a constant bounding all of the {|fn|}∞n=1 .) We may now
choose ϕn ∈ M such that ‖ϕn − ψkfn‖Lp(µ) ≤

1
n then

lim sup
n→∞

‖ψkf − ϕn‖Lp(µ) ≤ lim sup
n→∞

‖ψk (f − fn)‖Lp(µ)

+ lim sup
n→∞

‖ψkfn − ϕn‖Lp(µ) = 0 (9.2)

which implies f ∈ H.
An application of Dynkin’s Multiplicative System Theorem 9.3, now shows

H contains all bounded measurable functions on Ω. Let f ∈ Lp (µ) be given.
The dominated convergence theorem implies limk→∞

∥∥ψk1{|f |≤k}f − f
∥∥

Lp(µ)
=

0. (Take the dominating function to be g = [2C |f |]p where C is a bound on
all of the |ψk| .) Using this and what we have just proved, there exists ϕk ∈ M
such that ∥∥ψk1{|f |≤k}f − ϕk

∥∥
Lp(µ)

≤ 1
k
.

The same line of reasoning used in Eq. (9.2) now implies limk→∞ ‖f − ϕk‖Lp(µ) =
0.

Example 9.9. Let µ be a measure on (R,BR) such that µ ([−M,M ]) < ∞ for
all M < ∞. Then, Cc (R,R) (the space of continuous functions on R with
compact support) is dense in Lp (µ) for all 1 ≤ p < ∞. To see this, apply
Theorem 9.8 with M = Cc (R,R) and ψk := 1[−k,k].

Theorem 9.10. Suppose p ∈ [1,∞), A ⊂ B ⊂ 2Ω is an algebra such that
σ(A) = B and µ is σ – finite on A. Let S(A, µ) denote the measurable simple
functions, ϕ : Ω → R such {ϕ = y} ∈ A for all y ∈ R and µ ({ϕ 6= 0}) < ∞.
Then S(A, µ) is dense subspace of Lp(µ).
1 It is at this point that the proof would break down if p = ∞.
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Proof. Let M := S(A, µ). By assumption there exists Ωk ∈ A such that
µ(Ωk) < ∞ and Ωk ↑ Ω as k → ∞. If A ∈ A, then Ωk ∩ A ∈ A and
µ (Ωk ∩A) <∞ so that 1Ωk∩A ∈ M. Therefore 1A = limk→∞ 1Ωk∩A is σ (M)
– measurable for every A ∈ A. So we have shown that A ⊂ σ (M) ⊂ B and
therefore B = σ (A) ⊂ σ (M) ⊂ B, i.e. σ (M) = B. The theorem now follows
from Theorem 9.8 after observing ψk := 1Ωk

∈ M and ψk → 1 boundedly.

Theorem 9.11 (Separability of Lp – Spaces). Suppose, p ∈ [1,∞), A ⊂ B
is a countable algebra such that σ(A) = B and µ is σ – finite on A. Then Lp(µ)
is separable and

D = {
∑

aj1Aj
: aj ∈ Q + iQ, Aj ∈ A with µ(Aj) <∞}

is a countable dense subset.

Proof. It is left to reader to check D is dense in S(A, µ) relative to the
Lp(µ) – norm. Once this is done, the proof is then complete since S(A, µ) is
a dense subspace of Lp (µ) by Theorem 9.10.

Notation 9.12 Given a collection of bounded functions, M, from a set, Ω,
to R, let M↑ (M↓) denote the the bounded monotone increasing (decreasing)
limits of functions from M. More explicitly a bounded function, f : Ω → R
is in M↑ respectively M↓ iff there exists fn ∈ M such that fn ↑ f respectively
fn ↓ f.

Theorem 9.13 (Bounded Approximation Theorem). Let (Ω,B, µ) be a
finite measure space and M be an algebra of bounded R – valued measurable
functions such that:

1. σ (M) = B,
2. 1 ∈ M, and
3. |f | ∈ M for all f ∈ M.

Then for every bounded σ (M) measurable function, g : Ω → R, and every
ε > 0, there exists f ∈ M↓ and h ∈ M↑ such that f ≤ g ≤ h and µ (h− f) < ε.Rework the Daniel

integral section in
the Analysis notes to
stick to latticies of
bounded functions.

Proof. Let us begin with a few simple observations.

1. M is a “lattice” – if f, g ∈ M then

f ∨ g =
1
2

(f + g + |f − g|) ∈ M

and
f ∧ g =

1
2

(f + g − |f − g|) ∈ M.

2. If f, g ∈ M↑ or f, g ∈ M↓ then f + g ∈ M↑ or f + g ∈ M↓ respectively.
3. If λ ≥ 0 and f ∈ M↑ (f ∈ M↓), then λf ∈ M↑ (λf ∈ M↓) .
4. If f ∈ M↑ then −f ∈ M↓ and visa versa.
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5. If fn ∈ M↑ and fn ↑ f where f : Ω → R is a bounded function, then
f ∈ M↑. Indeed, by assumption there exists fn,i ∈ M such that fn,i ↑ fn

as i → ∞. By observation (1), gn := max {fij : i, j ≤ n} ∈ M. Moreover
it is clear that gn ≤ max {fk : k ≤ n} = fn ≤ f and hence gn ↑ g :=
limn→∞ gn ≤ f. Since fij ≤ g for all i, j, it follows that fn = limj→∞ fnj ≤
g and consequently that f = limn→∞ fn ≤ g ≤ f. So we have shown that
gn ↑ f ∈ M↑.

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M ⊂ H and in fact it is also
easy to see that M↑ and M↓ are contained in H as well. For example, if
f ∈ M↑, by definition, there exists fn ∈ M ⊂ M↓ such that fn ↑ f. Since
M↓ 3 fn ≤ f ≤ f ∈ M↑ and µ (f − fn) → 0 by the dominated convergence
theorem, it follows that f ∈ H. As similar argument shows M↓ ⊂ H. We will
now show H is a vector sub-space of the bounded B = σ (M) – measurable
functions.

H is closed under addition. If gi ∈ H for i = 1, 2, and ε > 0 is given, we
may find fi ∈ M↓ and hi ∈ M↑ such that fi ≤ gi ≤ hi and µ (hi − fi) < ε/2
for i = 1, 2. Since h = h1 + h2 ∈ M↑, f := f1 + f2 ∈ M↓, f ≤ g1 + g2 ≤ h, and

µ (h− f) = µ (h1 − f1) + µ (h2 − f2) < ε,

it follows that g1 + g2 ∈ H.
H is closed under scalar multiplication. If g ∈ H then λg ∈ H for all

λ ∈ R. Indeed suppose that ε > 0 is given and f ∈ M↓ and h ∈ M↑ such that
f ≤ g ≤ h and µ (h− f) < ε. Then for λ ≥ 0, M↓ 3 λf ≤ λg ≤ λh ∈ M↑ and

µ (λh− λf) = λµ (h− f) < λε.

Since ε > 0 was arbitrary, if follows that λg ∈ H for λ ≥ 0. Similarly, M↓ 3
−h ≤ −g ≤ −f ∈ M↑ and

µ (−f − (−h)) = µ (h− f) < ε.

which shows −g ∈ H as well.
Because of Theorem 9.3, to complete this proof, it suffices to show H is

closed under monotone convergence. So suppose that gn ∈ H and gn ↑ g,
where g : Ω → R is a bounded function. Since H is a vector space, it follows
that 0 ≤ δn := gn+1 − gn ∈ H for all n ∈ N. So if ε > 0 is given, we can
find, M↓ 3 un ≤ δn ≤ vn ∈ M↑ such that µ (vn − un) ≤ 2−nε for all n. By
replacing un by un ∨ 0 ∈ M↓ (by observation 1.), we may further assume that
un ≥ 0. Let

v :=
∞∑

n=1

vn =↑ lim
N→∞

N∑
n=1

vn ∈ M↑ (using observations 2. and 5.)

and for N ∈ N, let
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uN :=
N∑

n=1

un ∈ M↓ (using observation 2).

Then
∞∑

n=1

δn = lim
N→∞

N∑
n=1

δn = lim
N→∞

(gN+1 − g1) = g − g1

and uN ≤ g − g1 ≤ v. Moreover,

µ
(
v − uN

)
=

N∑
n=1

µ (vn − un) +
∞∑

n=N+1

µ (vn) ≤
N∑

n=1

ε2−n +
∞∑

n=N+1

µ (vn)

≤ ε+
∞∑

n=N+1

µ (vn) .

However, since

∞∑
n=1

µ (vn) ≤
∞∑

n=1

µ
(
δn + ε2−n

)
=
∞∑

n=1

µ (δn) + εµ (Ω)

=
∞∑

n=1

µ (g − g1) + εµ (Ω) <∞,

it follows that for N ∈ N sufficiently large that
∑∞

n=N+1 µ (vn) < ε. Therefore,
for this N, we have µ

(
v − uN

)
< 2ε and since ε > 0 is arbitrary, if follows

that g − g1 ∈ H. Since g1 ∈ H and H is a vector space, we may conclude that
g = (g − g1) + g1 ∈ H.

Theorem 9.14 (Complex Multiplicative System Theorem). Suppose
H is a complex linear subspace of the bounded complex functions on Ω, 1 ∈ H,
H is closed under complex conjugation, and H is closed under bounded conver-
gence. If M ⊂ H is multiplicative system which is closed under conjugation,
then H contains all bounded complex valued σ(M)-measurable functions.

Proof. Let M0 = spanC(M ∪ {1}) be the complex span of M. As the
reader should verify, M0 is an algebra, M0 ⊂ H, M0 is closed under complex
conjugation and σ (M0) = σ (M) . Let

HR := {f ∈ H : f is real valued} and

MR
0 := {f ∈ M0 : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is
closed under bounded convergence and MR

0 ⊂ HR. Moreover, MR
0 is a multi-

plicative system (as the reader should check) and therefore by Theorem 9.3,
HR contains all bounded σ

(
MR

0

)
– measurable real valued functions. Since H
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and M0 are complex linear spaces closed under complex conjugation, for any
f ∈ H or f ∈ M0, the functions Re f = 1

2

(
f + f̄

)
and Im f = 1

2i

(
f − f̄

)
are in

H or M0 respectively. Therefore M0 = MR
0 + iMR

0 , σ
(
MR

0

)
= σ (M0) = σ (M) ,

and H = HR + iHR. Hence if f : Ω → C is a bounded σ (M) – measurable
function, then f = Re f + i Im f ∈ H since Re f and Im f are in HR.
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Multiple and Iterated Integrals

10.1 Iterated Integrals

Notation 10.1 (Iterated Integrals) If (X,M, µ) and (Y,N , ν) are two
measure spaces and f : X × Y → C is a M ⊗ N – measurable function,
the iterated integrals of f (when they make sense) are:∫

X

dµ(x)
∫

Y

dν(y)f(x, y) :=
∫

X

[∫
Y

f(x, y)dν(y)
]
dµ(x)

and ∫
Y

dν(y)
∫

X

dµ(x)f(x, y) :=
∫

Y

[∫
X

f(x, y)dµ(x)
]
dν(y).

Notation 10.2 Suppose that f : X → C and g : Y → C are functions, let
f ⊗ g denote the function on X × Y given by

f ⊗ g(x, y) = f(x)g(y).

Notice that if f, g are measurable, then f⊗g is (M⊗N ,BC) – measurable.
To prove this let F (x, y) = f(x) and G(x, y) = g(y) so that f ⊗ g = F ·G will
be measurable provided that F and G are measurable. Now F = f ◦π1 where
π1 : X ×Y → X is the projection map. This shows that F is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

10.2 Tonelli’s Theorem and Product Measure

Theorem 10.3. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
and f is a nonnegative (M⊗N ,BR) – measurable function, then for each
y ∈ Y,

x→ f(x, y) is M – B[0,∞] measurable, (10.1)

for each x ∈ X,

y → f(x, y) is N – B[0,∞] measurable, (10.2)
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x→
∫

Y

f(x, y)dν(y) is M – B[0,∞] measurable, (10.3)

y →
∫

X

f(x, y)dµ(x) is N – B[0,∞] measurable, (10.4)

and ∫
X

dµ(x)
∫

Y

dν(y)f(x, y) =
∫

Y

dν(y)
∫

X

dµ(x)f(x, y). (10.5)

Proof. Suppose that E = A×B ∈ E := M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

and one sees that Eqs. (10.1) and (10.2) hold. Moreover∫
Y

f(x, y)dν(y) =
∫

Y

1A(x)1B(y)dν(y) = 1A(x)ν(B),

so that Eq. (10.3) holds and we have∫
X

dµ(x)
∫

Y

dν(y)f(x, y) = ν(B)µ(A). (10.6)

Similarly, ∫
X

f(x, y)dµ(x) = µ(A)1B(y) and∫
Y

dν(y)
∫

X

dµ(x)f(x, y) = ν(B)µ(A)

from which it follows that Eqs. (10.4) and (10.5) hold in this case as well.
For the moment let us now further assume that µ(X) <∞ and ν(Y ) <∞

and let H be the collection of all bounded (M⊗N ,BR) – measurable functions
on X × Y such that Eqs. (10.1) – (10.5) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence
theorem (the dominating function always being a constant), one easily shows
that H closed under bounded convergence. Since we have just verified that
1E ∈ H for all E in the π – class, E , it follows by Corollary 9.5 that H is
the space of all bounded (M⊗N ,BR) – measurable functions on X × Y.
Moreover, if f : X × Y → [0,∞] is a (M⊗N ,BR̄) – measurable function, let
fM = M ∧ f so that fM ↑ f as M →∞. Then Eqs. (10.1) – (10.5) hold with
f replaced by fM for all M ∈ N. Repeated use of the monotone convergence
theorem allows us to pass to the limit M → ∞ in these equations to deduce
the theorem in the case µ and ν are finite measures.

For the σ – finite case, choose Xn ∈ M, Yn ∈ N such that Xn ↑ X,
Yn ↑ Y, µ(Xn) < ∞ and ν(Yn) < ∞ for all m,n ∈ N. Then define µm(A) =
µ(Xm ∩A) and νn(B) = ν(Yn ∩B) for all A ∈M and B ∈ N or equivalently
dµm = 1Xm

dµ and dνn = 1Yn
dν. By what we have just proved Eqs. (10.1) –
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(10.5) with µ replaced by µm and ν by νn for all (M⊗N ,BR̄) – measurable
functions, f : X×Y → [0,∞]. The validity of Eqs. (10.1) – (10.5) then follows
by passing to the limits m→∞ and then n→∞ making use of the monotone
convergence theorem in the following context. For all u ∈ L+(X,M),∫

X

udµm =
∫

X

u1Xm
dµ ↑

∫
X

udµ as m→∞,

and for all and v ∈ L+(Y,N ),∫
Y

vdµn =
∫

Y

v1Yndµ ↑
∫

Y

vdµ as n→∞.

Corollary 10.4. Suppose (X,M, µ) and (Y,N , ν) are σ – finite measure
spaces. Then there exists a unique measure π on M⊗N such that π(A×B) =
µ(A)ν(B) for all A ∈M and B ∈ N . Moreover π is given by

π(E) =
∫

X

dµ(x)
∫

Y

dν(y)1E(x, y) =
∫

Y

dν(y)
∫

X

dµ(x)1E(x, y) (10.7)

for all E ∈M⊗N and π is σ – finite.

Proof. Notice that any measure π such that π(A × B) = µ(A)ν(B) for
all A ∈ M and B ∈ N is necessarily σ – finite. Indeed, let Xn ∈ M and
Yn ∈ N be chosen so that µ(Xn) < ∞, ν(Yn) < ∞, Xn ↑ X and Yn ↑ Y,
then Xn × Yn ∈ M⊗N , Xn × Yn ↑ X × Y and π(Xn × Yn) < ∞ for all n.
The uniqueness assertion is a consequence of the combination of Exercises 4.5
and 5.1 Proposition 4.26 with E = M×N . For the existence, it suffices to
observe, using the monotone convergence theorem, that π defined in Eq. (10.7)
is a measure on M⊗N . Moreover this measure satisfies π(A×B) = µ(A)ν(B)
for all A ∈M and B ∈ N from Eq. (10.6).

Notation 10.5 The measure π is called the product measure of µ and ν and
will be denoted by µ⊗ ν.

Theorem 10.6 (Tonelli’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ – finite measure spaces and π = µ ⊗ ν is the product measure on M⊗N .
If f ∈ L+(X × Y,M⊗N ), then f(·, y) ∈ L+(X,M) for all y ∈ Y, f(x, ·) ∈
L+(Y,N ) for all x ∈ X,∫

Y

f(·, y)dν(y) ∈ L+(X,M),
∫
X

f(x, ·)dµ(x) ∈ L+(Y,N )

and ∫
X×Y

f dπ =
∫

X

dµ(x)
∫

Y

dν(y)f(x, y) (10.8)

=
∫

Y

dν(y)
∫

X

dµ(x)f(x, y). (10.9)
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Proof. By Theorem 10.3 and Corollary 10.4, the theorem holds when
f = 1E with E ∈ M ⊗ N . Using the linearity of all of the statements, the
theorem is also true for non-negative simple functions. Then using the mono-
tone convergence theorem repeatedly along with the approximation Theorem
6.32, one deduces the theorem for general f ∈ L+(X × Y,M⊗N ).

Example 10.7. In this example we are going to show, I :=
∫

R e
−x2/2dm (x) =√

2π. To this end we observe, using Tonelli’s theorem, that

I2 =
[∫

R
e−x2/2dm (x)

]2
=
∫

R
e−y2/2

[∫
R
e−x2/2dm (x)

]
dm (y)

=
∫

R2
e−(x2+y2)/2dm2 (x, y)

where m2 = m ⊗ m is “Lebesgue measure” on
(
R2,BR2 = BR ⊗ BR

)
. From

the monotone convergence theorem,

I2 = lim
R→∞

∫
DR

e−(x2+y2)/2dπ (x, y)

where DR =
{
(x, y) : x2 + y2 < R2

}
. Using the change of variables theorem

described in Section 10.5 below,1 we find∫
DR

e−(x2+y2)/2dπ (x, y) =
∫

(0,R)×(0,2π)

e−r2/2rdrdθ

= 2π
∫ R

0

e−r2/2rdr = 2π
(
1− e−R2/2

)
.

From this we learn that

I2 = lim
R→∞

2π
(
1− e−R2/2

)
= 2π

as desired.

10.3 Fubini’s Theorem

The following convention will be in force for the rest of this section.
Convention: If (X,M, µ) is a measure space and f : X → C is a measur-

able but non-integrable function, i.e.
∫

X
|f | dµ = ∞, by convention we will de-

fine
∫

X
fdµ := 0. However if f is a non-negative function (i.e. f : X → [0,∞])

is a non-integrable function we will still write
∫

X
fdµ = ∞.

1 Alternatively, you can easily show that the integral
R

DR
fdm2 agrees with the

multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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Theorem 10.8 (Fubini’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ – finite measure spaces, π = µ ⊗ ν is the product measure on M⊗N and
f : X × Y → C is a M⊗N – measurable function. Then the following three
conditions are equivalent:∫

X×Y

|f | dπ <∞, i.e. f ∈ L1(π), (10.10)∫
X

(∫
Y

|f(x, y)| dν(y)
)
dµ(x) <∞ and (10.11)∫

Y

(∫
X

|f(x, y)| dµ(x)
)
dν(y) <∞. (10.12)

If any one (and hence all) of these condition hold, then f(x, ·) ∈ L1(ν) for µ-
a.e. x, f(·, y) ∈ L1(µ) for ν-a.e. y,

∫
Y
f(·, y)dv(y) ∈ L1(µ),

∫
X
f(x, ·)dµ(x) ∈

L1(ν) and Eqs. (10.8) and (10.9) are still valid.

Proof. The equivalence of Eqs. (10.10) – (10.12) is a direct consequence
of Tonelli’s Theorem 10.6. Now suppose f ∈ L1(π) is a real valued function
and let

E :=
{
x ∈ X :

∫
Y

|f (x, y)| dν (y) = ∞
}
. (10.13)

Then by Tonelli’s theorem, x →
∫

Y
|f (x, y)| dν (y) is measurable and hence

E ∈M. Moreover Tonelli’s theorem implies∫
X

[∫
Y

|f (x, y)| dν (y)
]
dµ (x) =

∫
X×Y

|f | dπ <∞

which implies that µ (E) = 0. Let f± be the positive and negative parts of f,
then using the above convention we have∫

Y

f (x, y) dν (y) =
∫

Y

1Ec (x) f (x, y) dν (y)

=
∫

Y

1Ec (x) [f+ (x, y)− f− (x, y)] dν (y)

=
∫

Y

1Ec (x) f+ (x, y) dν (y)−
∫

Y

1Ec (x) f− (x, y) dν (y) .

(10.14)

Noting that 1Ec (x) f± (x, y) = (1Ec ⊗ 1Y · f±) (x, y) is a positive M⊗N –
measurable function, it follows from another application of Tonelli’s theorem
that x →

∫
Y
f (x, y) dν (y) is M – measurable, being the difference of two

measurable functions. Moreover∫
X

∣∣∣∣∫
Y

f (x, y) dν (y)
∣∣∣∣ dµ (x) ≤

∫
X

[∫
Y

|f (x, y)| dν (y)
]
dµ (x) <∞,
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which shows
∫

Y
f(·, y)dv(y) ∈ L1(µ). Integrating Eq. (10.14) on x and using

Tonelli’s theorem repeatedly implies,∫
X

[∫
Y

f (x, y) dν (y)
]
dµ (x)

=
∫

X

dµ (x)
∫

Y

dν (y) 1Ec (x) f+ (x, y)−
∫

X

dµ (x)
∫

Y

dν (y) 1Ec (x) f− (x, y)

=
∫

Y

dν (y)
∫

X

dµ (x) 1Ec (x) f+ (x, y)−
∫

Y

dν (y)
∫

X

dµ (x) 1Ec (x) f− (x, y)

=
∫

Y

dν (y)
∫

X

dµ (x) f+ (x, y)−
∫

Y

dν (y)
∫

X

dµ (x) f− (x, y)

=
∫

X×Y

f+dπ −
∫

X×Y

f−dπ =
∫

X×Y

(f+ − f−) dπ =
∫

X×Y

fdπ (10.15)

which proves Eq. (10.8) holds.
Now suppose that f = u + iv is complex valued and again let E be as

in Eq. (10.13). Just as above we still have E ∈ M and µ (E) = 0. By our
convention,∫

Y

f (x, y) dν (y) =
∫

Y

1Ec (x) f (x, y) dν (y) =
∫

Y

1Ec (x) [u (x, y) + iv (x, y)] dν (y)

=
∫

Y

1Ec (x)u (x, y) dν (y) + i

∫
Y

1Ec (x) v (x, y) dν (y)

which is measurable in x by what we have just proved. Similarly one shows∫
Y
f (·, y) dν (y) ∈ L1 (µ) and Eq. (10.8) still holds by a computation similar

to that done in Eq. (10.15). The assertions pertaining to Eq. (10.9) may be
proved in the same way.

The previous theorems have obvious generalizations to products of any
finite number of σ – finite measure spaces. For example the following theorem
holds.

Theorem 10.9. Suppose {(Xi,Mi, µi)}n
i=1 are σ – finite measure spaces

and X := X1 × · · · × Xn. Then there exists a unique measure, π, on
(X,M1 ⊗ · · · ⊗Mn) such that

π(A1 × · · · ×An) = µ1(A1) . . . µn(An) for all Ai ∈Mi.

(This measure and its completion will be denoted by µ1⊗· · ·⊗µn.) If f : X →
[0,∞] is a M1 ⊗ · · · ⊗Mn – measurable function then∫

X

fdπ =
∫

Xσ(1)

dµσ(1)(xσ(1)) . . .
∫

Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (10.16)

where σ is any permutation of {1, 2, . . . , n}. This equation also holds for any
f ∈ L1(π) and moreover, f ∈ L1(π) iff
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Xσ(1)

dµσ(1)(xσ(1)) . . .
∫

Xσ(n)

dµσ(n)(xσ(n)) |f(x1, . . . , xn)| <∞

for some (and hence all) permutations, σ.

This theorem can be proved by the same methods as in the two factor case,
see Exercise 10.4. Alternatively, one can use the theorems already proved and
induction on n, see Exercise 10.5 in this regard.

Proposition 10.10. Suppose that {Xk}n
k=1 are random variables on a prob-

ability space (Ω,B, P ) and µk = P ◦ X−1
k is the distribution for Xk for

k = 1, 2, . . . , n, and π := P ◦ (X1, . . . , Xn)−1 is the joint distribution of
(X1, . . . , Xn) . Then the following are equivalent,

1. {Xk}n
k=1 are independent,

2. for all bounded measurable functions, f : (Rn,BRn) → (R,BR) ,

Ef (X1, . . . , Xn) =
∫

Rn

f (x1, . . . , xn) dµ1 (x1) . . . dµn (xn) , (taken in any order)

(10.17)
and

3. π = µ1 ⊗ µ2 ⊗ · · · ⊗ µn.

Proof. (1 =⇒ 2) Suppose that {Xk}n
k=1 are independent and let H de-

note the set of bounded measurable functions, f : (Rn,BRn) → (R,BR) such
that Eq. (10.17) holds. Then it is easily checked that H is a vector space
which contains the constant functions and is closed under bounded conver-
gence. Moreover, if f = 1A1×···×An

where Ai ∈ BR, we have

Ef (X1, . . . , Xn) = P ((X1, . . . , Xn) ∈ A1 × · · · ×An)

=
n∏

j=1

P (Xj ∈ Aj) =
n∏

j=1

µj (Aj)

=
∫

Rn

f (x1, . . . , xn) dµ1 (x1) . . . dµn (xn) .

Therefore, H contains the multiplicative system, M := {1A1×···×An
: Ai ∈ BR}

and so by the multiplicative systems theorem, H contains all bounded σ (M) =
BRn – measurable functions.

(2 =⇒ 3) Let A ∈ BRn and f = 1A in Eq. (10.17) to conclude that

π (A) = P ((X1, . . . , Xn) ∈ A) = E1A (X1, . . . , Xn)

=
∫

Rn

1A (x1, . . . , xn) dµ1 (x1) . . . dµn (xn) = (µ1 ⊗ · · · ⊗ µn) (A) .

(3 =⇒ 1) This follows from the identity,
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P ((X1, . . . , Xn) ∈ A1 × · · · ×An) = π (A1 × · · · ×An) =
n∏

j=1

µj (Aj)

=
n∏

j=1

P (Xj ∈ Aj) ,

which is valid for all Aj ∈ BR.

Example 10.11 (No Ties). Suppose that X and Y are independent random
variables on a probability space (Ω,B, P ) . If F (x) := P (X ≤ x) is con-
tinuous, then P (X = Y ) = 0. To prove this, let µ (A) := P (X ∈ A) and
ν (A) = P (Y ∈ A) . Because F is continuous, µ ({y}) = F (y) − F (y−) = 0,
and hence

P (X = Y ) = E
[
1{X=Y }

]
=
∫

R2
1{x=y}d (µ⊗ ν) (x, y)

=
∫

R
dν (y)

∫
R
dµ (x) 1{x=y} =

∫
R
µ ({y}) dν (y)

=
∫

R
0 dν (y) = 0.

Example 10.12. In this example we will show

lim
M→∞

∫ M

0

sinx
x

dx = π/2. (10.18)

To see this write 1
x =

∫∞
0
e−txdt and use Fubini-Tonelli to conclude that∫ M

0

sinx
x

dx =
∫ M

0

[∫ ∞
0

e−tx sinx dt
]
dx

=
∫ ∞

0

[∫ M

0

e−tx sinx dx

]
dt

=
∫ ∞

0

1
1 + t2

(
1− te−Mt sinM − e−Mt cosM

)
dt

→
∫ ∞

0

1
1 + t2

dt =
π

2
as M →∞,

wherein we have used the dominated convergence theorem (for instance, take
g (t) := 1

1+t2 (1 + te−t + e−t)) to pass to the limit.

The next example is a refinement of this result.

Example 10.13. We have∫ ∞
0

sinx
x

e−Λxdx =
1
2
π − arctanΛ for all Λ > 0 (10.19)
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and forΛ,M ∈ [0,∞),∣∣∣∣∣
∫ M

0

sinx
x

e−Λxdx− 1
2
π + arctanΛ

∣∣∣∣∣ ≤ C
e−MΛ

M
(10.20)

where C = maxx≥0
1+x
1+x2 = 1

2
√

2−2
∼= 1.2. In particular Eq. (10.18) is valid.

To verify these assertions, first notice that by the fundamental theorem of
calculus,

|sinx| =
∣∣∣∣∫ x

0

cos ydy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

|cos y| dy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

1dy
∣∣∣∣ = |x|

so
∣∣ sin x

x

∣∣ ≤ 1 for all x 6= 0. Making use of the identity∫ ∞
0

e−txdt = 1/x

and Fubini’s theorem,∫ M

0

sinx
x

e−Λxdx =
∫ M

0

dx sinx e−Λx

∫ ∞
0

e−txdt

=
∫ ∞

0

dt

∫ M

0

dx sinx e−(Λ+t)x

=
∫ ∞

0

1− (cosM + (Λ+ t) sinM) e−M(Λ+t)

(Λ+ t)2 + 1
dt

=
∫ ∞

0

1
(Λ+ t)2 + 1

dt−
∫ ∞

0

cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

e−M(Λ+t)dt

=
1
2
π − arctanΛ− ε(M,Λ) (10.21)

where

ε(M,Λ) =
∫ ∞

0

cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

e−M(Λ+t)dt.

Since ∣∣∣∣∣cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

∣∣∣∣∣ ≤ 1 + (Λ+ t)
(Λ+ t)2 + 1

≤ C,

|ε(M,Λ)| ≤
∫ ∞

0

e−M(Λ+t)dt = C
e−MΛ

M
.

This estimate along with Eq. (10.21) proves Eq. (10.20) from which Eq. (10.18)
follows by taking Λ → ∞ and Eq. (10.19) follows (using the dominated con-
vergence theorem again) by letting M →∞.

Note: you may skip the rest of this chapter!
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10.4 Fubini’s Theorem and Completions

Notation 10.14 Given E ⊂ X × Y and x ∈ X, let

xE := {y ∈ Y : (x, y) ∈ E}.

Similarly if y ∈ Y is given let

Ey := {x ∈ X : (x, y) ∈ E}.

If f : X × Y → C is a function let fx = f(x, ·) and fy := f(·, y) so that
fx : Y → C and fy : X → C.

Theorem 10.15. Suppose (X,M, µ) and (Y,N , ν) are complete σ – finite
measure spaces. Let (X×Y,L, λ) be the completion of (X×Y,M⊗N , µ⊗ν). If
f is L – measurable and (a) f ≥ 0 or (b) f ∈ L1(λ) then fx is N – measurable
for µ a.e. x and fy is M – measurable for ν a.e. y and in case (b) fx ∈ L1(ν)
and fy ∈ L1(µ) for µ a.e. x and ν a.e. y respectively. Moreover,(

x→
∫

Y

fxdν

)
∈ L1 (µ) and

(
y →

∫
X

fydµ

)
∈ L1 (ν)

and ∫
X×Y

fdλ =
∫

Y

dν

∫
X

dµ f =
∫

X

dµ

∫
Y

dν f.

Proof. If E ∈M⊗N is a µ⊗ ν null set (i.e. (µ⊗ ν)(E) = 0), then

0 = (µ⊗ ν)(E) =
∫
X

ν(xE)dµ(x) =
∫
X

µ(Ey)dν(y).

This shows that

µ({x : ν(xE) 6= 0}) = 0 and ν({y : µ(Ey) 6= 0}) = 0,

i.e. ν(xE) = 0 for µ a.e. x and µ(Ey) = 0 for ν a.e. y. If h is L measurable and
h = 0 for λ – a.e., then there exists E ∈ M⊗N such that {(x, y) : h(x, y) 6=
0} ⊂ E and (µ⊗ν)(E) = 0. Therefore |h(x, y)| ≤ 1E(x, y) and (µ⊗ν)(E) = 0.
Since

{hx 6= 0} = {y ∈ Y : h(x, y) 6= 0} ⊂ xE and
{hy 6= 0} = {x ∈ X : h(x, y) 6= 0} ⊂ Ey

we learn that for µ a.e. x and ν a.e. y that {hx 6= 0} ∈ M, {hy 6= 0} ∈ N ,
ν({hx 6= 0}) = 0 and a.e. and µ({hy 6= 0}) = 0. This implies

∫
Y
h(x, y)dν(y)

exists and equals 0 for µ a.e. x and similarly that
∫

X
h(x, y)dµ(x) exists and

equals 0 for ν a.e. y. Therefore
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0 =
∫

X×Y

hdλ =
∫

Y

(∫
X

hdµ

)
dν =

∫
X

(∫
Y

hdν

)
dµ.

For general f ∈ L1(λ), we may choose g ∈ L1(M ⊗ N , µ ⊗ ν) such that
f(x, y) = g(x, y) for λ− a.e. (x, y). Define h := f − g. Then h = 0, λ− a.e.
Hence by what we have just proved and Theorem 10.6 f = g + h has the
following properties:

1. For µ a.e. x, y → f(x, y) = g(x, y) + h(x, y) is in L1(ν) and∫
Y

f(x, y)dν(y) =
∫

Y

g(x, y)dν(y).

2. For ν a.e. y, x→ f(x, y) = g(x, y) + h(x, y) is in L1(µ) and∫
X

f(x, y)dµ(x) =
∫

X

g(x, y)dµ(x).

From these assertions and Theorem 10.6, it follows that∫
X

dµ(x)
∫

Y

dν(y)f(x, y) =
∫

X

dµ(x)
∫

Y

dν(y)g(x, y)

=
∫

Y

dν(y)
∫

Y

dν(x)g(x, y)

=
∫

X×Y

g(x, y)d(µ⊗ ν)(x, y)

=
∫

X×Y

f(x, y)dλ(x, y).

Similarly it is shown that∫
Y

dν(y)
∫

X

dµ(x)f(x, y) =
∫

X×Y

f(x, y)dλ(x, y).

10.5 Lebesgue Measure on Rd and the Change of
Variables Theorem

Notation 10.16 Let

md :=
d times︷ ︸︸ ︷

m⊗ · · · ⊗m on BRd =

d times︷ ︸︸ ︷
BR ⊗ · · · ⊗ BR

be the d – fold product of Lebesgue measure m on BR. We will also use md

to denote its completion and let Ld be the completion of BRd relative to md.
A subset A ∈ Ld is called a Lebesgue measurable set and md is called d –
dimensional Lebesgue measure, or just Lebesgue measure for short.
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Definition 10.17. A function f : Rd → R is Lebesgue measurable if
f−1(BR) ⊂ Ld.

Notation 10.18 I will often be sloppy in the sequel and write m for md and
dx for dm(x) = dmd(x), i.e.∫

Rd

f (x) dx =
∫

Rd

fdm =
∫

Rd

fdmd.

Hopefully the reader will understand the meaning from the context.

Theorem 10.19. Lebesgue measure md is translation invariant. Moreover md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.

Proof. Let A = J1 × · · · × Jd with Ji ∈ BR and x ∈ Rd. Then

x+A = (x1 + J1)× (x2 + J2)× · · · × (xd + Jd)

and therefore by translation invariance of m on BR we find that

md(x+A) = m(x1 + J1) . . .m(xd + Jd) = m(J1) . . .m(Jd) = md(A)

and hence md(x + A) = md(A) for all A ∈ BRd since it holds for A in a
multiplicative system which generates BRd . From this fact we see that the
measure md(x + ·) and md(·) have the same null sets. Using this it is easily
seen that m(x+A) = m(A) for all A ∈ Ld. The proof of the second assertion
is Exercise 10.6.

Exercise 10.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on BH which is invariant under translations
and satisfies, m(B0(ε)) > 0 for all ε > 0. Show m(V ) = ∞ for all non-empty
open subsets V ⊂ H.

Theorem 10.20 (Change of Variables Theorem). Let Ω ⊂o Rd be an
open set and T : Ω → T (Ω) ⊂o Rd be a C1 – diffeomorphism,2 see Figure
10.1. Then for any Borel measurable function, f : T (Ω) → [0,∞],∫

Ω

f (T (x)) |detT ′ (x) |dx =
∫

T (Ω)

f (y) dy, (10.22)

where T ′(x) is the linear transformation on Rd defined by T ′(x)v := d
dt |0T (x+

tv). More explicitly, viewing vectors in Rd as columns, T ′ (x) may be repre-
sented by the matrix
2 That is T : Ω → T (Ω) ⊂o Rd is a continuously differentiable bijection and the

inverse map T−1 : T (Ω) → Ω is also continuously differentiable.
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T ′ (x) =

∂1T1 (x) . . . ∂dT1 (x)
...

. . .
...

∂1Td (x) . . . ∂dTd (x)

 , (10.23)

i.e. the i - j – matrix entry of T ′(x) is given by T ′(x)ij = ∂iTj(x) where
T (x) = (T1(x), . . . , Td(x))tr and ∂i = ∂/∂xi.

Fig. 10.1. The geometric setup of Theorem 10.20.

Remark 10.21. Theorem 10.20 is best remembered as the statement: if we
make the change of variables y = T (x) , then dy = |detT ′ (x) |dx. As usual,
you must also change the limits of integration appropriately, i.e. if x ranges
through Ω then y must range through T (Ω) .

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise 8.7. Nevertheless, for the sake of completeness let us give a
proof here. Suppose d = 1, a < α < β < b such that [a, b] is a compact
subinterval of Ω. Then |detT ′| = |T ′| and∫

[a,b]

1T ((α,β]) (T (x)) |T ′ (x)| dx =
∫

[a,b]

1(α,β] (x) |T ′ (x)| dx =
∫ β

α

|T ′ (x)| dx.

If T ′ (x) > 0 on [a, b] , then∫ β

α

|T ′ (x)| dx =
∫ β

α

T ′ (x) dx = T (β)− T (α)

= m (T ((α, β])) =
∫

T ([a,b])

1T ((α,β]) (y) dy
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while if T ′ (x) < 0 on [a, b] , then∫ β

α

|T ′ (x)| dx = −
∫ β

α

T ′ (x) dx = T (α)− T (β)

= m (T ((α, β])) =
∫

T ([a,b])

1T ((α,β]) (y) dy.

Combining the previous three equations shows∫
[a,b]

f (T (x)) |T ′ (x)| dx =
∫

T ([a,b])

f (y) dy (10.24)

whenever f is of the form f = 1T ((α,β]) with a < α < β < b. An application
of Dynkin’s multiplicative system Theorem 9.3 then implies that Eq. (10.24)
holds for every bounded measurable function f : T ([a, b]) → R. (Observe that
|T ′ (x)| is continuous and hence bounded for x in the compact interval, [a, b] .)
Recall that Ω =

∑N
n=1 (an, bn) where an, bn ∈ R∪{±∞} for n = 1, 2, · · · < N

withN = ∞ possible. Hence if f : T (Ω) → R + is a Borel measurable function
and an < αk < βk < bn with αk ↓ an and βk ↑ bn, then by what we have
already proved and the monotone convergence theorem∫

Ω

1(an,bn) · (f ◦ T ) · |T ′|dm =
∫
Ω

(
1T ((an,bn)) · f

)
◦ T · |T ′|dm

= lim
k→∞

∫
Ω

(
1T ([αk,βk]) · f

)
◦ T · |T ′| dm

= lim
k→∞

∫
T (Ω)

1T ([αk,βk]) · f dm

=
∫

T (Ω)

1T ((an,bn)) · f dm.

Summing this equality on n, then shows Eq. (10.22) holds.
To carry out the induction step, we now suppose d > 1 and suppose the

theorem is valid with d being replaced by d−1. For notational compactness, let
us write vectors in Rd as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, T ′ (x) , will always be taken to be
given as in Eq. (10.23).

Case 1. Suppose T (x) has the form

T (x) = (xi, T2 (x) , . . . , Td (x)) (10.25)

or
T (x) = (T1 (x) , . . . , Td−1 (x) , xi) (10.26)
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for some i ∈ {1, . . . , d} . For definiteness we will assume T is as in Eq. (10.25),
the case of T in Eq. (10.26) may be handled similarly. For t ∈ R, let it :
Rd−1 → Rd be the inclusion map defined by

it (w) := wt := (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ,

Ωt be the (possibly empty) open subset of Rd−1 defined by

Ωt :=
{
w ∈ Rd−1 : (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ∈ Ω

}
and Tt : Ωt → Rd−1 be defined by

Tt (w) = (T2 (wt) , . . . , Td (wt)) ,

see Figure 10.2. Expanding detT ′ (wt) along the first row of the matrix T ′ (wt)

Fig. 10.2. In this picture d = i = 3 and Ω is an egg-shaped region with an egg-
shaped hole. The picture indicates the geometry associated with the map T and
slicing the set Ω along planes where x3 = t.

shows
|detT ′ (wt)| = |detT ′t (w)| .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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Ω

f ◦ T |detT ′|dm =
∫
Rd

1Ω · f ◦ T |detT ′|dm

=
∫
Rd

1Ω (wt) (f ◦ T ) (wt) |detT ′ (wt) |dwdt

=
∫

R

∫
Ωt

(f ◦ T ) (wt) |detT ′ (wt) |dw

 dt
=
∫

R

∫
Ωt

f (t, Tt (w)) |detT ′t (w) |dw

 dt
=
∫

R

 ∫
Tt(Ωt)

f (t, z) dz

 dt =
∫

R

 ∫
Rd−1

1T (Ω) (t, z) f (t, z) dz

 dt
=
∫

T (Ω)

f (y) dy

wherein the last two equalities we have used Fubini-Tonelli along with the
identity;

T (Ω) =
∑
t∈R

T (it (Ω)) =
∑
t∈R

{(t, z) : z ∈ Tt (Ωt)} .

Case 2. (Eq. (10.22) is true locally.) Suppose that T : Ω → Rd is a general
map as in the statement of the theorem and x0 ∈ Ω is an arbitrary point. We
will now show there exists an open neighborhood W ⊂ Ω of x0 such that∫

W

f ◦ T |detT ′|dm =
∫

T (W )

fdm

holds for all Borel measurable function, f : T (W ) → [0,∞]. Let Mi be the 1-i
minor of T ′ (x0) , i.e. the determinant of T ′ (x0) with the first row and ith –
column removed. Since

0 6= detT ′ (x0) =
d∑

i=1

(−1)i+1
∂iTj (x0) ·Mi,

there must be some i such that Mi 6= 0. Fix an i such that Mi 6= 0 and let,

S (x) := (xi, T2 (x) , . . . , Td (x)) . (10.27)

Observe that |detS′ (x0)| = |Mi| 6= 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of x0 such that W ⊂o Ω and S (W ) ⊂o

Rd and S : W → S (W ) is a C1 – diffeomorphism. Let R : S (W ) → T (W ) ⊂o

Rd to be the C1 – diffeomorphism defined by
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R (z) := T ◦ S−1 (z) for all z ∈ S (W ) .

Because

(T1 (x) , . . . , Td (x)) = T (x) = R (S (x)) = R ((xi, T2 (x) , . . . , Td (x)))

for all x ∈W, if

(z1, z2, . . . , zd) = S (x) = (xi, T2 (x) , . . . , Td (x))

then
R (z) =

(
T1

(
S−1 (z)

)
, z2, . . . , zd

)
. (10.28)

Observe that S is a map of the form in Eq. (10.25), R is a map of the form
in Eq. (10.26), T ′ (x) = R′ (S (x))S′ (x) (by the chain rule) and (by the mul-
tiplicative property of the determinant)

|detT ′ (x)| = |detR′ (S (x)) | |detS′ (x)| ∀ x ∈W.

So if f : T (W ) → [0,∞] is a Borel measurable function, two applications of
the results in Case 1. shows,∫

W

f ◦ T · |detT ′|dm =
∫
W

(f ◦R · |detR′|) ◦ S · |detS′| dm

=
∫

S(W )

f ◦R · |detR′|dm =
∫

R(S(W ))

fdm

=
∫

T (W )

fdm

and Case 2. is proved.
Case 3. (General Case.) Let f : Ω → [0,∞] be a general non-negative

Borel measurable function and let

Kn := {x ∈ Ω : dist(x,Ωc) ≥ 1/n and |x| ≤ n} .

Then each Kn is a compact subset of Ω and Kn ↑ Ω as n → ∞. Using the
compactness of Kn and case 2, for each n ∈ N, there is a finite open cover
Wn of Kn such that W ⊂ Ω and Eq. (10.22) holds with Ω replaced by W for
each W ∈ Wn. Let {Wi}∞i=1 be an enumeration of ∪∞n=1Wn and set W̃1 = W1

and W̃i := Wi \ (W1 ∪ · · · ∪Wi−1) for all i ≥ 2. Then Ω =
∑∞

i=1 W̃i and by
repeated use of case 2.,
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Ω

f ◦ T |detT ′|dm =
∞∑

i=1

∫
Ω

1W̃i
· (f ◦ T ) · |detT ′|dm

=
∞∑

i=1

∫
Wi

[(
1T(W̃i)f

)
◦ T
]
· |detT ′|dm

=
∞∑

i=1

∫
T (Wi)

1T(W̃i) · f dm =
n∑

i=1

∫
T (Ω)

1T(W̃i) · f dm

=
∫

T (Ω)

fdm.

Remark 10.22. When d = 1, one often learns the change of variables formula
as ∫ b

a

f (T (x))T ′ (x) dx =
∫ T (b)

T (a)

f (y) dy (10.29)

where f : [a, b] → R is a continuous function and T is C1 – function defined
in a neighborhood of [a, b] . If T ′ > 0 on (a, b) then T ((a, b)) = (T (a) , T (b))
and Eq. (10.29) is implies Eq. (10.22) with Ω = (a, b) . On the other hand if
T ′ < 0 on (a, b) then T ((a, b)) = (T (b) , T (a)) and Eq. (10.29) is equivalent
to ∫

(a,b)

f (T (x)) (− |T ′ (x)|) dx = −
∫ T (a)

T (b)

f (y) dy = −
∫

T ((a,b))

f (y) dy

which is again implies Eq. (10.22). On the other hand Eq. (10.29) is more
general than Eq. (10.22) since it does not require T to be injective. The
standard proof of Eq. (10.29) is as follows. For z ∈ T ([a, b]) , let

F (z) :=
∫ z

T (a)

f (y) dy.

Then by the chain rule and the fundamental theorem of calculus,∫ b

a

f (T (x))T ′ (x) dx =
∫ b

a

F ′ (T (x))T ′ (x) dx =
∫ b

a

d

dx
[F (T (x))] dx

= F (T (x)) |ba =
∫ T (b)

T (a)

f (y) dy.

An application of Dynkin’s multiplicative systems theorem now shows that
Eq. (10.29) holds for all bounded measurable functions f on (a, b) . Then
by the usual truncation argument, it also holds for all positive measurable
functions on (a, b) .
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Example 10.23. Continuing the setup in Theorem 10.20, if A ∈ BΩ , then

m (T (A)) =
∫

Rd

1T (A) (y) dy =
∫

Rd

1T (A) (Tx) |detT ′ (x)| dx

=
∫

Rd

1A (x) |detT ′ (x)| dx

wherein the second equality we have made the change of variables, y = T (x) .
Hence we have shown

d (m ◦ T ) = |detT ′ (·)| dm.

In particular if T ∈ GL(d,R) = GL(Rd) – the space of d×d invertible matrices,
then m ◦ T = |detT |m, i.e.

m (T (A)) = |detT |m (A) for allA ∈ BRd . (10.30)

This equation also shows that m◦T and m have the same null sets and hence
the equality in Eq. (10.30) is valid for any A ∈ Ld.

Exercise 10.2. Show that f ∈ L1
(
T (Ω) ,md

)
iff∫

Ω

|f ◦ T | |detT ′|dm <∞

and if f ∈ L1
(
T (Ω) ,md

)
, then Eq. (10.22) holds.

Example 10.24 (Polar Coordinates). Suppose T : (0,∞) × (0, 2π) → R2 is
defined by

x = T (r, θ) = (r cos θ, r sin θ) ,

i.e. we are making the change of variable,

x1 = r cos θ and x2 = r sin θ for 0 < r <∞ and 0 < θ < 2π.

In this case

T ′(r, θ) =
(

cos θ − r sin θ
sin θ r cos θ

)
and therefore

dx = |detT ′(r, θ)| drdθ = rdrdθ.

Observing that

R2 \ T ((0,∞)× (0, 2π)) = ` := {(x, 0) : x ≥ 0}

has m2 – measure zero, it follows from the change of variables Theorem 10.20
that ∫

R2
f(x)dx =

∫ 2π

0

dθ

∫ ∞
0

dr r · f(r (cos θ, sin θ)) (10.31)

for any Borel measurable function f : R2 → [0,∞].
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Example 10.25 (Holomorphic Change of Variables). Suppose that f : Ω ⊂o

C ∼= R2→ C is an injective holomorphic function such that f ′ (z) 6= 0 for all
z ∈ Ω. We may express f as

f (x+ iy) = U (x, y) + iV (x, y)

for all z = x+ iy ∈ Ω. Hence if we make the change of variables,

w = u+ iv = f (x+ iy) = U (x, y) + iV (x, y)

then

dudv =
∣∣∣∣det

[
Ux Uy

Vx Vy

]∣∣∣∣ dxdy = |UxVy − UyVx| dxdy.

Recalling that U and V satisfy the Cauchy Riemann equations, Ux = Vy and
Uy = −Vx with f ′ = Ux + iVx, we learn

UxVy − UyVx = U2
x + V 2

x = |f ′|2 .

Therefore
dudv = |f ′ (x+ iy)|2 dxdy.

Example 10.26. In this example we will evaluate the integral

I :=
∫∫

Ω

(
x4 − y4

)
dxdy

where
Ω =

{
(x, y) : 1 < x2 − y2 < 2, 0 < xy < 1

}
,

see Figure 10.3. We are going to do this by making the change of variables,

Fig. 10.3. The region Ω consists of the two curved rectangular regions shown.
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(u, v) := T (x, y) =
(
x2 − y2, xy

)
,

in which case

dudv =
∣∣∣∣det

[
2x −2y
y x

]∣∣∣∣ dxdy = 2
(
x2 + y2

)
dxdy

Notice that(
x4 − y4

)
=
(
x2 − y2

) (
x2 + y2

)
= u

(
x2 + y2

)
=

1
2
ududv.

The function T is not injective on Ω but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
Ω = −D ∪D and T (±D) = (1, 2) × (0, 1) . The change of variables theorem
then implies

I± :=
∫∫
±D

(
x4 − y4

)
dxdy =

1
2

∫∫
(1,2)×(0,1)

ududv =
1
2
u2

2
|21 · 1 =

3
4

and therefore I = I+ + I− = 2 · (3/4) = 3/2.

Exercise 10.3 (Spherical Coordinates). Let T : (0,∞)×(0, π)×(0, 2π) →
R3 be defined by

T (r, ϕ, θ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ)
= r (sinϕ cos θ, sinϕ sin θ, cosϕ) ,

see Figure 10.4. By making the change of variables x = T (r, ϕ, θ) , show

Fig. 10.4. The relation of x to (r, φ, θ) in spherical coordinates.
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R3
f(x)dx =

∫ π

0

dϕ

∫ 2π

0

dθ

∫ ∞
0

dr r2 sinϕ · f(T (r, ϕ, θ))

for any Borel measurable function, f : R3 → [0,∞].

Lemma 10.27. Let a > 0 and

Id(a) :=
∫
Rd

e−a|x|2dm(x).

Then Id(a) = (π/a)d/2.

Proof. By Tonelli’s theorem and induction,

Id(a) =
∫

Rd−1×R
e−a|y|2e−at2md−1(dy) dt

= Id−1(a)I1(a) = Id
1 (a). (10.32)

So it suffices to compute:

I2(a) =
∫
R2

e−a|x|2dm(x) =
∫

R2\{0}

e−a(x2
1+x2

2)dx1dx2.

Using polar coordinates, see Eq. (10.31), we find,

I2(a) =
∫ ∞

0

dr r

∫ 2π

0

dθ e−ar2
= 2π

∫ ∞
0

re−ar2
dr

= 2π lim
M→∞

∫ M

0

re−ar2
dr = 2π lim

M→∞

e−ar2

−2a

∫ M

0

=
2π
2a

= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (10.32).

10.6 The Polar Decomposition of Lebesgue Measure

Let

Sd−1 = {x ∈ Rd : |x|2 :=
d∑

i=1

x2
i = 1}

be the unit sphere in Rd equipped with its Borel σ – algebra, BSd−1 and
Φ : Rd \ {0} → (0,∞)×Sd−1 be defined by Φ(x) := (|x| , |x|−1

x). The inverse
map, Φ−1 : (0,∞) × Sd−1 → Rd \ {0} , is given by Φ−1(r, ω) = rω. Since Φ
and Φ−1 are continuous, they are both Borel measurable. For E ∈ BSd−1 and
a > 0, let

Ea := {rω : r ∈ (0, a] and ω ∈ E} = Φ−1((0, a]× E) ∈ BRd .
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Definition 10.28. For E ∈ BSd−1 , let σ(E) := d · m(E1). We call σ the
surface measure on Sd−1.

It is easy to check that σ is a measure. Indeed if E ∈ BSd−1 , then
E1 = Φ−1 ((0, 1]× E) ∈ BRd so that m(E1) is well defined. Moreover if
E =

∑∞
i=1Ei, then E1 =

∑∞
i=1 (Ei)1 and

σ(E) = d ·m(E1) =
∞∑

i=1

m ((Ei)1) =
∞∑

i=1

σ(Ei).

The intuition behind this definition is as follows. If E ⊂ Sd−1 is a set and
ε > 0 is a small number, then the volume of

(1, 1 + ε] · E = {rω : r ∈ (1, 1 + ε] and ω ∈ E}

should be approximately given by m ((1, 1 + ε] · E) ∼= σ(E)ε, see Figure 10.5
below. On the other hand

Fig. 10.5. Motivating the definition of surface measure for a sphere.

m ((1, 1 + ε]E) = m (E1+ε \ E1) =
{
(1 + ε)d − 1

}
m(E1).

Therefore we expect the area of E should be given by

σ(E) = lim
ε↓0

{
(1 + ε)d − 1

}
m(E1)

ε
= d ·m(E1).

The following theorem is motivated by Example 10.24 and Exercise 10.3.

Theorem 10.29 (Polar Coordinates). If f : Rd → [0,∞] is a (BRd ,B)–
measurable function then∫

Rd

f(x)dm(x) =
∫

(0,∞)×Sd−1

f(rω)rd−1 drdσ(ω). (10.33)
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In particular if f : R+ → R+ is measurable then∫
Rd

f(|x|)dx =
∫ ∞

0

f(r)dV (r) (10.34)

where V (r) = m (B(0, r)) = rdm (B(0, 1)) = d−1σ
(
Sd−1

)
rd.

Proof. By Exercise 8.6,∫
Rd

fdm =
∫

Rd\{0}

(
f ◦ Φ−1

)
◦ Φ dm =

∫
(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (Φ∗m) (10.35)

and therefore to prove Eq. (10.33) we must work out the measure Φ∗m on
B(0,∞) ⊗ BSd−1 defined by

Φ∗m(A) := m
(
Φ−1(A)

)
∀ A ∈ B(0,∞) ⊗ BSd−1 . (10.36)

If A = (a, b]× E with 0 < a < b and E ∈ BSd−1 , then

Φ−1(A) = {rω : r ∈ (a, b] and ω ∈ E} = bE1 \ aE1

wherein we have used Ea = aE1 in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(Φ∗m) ((a, b]× E) = m (bE1 \ aE1) = m(bE1)−m(aE1)

= bdm(E1)− adm(E1) = d ·m(E1)
∫ b

a

rd−1dr. (10.37)

Letting dρ(r) = rd−1dr, i.e.

ρ(J) =
∫

J

rd−1dr ∀ J ∈ B(0,∞), (10.38)

Eq. (10.37) may be written as

(Φ∗m) ((a, b]× E) = ρ((a, b]) · σ(E) = (ρ⊗ σ) ((a, b]× E) . (10.39)

Since
E = {(a, b]× E : 0 < a < b and E ∈ BSd−1} ,

is a π class (in fact it is an elementary class) such that σ(E) = B(0,∞)⊗BSd−1 ,
it follows from the π – λ Theorem and Eq. (10.39) that Φ∗m = ρ⊗ σ. Using
this result in Eq. (10.35) gives∫

Rd

fdm =
∫

(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (ρ⊗ σ)

which combined with Tonelli’s Theorem 10.6 proves Eq. (10.35).
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Corollary 10.30. The surface area σ(Sd−1) of the unit sphere Sd−1 ⊂ Rd is

σ(Sd−1) =
2πd/2

Γ (d/2)
(10.40)

where Γ is the gamma function given by

Γ (x) :=
∫ ∞

0

ux−1e−udu (10.41)

Moreover, Γ (1/2) =
√
π, Γ (1) = 1 and Γ (x+ 1) = xΓ (x) for x > 0.

Proof. Using Theorem 10.29 we find

Id(1) =
∫ ∞

0

dr rd−1e−r2
∫

Sd−1

dσ = σ(Sd−1)
∫ ∞

0

rd−1e−r2
dr.

We simplify this last integral by making the change of variables u = r2 so
that r = u1/2 and dr = 1

2u
−1/2du. The result is∫ ∞

0

rd−1e−r2
dr =

∫ ∞
0

u
d−1
2 e−u 1

2
u−1/2du

=
1
2

∫ ∞
0

u
d
2−1e−udu =

1
2
Γ (d/2). (10.42)

Combing the the last two equations with Lemma 10.27 which states that
Id(1) = πd/2, we conclude that

πd/2 = Id(1) =
1
2
σ(Sd−1)Γ (d/2)

which proves Eq. (10.40). Example 8.8 implies Γ (1) = 1 and from Eq. (10.42),

Γ (1/2) = 2
∫ ∞

0

e−r2
dr =

∫ ∞
−∞

e−r2
dr

= I1(1) =
√
π.

The relation, Γ (x+1) = xΓ (x) is the consequence of the following integration
by parts argument:

Γ (x+ 1) =
∫ ∞

0

e−u ux+1 du

u
=
∫ ∞

0

ux

(
− d

du
e−u

)
du

= x

∫ ∞
0

ux−1 e−u du = x Γ (x).
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10.7 More Spherical Coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals
on spheres. As usual when n = 2 define spherical coordinates (r, θ) ∈ (0,∞)×
[0, 2π) so that (

x1

x2

)
=
(
r cos θ
r sin θ

)
= T2(θ, r).

For n = 3 we let x3 = r cosϕ1 and then(
x1

x2

)
= T2(θ, r sinϕ1),

as can be seen from Figure 10.6, so that

Fig. 10.6. Setting up polar coordinates in two and three dimensions.

x1

x2

x3

 =
(
T2(θ, r sinϕ1)

r cosϕ1

)
=

 r sinϕ1 cos θ
r sinϕ1 sin θ
r cosϕ1

 =: T3(θ, ϕ1, r, ).

We continue to work inductively this way to define
x1

...
xn

xn+1

 =
(
Tn(θ, ϕ1, . . . , ϕn−2, r sinϕn−1, )

r cosϕn−1

)
= Tn+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r).

So for example,

x1 = r sinϕ2 sinϕ1 cos θ
x2 = r sinϕ2 sinϕ1 sin θ
x3 = r sinϕ2 cosϕ1

x4 = r cosϕ2
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and more generally,

x1 = r sinϕn−2 . . . sinϕ2 sinϕ1 cos θ
x2 = r sinϕn−2 . . . sinϕ2 sinϕ1 sin θ
x3 = r sinϕn−2 . . . sinϕ2 cosϕ1

...
xn−2 = r sinϕn−2 sinϕn−3 cosϕn−4

xn−1 = r sinϕn−2 cosϕn−3

xn = r cosϕn−2. (10.43)

By the change of variables formula,∫
Rn

f(x)dm(x)

=
∫ ∞

0

dr

∫
0≤ϕi≤π,0≤θ≤2π

dϕ1 . . . dϕn−2dθ

[
∆n(θ, ϕ1, . . . , ϕn−2, r)
×f(Tn(θ, ϕ1, . . . , ϕn−2, r))

]
(10.44)

where
∆n(θ, ϕ1, . . . , ϕn−2, r) := |detT ′n(θ, ϕ1, . . . , ϕn−2, r)| .

Proposition 10.31. The Jacobian, ∆n is given by

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin2 ϕ2 sinϕ1. (10.45)

If f is a function on rSn−1 – the sphere of radius r centered at 0 inside of
Rn, then∫

rSn−1
f(x)dσ(x) = rn−1

∫
Sn−1

f(rω)dσ(ω)

=
∫

0≤ϕi≤π,0≤θ≤2π

f(Tn(θ, ϕ1, . . . , ϕn−2, r))∆n(θ, ϕ1, . . . , ϕn−2, r)dϕ1 . . . dϕn−2dθ

(10.46)

Proof. We are going to compute ∆n inductively. Letting ρ := r sinϕn−1

and writing ∂Tn

∂ξ for ∂Tn

∂ξ (θ, ϕ1, . . . , ϕn−2, ρ) we have

∆n+1(θ,ϕ1, . . . , ϕn−2, ϕn−1, r)

=
∣∣∣∣[ ∂Tn

∂θ
∂Tn

∂ϕ1

0 0
. . . ∂Tn

∂ϕn−2

. . . 0

∂Tn

∂ρ r cosϕn−1

−r sinϕn−1

∂Tn

∂ρ sinϕn−1

cosϕn−1

]∣∣∣∣
= r

(
cos2 ϕn−1 + sin2 ϕn−1

)
∆n(, θ, ϕ1, . . . , ϕn−2, ρ)

= r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1),

i.e.



188 10 Multiple and Iterated Integrals

∆n+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r) = r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1). (10.47)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with ∆2(θ, r) = r already derived in Example 10.24, Eq. (10.47)
implies,

∆3(θ, ϕ1, r) = r∆2(θ, r sinϕ1) = r2 sinϕ1

∆4(θ, ϕ1, ϕ2, r) = r∆3(θ, ϕ1, r sinϕ2) = r3 sin2 ϕ2 sinϕ1

...

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin2 ϕ2 sinϕ1

which proves Eq. (10.45). Equation (10.46) now follows from Eqs. (10.33),
(10.44) and (10.45).

As a simple application, Eq. (10.46) implies

σ(Sn−1) =
∫

0≤ϕi≤π,0≤θ≤2π

sinn−2 ϕn−2 . . . sin2 ϕ2 sinϕ1dϕ1 . . . dϕn−2dθ

= 2π
n−2∏
k=1

γk = σ(Sn−2)γn−2 (10.48)

where γk :=
∫ π

0
sink ϕdϕ. If k ≥ 1, we have by integration by parts that,

γk =
∫ π

0

sink ϕdϕ = −
∫ π

0

sink−1 ϕ d cosϕ = 2δk,1 + (k − 1)
∫ π

0

sink−2 ϕ cos2 ϕdϕ

= 2δk,1 + (k − 1)
∫ π

0

sink−2 ϕ
(
1− sin2 ϕ

)
dϕ = 2δk,1 + (k − 1) [γk−2 − γk]

and hence γk satisfies γ0 = π, γ1 = 2 and the recursion relation

γk =
k − 1
k

γk−2 for k ≥ 2.

Hence we may conclude

γ0 = π, γ1 = 2, γ2 =
1
2
π, γ3 =

2
3
2, γ4 =

3
4

1
2
π, γ5 =

4
5

2
3
2, γ6 =

5
6

3
4

1
2
π

and more generally by induction that

γ2k = π
(2k − 1)!!

(2k)!!
and γ2k+1 = 2

(2k)!!
(2k + 1)!!

.

Indeed,

γ2(k+1)+1 =
2k + 2
2k + 3

γ2k+1 =
2k + 2
2k + 3

2
(2k)!!

(2k + 1)!!
= 2

[2(k + 1)]!!
(2(k + 1) + 1)!!
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and

γ2(k+1) =
2k + 1
2k + 1

γ2k =
2k + 1
2k + 2

π
(2k − 1)!!

(2k)!!
= π

(2k + 1)!!
(2k + 2)!!

.

The recursion relation in Eq. (10.48) may be written as

σ(Sn) = σ
(
Sn−1

)
γn−1 (10.49)

which combined with σ
(
S1
)

= 2π implies

σ
(
S1
)

= 2π,

σ(S2) = 2π · γ1 = 2π · 2,

σ(S3) = 2π · 2 · γ2 = 2π · 2 · 1
2
π =

22π2

2!!
,

σ(S4) =
22π2

2!!
· γ3 =

22π2

2!!
· 22

3
=

23π2

3!!

σ(S5) = 2π · 2 · 1
2
π · 2

3
2 · 3

4
1
2
π =

23π3

4!!
,

σ(S6) = 2π · 2 · 1
2
π · 2

3
2 · 3

4
1
2
π · 4

5
2
3
2 =

24π3

5!!

and more generally that

σ(S2n) =
2 (2π)n

(2n− 1)!!
and σ(S2n+1) =

(2π)n+1

(2n)!!
(10.50)

which is verified inductively using Eq. (10.49). Indeed,

σ(S2n+1) = σ(S2n)γ2n =
2 (2π)n

(2n− 1)!!
π

(2n− 1)!!
(2n)!!

=
(2π)n+1

(2n)!!

and

σ(S(n+1)) = σ(S2n+2) = σ(S2n+1)γ2n+1 =
(2π)n+1

(2n)!!
2

(2n)!!
(2n+ 1)!!

=
2 (2π)n+1

(2n+ 1)!!
.

Using
(2n)!! = 2n (2(n− 1)) . . . (2 · 1) = 2nn!

we may write σ(S2n+1) = 2πn+1

n! which shows that Eqs. (10.33) and (10.50 are
in agreement. We may also write the formula in Eq. (10.50) as

σ(Sn) =


2(2π)n/2

(n−1)!! for n even
(2π)

n+1
2

(n−1)!! for n odd.
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10.8 Exercises

Exercise 10.4. Prove Theorem 10.9. Suggestion, to get started define

π (A) :=
∫

X1

dµ (x1) . . .
∫

Xn

dµ (xn) 1A (x1, . . . , xn)

and then show Eq. (10.16) holds. Use the case of two factors as the model of
your proof.

Exercise 10.5. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ – finite measure spaces.
Let F : (X1 ×X2)×X3 → X1 ×X2 ×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

1. Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) – measurable and F−1

is (M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) – measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3) → (X1×X2×X3,M1⊗M2⊗M3)

is a “measure theoretic isomorphism.”
2. Let π := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. π(A) = [(µ1 ⊗ µ2)⊗ µ3] (F−1(A)) for all
A ∈M1 ⊗M2 ⊗M3. Then π is the unique measure on M1 ⊗M2 ⊗M3

such that
π(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write π := µ1 ⊗ µ2 ⊗ µ3.
3. Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) – measurable

function. Verify the identity,∫
X1×X2×X3

fdπ =
∫

X3

dµ3(x3)
∫

X2

dµ2(x2)
∫

X1

dµ1(x1)f(x1, x2, x3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six

possible orderings of the iterated integrals.

Exercise 10.6. Prove the second assertion of Theorem 10.19. That is show
md is the unique translation invariant measure on BRd such that md((0, 1]d) =
1. Hint: Look at the proof of Theorem 5.22.

Exercise 10.7. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],
M = B[0,1] be the Borel σ – field on X, m be Lebesgue measure on [0, 1] and
ν be counting measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X}
be the diagonal in X2. Show∫

X

[∫
X

1D(x, y)dν(y)
]
dm(x) 6=

∫
X

[∫
X

1D(x, y)dm(x)
]
dν(y)

by explicitly computing both sides of this equation.
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Exercise 10.8. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 10.9. Folland Problem 2.50 on p. 69 pertaining to area under a
curve. (Note the M×BR should be M⊗BR̄ in this problem.)

Exercise 10.10. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 10.11. Folland Problem 2.56 on p. 77. Let f ∈ L1((0, a), dm),
g(x) =

∫ a

x
f(t)

t dt for x ∈ (0, a), show g ∈ L1((0, a), dm) and∫ a

0

g(x)dx =
∫ a

0

f(t)dt.

Exercise 10.12. Show
∫∞
0

∣∣ sin x
x

∣∣ dm(x) = ∞. So sin x
x /∈ L1([0,∞),m) and∫∞

0
sin x

x dm(x) is not defined as a Lebesgue integral.

Exercise 10.13. Folland Problem 2.57 on p. 77.

Exercise 10.14. Folland Problem 2.58 on p. 77.

Exercise 10.15. Folland Problem 2.60 on p. 77. Properties of the Γ – func-
tion.

Exercise 10.16. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 10.17. Folland Problem 2.62 on p. 80. Rotation invariance of sur-
face measure on Sn−1.

Exercise 10.18. Folland Problem 2.64 on p. 80. On the integrability of
|x|a |log |x||b for x near 0 and x near ∞ in Rn.

Exercise 10.19. Show, using Problem 10.17 that∫
Sd−1

ωiωjdσ (ω) =
1
d
δijσ

(
Sd−1

)
.

Hint: show
∫

Sd−1 ω
2
i dσ (ω) is independent of i and therefore

∫
Sd−1

ω2
i dσ (ω) =

1
d

d∑
j=1

∫
Sd−1

ω2
jdσ (ω) .
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Lp – spaces

Let (Ω,B, µ) be a measure space and for 0 < p <∞ and a measurable function
f : Ω → C let

‖f‖p :=
(∫

Ω

|f |p dµ
)1/p

(11.1)

and when p = ∞, let

‖f‖∞ = inf {a ≥ 0 : µ(|f | > a) = 0} (11.2)

For 0 < p ≤ ∞, let

Lp(Ω,B, µ) = {f : Ω → C : f is measurable and ‖f‖p <∞}/ ∼

where f ∼ g iff f = g a.e. Notice that ‖f − g‖p = 0 iff f ∼ g and if f ∼ g
then ‖f‖p = ‖g‖p. In general we will (by abuse of notation) use f to denote
both the function f and the equivalence class containing f.

Remark 11.1. Suppose that ‖f‖∞ ≤ M, then for all a > M, µ(|f | > a) = 0
and therefore µ(|f | > M) = limn→∞ µ(|f | > M + 1/n) = 0, i.e. |f(ω)| ≤ M
for µ - a.e. ω. Conversely, if |f | ≤M a.e. and a > M then µ(|f | > a) = 0 and
hence ‖f‖∞ ≤M. This leads to the identity:

‖f‖∞ = inf {a ≥ 0 : |f(ω)| ≤ a for µ – a.e. ω} .

11.1 Modes of Convergence

Let {fn}∞n=1 ∪ {f} be a collection of complex valued measurable functions on
Ω. We have the following notions of convergence and Cauchy sequences.

Definition 11.2. 1. fn → f a.e. if there is a set E ∈ B such that µ(E) = 0
and limn→∞ 1Ecfn = 1Ecf.

2. fn → f in µ – measure if limn→∞ µ(|fn − f | > ε) = 0 for all ε > 0. We
will abbreviate this by saying fn → f in L0 or by fn

µ→ f.
3. fn → f in Lp iff f ∈ Lp and fn ∈ Lp for all n, and limn→∞ ‖fn − f‖p = 0.

Definition 11.3. 1. {fn} is a.e. Cauchy if there is a set E ∈ B such that
µ(E) = 0 and{1Ec fn} is a pointwise Cauchy sequences.
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2. {fn} is Cauchy in µ – measure (or L0 – Cauchy) if limm,n→∞ µ(|fn −
fm| > ε) = 0 for all ε > 0.

3. {fn} is Cauchy in Lp if limm,n→∞ ‖fn − fm‖p = 0.

When µ is a probability measure, we describe, fn
µ→ f as fn converging

to f in probability. If a sequence {fn}∞n=1 is Lp – convergent, then it is Lp

– Cauchy. For example, when p ∈ [1,∞] and fn → f in Lp, we have

‖fn − fm‖p ≤ ‖fn − f‖p + ‖f − fm‖p → 0 as m,n→∞.

The case where p = 0 will be handled in Theorem 11.7 below.

Lemma 11.4 (Lp – convergence implies convergence in probability).
Let p ∈ [1,∞). If {fn} ⊂ Lp is Lp – convergent (Cauchy) then {fn} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (8.3),

µ (|f | ≥ ε) = µ (|f |p ≥ εp) ≤ 1
εp

∫
Ω

|f |p dµ =
1
εp
‖f‖p

p

and therefore if {fn} is Lp – Cauchy, then

µ (|fn − fm| ≥ ε) ≤ 1
εp
‖fn − fm‖p

p → 0 as m,n→∞

showing {fn} is L0 – Cauchy. A similar argument holds for the Lp – convergent
case.

Here is a sequence of functions where fn → 0 a.e., fn 9 0 in L1, fn
m→ 0.
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Above is a sequence of functions where fn → 0 a.e., yet fn 9 0 in L1. or in
measure.

Here is a sequence of functions where fn → 0 a.e., fn
m→ 0 but fn 9 0 in L1.
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Above is a sequence of functions where fn → 0 in L1, fn 9 0 a.e., and
fn

m→ 0.

Theorem 11.5 (Egoroff’s Theorem: almost sure convergence implies
convergence in probability).

Suppose µ(Ω) = 1 and fn → f a.s. Then for all ε > 0 there exists E =
Eε ∈ B such that µ(E) < ε and fn → f uniformly on Ec. In particular
fn

µ−→ f as n→∞.

Proof. Let fn → f a.e. Then for all ε > 0,

0 = µ({|fn − f | > ε i.o. n})

= lim
N→∞

µ

 ⋃
n≥N

{|fn − f | > ε}

 (11.3)

≥ lim sup
N→∞

µ ({|fN − f | > ε})

from which it follows that fn
µ−→ f as n→∞. To get the uniform convergence

off a small exceptional set, the equality in Eq. (11.3) allows us to choose an
increasing sequence {Nk}∞k=1 , such that, if

Ek :=
⋃

n≥Nk

{
|fn − f | > 1

k

}
, then µ(Ek) < ε2−k.

The set, E := ∪∞k=1Ek, then satisfies the estimate, µ(E) <
∑

k ε2
−k = ε.

Moreover, for ω /∈ E, we have |fn (ω)− f (ω)| ≤ 1
k for all n ≥ Nk and all k.

That is fn → f uniformly on Ec.

Lemma 11.6. Suppose an ∈ C and |an+1 − an| ≤ εn and
∞∑

n=1
εn < ∞. Then

lim
n→∞

an = a ∈ C exists and |a− an| ≤ δn :=
∞∑

k=n

εk.
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Proof. Let m > n then

|am − an| =
∣∣∣∣m−1∑
k=n

(ak+1 − ak)
∣∣∣∣ ≤ m−1∑

k=n

|ak+1 − ak| ≤
∞∑

k=n

εk := δn . (11.4)

So |am− an| ≤ δmin(m,n) → 0 as ,m, n→∞, i.e. {an} is Cauchy. Let m→∞
in (11.4) to find |a− an| ≤ δn.

Theorem 11.7. Let (Ω,B, µ) be a measure space and {fn}∞n=1 be a sequence
of measurable functions on Ω.

1. If f and g are measurable functions and fn
µ→ f and fn

µ→ g then f = g
a.e.

2. If fn
µ→ f then {fn}∞n=1 is Cauchy in measure.

3. If {fn}∞n=1 is Cauchy in measure, there exists a measurable function, f,
and a subsequence gj = fnj

of {fn} such that limj→∞ gj := f exists a.e.
4. If {fn}∞n=1 is Cauchy in measure and f is as in item 3. then fn

µ→ f.
5. Let us now further assume that µ (Ω) < ∞. In this case, a sequence of

functions, {fn}∞n=1 converges to f in probability iff every subsequence,
{f ′n}

∞
n=1 of {fn}∞n=1 has a further subsequence, {f ′′n}

∞
n=1 , which is almost

surely convergent to f.

Proof.

1. Suppose that f and g are measurable functions such that fn
µ→ g and

fn
µ→ f as n→∞ and ε > 0 is given. Since

{|f − g| > ε} = {|f − fn + fn − g| > ε} ⊂ {|f − fn|+ |fn − g| > ε}
⊂ {|f − fn| > ε/2} ∪ {|g − fn| > ε/2} ,

µ(|f − g| > ε) ≤ µ(|f − fn| > ε/2) + µ(|g − fn| > ε/2) → 0 as n→∞.

Hence

µ(|f − g| > 0) = µ

(
∪∞n=1

{
|f − g| > 1

n

})
≤
∞∑

n=1

µ

(
|f − g| > 1

n

)
= 0,

i.e. f = g a.e.
2. Suppose fn

µ→ f, ε > 0 and m,n ∈ N and ω ∈ Ω are such that
|fn (ω)− fm (ω)| > ε. Then

ε < |fn (ω)− fm (ω)| ≤ |fn (ω)− f (ω)|+ |f (ω)− fm (ω)|

from which it follows that either |fn (ω)− f (ω)| > ε/2 or |f (ω)− fm (ω)| >
ε/2. Therefore we have shown,

{|fn − fm| > ε} ⊂ {|fn − f | > ε/2} ∪ {|fm − f | > ε/2}

and hence

µ (|fn − fm| > ε) ≤ µ (|fn − f | > ε/2)+µ (|fm − f | > ε/2) → 0 as m,n→∞.
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3. Suppose {fn} is L0 (µ) – Cauchy and let εn > 0 such that
∞∑

n=1
εn < ∞

(εn = 2−n would do) and set δn =
∞∑

k=n

εk. Choose gj = fnj
where {nj} is

a subsequence of N such that

µ({|gj+1 − gj | > εj}) ≤ εj .

Let FN := ∪j≥N {|gj+1 − gj | > εj} and

E := ∩∞N=1FN = {|gj+1 − gj | > εj i.o.}

and observe that µ (FN ) ≤ δN <∞. Since

∞∑
j=1

µ({|gj+1 − gj | > εj}) ≤
∞∑

j=1

εj <∞,

it follows from the first Borel-Cantelli lemma that

0 = µ (E) = lim
N→∞

µ (FN ) .

For ω /∈ E, |gj+1 (ω)− gj (ω)| ≤ εj for a.a. j and so by Lemma 11.6,
f (ω) := lim

j→∞
gj(ω) exists. For ω ∈ E we may define f (ω) ≡ 0.

4. Next we will show gN
µ→ f as N →∞ where f and gN are as above. If

ω ∈ F c
N = ∩j≥N {|gj+1 − gj | ≤ εj} ,

then
|gj+1 (ω)− gj (ω)| ≤ εj for all j ≥ N.

Another application of Lemma 11.6 shows |f(ω)− gj(ω)| ≤ δj for all
j ≥ N, i.e.

F c
N ⊂ ∩j≥N {ω ∈ Ω : |f(ω)− gj(ω)| ≤ δj} .

Taking complements of this equation shows

{|f − gN | > δN} ⊂ ∪j≥N {|f − gj | > δj} ⊂ FN .

and therefore,

µ(|f − gN | > δN ) ≤ µ(FN ) ≤ δN → 0 as N →∞

and in particular, gN
µ→ f as N →∞.

With this in hand, it is straightforward to show fn
µ→ f. Indeed, since

{|fn − f | > ε} = {|f − gj + gj − fn| > ε}
⊂ {|f − gj |+ |gj − fn| > ε}
⊂ {|f − gj | > ε/2} ∪ {|gj − fn| > ε/2},
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we have

µ({|fn − f | > ε}) ≤ µ({|f − gj | > ε/2}) + µ(|gj − fn| > ε/2).

Therefore, letting j →∞ in this inequality gives,

µ({|fn − f | > ε}) ≤ lim sup
j→∞

µ(|gj − fn| > ε/2) → 0 as n→∞

because {fn}∞n=1 was Cauchy in measure.
5. If {fn}∞n=1 is convergent and hence Cauchy in probability then any sub-

sequence, {f ′n}
∞
n=1 is also Cauchy in probability. Hence by item 3. there

is a further subsequence, {f ′′n}
∞
n=1 of {f ′n}

∞
n=1 which is convergent almost

surely.
Conversely if {fn}∞n=1 does not converge to f in probability, then there
exists an ε > 0 and a subsequence, {nk} such that infk µ (|f − fnk

| ≥ ε) >
0. Any subsequence of {fnk

} would have the same property and hence can
not be almost surely convergent because of Theorem 11.5.

Corollary 11.8 (Dominated Convergence Theorem). Let (Ω,B, µ) be a
measure space. Suppose {fn} , {gn} , and g are in L1 and f ∈ L0 are functions
such that

|fn| ≤ gn a.e., fn
µ−→ f, gn

µ−→ g, and
∫
gn →

∫
g as n→∞.

Then f ∈ L1 and limn→∞ ‖f − fn‖1 = 0, i.e. fn → f in L1. In particular
limn→∞

∫
fn =

∫
f.

Proof. First notice that |f | ≤ g a.e. and hence f ∈ L1 since g ∈ L1. To
see that |f | ≤ g, use Theorem 11.7 to find subsequences {fnk

} and {gnk
} of

{fn} and {gn} respectively which are almost everywhere convergent. Then

|f | = lim
k→∞

|fnk
| ≤ lim

k→∞
gnk

= g a.e.

If (for sake of contradiction) limn→∞ ‖f − fn‖1 6= 0 there exists ε > 0 and a
subsequence {fnk

} of {fn} such that∫
|f − fnk

| ≥ ε for all k. (11.5)

Using Theorem 11.7 again, we may assume (by passing to a further subse-
quences if necessary) that fnk

→ f and gnk
→ g almost everywhere. Noting,

|f − fnk
| ≤ g + gnk

→ 2g and
∫

(g + gnk
) →

∫
2g, an application of the

dominated convergence Theorem 8.34 implies limk→∞
∫
|f − fnk

| = 0 which
contradicts Eq. (11.5).
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Exercise 11.1 (Fatou’s Lemma). Let (Ω,B, µ) be a measure space. If fn ≥
0 and fn → f in measure, then

∫
Ω
fdµ ≤ lim infn→∞

∫
Ω
fndµ.

Exercise 11.2. Let (Ω,B, µ) be a measure space, p ∈ [1,∞), {fn} ⊂ Lp (µ)
and f ∈ Lp (µ) . Then fn → f in Lp (µ) iff fn

µ−→ f and
∫
|fn|p →

∫
|f |p .

Solution to Exercise (11.2). By the triangle inequality,
∣∣∣‖f‖p − ‖fn‖p

∣∣∣ ≤
‖f − fn‖p which shows

∫
|fn|p →

∫
|f |p if fn → f in Lp. Moreover

Chebyschev’s inequality implies fn
µ−→ f if fn → f in Lp.

For the converse, let Fn := |f − fn|p and Gn := 2p−1 [|f |p + |fn|p] . Then
Fn

µ−→ 0, Fn ≤ Gn ∈ L1, and
∫
Gn →

∫
G where G := 2p |f |p ∈ L1.

Therefore, by Corollary 11.8,
∫
|f − fn|p =

∫
Fn →

∫
0 = 0.

Corollary 11.9. Suppose (Ω,B, µ) is a probability space, fn
µ−→ f and gn

µ−→
g and ϕ : R → R and ψ : R2 → R are continuous functions. Then

1. ϕ (fn)
µ−→ ϕ (f) ,

2. ψ (fn, gn)
µ−→ ψ (f, g) ,

3. fn + gn
µ−→ f + g, and

4. fn · gn
µ−→ f · g.

Proof. Item 1., 3. and 4. all follow from item 2. by taking ψ (x, y) = ϕ (x) ,
ψ (x, y) = x+ y, and ψ (x, y) = x · y respectively. So it suffices to prove item
2. To do this we will make repeated use of Theorem 11.7.

Given a subsequence, {nk} , of N there is a subsequence, {n′k} of {nk}
such that fn′k

→ f a.s. and yet a further subsequence {n′′k} of {n′k} such that
gn′′k

→ g a.s. Hence, by the continuity of ψ, it now follows that

lim
k→∞

ψ
(
fn′′k

, gn′′k

)
= ψ (f, g) a.s.

which completes the proof.

11.2 Jensen’s, Hölder’s and Minikowski’s Inequalities

Theorem 11.10 (Jensen’s Inequality). Suppose that (Ω,B, µ) is a prob-
ability space, i.e. µ is a positive measure and µ(Ω) = 1. Also suppose that
f ∈ L1(µ), f : Ω → (a, b), and ϕ : (a, b) → R is a convex function, (i.e.
ϕ′′ (x) ≥ 0 on (a, b) .) Then

ϕ

(∫
Ω

fdµ

)
≤
∫

Ω

ϕ(f)dµ

where if ϕ ◦ f /∈ L1(µ), then ϕ ◦ f is integrable in the extended sense and∫
Ω
ϕ(f)dµ = ∞.
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Proof. Let t =
∫

Ω
fdµ ∈ (a, b) and let β ∈ R (β = ϕ̇ (t) when ϕ̇ (t) exists),

be such that ϕ(s) − ϕ(t) ≥ β(s − t) for all s ∈ (a, b). (See Lemma 7.31) and
Figure 7.2 when ϕ is C1 and Theorem 11.38 below for the existence of such a
β in the general case.) Then integrating the inequality, ϕ(f)−ϕ(t) ≥ β(f− t),
implies that

0 ≤
∫

Ω

ϕ(f)dµ− ϕ(t) =
∫

Ω

ϕ(f)dµ− ϕ(
∫

Ω

fdµ).

Moreover, if ϕ(f) is not integrable, then ϕ(f) ≥ ϕ(t) + β(f − t) which shows
that negative part of ϕ(f) is integrable. Therefore,

∫
Ω
ϕ(f)dµ = ∞ in this

case.

Example 11.11. Since ex for x ∈ R, − lnx for x > 0, and xp for x ≥ 0 and
p ≥ 1 are all convex functions, we have the following inequalities

exp
(∫

Ω

fdµ

)
≤
∫

Ω

efdµ, (11.6)∫
Ω

log(|f |)dµ ≤ log
(∫

Ω

|f | dµ
)

and for p ≥ 1, ∣∣∣∣∫
Ω

fdµ

∣∣∣∣p ≤ (∫
Ω

|f | dµ
)p

≤
∫

Ω

|f |p dµ.

As a special case of Eq. (11.6), if pi, si > 0 for i = 1, 2, . . . , n and
∑n

i=1
1
pi

= 1,
then

s1 . . . sn = e
Pn

i=1 ln si = e
Pn

i=1
1

pi
ln s

pi
i ≤

n∑
i=1

1
pi
eln s

pi
i =

n∑
i=1

spi

i

pi
. (11.7)

Indeed, we have applied Eq. (11.6) with Ω = {1, 2, . . . , n} , µ =
∑n

i=1
1
pi
δi and

f (i) := ln spi

i . As a special case of Eq. (11.7), suppose that s, t, p, q ∈ (1,∞)
with q = p

p−1 (i.e. 1
p + 1

q = 1) then

st ≤ 1
p
sp +

1
q
tq. (11.8)

(When p = q = 1/2, the inequality in Eq. (11.8) follows from the inequality,
0 ≤ (s− t)2 .)

As another special case of Eq. (11.7), take pi = n and si = a
1/n
i with

ai > 0, then we get the arithmetic geometric mean inequality,

n
√
a1 . . . an ≤

1
n

n∑
i=1

ai. (11.9)
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Theorem 11.12 (Hölder’s inequality). Suppose that 1 ≤ p ≤ ∞ and q :=
p

p−1 , or equivalently p−1 + q−1 = 1. If f and g are measurable functions then

‖fg‖1 ≤ ‖f‖p · ‖g‖q. (11.10)

Assuming p ∈ (1,∞) and ‖f‖p · ‖g‖q < ∞, equality holds in Eq. (11.10) iff
|f |p and |g|q are linearly dependent as elements of L1 which happens iff

|g|q‖f‖p
p = ‖g‖q

q |f |
p a.e. (11.11)

Proof. The cases p = 1 and q = ∞ or p = ∞ and q = 1 are easy to deal
with and will be left to the reader. So we now assume that p, q ∈ (1,∞) . If
‖f‖q = 0 or∞ or ‖g‖p = 0 or∞, Eq. (11.10) is again easily verified. So we will
now assume that 0 < ‖f‖q, ‖g‖p <∞. Taking s = |f | /‖f‖p and t = |g|/‖g‖q

in Eq. (11.8) gives,

|fg|
‖f‖p‖g‖q

≤ 1
p

|f |p

‖f‖p
+

1
q

|g|q

‖g‖q
(11.12)

with equality iff |g/‖g‖q| = |f |p−1
/‖f‖(p−1)

p = |f |p/q
/‖f‖p/q

p , i.e. |g|q‖f‖p
p =

‖g‖q
q |f |

p
. Integrating Eq. (11.12) implies

‖fg‖1
‖f‖p‖g‖q

≤ 1
p

+
1
q

= 1

with equality iff Eq. (11.11) holds. The proof is finished since it is easily
checked that equality holds in Eq. (11.10) when |f |p = c |g|q of |g|q = c |f |p
for some constant c.

Example 11.13. Suppose that ak ∈ C for k = 1, 2, . . . , n and p ∈ [1,∞), then∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣
p

≤ np−1
n∑

k=1

|ak|p . (11.13)

Indeed, by Hölder’s inequality applied using the measure space, {1, 2, . . . , n}
equipped with counting measure, we have∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

ak · 1

∣∣∣∣∣ ≤
(

n∑
k=1

|ak|p
)1/p( n∑

k=1

1q

)1/q

= n1/q

(
n∑

k=1

|ak|p
)1/p

where q = p
p−1 . Taking the pth – power of this inequality then gives, Eq.

(11.14).

Theorem 11.14 (Generalized Hölder’s inequality). Suppose that fi :
Ω → C are measurable functions for i = 1, . . . , n and p1, . . . , pn and r are
positive numbers such that

∑n
i=1 p

−1
i = r−1, then∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
r

≤
n∏

i=1

‖fi‖pi
. (11.14)
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Proof. One may prove this theorem by induction based on Hölder’s The-
orem 11.12 above. Alternatively we may give a proof along the lines of the
proof of Theorem 11.12 which is what we will do here.

Since Eq. (11.14) is easily seen to hold if ‖fi‖pi
= 0 for some i, we will

assume that ‖fi‖pi
> 0 for all i. By assumption,

∑n
i=1

ri

pi
= 1, hence we may

replace si by sr
i and pi by pi/r for each i in Eq. (11.7) to find

sr
1 . . . s

r
n ≤

n∑
i=1

(sr
i )

pi/r

pi/r
= r

n∑
i=1

spi

i

pi
.

Now replace si by |fi| / ‖fi‖pi
in the previous inequality and integrate the

result to find

1∏n
i=1 ‖fi‖pi

∥∥∥∥∥
n∏

i=1

fi

∥∥∥∥∥
r

r

≤ r
n∑

i=1

1
pi

1
‖fi‖pi

pi

∫
Ω

|fi|pi dµ =
n∑

i=1

r

pi
= 1.

Theorem 11.15 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ Lp

then
‖f + g‖p ≤ ‖f‖p + ‖g‖p. (11.15)

Proof. When p = ∞, |f | ≤ ‖f‖∞ a.e. and |g| ≤ ‖g‖∞ a.e. so that |f + g| ≤
|f |+ |g| ≤ ‖f‖∞ + ‖g‖∞ a.e. and therefore

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ .

When p <∞,

|f + g|p ≤ (2max (|f | , |g|))p = 2p max (|f |p , |g|p) ≤ 2p (|f |p + |g|p) ,

which implies1 f + g ∈ Lp since

‖f + g‖p
p ≤ 2p

(
‖f‖p

p + ‖g‖p
p

)
<∞.

Furthermore, when p = 1 we have

‖f + g‖1 =
∫

Ω

|f + g|dµ ≤
∫

Ω

|f | dµ+
∫

Ω

|g|dµ = ‖f‖1 + ‖g‖1.

We now consider p ∈ (1,∞) . We may assume ‖f + g‖p, ‖f‖p and ‖g‖p are
all positive since otherwise the theorem is easily verified. Integrating

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1

1 In light of Example 11.13, the last 2p in the above inequality may be replaced by
2p−1.
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and then applying Holder’s inequality with q = p/(p− 1) gives∫
Ω

|f + g|pdµ ≤
∫

Ω

|f | |f + g|p−1dµ+
∫

Ω

|g| |f + g|p−1dµ

≤ (‖f‖p + ‖g‖p) ‖ |f + g|p−1 ‖q, (11.16)

where

‖|f + g|p−1‖q
q =

∫
Ω

(|f + g|p−1)qdµ =
∫

Ω

|f + g|pdµ = ‖f + g‖p
p. (11.17)

Combining Eqs. (11.16) and (11.17) implies

‖f + g‖p
p ≤ ‖f‖p‖f + g‖p/q

p + ‖g‖p‖f + g‖p/q
p (11.18)

Solving this inequality for ‖f + g‖p gives Eq. (11.15).

11.3 Completeness of Lp – spaces

Theorem 11.16. Let ‖·‖∞ be as defined in Eq. (11.2), then (L∞(Ω,B, µ), ‖·‖∞) is
a Banach space. A sequence {fn}∞n=1 ⊂ L∞ converges to f ∈ L∞ iff there ex-
ists E ∈ B such that µ(E) = 0 and fn → f uniformly on Ec. Moreover,
bounded simple functions are dense in L∞.

Proof. By Minkowski’s Theorem 11.15, ‖·‖∞ satisfies the triangle inequal-
ity. The reader may easily check the remaining conditions that ensure ‖·‖∞
is a norm. Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such fn → f ∈ L∞, i.e.
‖f − fn‖∞ → 0 as n→∞. Then for all k ∈ N, there exists Nk <∞ such that

µ
(
|f − fn| > k−1

)
= 0 for all n ≥ Nk.

Let
E = ∪∞k=1 ∪n≥Nk

{
|f − fn| > k−1

}
.

Then µ(E) = 0 and for x ∈ Ec, |f(x)− fn(x)| ≤ k−1 for all n ≥ Nk. This
shows that fn → f uniformly on Ec. Conversely, if there exists E ∈ B such
that µ(E) = 0 and fn → f uniformly on Ec, then for any ε > 0,

µ (|f − fn| ≥ ε) = µ ({|f − fn| ≥ ε} ∩ Ec) = 0

for all n sufficiently large. That is to say lim sup
j→∞

‖f − fn‖∞ ≤ ε for all ε > 0.

The density of simple functions follows from the approximation Theorem 6.32.
So the last item to prove is the completeness of L∞.

Suppose εm,n := ‖fm − fn‖∞ → 0 as m,n → ∞. Let Em,n =
{|fn − fm| > εm,n} and E := ∪Em,n, then µ(E) = 0 and

sup
x∈Ec

|fm (x)− fn (x)| ≤ εm,n → 0 as m,n→∞.

Therefore, f := limn→∞ fn exists on Ec and the limit is uniform on Ec.
Letting f = limn→∞ 1Ecfn, it then follows that limn→∞ ‖fn − f‖∞ = 0.
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Theorem 11.17 (Completeness of Lp(µ)). For 1 ≤ p ≤ ∞, Lp(µ) equipped
with the Lp – norm, ‖·‖p (see Eq. (11.1)), is a Banach space.

Proof. By Minkowski’s Theorem 11.15, ‖·‖p satisfies the triangle inequal-
ity. As above the reader may easily check the remaining conditions that ensure
‖·‖p is a norm. So we are left to prove the completeness of Lp(µ) for 1 ≤ p <∞,
the case p = ∞ being done in Theorem 11.16.

Let {fn}∞n=1 ⊂ Lp(µ) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma 11.4), {fn} is L0-Cauchy (i.e. Cauchy in measure) and by Theorem
11.7 there exists a subsequence {gj} of {fn} such that gj → f a.e. By Fatou’s
Lemma,

‖gj − f‖p
p =

∫
lim

k→∞
inf |gj − gk|pdµ ≤ lim

k→∞
inf
∫
|gj − gk|pdµ

= lim
k→∞

inf ‖gj − gk‖p
p → 0 as j →∞.

In particular, ‖f‖p ≤ ‖gj − f‖p + ‖gj‖p <∞ so the f ∈ Lp and gj
Lp

−→ f. The
proof is finished because,

‖fn − f‖p ≤ ‖fn − gj‖p + ‖gj − f‖p → 0 as j, n→∞.

See Proposition 12.5 for an important example of the use of this theorem.

11.4 Relationships between different Lp – spaces

The Lp(µ) – norm controls two types of behaviors of f, namely the “behavior
at infinity” and the behavior of “local singularities.” So in particular, if f
blows up at a point x0 ∈ Ω, then locally near x0 it is harder for f to be
in Lp(µ) as p increases. On the other hand a function f ∈ Lp(µ) is allowed
to decay at “infinity” slower and slower as p increases. With these insights
in mind, we should not in general expect Lp(µ) ⊂ Lq(µ) or Lq(µ) ⊂ Lp(µ).
However, there are two notable exceptions. (1) If µ(Ω) <∞, then there is no
behavior at infinity to worry about and Lq(µ) ⊂ Lp(µ) for all q ≥ p as is shown
in Corollary 11.18 below. (2) If µ is counting measure, i.e. µ(A) = #(A), then
all functions in Lp(µ) for any p can not blow up on a set of positive measure,
so there are no local singularities. In this case Lp(µ) ⊂ Lq(µ) for all q ≥ p,
see Corollary 11.23 below.

Corollary 11.18. If µ(Ω) < ∞ and 0 < p < q ≤ ∞, then Lq(µ) ⊂ Lp(µ),
the inclusion map is bounded and in fact

‖f‖p ≤ [µ(Ω)](
1
p−

1
q ) ‖f‖q .
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Proof. Take a ∈ [1,∞] such that

1
p

=
1
a

+
1
q
, i.e. a =

pq

q − p
.

Then by Theorem 11.14,

‖f‖p = ‖f · 1‖p ≤ ‖f‖q · ‖1‖a = µ(Ω)1/a‖f‖q = µ(Ω)(
1
p−

1
q )‖f‖q.

The reader may easily check this final formula is correct even when q = ∞
provided we interpret 1/p− 1/∞ to be 1/p.

The rest of this section may be skipped.

Example 11.19 (Power Inequalities). Let a := (a1, . . . , an) with ai > 0 for
i = 1, 2, . . . , n and for p ∈ R \ {0} , let

‖a‖p :=

(
1
n

n∑
i=1

ap
i

)1/p

.

Then by Corollary 11.18, p→ ‖a‖p is increasing in p for p > 0. For p = −q < 0,
we have

‖a‖p :=

(
1
n

n∑
i=1

a−q
i

)−1/q

=

 1
1
n

∑n
i=1

(
1
ai

)q

1/q

=
∥∥∥∥1
a

∥∥∥∥−1

q

where 1
a := (1/a1, . . . , 1/an) . So for p < 0, as p increases, q = −p decreases, so

that
∥∥ 1

a

∥∥
q

is decreasing and hence
∥∥ 1

a

∥∥−1

q
is increasing. Hence we have shown

that p→ ‖a‖p is increasing for p ∈ R \ {0} .
We now claim that limp→0 ‖a‖p = n

√
a1 . . . an. To prove this, write ap

i =
ep ln ai = 1 + p ln ai +O

(
p2
)

for p near zero. Therefore,

1
n

n∑
i=1

ap
i = 1 + p

1
n

n∑
i=1

ln ai +O
(
p2
)
.

Hence it follows that

lim
p→0

‖a‖p = lim
p→0

(
1
n

n∑
i=1

ap
i

)1/p

= lim
p→0

(
1 + p

1
n

n∑
i=1

ln ai +O
(
p2
))1/p

= e
1
n

Pn
i=1 ln ai = n

√
a1 . . . an.

So if we now define ‖a‖0 := n
√
a1 . . . an, the map p ∈ R →‖a‖p ∈ (0,∞) is

continuous and increasing in p.
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We will now show that limp→∞ ‖a‖p = maxi ai =: M and limp→−∞ ‖a‖p =
mini ai =: m. Indeed, for p > 0,

1
n
Mp ≤ 1

n

n∑
i=1

ap
i ≤Mp

and therefore, (
1
n

)1/p

M ≤ ‖a‖p ≤M.

Since
(

1
n

)1/p → 1 as p→∞, it follows that limp→∞ ‖a‖p = M. For p = −q <
0, we have

lim
p→−∞

‖a‖p = lim
q→∞

(
1∥∥ 1
a

∥∥
q

)
=

1
maxi (1/ai)

=
1

1/m
= m = min

i
ai.

Conclusion. If we extend the definition of ‖a‖p to p = ∞ and p = −∞
by ‖a‖∞ = maxi ai and ‖a‖−∞ = mini ai, then R̄ 3p → ‖a‖p ∈ (0,∞) is a
continuous non-decreasing function of p.

Proposition 11.20. Suppose that 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈
(p0, p1) be defined by

1
pλ

=
1− λ

p0
+

λ

p1
(11.19)

with the interpretation that λ/p1 = 0 if p1 = ∞.2 Then Lpλ ⊂ Lp0 + Lp1 , i.e.
every function f ∈ Lpλ may be written as f = g+h with g ∈ Lp0 and h ∈ Lp1 .
For 1 ≤ p0 < p1 ≤ ∞ and f ∈ Lp0 + Lp1 let

‖f‖ := inf
{
‖g‖p0

+ ‖h‖p1
: f = g + h

}
.

Then (Lp0 + Lp1 , ‖·‖) is a Banach space and the inclusion map from Lpλ to
Lp0 + Lp1 is bounded; in fact ‖f‖ ≤ 2 ‖f‖pλ

for all f ∈ Lpλ .

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f | > M} and the behavior of f at “infinity” is solely determined
by f on Ec. Hence let g = f1E and h = f1Ec so that f = g+h. By our earlier
discussion we expect that g ∈ Lp0 and h ∈ Lp1 and this is the case since,

‖g‖p0
p0

=
∫
|f |p0 1|f |>M = Mp0

∫ ∣∣∣∣ fM
∣∣∣∣p0

1|f |>M

≤Mp0

∫ ∣∣∣∣ fM
∣∣∣∣pλ

1|f |>M ≤Mp0−pλ ‖f‖pλ

pλ
<∞

2 A little algebra shows that λ may be computed in terms of p0, pλ and p1 by

λ =
p0

pλ
· p1 − pλ

p1 − p0
.
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and

‖h‖p1
p1

=
∥∥f1|f |≤M

∥∥p1

p1
=
∫
|f |p1 1|f |≤M = Mp1

∫ ∣∣∣∣ fM
∣∣∣∣p1

1|f |≤M

≤Mp1

∫ ∣∣∣∣ fM
∣∣∣∣pλ

1|f |≤M ≤Mp1−pλ ‖f‖pλ

pλ
<∞.

Moreover this shows

‖f‖ ≤M1−pλ/p0 ‖f‖pλ/p0
pλ

+M1−pλ/p1 ‖f‖pλ/p1
pλ

.

Taking M = λ ‖f‖pλ
then gives

‖f‖ ≤
(
λ1−pλ/p0 + λ1−pλ/p1

)
‖f‖pλ

and then taking λ = 1 shows ‖f‖ ≤ 2 ‖f‖pλ
. The proof that (Lp0 + Lp1 , ‖·‖)

is a Banach space is left as Exercise 11.6 to the reader.

Corollary 11.21 (Interpolation of Lp – norms). Suppose that 0 < p0 <
p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) be defined as in Eq. (11.19), then
Lp0 ∩ Lp1 ⊂ Lpλ and

‖f‖pλ
≤ ‖f‖λ

p0
‖f‖1−λ

p1
. (11.20)

Further assume 1 ≤ p0 < pλ < p1 ≤ ∞, and for f ∈ Lp0 ∩ Lp1 let

‖f‖ := ‖f‖p0
+ ‖f‖p1

.

Then (Lp0 ∩ Lp1 , ‖·‖) is a Banach space and the inclusion map of Lp0 ∩ Lp1

into Lpλ is bounded, in fact

‖f‖pλ
≤ max

(
λ−1, (1− λ)−1

) (
‖f‖p0

+ ‖f‖p1

)
. (11.21)

The heuristic explanation of this corollary is that if f ∈ Lp0 ∩Lp1 , then f
has local singularities no worse than an Lp1 function and behavior at infinity
no worse than an Lp0 function. Hence f ∈ Lpλ for any pλ between p0 and p1.

Proof. Let λ be determined as above, a = p0/λ and b = p1/(1− λ), then
by Theorem 11.14,

‖f‖pλ
=
∥∥∥|f |λ |f |1−λ

∥∥∥
pλ

≤
∥∥∥|f |λ∥∥∥

a

∥∥∥|f |1−λ
∥∥∥

b
= ‖f‖λ

p0
‖f‖1−λ

p1
.

It is easily checked that ‖·‖ is a norm on Lp0 ∩ Lp1 . To show this space is
complete, suppose that {fn} ⊂ Lp0 ∩ Lp1 is a ‖·‖ – Cauchy sequence. Then
{fn} is both Lp0 and Lp1 – Cauchy. Hence there exist f ∈ Lp0 and g ∈ Lp1 such
that limn→∞ ‖f − fn‖p0

= 0 and limn→∞ ‖g − fn‖pλ
= 0. By Chebyshev’s

inequality (Lemma 11.4) fn → f and fn → g in measure and therefore by
Theorem 11.7, f = g a.e. It now is clear that limn→∞ ‖f − fn‖ = 0. The
estimate in Eq. (11.21) is left as Exercise 11.5 to the reader.
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Remark 11.22. Combining Proposition 11.20 and Corollary 11.21 gives

Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1

for 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) as in Eq. (11.19).

Corollary 11.23. Suppose now that µ is counting measure on Ω. Then
Lp(µ) ⊂ Lq(µ) for all 0 < p < q ≤ ∞ and ‖f‖q ≤ ‖f‖p .

Proof. Suppose that 0 < p < q = ∞, then

‖f‖p
∞ = sup {|f(x)|p : x ∈ Ω} ≤

∑
x∈Ω

|f(x)|p = ‖f‖p
p ,

i.e. ‖f‖∞ ≤ ‖f‖p for all 0 < p < ∞. For 0 < p ≤ q ≤ ∞, apply Corollary
11.21 with p0 = p and p1 = ∞ to find

‖f‖q ≤ ‖f‖p/q
p ‖f‖1−p/q

∞ ≤ ‖f‖p/q
p ‖f‖1−p/q

p = ‖f‖p .

11.4.1 Summary:

1. Lp0 ∩ Lp1 ⊂ Lq ⊂ Lp0 + Lp1 for any q ∈ (p0, p1).
2. If p ≤ q, then `p ⊂ `q and ‖f‖q ≤ ‖f‖p .

3. Since µ(|f | > ε) ≤ ε−p ‖f‖p
p , L

p – convergence implies L0 – convergence.
4. L0 – convergence implies almost everywhere convergence for some subse-

quence.
5. If µ(Ω) < ∞ then almost everywhere convergence implies uniform con-

vergence off certain sets of small measure and in particular we have L0 –
convergence.

6. If µ(Ω) <∞, then Lq ⊂ Lp for all p ≤ q and Lq – convergence implies Lp

– convergence.

11.5 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L0 – convergent sequence is Lp – convergent. This will lead
us to the notion of uniform integrability. To simplify matters a bit here, it will
be assumed that (Ω,B, µ) is a finite measure space for this section.

Notation 11.24 For f ∈ L1(µ) and E ∈ B, let

µ(f : E) :=
∫

E

fdµ.
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and more generally if A,B ∈ B let

µ(f : A,B) :=
∫

A∩B

fdµ.

When µ is a probability measure, we will often write E [f : E] for µ(f : E)
and E [f : A,B] for µ(f : A,B).

Definition 11.25. A collection of functions, Λ ⊂ L1(µ) is said to be uni-
formly integrable if,

lim
a→∞

sup
f∈Λ

µ (|f | : |f | ≥ a) = 0. (11.22)

The condition in Eq. (11.22) implies supf∈Λ ‖f‖1 <∞.3 Indeed, choose a
sufficiently large so that supf∈Λ µ (|f | : |f | ≥ a) ≤ 1, then for f ∈ Λ

‖f‖1 = µ (|f | : |f | ≥ a) + µ (|f | : |f | < a) ≤ 1 + aµ (Ω) .

Let us also note that if Λ = {f} with f ∈ L1 (µ) , then Λ is uniformly in-
tegrable. Indeed, lima→∞ µ (|f | : |f | ≥ a) = 0 by the dominated convergence
theorem.

Definition 11.26. A collection of functions, Λ ⊂ L1(µ) is said to be uni-
formly absolutely continuous if for all ε > 0 there exists δ > 0 such that

sup
f∈Λ

µ (|f | : E) < ε whenever µ (E) < δ. (11.23)

Remark 11.27. It is not in general true that if {fn} ⊂ L1(µ) is uniformly
absolutely continuous implies supn ‖fn‖1 < ∞. For example take Ω = {∗}
and µ({∗}) = 1. Let fn(∗) = n. Since for δ < 1 a set E ⊂ Ω such that
µ(E) < δ is in fact the empty set and hence {fn}∞n=1 is uniformly absolutely
continuous. However, for finite measure spaces without “atoms”, for every
δ > 0 we may find a finite partition of Ω by sets {E`}k

`=1 with µ(E`) < δ. If
Eq. (11.23) holds with ε = 1, then

µ(|fn|) =
k∑

`=1

µ(|fn| : E`) ≤ k

showing that µ(|fn|) ≤ k for all n.

Lemma 11.28 (This lemma may be skipped.). For any g ∈ L1(µ), Λ =
{g} is uniformly absolutely continuous.

3 This is not necessarily the case if µ (Ω) = ∞. Indeed, if Ω = R and µ = m is
Lebesgue measure, the sequences of functions,

�
fn := 1[−n,n]

	∞
n=1

are uniformly

integrable but not bounded in L1 (m) .
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Proof. First Proof. If the Lemma is false, there would exist ε > 0
and sets En such that µ(En) → 0 while µ(|g| : En) ≥ ε for all n. Since
|1En

g| ≤ |g| ∈ L1 and for any δ > 0, µ(1En
|g| > δ) ≤ µ(En) → 0 as n → ∞,

the dominated convergence theorem of Corollary 11.8 implies limn→∞ µ(|g| :
En) = 0. This contradicts µ(|g| : En) ≥ ε for all n and the proof is complete.

Second Proof. Let ϕ =
∑n

i=1 ci1Bi
be a simple function such that

‖g − ϕ‖1 < ε/2. Then

µ (|g| : E) ≤ µ (|ϕ| : E) + µ (|g − ϕ| : E)

≤
n∑

i=1

|ci|µ (E ∩Bi) + ‖g − ϕ‖1 ≤

(
n∑

i=1

|ci|

)
µ (E) + ε/2.

This shows µ (|g| : E) < ε provided that µ (E) < ε (2
∑n

i=1 |ci|)
−1
.

Proposition 11.29. A subset Λ ⊂ L1 (µ) is uniformly integrable iff Λ ⊂
L1 (µ) is bounded is uniformly absolutely continuous.

Proof. ( =⇒ ) We have already seen that uniformly integrable subsets, Λ,
are bounded in L1 (µ) . Moreover, for f ∈ Λ, and E ∈ B,

µ(|f | : E) = µ(|f | : |f | ≥M,E) + µ(|f | : |f | < M,E)
≤ sup

n
µ(|f | : |f | ≥M) +Mµ(E).

So given ε > 0 choose M so large that supf∈Λ µ(|f | : |f | ≥ M) < ε/2 and
then take δ = ε

2M to verify that Λ is uniformly absolutely continuous.
(⇐=) Let K := supf∈Λ ‖f‖1 <∞. Then for f ∈ Λ, we have

µ (|f | ≥ a) ≤ ‖f‖1 /a ≤ K/a for all a > 0.

Hence given ε > 0 and δ > 0 as in the definition of uniform absolute continuity,
we may choose a = K/δ in which case

sup
f∈Λ

µ (|f | : |f | ≥ a) < ε.

Since ε > 0 was arbitrary, it follows that lima→∞ supf∈Λ µ (|f | : |f | ≥ a) = 0
as desired.

Corollary 11.30. Suppose {fn}∞n=1 and {gn}∞n=1 are two uniformly integrable
sequences, then {fn + gn}∞n=1 is also uniformly integrable.

Proof. By Proposition 11.29, {fn}∞n=1 and {gn}∞n=1 are both bounded
in L1 (µ) and are both uniformly absolutely continuous. Since ‖fn + gn‖1 ≤
‖fn‖1 + ‖gn‖1 it follows that {fn + gn}∞n=1 is bounded in L1 (µ) as well.
Moreover, for ε > 0 we may choose δ > 0 such that µ (|fn| : E) < ε and
µ (|gn| : E) < ε whenever µ (E) < δ. For this choice of ε and δ, we then have

µ (|fn + gn| : E) ≤ µ (|fn|+ |gn| : E) < 2ε whenever µ (E) < δ,

showing {fn + gn}∞n=1 uniformly absolutely continuous. Another application
of Proposition 11.29 completes the proof.
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Exercise 11.3 (Problem 5 on p. 196 of Resnick.). Suppose that {Xn}∞n=1

is a sequence of integrable and i.i.d random variables. Then
{

Sn

n

}∞
n=1

is uni-
formly integrable.

Theorem 11.31 (Vitali Convergence Theorem). Let (Ω,B, µ) be a finite
measure space,Λ := {fn}∞n=1 be a sequence of functions in L1 (µ) , and f :
Ω → C be a measurable function. Then f ∈ L1 (µ) and ‖f − fn‖1 → 0 as
n→∞ iff fn → f in µ measure and Λ is uniformly integrable.

Proof. (⇐=) If fn → f in µ measure and Λ = {fn}∞n=1 is uniformly
integrable then we know M := supn ‖fn‖1 < ∞. Hence and application of
Fatou’s lemma, see Exercise 11.1,∫

Ω

|f | dµ ≤ lim inf
n→∞

∫
Ω

|fn| dµ ≤M <∞,

i.e. f ∈ L1(µ). One now easily checks that Λ0 := {f − fn}∞n=1 is bounded
in L1 (µ) and (using Lemma 11.28 and Proposition 11.29) Λ0 is uniformly
absolutely continuous and hence Λ0 is uniformly integrable. Therefore,

‖f − fn‖1 = µ (|f − fn| : |f − fn| ≥ a) + µ (|f − fn| : |f − fn| < a)

≤ ε (a) +
∫

Ω

1|f−fn|<a |f − fn| dµ (11.24)

where
ε (a) := sup

m
µ (|f − fm| : |f − fm| ≥ a) → 0 as a→∞.

Since 1|f−fn|<a |f − fn| ≤ a ∈ L1 (µ) and

µ
(
1|f−fn|<a |f − fn| > ε

)
≤ µ (|f − fn| > ε) → 0 as n→∞,

we may pass to the limit in Eq. (11.24), with the aid of the dominated con-
vergence theorem (see Corollary 11.8), to find

lim sup
n→∞

‖f − fn‖1 ≤ ε (a) → 0 as a→∞.

( =⇒ ) If fn → f in L1 (µ) , then by Chebyschev’s inequality it follows that
fn → f in µ – measure. Since convergent sequences are bounded, to show Λ is
uniformly integrable it suffices to shows Λ is uniformly absolutely continuous.
Now for E ∈ B and n ∈ N,

µ(|fn| : E) ≤ µ(|f − fn| : E) + µ(|f | : E) ≤ ‖f − fn‖1 + µ(|f | : E).

Let εN := supn>N ‖f − fn‖1 , then εN ↓ 0 as N ↑ ∞ and

sup
n
µ(|fn| : E) ≤ sup

n≤N
µ(|fn| : E) ∨ (εN + µ(|f | : E)) ≤ εN + µ (gN : E) ,

(11.25)
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where gN = |f |+
∑N

n=1 |fn| ∈ L1. Given ε > 0 fix N large so that εN < ε/2
and then choose δ > 0 (by Lemma 11.28) such that µ (gN : E) < ε if µ (E) < δ.
It then follows from Eq. (11.25) that

sup
n
µ(|fn| : E) < ε/2 + ε/2 = ε when µ (E) < δ.

Example 11.32. Let Ω = [0, 1] , B = B[0,1] and P = m be Lebesgue measure
on B. Then the collection of functions, fε (x) := 2

ε (1− x/ε) ∨ 0 for ε ∈ (0, 1)
is bounded in L1 (P ) , fε → 0 a.e. as ε ↓ 0 but

0 =
∫

Ω

lim
ε↓0

fεdP 6= lim
ε↓0

∫
Ω

fεdP = 1.

This is a typical example of a bounded and pointwise convergent sequence in
L1 which is not uniformly integrable.

Example 11.33. Let Ω = [0, 1] , P be Lebesgue measure on B = B[0,1], and for
ε ∈ (0, 1) let aε > 0 with limε↓0 aε = ∞ and let fε := aε1[0,ε]. Then Efε = εaε

and so supε>0 ‖fε‖1 =: K <∞ iff εaε ≤ K for all ε. Since

sup
ε

E [fε : fε ≥M ] = sup
ε

[εaε · 1aε≥M ] ,

if {fε} is uniformly integrable and δ > 0 is given, for large M we have
εaε ≤ δ for ε small enough so that aε ≥ M. From this we conclude that
lim supε↓0 (εaε) ≤ δ and since δ > 0 was arbitrary, limε↓0 εaε = 0 if {fε} is
uniformly integrable. By reversing these steps one sees the converse is also
true.

Alternatively. No matter how aε > 0 is chosen, limε↓0 fε = 0 a.s.. So
from Theorem 11.31, if {fε} is uniformly integrable we would have to have

lim
ε↓0

(εaε) = lim
ε↓0

Efε = E0 = 0.

Corollary 11.34. Let (Ω,B, µ) be a finite measure space, p ∈ [1,∞), {fn}∞n=1

be a sequence of functions in Lp (µ) , and f : Ω → C be a measurable function.
Then f ∈ Lp (µ) and ‖f − fn‖p → 0 as n→∞ iff fn → f in µ measure and
Λ := {|fn|p}

∞
n=1 is uniformly integrable.

Proof. ( ⇐= ) Suppose that fn → f in µ measure and Λ := {|fn|p}
∞
n=1

is uniformly integrable. By Corollary 11.9, |fn|p
µ→ |f |p in µ – measure, and

hn := |f − fn|p
µ→ 0, and by Theorem 11.31, |f |p ∈ L1 (µ) and |fn|p → |f |p

in L1 (µ) . Since

hn := |f − fn|p ≤ (|f |+ |fn|)p ≤ 2p−1 (|f |p + |fn|p) =: gn ∈ L1 (µ)
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with gn → g := 2p−1 |f |p in L1 (µ) , the dominated convergence theorem in
Corollary 11.8, implies

‖f − fn‖p
p =

∫
Ω

|f − fn|p dµ =
∫

Ω

hndµ→ 0 as n→∞.

(=⇒) Suppose f ∈ Lp and fn → f in Lp. Again fn → f in µ – measure
by Lemma 11.4. Let

hn := ||fn|p − |f |p| ≤ |fn|p + |f |p =: gn ∈ L1

and g := 2|f |p ∈ L1. Then gn
µ→ g, hn

µ→ 0 and
∫
gndµ →

∫
gdµ. Therefore

by the dominated convergence theorem in Corollary 11.8, lim
n→∞

∫
hn dµ = 0,

i.e. |fn|p → |f |p in L1 (µ) .4 Hence it follows from Theorem 11.31 that Λ is
uniformly integrable.

The following Lemma gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly integrable.

Lemma 11.35. Suppose that µ(Ω) < ∞, and Λ ⊂ L0(Ω) is a collection of
functions.

1. If there exists a non decreasing function ϕ : R+ → R+ such that
limx→∞ ϕ(x)/x = ∞ and

K := sup
f∈Λ

µ(ϕ(|f |)) <∞ (11.26)

then Λ is uniformly integrable.
2. Conversely if Λ is uniformly integrable, there exists a non-decreasing con-

tinuous function ϕ : R+ → R+ such that ϕ(0) = 0, limx→∞ ϕ(x)/x = ∞
and Eq. (11.26) is valid.

A typical example for ϕ in item 1. is ϕ (x) = xp for some p > 1.

Proof. 1. Let ϕ be as in item 1. above and set εa := supx≥a
x

ϕ(x) → 0 as
a→∞ by assumption. Then for f ∈ Λ
4 Here is an alternative proof. By the mean value theorem,

||f |p − |fn|p| ≤ p(max(|f | , |fn|))p−1 ||f | − |fn|| ≤ p(|f |+ |fn|)p−1 ||f | − |fn||

and therefore by Hölder’s inequality,
Z
||f |p − |fn|p| dµ ≤ p

Z
(|f |+ |fn|)p−1 ||f | − |fn|| dµ ≤ p

Z
(|f |+ |fn|)p−1 |f − fn| dµ

≤ p‖f − fn‖p‖(|f |+ |fn|)p−1‖q = p‖ |f |+ |fn|‖p/q
p ‖f − fn‖p

≤ p(‖f‖p + ‖fn‖p)p/q‖f − fn‖p

where q := p/(p− 1). This shows that
R
||f |p − |fn|p| dµ → 0 as n →∞.
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µ(|f | : |f | ≥ a) = µ

(
|f |

ϕ (|f |)
ϕ (|f |) : |f | ≥ a

)
≤ µ(ϕ (|f |) : |f | ≥ a)εa

≤ µ(ϕ (|f |))εa ≤ Kεa

and hence
lim

a→∞
sup
f∈Λ

µ
(
|f | 1|f |≥a

)
≤ lim

a→∞
Kεa = 0.

2. By assumption, εa := supf∈Λ µ
(
|f | 1|f |≥a

)
→ 0 as a → ∞. Therefore we

may choose an ↑ ∞ such that
∞∑

n=0

(n+ 1) εan
<∞

where by convention a0 := 0. Now define ϕ so that ϕ(0) = 0 and

ϕ′(x) =
∞∑

n=0

(n+ 1) 1(an,an+1](x),

i.e.

ϕ(x) =
∫ x

0

ϕ′(y)dy =
∞∑

n=0

(n+ 1) (x ∧ an+1 − x ∧ an) .

By construction ϕ is continuous, ϕ(0) = 0, ϕ′(x) is increasing (so ϕ is convex)
and ϕ′(x) ≥ (n+ 1) for x ≥ an. In particular

ϕ(x)
x

≥ ϕ(an) + (n+ 1)x
x

≥ n+ 1 for x ≥ an

from which we conclude limx→∞ ϕ(x)/x = ∞. We also have ϕ′(x) ≤ (n + 1)
on [0, an+1] and therefore

ϕ(x) ≤ (n+ 1)x for x ≤ an+1.

So for f ∈ Λ,

µ (ϕ(|f |)) =
∞∑

n=0

µ
(
ϕ(|f |)1(an,an+1](|f |)

)
≤
∞∑

n=0

(n+ 1)µ
(
|f | 1(an,an+1](|f |)

)
≤
∞∑

n=0

(n+ 1)µ
(
|f | 1|f |≥an

)
≤
∞∑

n=0

(n+ 1) εan

and hence

sup
f∈Λ

µ (ϕ(|f |)) ≤
∞∑

n=0

(n+ 1) εan <∞.
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11.6 Exercises

Exercise 11.4. Let f ∈ Lp ∩ L∞ for some p < ∞. Show ‖f‖∞ =
limq→∞ ‖f‖q . If we further assume µ(X) <∞, show ‖f‖∞ = limq→∞ ‖f‖q for
all measurable functions f : X → C. In particular, f ∈ L∞ iff limq→∞ ‖f‖q <
∞. Hints: Use Corollary 11.21 to show lim supq→∞ ‖f‖q ≤ ‖f‖∞ and to
show lim infq→∞ ‖f‖q ≥ ‖f‖∞ , let M < ‖f‖∞ and make use of Chebyshev’s
inequality.

Exercise 11.5. Prove Eq. (11.21) in Corollary 11.21. (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a, b ≥ 1 with a−1 + b−1 = 1 chosen
appropriately,

st ≤ sa

a
+
tb

b

applied to the right side of Eq. (11.20).

Exercise 11.6. Complete the proof of Proposition 11.20 by showing (Lp +
Lr, ‖·‖) is a Banach space.

11.7 Appendix: Convex Functions

Reference; see the appendix (page 500) of Revuz and Yor.

Definition 11.36. A function ϕ : (a, b) → R is convex if for all a < x0 <
x1 < b and t ∈ [0, 1] ϕ(xt) ≤ tϕ(x1)+ (1− t)ϕ(x0) where xt = tx1 +(1− t)x0,
see Figure ?? below.

Example 11.37. The functions exp(x) and − log(x) are convex and |x|p is
convex iff p ≥ 1 as follows from Lemma 7.31 for p > 1 and by inspection
of p = 1.

Theorem 11.38. Suppose that ϕ : (a, b) → R is convex and for x, y ∈ (a, b)
with x < y, let5

F (x, y) :=
ϕ (y)− ϕ (x)

y − x
.

Then;

1. F (x, y) is increasing in each of its arguments.
2. The following limits exist,

ϕ′+ (x) := F (x, x+) := lim
y↓x

F (x, y) <∞ and (11.27)

ϕ′− (y) := F (y−, y) := lim
x↑y

F (x, y) > −∞. (11.28)

5 The same formula would define F (x, y) for x 6= y. However, since F (x, y) =
F (y, x) , we would gain no new information by this extension.
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Fig. 11.1. A convex function with three cords. Notice the slope relationships; m1 ≤
m3 ≤ m2.

3. The functions, ϕ′± are both increasing functions and further satisfy,

−∞ < ϕ′− (x) ≤ ϕ′+ (x) ≤ ϕ′− (y) <∞ ∀ a < x < y < b. (11.29)

4. For any t ∈
[
ϕ′− (x) , ϕ′+ (x)

]
,

ϕ (y) ≥ ϕ (x) + t (y − x) for all x, y ∈ (a, b) . (11.30)

5. For a < α < β < b, let K := max
{∣∣ϕ′+ (α)

∣∣ , ∣∣ϕ′− (β)
∣∣} . Then

|ϕ (y)− ϕ (x)| ≤ K |y − x| for all x, y ∈ [α, β] .

That is ϕ is Lipschitz continuous on [α, β] .
6. The function ϕ′+ is right continuous and ϕ′− is left continuous.
7. The set of discontinuity points for ϕ′+ and for ϕ′− are the same as the

set of points of non-differentiability of ϕ. Moreover this set is at most
countable.

Proof. 1. and 2. If we let ht = tϕ(x1) + (1 − t)ϕ(x0), then (xt, ht) is on
the line segment joining (x0, ϕ (x0)) to (x1, ϕ (x1)) and the statement that ϕ
is convex is then equivalent of ϕ (xt) ≤ ht for all 0 ≤ t ≤ 1. Since

ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht

x1 − xt
,

the convexity of ϕ is equivalent to



218 11 Lp – spaces

ϕ (xt)− ϕ (x0)
xt − x0

≤ ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ϕ (x0)

x1 − x0
for all x0 ≤ xt ≤ x1

and to

ϕ (x1)− ϕ (x0)
x1 − x0

=
ϕ (x1)− ht

x1 − xt
≤ ϕ (x1)− ϕ (xt)

x1 − xt
for all x0 ≤ xt ≤ x1

and convexity also implies

ϕ (xt)− ϕ (x0)
xt − x0

=
ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ht

x1 − xt
≤ ϕ (x1)− ϕ (xt)

x1 − xt
.

These inequalities may be written more compactly as,

ϕ (v)− ϕ (u)
v − u

≤ ϕ (w)− ϕ (u)
w − u

≤ ϕ (w)− ϕ (v)
w − v

, (11.31)

valid for all a < u < v < w < b, again see Figure 11.1. The first (second)
inequality in Eq. (11.31) shows F (x, y) is increasing y (x). This then implies
the limits in item 2. are monotone and hence exist as claimed.

3. Let a < x < y < b. Using the increasing nature of F,

−∞ < ϕ′− (x) = F (x−, x) ≤ F (x, x+) = ϕ′+ (x) <∞

and
ϕ′+ (x) = F (x, x+) ≤ F (y−, y) = ϕ′− (y)

as desired.
4. Let t ∈

[
ϕ′− (x) , ϕ′+ (x)

]
. Then

t ≤ ϕ′+ (x) = F (x, x+) ≤ F (x, y) =
ϕ (y)− ϕ (x)

y − x

or equivalently,
ϕ (y) ≥ ϕ (x) + t (y − x) for y ≥ x.

Therefore Eq. (11.30) holds for y ≥ x. Similarly, for y < x,

t ≥ ϕ′− (x) = F (x−, x) ≥ F (y, x) =
ϕ (x)− ϕ (y)

x− y

or equivalently,

ϕ (y) ≥ ϕ (x)− t (x− y) = ϕ (x) + t (y − x) for y ≤ x.

Hence we have proved Eq. (11.30) for all x, y ∈ (a, b) .
5. For a < α ≤ x < y ≤ β < b, we have

ϕ′+ (α) ≤ ϕ′+ (x) = F (x, x+) ≤ F (x, y) ≤ F (y−, y) = ϕ′− (y) ≤ ϕ′− (β)
(11.32)
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and in particular,

−K ≤ ϕ′+ (α) ≤ ϕ (y)− ϕ (x)
y − x

≤ ϕ′− (β) ≤ K.

This last inequality implies, |ϕ (y)− ϕ (x)| ≤ K (y − x) which is the desired
Lipschitz bound.

6. For a < c < x < y < b, we have ϕ′+ (x) = F (x, x+) ≤ F (x, y) and
letting x ↓ c (using the continuity of F ) we learn ϕ′+ (c+) ≤ F (c, y) . We
may now let y ↓ c to conclude ϕ′+ (c+) ≤ ϕ′+ (c) . Since ϕ′+ (c) ≤ ϕ′+ (c+) , it
follows that ϕ′+ (c) = ϕ′+ (c+) and hence that ϕ′+ is right continuous.

Similarly, for a < x < y < c < b, we have ϕ′− (y) ≥ F (x, y) and letting
y ↑ c (using the continuity of F ) we learn ϕ′− (c−) ≥ F (x, c) . Now let x ↑ c to
conclude ϕ′− (c−) ≥ ϕ′− (c) . Since ϕ′− (c) ≥ ϕ′− (c−) , it follows that ϕ′− (c) =
ϕ′− (c−) , i.e. ϕ′− is left continuous.

7. Since ϕ± are increasing functions, they have at most countably many
points of discontinuity. Letting x ↑ y in Eq. (11.29), using the left continuity
of ϕ′−, shows ϕ′− (y) = ϕ′+ (y−) . Hence if ϕ′− is continuous at y, ϕ′− (y) =
ϕ′− (y+) = ϕ′+ (y) and ϕ is differentiable at y. Conversely if ϕ is differentiable
at y, then

ϕ′+ (y−) = ϕ′− (y) = ϕ′ (y) = ϕ′+ (y)

which shows ϕ′+ is continuous at y. Thus we have shown that set of disconti-
nuity points of ϕ′+ is the same as the set of points of non-differentiability of
ϕ. That the discontinuity set of ϕ′− is the same as the non-differentiability set
of ϕ is proved similarly.

Corollary 11.39. If ϕ : (a, b) → R is a convex function and D ⊂ (a, b) is a
dense set, then

ϕ (y) = sup
x∈D

[
ϕ (x) + ϕ′± (x) (y − x)

]
for all x, y ∈ (a, b) .

Proof. Let ψ± (y) := supx∈D [ϕ (x) + ϕ± (x) (y − x)] . According to Eq.
(11.30) above, we know that ϕ (y) ≥ ψ± (y) for all y ∈ (a, b) . Now sup-
pose that x ∈ (a, b) and xn ∈ Λ with xn ↑ x. Then passing to the
limit in the estimate, ψ− (y) ≥ ϕ (xn) + ϕ′− (xn) (y − xn) , shows ψ− (y) ≥
ϕ (x) +ϕ′− (x) (y − x) . Since x ∈ (a, b) is arbitrary we may take x = y to dis-
cover ψ− (y) ≥ ϕ (y) and hence ϕ (y) = ψ− (y) . The proof that ϕ (y) = ψ+ (y)
is similar.
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Laws of Large Numbers

In this chapter {Xk}∞k=1 will be a sequence of random variables on a proba-
bility space, (Ω,B, P ) , and we will set Sn := X1 + · · ·+Xn for all n ∈ N.

Definition 12.1. The covariance, Cov (X,Y ) of two square integrable ran-
dom variables, X and Y, is defined by

Cov (X,Y ) = E [(X − aX) (Y − aY )] = E [XY ]− EX · EY

where aX := EX and aY := EY. The variance of X,

Var (X) := Cov (X,X) = E
[
X2
]
− (EX)2 (12.1)

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] =
EX · EY. More generally we say {Xk}n

k=1 ⊂ L2 (P ) are uncorrelated iff
Cov (Xi, Xj) = 0 for all i 6= j.

Notice that if X and Y are independent random variables, then f (X) ,
g (Y ) are independent and hence uncorrelated for any choice of Borel measur-
able functions, f, g : R → R such that f (X) and g (X) are square integrable.
It also follows from Eq. (12.1) that

Var (X) ≤ E
[
X2
]

for all X ∈ L2 (P ) . (12.2)

Lemma 12.2. The covariance function, Cov (X,Y ) is bilinear in X and Y
and Cov (X,Y ) = 0 if either X or Y is constant. For any constant k,
Var (X + k) = Var (X) and Var (kX) = k2 Var (X) . If {Xk}n

k=1 are uncorre-
lated L2 (P ) – random variables, then

Var (Sn) =
n∑

k=1

Var (Xk) .

Proof. We leave most of this simple proof to the reader. As an example
of the type of argument involved, let us prove Var (X + k) = Var (X) ;

Var (X + k) = Cov (X + k,X + k) = Cov (X + k,X) + Cov (X + k, k)
= Cov (X + k,X) = Cov (X,X) + Cov (k,X)
= Cov (X,X) = Var (X) .
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Exercise 12.1 (A correlation inequality). Suppose that X is a random
variable and f, g : R → R are two increasing functions such that both f (X)
and g (X) are square integrable. Show Cov (f (X) , g (X)) ≥ 0. Hint: let Y
be another random variable which has the same law as X and is independent
of X. Then consider

E [(f (Y )− f (X)) · (g (Y )− g (X))] .

Theorem 12.3 (An L2 – Weak Law of Large Numbers). Let {Xn}∞n=1

be a sequence of uncorrelated square integrable random variables, µn = EXn

and σ2
n = Var (Xn) . If there exists an increasing positive sequence, {an} and

µ ∈ R such that

1
an

n∑
j=1

µj → µ as n→∞ and

1
a2

n

n∑
j=1

σ2
j → 0 as n→∞,

then Sn

an
→ µ in L2 (P ) and also in probability.

Proof. We first observe that ESn =
∑n

j=1 µj and

E

Sn −
n∑

j=1

µj

2

= Var (Sn) =
n∑

j=1

Var (Xj) =
n∑

j=1

σ2
j .

Hence

ESn =
1
an

n∑
j=1

µj → µ

and

E

(
Sn −

∑n
j=1 µj

an

)2

=
1
a2

n

n∑
j=1

σ2
j → 0.

Hence,∥∥∥∥Sn

an
− µ

∥∥∥∥
L2(P )

=

∥∥∥∥∥Sn −
∑n

j=1 µj

an
+

∑n
j=1 µj

an
− µ

∥∥∥∥∥
L2(P )

≤

∥∥∥∥∥Sn −
∑n

j=1 µj

an

∥∥∥∥∥
L2(P )

+

∣∣∣∣∣
∑n

j=1 µj

an
− µ

∣∣∣∣∣→ 0.
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Example 12.4. Suppose that {Xk}∞k=1 ⊂ L2 (P ) are uncorrelated identically
distributed random variables. Then

Sn

n

L2(P )→ µ = EX1 as n→∞.

To see this, simply apply Theorem 12.3 with an = n.

Proposition 12.5 (L2 - Convergence of Random Sums). Suppose that
{Xk}∞k=1 ⊂ L2 (P ) are uncorrelated. If

∑∞
k=1 Var (Xk) <∞ then

∞∑
k=1

(Xk − µk) converges in L2 (P ) .

where µk := EXk.

Proof. Letting Sn :=
∑n

k=1 (Xk − µk) , it suffices by the completeness of
L2 (P ) (see Theorem 11.17) to show ‖Sn − Sm‖2 → 0 asm,n→∞. Supposing
n > m, we have

‖Sn − Sm‖22 = E

(
n∑

k=m+1

(Xk − µk)

)2

=
n∑

k=m+1

Var (Xk) =
n∑

k=m+1

σ2
k → 0 as m,n→∞.

Note well: since L2 (P ) convergence implies Lp (P ) – convergence for
0 ≤ p ≤ 2, where by L0 (P ) – convergence we mean convergence in proba-
bility. The remainder of this chapter is mostly devoted to proving a.s. conver-
gence for the quantities in Theorem 11.17 and Proposition 12.5 under various
assumptions. These results will be described in the next section.

12.1 Main Results

The proofs of most of the theorems in this section will be the subject of later
parts of this chapter.

Theorem 12.6 (Khintchin’s WLLN). If {Xn}∞n=1 are i.i.d. L1 (P ) – ran-

dom variables, then 1
nSn

P→ µ = EX1.

Proof. Letting

S′n :=
n∑

i=1

Xi1|Xi|≤n,

we have {S′n 6= Sn} ⊂ ∪n
i=1 {|Xi| > n} . Therefore, using Chebyschev’s in-

equality along with the dominated convergence theorem, we have
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P (S′n 6= Sn) ≤
n∑

i=1

P (|Xi| > n) = nP (|X1| > n)

≤ E [|X1| : |X1| > n] → 0.

Hence it follows that

P

(∣∣∣∣Sn

n
− S′n

n

∣∣∣∣ > ε

)
≤ P (S′n 6= Sn) → 0 as n→∞,

i.e. Sn

n − S′n
n

P→ 0. So it suffices to prove S′n
n

P→ µ.

We will now complete the proof by showing that, in fact, S′n
n

L2(P )→ µ. To
this end, let

µn :=
1
n

ES′n =
1
n

n∑
i=1

E
[
Xi1|Xi|≤n

]
= E

[
X11|X1|≤n

]
and observe that limn→∞ µn = µ by the DCT. Moreover,

E
∣∣∣∣S′nn − µn

∣∣∣∣2 = Var
(
S′n
n

)
=

1
n2

Var (S′n)

=
1
n2

n∑
i=1

Var
(
Xi1|Xi|≤n

)
=

1
n

Var
(
X11|X1|≤n

)
≤ 1
n

E
[
X2

11|X1|≤n

]
≤ E

[
|X1| 1|X1|≤n

]
and so again by the DCT,

∥∥∥S′n
n − µn

∥∥∥
L2(P )

→ 0. This completes the proof

since, ∥∥∥∥S′nn − µ

∥∥∥∥
L2(P )

≤
∥∥∥∥S′nn − µn

∥∥∥∥
L2(P )

+ |µn − µ| → 0 as n→∞.

In fact we have the stronger result.

Theorem 12.7 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {Xn}∞n=1 are i.i.d. random variables and let Sn := X1 + · · · + Xn.
Then there exists µ ∈ R such that 1

nSn → µ a.s. iff Xn is integrable and in
which case EXn = µ.

Remark 12.8. If E |X1| = ∞ but EX−1 <∞, then 1
nSn →∞ a.s. To prove this,

for M > 0 let XM
n := Xn∧M and SM

n :=
∑n

i=1X
M
i . It follows from Theorem

12.7 that 1
nS

M
n → µM := EXM

1 a.s.. Since Sn ≥ SM
n , we may conclude that
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lim inf
n→∞

Sn

n
≥ lim inf

n→∞

1
n
SM

n = µM a.s.

Since µM →∞ as M →∞, it follows that lim infn→∞
Sn

n = ∞ a.s. and hence
that limn→∞

Sn

n = ∞ a.s.

One proof of Theorem 12.7 is based on the study of random series. Theorem
12.11 and 12.12 are standard convergence criteria for random series.

Definition 12.9. Two sequences, {Xn} and {X ′n} , of random variables are
tail equivalent if

E

[ ∞∑
n=1

1Xn 6=X′
n

]
=
∞∑

n=1

P (Xn 6= X ′n) <∞.

Proposition 12.10. Suppose {Xn} and {X ′n} are tail equivalent. Then

1.
∑

(Xn −X ′n) converges a.s.
2. The sum

∑
Xn is convergent a.s. iff the sum

∑
X ′n is convergent a.s.

More generally we have

P
({∑

Xn is convergent
}
4
{∑

X ′n is convergent
})

= 1

3. If there exists a random variable, X, and a sequence an ↑ ∞ such that

lim
n→∞

1
an

n∑
k=1

Xk = X a.s

then

lim
n→∞

1
an

n∑
k=1

X ′k = X a.s

Proof. If {Xn} and {X ′n} are tail equivalent, we know; for a.e. ω, Xn (ω) =
X ′n (ω) for a.a n. The proposition is an easy consequence of this observation.

Theorem 12.11 (Kolmogorov’s Convergence Criteria). Suppose that
{Yn}∞n=1 are independent square integrable random variables. If

∑∞
j=1 Var (Yj) <

∞, then
∑∞

j=1 (Yj − EYj) converges a.s.

Proof. One way to prove this is to appeal Proposition 12.5 above and
Lévy’s Theorem 12.31 below. As second method is to make use of Kol-
mogorov’s inequality. We will give this second proof below.

The next theorem generalizes the previous theorem by giving necessary
and sufficient conditions for a random series of independent random variables
to converge.
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Theorem 12.12 (Kolmogorov’s Three Series Theorem). Suppose that
{Xn}∞n=1 are independent random variables. Then the random series,

∑∞
j=1Xj ,

is almost surely convergent iff there exists c > 0 such that

1.
∑∞

n=1 P (|Xn| > c) <∞,
2.
∑∞

n=1 Var
(
Xn1|Xn|≤c

)
<∞, and

3.
∑∞

n=1 E
(
Xn1|Xn|≤c

)
converges.

Moreover, if the three series above converge for some c > 0 then they
converge for all values of c > 0.

Proof. Proof of sufficiency. Suppose the three series converge for some
c > 0. If we let X ′n := Xn1|Xn|≤c, then

∞∑
n=1

P (X ′n 6= Xn) =
∞∑

n=1

P (|Xn| > c) <∞.

Hence {Xn} and {X ′n} are tail equivalent and so it suffices to show
∑∞

n=1X
′
n

is almost surely convergent. However, by the convergence of the second series
we learn

∞∑
n=1

Var (X ′n) =
∞∑

n=1

Var
(
Xn1|Xn|≤c

)
<∞

and so by Kolmogorov’s convergence criteria,

∞∑
n=1

(X ′n − EX ′n) is almost surely convergent.

Finally, the third series guarantees that
∑∞

n=1 EX ′n =
∑∞

n=1 E
(
Xn1|Xn|≤c

)
is

convergent, therefore we may conclude
∑∞

n=1X
′
n is convergent. The proof of

the reverse direction will be given in Section 12.8 below.

12.2 Examples

12.2.1 Random Series Examples

Example 12.13 (Kolmogorov’s Convergence Criteria Example). Suppose that
{Yn}∞n=1 are independent square integrable random variables, such that∑∞

j=1 Var (Yj) < ∞ and
∑∞

j=1 EYj converges a.s., then
∑∞

j=1 Yj converges
a.s..

Definition 12.14. A random variable, Y, is normal with mean µ stan-
dard deviation σ2 iff

P (Y ∈ B) =
1√

2πσ2

∫
B

e−
1

2σ2 (y−µ)2dy for all B ∈ BR. (12.3)
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We will abbreviate this by writing Y d= N
(
µ, σ2

)
. When µ = 0 and σ2 = 1 we

will simply write N for N (0, 1) and if Y d= N, we will say Y is a standard
normal random variable.

Observe that Eq. (12.3) is equivalent to writing

E [f (Y )] =
1√

2πσ2

∫
R
f (y) e−

1
2σ2 (y−µ)2dy

for all bounded measurable functions, f : R → R. Also observe that Y d=
N
(
µ, σ2

)
is equivalent to Y

d= σN + µ. Indeed, by making the change of
variable, y = σx+ µ, we find

E [f (σN + µ)] =
1√
2π

∫
R
f (σx+ µ) e−

1
2 x2

dx

=
1√
2π

∫
R
f (y) e−

1
2σ2 (y−µ)2 dy

σ
=

1√
2πσ2

∫
R
f (y) e−

1
2σ2 (y−µ)2dy.

Lemma 12.15. Suppose that {Yn}∞n=1 are independent square integrable ran-

dom variables such that Yn
d= N

(
µn, σ

2
n

)
. Then

∑∞
j=1 Yj converges a.s. iff∑∞

j=1 σ
2
j <∞ and

∑∞
j=1 µj converges.

Proof. The implication “ =⇒ ” is true without the assumption that the
Yn are normal random variables as pointed out in Example 12.13. To prove
the converse directions we will make use of the Kolmogorov’s three series
theorem. Namely, if

∑∞
j=1 Yj converges a.s. then the three series in Theorem

12.12 converge for all c > 0.
1. Since Yn

d= σnN + µn, we have for any c > 0 that

∞ >
∞∑

n=1

P (|σnN + µn| > c) =
∞∑

n=1

1√
2π

∫
Bn

e−
1
2 x2

dx (12.4)

where

Bn = (−∞,−c+ µn

σn
) ∪
(
c− µn

σn
,∞
)
.

If limn→∞ µn 6= 0 then there is a c > 0 such that either µn ≥ c i.o. or µn ≤ −c
i.o. In the first case in which case (0,∞) ⊂ Bn and in the second (−∞, 0) ⊂ Bn

and in either case we will have 1√
2π

∫
Bn

e−
1
2 x2

dx ≥ 1/2 i.o. which would
contradict Eq. (12.4). Hence we may concluded that limn→∞ µn = 0. Similarly
if limn→∞ σn 6= 0, then we may conclude that Bn contains a set of the form
[α,∞) i.o. for some α <∞ and so

1√
2π

∫
Bn

e−
1
2 x2

dx ≥ 1√
2π

∫ ∞
α

e−
1
2 x2

dx i.o.
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which would again contradict Eq. (12.4). Therefore we may conclude that
limn→∞ µn = limn→∞ σn = 0.

2. The convergence of the second series for all c > 0 implies

∞ >
∞∑

n=1

Var
(
Yn1|Yn|≤c

)
=
∞∑

n=1

Var
(
[σnN + µn] 1|σnN+µn|≤c

)
, i.e.

∞ >
∞∑

n=1

[
σ2

n Var
(
N1|σnN+µn|≤c

)
+ µ2

n Var
(
1|σnN+µn|≤c

)]
≥
∞∑

n=1

σ2
nαn.

where αn := Var
(
N1|σnN+µn|≤c

)
. As the reader should check, αn → 1 as

n → ∞ and therefore we may conclude
∑∞

n=1 σ
2
n < ∞. It now follows by

Kolmogorov’s convergence criteria that
∑∞

n=1 (Yn − µn) is almost surely con-
vergent and therefore

∞∑
n=1

µn =
∞∑

n=1

Yn −
∞∑

n=1

(Yn − µn)

converges as well.
Alternatively: we may also deduce the convergence of

∑∞
n=1 µn by the

third series as well. Indeed, for all c > 0 implies

∞∑
n=1

E
(
[σnN + µn] 1|σnN+µn|≤c

)
is convergent, i.e.

∞∑
n=1

[σnδn + µnβn] is convergent.

where δn := E
(
N · 1|σnN+µn|≤c

)
and βn := E

(
1|σnN+µn|≤c

)
. With a little

effort one can show,

δn ∼ e−k/σ2
n and 1− βn ∼ e−k/σ2

n for large n.

Since e−k/σ2
n ≤ Cσ2

n for large n, it follows that
∑∞

n=1 |σnδn| ≤ C
∑∞

n=1 σ
3
n <

∞ so that
∑∞

n=1 µnβn is convergent. Moreover,

∞∑
n=1

|µn (βn − 1)| ≤ C
∞∑

n=1

|µn|σ2
n <∞

and hence
∞∑

n=1

µn =
∞∑

n=1

µnβn −
∞∑

n=1

µn (βn − 1)

must also be convergent.
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Example 12.16 (Brownian Motion). Let {Nn}∞n=1 be i.i.d. standard normal
random variable, i.e.

P (Nn ∈ A) =
∫

A

1√
2π
e−x2/2dx for all A ∈ BR.

Let {ωn}∞n=1 ⊂ R, {an}∞n=1 ⊂ R, and t ∈ R, then

∞∑
n=1

anNn sinωnt converges a.s.

provided
∑∞

n=1 a
2
n < ∞. This is a simple consequence of Kolmogorov’s con-

vergence criteria, Theorem 12.11, and the facts that E [anNn sinωnt] = 0 and

Var (anNn sinωnt) = a2
n sin2 ωnt ≤ a2

n.

As a special case, if we take ωn = (2n− 1) π
2 and an =

√
2

π(2n−1) , then it follows
that

Bt :=
2
√

2
π

∑
k=1,3,5,...

Nk

k
sin
(
k
π

2
t
)

(12.5)

is a.s. convergent for all t ∈ R. The factor 2
√

2
πk has been determined by re-

quiring, ∫ 1

0

[
d

dt

2
√

2
πk

sin (kπt)

]2

dt = 1

as seen by,∫ 1

0

[
d

dt
sin
(
kπ

2
t

)]2
dt =

k2π2

22

∫ 1

0

[
cos
(
kπ

2
t

)]2
dt

=
k2π2

22

2
kπ

[
kπ

4
t+

1
4

sin kπt
]1
0

=
k2π2

23
.

Fact: Wiener in 1923 showed the series in Eq. (12.5) is in fact almost
surely uniformly convergent. Given this, the process, t→ Bt is almost surely
continuous. The process {Bt : 0 ≤ t ≤ 1} is Brownian Motion.

Example 12.17. As a simple application of Theorem 12.12, we will now use
Theorem 12.12 to give a proof of Theorem 12.11. We will apply Theorem
12.12 with Xn := Yn − EYn. We need to then check the three series in the
statement of Theorem 12.12 converge. For the first series we have by the
Markov inequality,

∞∑
n=1

P (|Xn| > c) ≤
∞∑

n=1

1
c2

E |Xn|2 =
1
c2

∞∑
n=1

Var (Yn) <∞.
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For the second series, observe that

∞∑
n=1

Var
(
Xn1|Xn|≤c

)
≤
∞∑

n=1

E
[(
Xn1|Xn|≤c

)2] ≤ ∞∑
n=1

E
[
X2

n

]
=
∞∑

n=1

Var (Yn) <∞

and for the third series (by Jensen’s or Hölder’s inequality)

∞∑
n=1

∣∣E (Xn1|Xn|≤c

)∣∣ ≤ ∞∑
n=1

E
(
|Xn|2 1|Xn|≤c

)
≤
∞∑

n=1

Var (Yn) <∞.

12.2.2 A WLLN Example

Let {Xn}∞n=1 be i.i.d. random variables with common distribution function,
F (x) := P (Xn ≤ x) . For x ∈ R let Fn (x) be the empirical distribution
function defined by,

Fn (x) :=
1
n

n∑
j=1

1Xj≤x =

 1
n

n∑
j=1

δXj

 ((−∞, x]) .

Since E1Xj≤x = F (x) and
{
1Xj≤x

}∞
j=1

are Bernoulli random variables, the

weak law of large numbers implies Fn (x) P→ F (x) as n → ∞. As usual, for
p ∈ (0, 1) let

F← (p) := inf {x : F (x) ≥ p}

and recall that F← (p) ≤ x iff F (x) ≥ p. Let us notice that

F←n (p) = inf {x : Fn (x) ≥ p} = inf

x :
n∑

j=1

1Xj≤x ≥ np


= inf {x : # {j ≤ n : Xj ≤ x} ≥ np} .

The order statistic of (X1, . . . , Xn) is the finite sequence,
(
X

(n)
1 , X

(n)
2 , . . . , X

(n)
n

)
,

where
(
X

(n)
1 , X

(n)
2 , . . . , X

(n)
n

)
denotes (X1, . . . , Xn) arranged in increasing or-

der with possible repetitions. Let us observe thatX(n)
k are all random variables

for k ≤ n. Indeed, X(n)
k ≤ x iff # {j ≤ n : Xj ≤ x} ≥ k iff

∑n
j=1 1Xj≤x ≥ k,

i.e. {
X

(n)
k ≤ x

}
=


n∑

j=1

1Xj≤x ≥ k

 ∈ B.

Moreover, if we let dxe = min {n ∈ Z : n ≥ x} , the reader may easily check
that F←n (p) = X

(n)
dnpe.
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Proposition 12.18. Keeping the notation above. Suppose that p ∈ (0, 1) is a
point where

F (F← (p)− ε) < p < F (F← (p) + ε) for all ε > 0

then X
(n)
dnpe = F←n (p) P→ F← (p) as n → ∞. Thus we can recover, with high

probability, the pth – quantile of the distribution F by observing {Xi}n
i=1 .

Proof. Let ε > 0. Then

{F←n (p)− F← (p) > ε}c = {F←n (p) ≤ ε+ F← (p)} = {F←n (p) ≤ ε+ F← (p)}
= {Fn (ε+ F← (p)) ≥ p}

so that

{F←n (p)− F← (p) > ε} = {Fn (F← (p) + ε) < p}
= {Fn (ε+ F← (p))− F (ε+ F← (p)) < p− F (F← (p) + ε)} .

Letting δε := F (F← (p) + ε)− p > 0, we have, as n→∞, that

P ({F←n (p)− F← (p) > ε}) = P (Fn (ε+ F← (p))− F (ε+ F← (p)) < −δε) → 0.

Similarly, let δε := p− F (F← (p)− ε) > 0 and observe that

{F← (p)− F←n (p) ≥ ε} = {F←n (p) ≤ F← (p)− ε} = {Fn (F← (p)− ε) ≥ p}

and hence,

P (F← (p)− F←n (p) ≥ ε)
= P (Fn (F← (p)− ε)− F (F← (p)− ε) ≥ p− F (F← (p)− ε))
= P (Fn (F← (p)− ε)− F (F← (p)− ε) ≥ δε) → 0 as n→∞.

Thus we have shown that X(n)
dnpe

P→ F← (p) as n→∞.

12.3 Strong Law of Large Number Examples

Example 12.19 (Renewal Theory). Let {Xi}∞i=1 be i.i.d. random variables with
0 < Xi < ∞ a.s. Think of the Xi as the time that bulb number i burns
and Tn := X1 + · · · + Xn is the time that the nth – bulb burns out. (We
assume the bulbs are replaced immediately on burning out.) Further let Nt :=
sup {n ≥ 0 : Tn ≤ t} denote the number of bulbs which have burned out up
to time n. By convention, we set T0 = 0. Letting µ := EX1 ∈ (0,∞], we have
ETn = nµ – the expected time the nth – bulb burns out. On these grounds
we expect Nt ∼ t/µ and hence
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1
t
Nt →

1
µ

a.s. (12.6)

To prove Eq. (12.6), by the SSLN, if Ω0 :=
{
limn→∞

1
nTn = µ

}
then P (Ω0) =

1. From the definition of Nt, TNt
≤ t < TNt+1 and so

TNt

Nt
≤ t

Nt
<
TNt+1

Nt
.

Since Xi > 0 a.s., Ω1 := {Nt ↑ ∞ as t ↑ ∞} also has full measure and for
ω ∈ Ω0 ∩Ω1 we have

µ = lim
t→∞

TNt(ω) (ω)
Nt (ω)

≤ lim
t→∞

t

Nt (ω)
≤ lim

t→∞

[
TNt(ω)+1 (ω)
Nt (ω) + 1

Nt (ω) + 1
Nt (ω)

]
= µ.

Example 12.20 (Renewal Theory II). Let {Xi}∞i=1 be i.i.d. and {Yi}∞i=1 be
i.i.d. with {Xi}∞i=1 being independent of the {Yi}∞i=1 . Also again assume that
0 < Xi < ∞ and 0 < Yi < ∞ a.s. We will interpret Yi to be the amount of
time the ith – bulb remains out after burning out before it is replaced by bulb
number i+ 1. Let Rt be the amount of time that we have a working bulb in
the time interval [0, t] . We are now going to show

lim
t↑∞

1
t
Rt =

EX1

EX1 + EY1
.

To prove this, now let Tn :=
∑n

i=1 (Xi + Yi) be the time that the nth – bulb
is replaced and

Nt := sup {n ≥ 0 : Tn ≤ t}

denote the number of bulbs which have burned out up to time n. Then Rt =∑Nt

i=1Xi. Setting µ = EX1 and ν = EY1, we now have 1
tNt → 1

µ+ν a.s. so
that Nt = 1

µ+ν t+ o (t) a.s. Therefore, by the strong law of large numbers,

1
t
Rt =

1
t

Nt∑
i=1

Xi =
Nt

t
· 1
Nt

Nt∑
i=1

Xi →
1

µ+ ν
· µ a.s.

Theorem 12.21 (Glivenko-Cantelli Theorem). Suppose that {Xn}∞n=1

are i.i.d. random variables and F (x) := P (Xi ≤ x) . Further let µn :=
1
n

∑n
i=1 δXi be the empirical distribution with empirical distribution

function,

Fn (x) := µn ((−∞, x]) =
1
n

n∑
i=1

1Xi≤x.

Then
lim

n→∞
sup
x∈R

|Fn (x)− F (x)| = 0 a.s.
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Proof. Since {1Xi≤x}∞i=1 are i.i.d random variables with E1Xi≤x =
P (Xi ≤ x) = F (x) , it follows by the strong law of large numbers the
limn→∞ Fn (x) = F (x) a.s. for each x ∈ R. Our goal is to now show that
this convergence is uniform.1 To do this we will use one more application
of the strong law of large numbers applied to {1Xi<x} which allows us to
conclude, for each x ∈ R, that

lim
n→∞

Fn (x−) = F (x−) a.s. (the null set depends on x).

Given k ∈ N, let Λk :=
{

i
k : i = 1, 2, . . . , k − 1

}
and let xi :=

inf {x : F (x) ≥ i/k} for i = 1, 1, 2, . . . , k − 1. Let us further set xk = ∞
and x0 = −∞. Observe that it is possible that xi = xi+1 for some of the i.
This can occur when F has jumps of size greater than 1/k.

Now suppose i has been chosen so that xi < xi+1 and let x ∈ (xi, xi+1) .
Further let N (ω) ∈ N be chosen so that
1 Observation. If F is continouous then, by what we have just shown, there is a set

Ω0 ⊂ Ω such that P (Ω0) = 1 and on Ω0, Fn (r) → F (r) for all r ∈ Q. Moreover
on Ω0, if x ∈ R and r ≤ x ≤ s with r, s ∈ Q, we have

F (r) = lim
n→∞

Fn (r) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ lim
n→∞

Fn (s) = F (s) .

We may now let s ↓ x and r ↑ x to conclude, on Ω0, on

F (x) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ F (x) for all x ∈ R,

i.e. on Ω0, limn→∞ Fn (x) = F (x) . Thus, in this special case we have shown off
a fixed null set independent of x that limn→∞ Fn (x) = F (x) for all x ∈ R.
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|Fn (xi)− F (xi)| < 1/k and |Fn (xi−)− F (xi−)| < 1/k
.

for n ≥ N (ω) and i = 1, 2, . . . , k − 1 and ω ∈ Ωk with P (Ωk) = 1. We then
have

Fn (x) ≤ Fn (xi+1−) ≤ F (xi+1−) + 1/k ≤ F (x) + 2/k

and

Fn (x) ≥ Fn (xi) ≥ F (xi)− 1/k ≥ F (xi+1−)− 2/k ≥ F (x)− 2/k.

From this it follows that |F (x)− Fn (x)| ≤ 2/k and we have shown for ω ∈ Ωk

and n ≥ N (ω) that
sup
x∈R

|F (x)− Fn (x)| ≤ 2/k.

Hence it follows on Ω0 := ∩∞k=1Ωk (a set with P (Ω0) = 1) that

lim
n→∞

sup
x∈R

|Fn (x)− F (x)| = 0.

Example 12.22 (Shannon’s Theorem). Let {Xi}∞i=1 be a sequence of i.i.d. ran-
dom variables with values in {1, 2, . . . , r} ⊂ N. Let p (k) := P (Xi = k) > 0 for
1 ≤ k ≤ r. Further, let πn (ω) = p (X1 (ω)) . . . p (Xn (ω)) be the probability of
the realization, (X1 (ω) , . . . , Xn (ω)) . Since {ln p (Xi)}∞i=1 are i.i.d.,

− 1
n

lnπn = − 1
n

n∑
i=1

ln p (Xi) → −E [ln p (X1)] = −
r∑

k=1

p (k) ln p (k) =: H (p) .

In particular if ε > 0, P
(∣∣H − 1

n lnπn

∣∣ > ε
)
→ 0 as n→∞. Since{∣∣∣∣H +

1
n

lnπn

∣∣∣∣ > ε

}
=
{
H +

1
n

lnπn > ε

}
∪
{
H +

1
n

lnπn < −ε
}

=
{

1
n

lnπn > −H + ε

}
∪
{

1
n

lnπn < −H − ε

}
=
{
πn > en(−H+ε)

}
∪
{
πn < en(−H−ε)

}
and {∣∣∣∣H − 1

n
lnπn

∣∣∣∣ > ε

}c

=
{
πn > en(−H+ε)

}c

∪
{
πn < en(−H−ε)

}c

=
{
πn ≤ en(−H+ε)

}
∩
{
πn ≥ en(−H−ε)

}
=
{
e−n(H+ε) ≤ πn ≤ e−n(H−ε)

}
,
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it follows that

P
(
e−n(H+ε) ≤ πn ≤ e−n(H−ε)

)
→ 1 as n→∞.

Thus the probability, πn, that the random sample {X1, . . . , Xn} should occur
is approximately e−nH with high probability. The number H is called the
entropy of the distribution, {p (k)}r

k=1 .

12.4 More on the Weak Laws of Large Numbers

Theorem 12.23 (Weak Law of Large Numbers). Suppose that {Xn}∞n=1

is a sequence of independent random variables. Let Sn :=
∑n

j=1Xj and

an :=
n∑

k=1

E (Xk : |Xk| ≤ n) = nE (X1 : |X1| ≤ n) .

If
n∑

k=1

P (|Xk| > n) → 0 (12.7)

and
1
n2

n∑
k=1

E
(
X2

k : |Xk| ≤ n
)
→ 0, (12.8)

then
Sn − an

n

P→ 0.

Proof. A key ingredient in this proof and proofs of other versions of the
law of large numbers is to introduce truncations of the {Xk} . In this case we
consider

S′n :=
n∑

k=1

Xk1|Xk|≤n.

Since {Sn 6= Sn′} ⊂ ∪n
k=1 {|Xk| > n} ,

P

(∣∣∣∣Sn − an

n
− S′n − an

n

∣∣∣∣ > ε

)
= P

(∣∣∣∣Sn − S′n
n

∣∣∣∣ > ε

)
≤ P (Sn 6= Sn′) ≤

n∑
k=1

P (|Xk| > n) → 0 as n→∞.

Hence it suffices to show S′n−an

n

P→ 0 as n→∞ and for this it suffices to show,
S′n−an

n

L2(P )→ 0 as n→∞.
Observe that ES′n = an and therefore,
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E

([
S′n − an

n

]2)
=

1
n2

Var (S′n) =
1
n2

n∑
k=1

Var
(
Xk1|Xk|≤n

)
≤ 1
n2

n∑
k=1

E
(
X2

k1|Xk|≤n

)
→ 0 as n→∞.

We now verify the hypothesis of Theorem 12.23 in three situations.

Corollary 12.24. If {Xn}∞n=1 are i.i.d. L2 (P ) – random variables, then
1
nSn

P→ µ = EX1.

Proof. By the dominated convergence theorem,

an

n
:=

1
n

n∑
k=1

E (Xk : |Xk| ≤ n) = E (X1 : |X1| ≤ n) → µ. (12.9)

Moreover,

1
n2

n∑
k=1

E
(
X2

k : |Xk| ≤ n
)

=
1
n

E
(
X2

1 : |X1| ≤ n
)
≤ 1
n

E
(
X2

1

)
→ 0 as n→∞

and by Chebyschev’s inequality,
n∑

k=1

P (|Xk| > n) = nP (|X1| > n) ≤ n
1
n2

E |X1|2 → 0 as n→∞.

With these observations we may now apply Theorem 12.23 to complete the
proof.

Corollary 12.25 (Khintchin’s WLLN). If {Xn}∞n=1 are i.i.d. L1 (P ) –

random variables, then 1
nSn

P→ µ = EX1.

Proof. Again we have by Eq. (12.9), Chebyschev’s inequality, and the
dominated convergence theorem, that

n∑
k=1

P (|Xk| > n) = nP (|X1| > n) ≤ n
1
n

E [|X1| : |X1| > n] → 0 as n→∞.

Also

1
n2

n∑
k=1

E
(
X2

k : |Xk| ≤ n
)

=
1
n

E
[
|X1|2 : |X1| ≤ n

]
= E

[
|X1|

|X1|
n

1|X1|≤n

]
and the latter expression goes to zero as n→∞ by the dominated convergence
theorem, since

|X1|
|X1|
n

1|X1|≤n ≤ |X1| ∈ L1 (P )

and limn→∞ |X1| |X1|
n 1|X1|≤n = 0. Hence again the hypothesis of Theorem

12.23 have been verified.
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Lemma 12.26. Let X be a random variable such that τ (x) := xP (|X| ≥ x) →
0 as x→∞, then

lim
n→∞

1
n

E
[
|X|2 : |X| ≤ n

]
= 0. (12.10)

Note: If X ∈ L1 (P ) , then by Chebyschev’s inequality and the dominated
convergence theorem,

τ (x) ≤ E [|X| : |X| ≥ x] → 0 as x→∞.

Proof. To prove this we observe that

E
[
|X|2 : |X| ≤ n

]
= E

[
2
∫

10≤x≤|X|≤nxdx

]
= 2

∫
P (0 ≤ x ≤ |X| ≤ n)xdx

≤ 2
∫ n

0

xP (|X| ≥ x) dx = 2
∫ n

0

τ (x) dx.

Now given ε > 0, let M = M (ε) be chosen so that τ (x) ≤ ε for x ≥M. Then

E
[
|X|2 : |X| ≤ n

]
= 2

∫ M

0

τ (x) dx+ 2
∫ n

M

τ (x) dx ≤ 2KM + 2 (n−M) ε

where K = sup {τ (x) : x ≥ 0} . Dividing this estimate by n and then letting
n→∞ shows

lim sup
n→∞

1
n

E
[
|X|2 : |X| ≤ n

]
≤ 2ε.

Since ε > 0 was arbitrary, the proof is complete.

Corollary 12.27 (Feller’s WLLN). If {Xn}∞n=1 are i.i.d. and τ (x) :=
xP (|X1| > x) → 0 as x → ∞, then the hypothesis of Theorem 12.23 are
satisfied.

Proof. Since
n∑

k=1

P (|Xk| > n) = nP (|X1| > n) = τ (n) → 0 as n→∞,

Eq. (12.7) is satisfied. Eq. (12.8), follows from Lemma 12.26 and the identity,

1
n2

n∑
k=1

E
(
X2

k : |Xk| ≤ n
)

=
1
n

E
[
|X1|2 : |X1| ≤ n

]
.
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12.5 Maximal Inequalities

Theorem 12.28 (Kolmogorov’s Inequality). Let {Xn} be a sequence of
independent random variables with mean zero, Sn := X1 + · · · + Xn, and
S∗n = maxj≤n |Sj | . Then for any α > 0 we have

P (S∗N ≥ α) ≤ 1
α2

E
[
S2

N : |S∗N | ≥ α
]
.

(See Proposition 19.38 and Example 19.40 below for generalizations of this
inequality.)

Proof. Let J = inf {j : |Sj | ≥ α} with the infimum of the empty set being
taken to be equal to ∞. Observe that

{J = j} = {|S1| < α, . . . , |Sj−1| < α, |Sj | ≥ α} ∈ σ (X1, . . . , Xj) .

Now

E
[
S2

N : |S∗N | > α
]

= E
[
S2

N : J ≤ N
]

=
N∑

j=1

E
[
S2

N : J = j
]

=
N∑

j=1

E
[
(Sj + SN − Sj)

2 : J = j
]

=
N∑

j=1

E
[
S2

j + (SN − Sj)
2 + 2Sj (SN − Sj) : J = j

]
(∗)
=

N∑
j=1

E
[
S2

j + (SN − Sj)
2 : J = j

]

≥
N∑

j=1

E
[
S2

j : J = j
]
≥ α2

N∑
j=1

P [J = j] = α2P (|S∗N | > α) .

The equality, (∗) , is a consequence of the observations: 1) 1J=jSj is
σ (X1, . . . , Xj) – measurable, 2) (Sn − Sj) is σ (Xj+1, . . . , Xn) – measurable
and hence 1J=jSj and (Sn − Sj) are independent, and so 3)

E [Sj (SN − Sj) : J = j] = E [Sj1J=j (SN − Sj)]
= E [Sj1J=j ] · E [SN − Sj ] = E [Sj1J=j ] · 0 = 0.

Corollary 12.29 (L2 – SSLN). Let {Xn} be a sequence of independent ran-
dom variables with mean zero, and σ2 = EX2

n < ∞. Letting Sn =
∑n

k=1Xk

and p > 1/2, we have
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1
np
Sn → 0 a.s.

If {Yn} is a sequence of independent random variables EYn = µ and σ2 =
Var (Xn) <∞, then for any β ∈ (0, 1/2) ,

1
n

n∑
k=1

Yk − µ = O

(
1
nβ

)
.

Proof. (The proof of this Corollary may be skipped. We will give another
proof in Corollary 12.36 below.) From Theorem 12.28, we have for every ε > 0
that

P

(
S∗N
Np

≥ ε

)
= P (S∗N ≥ εNp) ≤ 1

ε2N2p
E
[
S2

N

]
=

1
ε2N2p

CN =
C

ε2N (2p−1)
.

Hence if we suppose that Nn = nα with α (2p− 1) > 1, then we have

∞∑
n=1

P

(
S∗Nn

Np
n
≥ ε

)
≤
∞∑

n=1

C

ε2nα(2p−1)
<∞

and so by the first Borel – Cantelli lemma we have

P

({
S∗Nn

Np
n
≥ ε for n i.o.

})
= 0.

From this it follows that limn→∞
S∗Nn

Np
n

= 0 a.s.
To finish the proof, for m ∈ N, we may choose n = n (m) such that

nα = Nn ≤ m < Nn+1 = (n+ 1)α
.

Since
S∗Nn(m)

Np
n(m)+1

≤ S∗m
mp

≤
S∗Nn(m)+1

Np
n(m)

and
Nn+1/Nn → 1 as n→∞,

it follows that

0 = lim
m→∞

S∗Nn(m)

Np
n(m)

= lim
m→∞

S∗Nn(m)

Np
n(m)+1

≤ lim
m→∞

S∗m
mp

≤ lim
m→∞

S∗Nn(m)+1

Np
n(m)

= lim
m→∞

S∗Nn(m)+1

Np
n(m)+1

= 0 a.s.

That is limm→∞
S∗m
mp = 0 a.s.
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Theorem 12.30 (Skorohod’s Inequality). Let {Xn} be a sequence of in-
dependent random variables and let α > 0. Let Sn := X1 + · · ·+Xn. Then for
all α > 0,

P (|SN | > α) ≥ (1− cN (α))P
(

max
j≤N

|Sj | > 2α
)
,

where
cN (α) := max

j≤N
P (|SN − Sj | > α) .

Proof. Our goal is to compute

P

(
max
j≤N

|Sj | > 2α
)
.

To this end, let J = inf {j : |Sj | > 2α} with the infimum of the empty set
being taken to be equal to ∞. Observe that

{J = j} = {|S1| ≤ 2α, . . . , |Sj−1| ≤ 2α, |Sj | > 2α}

and therefore {
max
j≤N

|Sj | > 2α
}

=
N∑

j=1

{J = j} .

Also observe that on {J = j} ,

|SN | = |SN − Sj + Sj | ≥ |Sj | − |SN − Sj | > 2α− |SN − Sj | .

Hence on the {J = j, |SN − Sj | ≤ α} we have |SN | > α, i.e.

{J = j, |SN − Sj | ≤ α} ⊂ {|SN | > α} for all j ≤ N.

Hence ti follows from this identity and the independence of {Xn} that

P (|SN | > α) ≥
N∑

j=1

P (J = j, |SN − Sj | ≤ α)

=
N∑

j=1

P (J = j)P (|SN − Sj | ≤ α) .

Under the assumption that P (|SN − Sj | > α) ≤ c for all j ≤ N, we find

P (|SN − Sj | ≤ α) ≥ 1− c

and therefore,

P (|SN | > α) ≥
N∑

j=1

P (J = j) (1− c) = (1− c)P
(

max
j≤N

|Sj | > 2α
)
.

As an application of Theorem 12.30 we have the following convergence
result.
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Theorem 12.31 (Lévy’s Theorem). Suppose that {Xn}∞n=1 are i.i.d. ran-
dom variables then

∑∞
n=1Xn converges in probability iff

∑∞
n=1Xn converges

a.s.

Proof. Let Sn :=
∑n

k=1Xk. Since almost sure convergence implies con-
vergence in probability, it suffices to show; if Sn is convergent in prob-
ability then Sn is almost surely convergent. Given M ∈ M, let QM :=
supn≥M |Sn − SM | and for M < N, let QM,N := supM≤n≤N |Sn − SM | .
Given ε ∈ (0, 1) , by assumption, there exists M = M (ε) ∈ N such that
maxM≤j≤N P (|SN − Sj | > ε) < ε for all N ≥ M. An application of Skoro-
hod’s inequality, then shows

P (QM,N ≥ 2ε) ≤ P (|SN − SM | > ε)
(1−maxM≤j≤N P (|SN − Sj | > ε))

≤ ε

1− ε
.

Since QM,N ↑ QM as N →∞, we may conclude

P (QM ≥ 2ε) ≤ ε

1− ε
.

Since,

δM := sup
m,n≥M

|Sn − Sm| ≤ sup
m,n≥M

[|Sn − SM |+ |SM − Sm|] = 2QM

we may further conclude, P (δM > 4ε) ≤ ε
1−ε and since ε > 0 is arbitrary, it

follows that δM
P→ 0 as M → ∞. Moreover, since δM is decreasing in M, it

follows that limM→∞ δM =: δ exists and because δM
P→ 0 we may concluded

that δ = 0 a.s. Thus we have shown

lim
m,n→∞

|Sn − Sm| = 0 a.s.

and therefore {Sn}∞n=1 is almost surely Cauchy and hence almost surely con-
vergent.

Proposition 12.32 (Reflection Principle). Let X be a separable Banach
space and {ξi}N

i=1 be independent symmetric (i.e. ξi
d= −ξi) random variables

with values in X. Let Sk :=
∑k

i=1 ξi and S∗k := supj≤k ‖Sj‖ with the conven-
tion that S∗0 = 0. Then

P (S∗N ≥ r) ≤ 2P (‖SN‖ ≥ r) . (12.11)

Proof. Since

{S∗N ≥ r} =
∑

N
j=1

{
‖Sj‖ ≥ r, S∗j−1 < r

}
,
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P (S∗N ≥ r) = P (S∗N ≥ r, ‖SN‖ ≥ r) + P (S∗N ≥ r, ‖SN‖ < r)
= P (‖SN‖ ≥ r) + P (S∗N ≥ r, ‖SN‖ < r). (12.12)

where

P (S∗N ≥ r, ‖SN‖ < r) =
N∑

j=1

P (‖Sj‖ ≥ r, S∗j−1 < r, ‖SN‖ < r). (12.13)

By symmetry and independence we have

P (‖Sj‖ ≥ r, S∗j−1 < r, ‖SN‖ < r) = P (‖Sj‖ ≥ r, S∗j−1 < r,

∥∥∥∥∥∥Sj +
∑
k>j

ξk

∥∥∥∥∥∥ < r)

= P (‖Sj‖ ≥ r, S∗j−1 < r,

∥∥∥∥∥∥Sj −
∑
k>j

ξk

∥∥∥∥∥∥ < r)

= P (‖Sj‖ ≥ r, S∗j−1 < r, ‖2Sj − SN‖ < r).

If ‖Sj‖ ≥ r and ‖2Sj − SN‖ < r, then

r > ‖2Sj − SN‖ ≥ 2 ‖Sj‖ − ‖SN‖ ≥ 2r − ‖SN‖

and hence ‖SN‖ > r. This shows,{
‖Sj‖ ≥ r, S∗j−1 < r, ‖2Sj − SN‖ < r

}
⊂
{
‖Sj‖ ≥ r, S∗j−1 < r, ‖SN‖ > r

}
and therefore,

P (‖Sj‖ ≥ r, S∗j−1 < r, ‖SN‖ < r) ≤ P (‖Sj‖ ≥ r, S∗j−1 < r, ‖SN‖ > r).

Combining the estimate with Eq. (12.13) gives

P (S∗N ≥ r, ‖SN‖ < r) ≤
N∑

j=1

P (‖Sj‖ ≥ r, S∗j−1 < r, ‖SN‖ > r)

= P (S∗N ≥ r, ‖SN‖ > r) ≤ P (‖SN‖ ≥ r).

This estimate along with the estimate in Eq. (12.12) completes the proof of
the theorem.

12.6 Kolmogorov’s Convergence Criteria and the SSLN

We are now in a position to prove Theorem 12.11 which we restate here.

Theorem 12.33 (Kolmogorov’s Convergence Criteria). Suppose that
{Yn}∞n=1 are independent square integrable random variables. If

∑∞
j=1 Var (Yj) <

∞, then
∑∞

j=1 (Yj − EYj) converges a.s.
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Proof. First proof. By Proposition 12.5, the sum,
∑∞

j=1 (Yj − EYj) ,
is L2 (P ) convergent and hence convergent in probability. An application of
Lévy’s Theorem 12.31 then shows

∑∞
j=1 (Yj − EYj) is almost surely conver-

gent.
Second proof. Let Sn :=

∑n
j=1Xj where Xj := Yj − EYj . According to

Kolmogorov’s inequality, Theorem 12.28, for all M < N,

P

(
max

M≤j≤N
|Sj − SM | ≥ α

)
≤ 1
α2

E
[
(SN − SM )2

]
=

1
α2

N∑
j=M+1

E
[
X2

j

]
=

1
α2

N∑
j=M+1

Var (Xj) .

Letting N →∞ in this inequality shows, with QM := supj≥M |Sj − SM | ,

P (QM ≥ α) ≤ 1
α2

∞∑
j=M+1

Var (Xj) .

Since

δM := sup
j,k≥M

|Sj − Sk| ≤ sup
j,k≥M

[|Sj − SM |+ |SM − Sk|] ≤ 2QM

we may further conclude,

P (δM ≥ 2α) ≤ 1
α2

∞∑
j=M+1

Var (Xj) → 0 as M →∞,

i.e. δM
P→ 0 as M → ∞. Since δM is decreasing in M, it follows that

limM→∞ δM =: δ exists and because δM
P→ 0 we may concluded that δ = 0

a.s. Thus we have shown

lim
m,n→∞

|Sn − Sm| = 0 a.s.

and therefore {Sn}∞n=1 is almost surely Cauchy and hence almost surely con-
vergent.

Lemma 12.34 (Kronecker’s Lemma). Suppose that {xk} ⊂ R and {ak} ⊂
(0,∞) are sequences such that ak ↑ ∞ and

∑∞
k=1

xk

ak
exists. Then

lim
n→∞

1
an

n∑
k=1

xk = 0.
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Proof. Before going to the proof, let us warm-up by proving the following
continuous version of the lemma. Let a (s) ∈ (0,∞) and x (s) ∈ R be contin-
uous functions such that a (s) ↑ ∞ as s → ∞ and

∫∞
1

x(s)
a(s)ds exists. We are

going to show

lim
n→∞

1
a (n)

∫ n

1

x (s) ds = 0.

Let X (s) :=
∫ s

0
x (u) du and

r (s) :=
∫ ∞

s

X ′ (u)
a (u)

du =
∫ ∞

s

x (u)
a (u)

du.

Then by assumption, r (s) → 0 as s→ 0 andX ′ (s) = −a (s) r′ (s) . Integrating
this equation shows

X (s)−X (s0) = −
∫ s

s0

a (u) r′ (u) du = −a (u) r (u) |su=s0
+
∫ s

s0

r (u) a′ (u) du.

Dividing this equation by a (s) and then letting s→∞ gives

lim sup
s→∞

|X (s)|
a (s)

= lim sup
s→∞

[
a (s0) r (s0)− a (s) r (s)

a (s)
+

1
a (s)

∫ s

s0

r (u) a′ (u) du
]

≤ lim sup
s→∞

[
−r (s) +

1
a (s)

∫ s

s0

|r (u)| a′ (u) du
]

≤ lim sup
s→∞

[
a (s)− a (s0)

a (s)
sup
u≥s0

|r (u)|
]

= sup
u≥s0

|r (u)| → 0 as s0 →∞.

With this as warm-up, we go to the discrete case.
Let

Sk :=
k∑

j=1

xj and rk :=
∞∑

j=k

xj

aj
.

so that rk → 0 as k →∞ by assumption. Since xk = ak (rk − rk+1) , we find

Sn

an
=

1
an

n∑
k=1

ak (rk − rk+1) =
1
an

[
n∑

k=1

akrk −
n+1∑
k=2

ak−1rk

]

=
1
an

[
a1r1 − anrn+1 +

n∑
k=2

(ak − ak−1) rk

]
. (summation by parts)

Using the fact that ak − ak−1 ≥ 0 for all k ≥ 2, and

lim
n→∞

1
an

m∑
k=2

(ak − ak−1) |rk| = 0

for any m ∈ N; we may conclude
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lim sup
n→∞

∣∣∣∣Sn

an

∣∣∣∣ ≤ lim sup
n→∞

1
an

[
n∑

k=2

(ak − ak−1) |rk|

]

= lim sup
n→∞

1
an

[
n∑

k=m

(ak − ak−1) |rk|

]

≤ sup
k≥m

|rk| · lim sup
n→∞

1
an

[
n∑

k=m

(ak − ak−1)

]

= sup
k≥m

|rk| · lim sup
n→∞

1
an

[an − am−1] = sup
k≥m

|rk| .

This completes the proof since supk≥m |rk| → 0 as m→∞.

Corollary 12.35. Let {Xn} be a sequence of independent square integrable
random variables and bn be a sequence such that bn ↑ ∞. If

∞∑
k=1

Var (Xk)
b2k

<∞

then
Sn − ESn

bn
→ 0 a.s.

Proof. By Kolmogorov’s Convergence Criteria, Theorem 12.33,
∞∑

k=1

Xk − EXk

bk
is convergent a.s.

Therefore an application of Kronecker’s Lemma implies

0 = lim
n→∞

1
bn

n∑
k=1

(Xk − EXk) = lim
n→∞

Sn − ESn

bn
.

Corollary 12.36 (L2 – SSLN). Let {Xn} be a sequence of independent
random variables such that σ2 = EX2

n < ∞. Letting Sn =
∑n

k=1Xk and
µ := EXn, we have

1
bn

(Sn − nµ) → 0 a.s. (12.14)

provided bn ↑ ∞ and
∑∞

n=1
1
b2n

< ∞. For example, we could take bn = n or

bn = np for an p > 1/2, or bn = n1/2 (lnn)1/2+ε for any ε > 0. We may
rewrite Eq. (12.14) as

Sn − nµ = o (1) bn
or equivalently,

Sn

n
− µ = o (1)

bn
n
.
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Proof. This corollary is a special case of Corollary 12.35. Let us simply
observe here that

∞∑
n=2

1(
n1/2 (lnn)1/2+ε

)2 =
∞∑

n=2

1
n (lnn)1+2ε

by comparison with the integral∫ ∞
2

1
x ln1+2ε x

dx =
∫ ∞

ln 2

1
eyy1+2ε

eydy =
∫ ∞

ln 2

1
y1+2ε

dy <∞,

wherein we have made the change of variables, y = lnx.

Fact 12.37 Under the hypothesis in Corollary 12.36,

lim
n→∞

Sn − nµ

n1/2 (ln lnn)1/2
=
√

2σ a.s.

Our next goal is to prove the Strong Law of Large numbers (in Theorem
12.7) under the assumption that E |X1| <∞.

12.7 Strong Law of Large Numbers

Lemma 12.38. Suppose that X : Ω → R is a random variable, then

E |X|p =
∫ ∞

0

psp−1P (|X| ≥ s) ds =
∫ ∞

0

psp−1P (|X| > s) ds.

Proof. By the fundamental theorem of calculus,

|X|p =
∫ |X|

0

psp−1ds = p

∫ ∞
0

1s≤|X| · sp−1ds = p

∫ ∞
0

1s<|X| · sp−1ds.

Taking expectations of this identity along with an application of Tonelli’s
theorem completes the proof.

Lemma 12.39. If X is a random variable and ε > 0, then

∞∑
n=1

P (|X| ≥ nε) ≤ 1
ε

E |X| ≤
∞∑

n=0

P (|X| ≥ nε) . (12.15)

Proof. First observe that for all y ≥ 0 we have,

∞∑
n=1

1n≤y ≤ y ≤
∞∑

n=1

1n≤y + 1 =
∞∑

n=0

1n≤y. (12.16)

Taking y = |X| /ε in Eq. (12.16) and then take expectations gives the estimate
in Eq. (12.15).
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Proposition 12.40. Suppose that {Xn}∞n=1 are i.i.d. random variables, then
the following are equivalent:

1. E |X1| <∞.
2. There exists ε > 0 such that

∑∞
n=1 P (|X1| ≥ εn) <∞.

3. For all ε > 0,
∑∞

n=1 P (|X1| ≥ εn) <∞.

4. limn→∞
|Xn|

n = 0 a.s.

Proof. The equivalence of items 1., 2., and 3. easily follows from Lemma
12.39. So to finish the proof it suffices to show 3. is equivalent to 4. To this
end we start by noting that limn→∞

|Xn|
n = 0 a.s. iff

0 = P

(
|Xn|
n

≥ ε i.o.
)

= P (|Xn| ≥ nε i.o.) for all ε > 0. (12.17)

However, since {|Xn| ≥ nε}∞n=1 are independent sets, Borel zero-one law shows
the statement in Eq. (12.17) is equivalent to

∑∞
n=1 P (|Xn| ≥ nε) <∞ for all

ε > 0.

Corollary 12.41. Suppose that {Xn}∞n=1 are i.i.d. random variables such that
1
nSn → c ∈ R a.s., then Xn ∈ L1 (P ) and µ := EXn = c.

Proof. If 1
nSn → c a.s. then εn := Sn+1

n+1 −
Sn

n → 0 a.s. and therefore,

Xn+1

n+ 1
=
Sn+1

n+ 1
− Sn

n+ 1
= εn + Sn

[
1
n
− 1
n+ 1

]
= εn +

1
(n+ 1)

Sn

n
→ 0 + 0 · c = 0.

Hence an application of Proposition 12.40 shows Xn ∈ L1 (P ) . Moreover by
Exercise 11.3,

{
1
nSn

}∞
n=1

is a uniformly integrable sequenced and therefore,

µ = E
[

1
n
Sn

]
→ E

[
lim

n→∞

1
n
Sn

]
= E [c] = c.

Lemma 12.42. For all x ≥ 0,

ϕ (x) :=
∞∑

n=1

1
n2

1x≤n =
∑
n≥x

1
n2

≤ 2 ·min
(

1
x
, 1
)
.

Proof. The proof will be by comparison with the integral,
∫∞

a
1
t2 dt = 1/a.

For example,
∞∑

n=1

1
n2

≤ 1 +
∫ ∞

1

1
t2
dt = 1 + 1 = 2
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and so ∑
n≥x

1
n2

=
∞∑

n=1

1
n2

= 2 ≤ 2
x

for 0 < x ≤ 1.

Similarly, for x > 1,∑
n≥x

1
n2

≤ 1
x2

+
∫ ∞

x

1
t2
dt =

1
x2

+
1
x

=
1
x

(
1 +

1
x

)
≤ 2
x
,

see Figure 12.7 below.

Lemma 12.43. Suppose that X : Ω → R is a random variable, then

∞∑
n=1

1
n2

E
[
|X|2 : 1|X|≤n

]
≤ 2E |X| .

Proof. This is a simple application of Lemma 12.42;

∞∑
n=1

1
n2

E
[
|X|2 : 1|X|≤n

]
= E

[
|X|2

∞∑
n=1

1
n2

1|X|≤n

]
= E

[
|X|2 ϕ (|X|)

]
≤ 2E

[
|X|2

(
1
|X|

∧ 1
)]

≤ 2E |X| .

With this as preparation we are now in a position to prove Theorem 12.7
which we restate here.

Theorem 12.44 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {Xn}∞n=1 are i.i.d. random variables and let Sn := X1 + · · · + Xn.
Then there exists µ ∈ R such that 1

nSn → µ a.s. iff Xn is integrable and in
which case EXn = µ.
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Proof. The implication, 1
nSn → µ a.s. implies Xn ∈ L1 (P ) and EXn = µ

has already been proved in Corollary 12.41. So let us now assume Xn ∈ L1 (P )
and let µ := EXn.

Let X ′n := Xn1|Xn|≤n. By Proposition 12.40,

∞∑
n=1

P (X ′n 6= Xn) =
∞∑

n=1

P (|Xn| > n) =
∞∑

n=1

P (|X1| > n) ≤ E |X1| <∞,

and hence {Xn} and {X ′n} are tail equivalent. Therefore it suffices to show
limn→∞

1
nS

′

n = µ a.s. where S′n := X ′1 + · · ·+X ′n. But by Lemma 12.43,

∞∑
n=1

Var (X ′n)
n2

≤
∞∑

n=1

E |X ′n|
2

n2
=
∞∑

n=1

E
[
|Xn|2 1|Xn|≤n

]
n2

=
∞∑

n=1

E
[
|X1|2 1|X1|≤n

]
n2

≤ 2E |X1| <∞.

Therefore by Kolmogorov’s convergence criteria,

∞∑
n=1

X ′n − EX ′n
n

is almost surely convergent.

Kronecker’s lemma then implies

lim
n→∞

1
n

n∑
k=1

(X ′k − EX ′k) = 0 a.s.

So to finish the proof, it only remains to observe

lim
n→∞

1
n

n∑
k=1

EX ′k = lim
n→∞

1
n

n∑
k=1

E
[
Xn1|Xn|≤n

]
= lim

n→∞

1
n

n∑
k=1

E
[
X11|X1|≤n

]
= lim

n→∞
E
[
X11|X1|≤n

]
= µ.

Here we have used the dominated convergence theorem to see that an :=
E
[
X11|X1|≤n

]
→ µ as n → ∞. It is now easy (and standard) to check that

limn→∞
1
n

∑n
k=1 an = limn→∞ an = µ as well.

We end this section with another example of using Kolmogorov’s conver-
gence criteria in conjunction with Kronecker’s lemma. We now assume that
{Xn}∞n=1 are i.i.d. random variables with a continuous distribution function
and let Aj denote the event when Xj is a record, i.e.

Aj := {Xj > max {X1, X2, . . . , Xk−1}} .

Recall from Renyi Theorem 7.28 that {Aj}∞j=1 are independent and P (Aj) =
1
j for all j.
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Proposition 12.45. Keeping the preceding notation and let µN :=
∑N

j=1 1Aj

denote the number of records in the first N observations. Then limN→∞
µN

ln N =
1 a.s.

Proof. Since 1Aj
are Bernoulli random variables, E1Aj

= 1
j and

Var
(
1Aj

)
= E12

Aj
−
(
E1Aj

)2 =
1
j
− 1
j2

=
j − 1
j2

.

Observing that
n∑

j=1

E1Aj =
n∑

j=1

1
j
∼
∫ N

1

1
x
dx = lnN

we are lead to try to normalize the sum
∑N

j=1 1Aj
by lnN. So in the spirit of

the proof of the strong law of large numbers let us compute;

∞∑
j=2

Var
(

1Aj

ln j

)
=
∞∑

j=2

1
ln2 j

j − 1
j2

∼
∫ ∞

2

1
ln2 x

1
x
dx =

∫ ∞
ln 2

1
y2
dy <∞.

Therefore by Kolmogorov’s convergence criteria we may conclude

∞∑
j=2

1Aj − 1
j

ln j
=
∞∑

j=2

[
1Aj

ln j
− E

[
1Aj

ln j

]]
is almost surely convergent. An application of Kronecker’s Lemma then im-
plies

lim
n→∞

∑N
j=1

(
1Aj

− 1
j

)
lnN

= 0 a.s.

So to finish the proof it only remains to show

lim
n→∞

∑N
j=1

1
j

lnN
= 1. (12.18)

To see this write

ln (N + 1) =
∫ N+1

1

1
x
dx =

N∑
j=1

∫ j+1

j

1
x
dx

=
N∑

j=1

∫ j+1

j

(
1
x
− 1
j

)
dx+

N∑
j=1

1
j

= ρN +
N∑

j=1

1
j

(12.19)

where
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|ρN | =
N∑

j=1

∣∣∣∣ln j + 1
j

− 1
j

∣∣∣∣ = N∑
j=1

∣∣∣∣ln (1 + 1/j)− 1
j

∣∣∣∣ ∼ N∑
j=1

1
j2

and hence we conclude that limN→∞ ρN <∞. So dividing Eq. (12.19) by lnN
and letting N →∞ gives the desired limit in Eq. (12.18).

12.8 Necessity Proof of Kolmogorov’s Three Series
Theorem

This section is devoted to the necessity part of the proof of Kolmogorov’s
Three Series Theorem 12.12. We start with a couple of lemmas.

Lemma 12.46. Suppose that {Yn}∞n=1 are independent random variables such
that there exists c < ∞ such that |Yn| ≤ c < ∞ a.s. and further assume
EYn = 0. If

∑∞
n=1 Yn is almost surely convergent then

∑∞
n=1 EY 2

n <∞. More
precisely the following estimate holds,

∞∑
j=1

EY 2
j ≤ (λ+ c)2

P (supn |Sn| ≤ λ)
for all λ > 0, (12.20)

where as usual, Sn :=
∑n

j=1 Yj .

Remark 12.47. It follows from Eq. (12.20) that if P (supn |Sn| <∞) > 0, then∑∞
j=1 EY 2

j <∞ and hence by Kolmogorov’s Theorem,
∑∞

j=1 Yj = limn→∞ Sn

exists a.s. and in particular, P (supn |Sn| <∞) .

Proof. Let λ > 0 and τ be the first time |Sn| > λ, i.e. let τ be the
“stopping time” defined by,

τ = τλ := inf {n ≥ 1 : |Sn| > λ} .

As usual, τ = ∞ if {n ≥ 1 : |Sn| > λ} = ∅. Then for N ∈ N,

E
[
S2

N

]
= E

[
S2

N : τ ≤ N
]
+ E

[
S2

N : τ > N
]

≤ E
[
S2

N : τ ≤ N
]
+ λ2P [τ > N ] .

Moreover,
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E
[
S2

N : τ ≤ N
]

=
N∑

j=1

E
[
S2

N : τ = j
]

=
N∑

j=1

E
[
|Sj + SN − Sj |2 : τ = j

]

=
N∑

j=1

E
[
S2

j + 2Sj (SN − Sj) + (SN − Sj)
2 : τ = j

]

=
N∑

j=1

E
[
S2

j : τ = j
]
+

N∑
j=1

E
[
(SN − Sj)

2
]
P [τ = j]

≤
N∑

j=1

E
[
(Sj−1 + Yj)

2 : τ = j
]

+ E
[
S2

N

] N∑
j=1

P [τ = j]

≤
N∑

j=1

E
[
(λ+ c)2 : τ = j

]
+ E

[
S2

N

]
P [τ ≤ N ]

=
[
(λ+ c)2 + E

[
S2

N

]]
P [τ ≤ N ] .

Putting this all together then gives,

E
[
S2

N

]
≤
[
(λ+ c)2 + E

[
S2

N

]]
P [τ ≤ N ] + λ2P [τ > N ]

≤
[
(λ+ c)2 + E

[
S2

N

]]
P [τ ≤ N ] + (λ+ c)2 P [τ > N ]

= (λ+ c)2 + P [τ ≤ N ] · E
[
S2

N

]
form which it follows that

E
[
S2

N

]
≤ (λ+ c)2

1− P [τ ≤ N ]
≤ (λ+ c)2

1− P [τ <∞]
=

(λ+ c)2

P [τ = ∞]

=
(λ+ c)2

P (supn |Sn| ≤ λ)
.

Since Sn is convergent a.s., it follows that P (supn |Sn| <∞) = 1 and there-
fore,

lim
λ↑∞

P

(
sup

n
|Sn| < λ

)
= 1.

Hence for λ sufficiently large, P (supn |Sn| < λ) > 0 ad we learn that

∞∑
j=1

EY 2
j = lim

N→∞
E
[
S2

N

]
≤ (λ+ c)2

P (supn |Sn| ≤ λ)
<∞.

Lemma 12.48. Suppose that {Yn}∞n=1 are independent random variables such
that there exists c <∞ such that |Yn| ≤ c a.s. for all n. If

∑∞
n=1 Yn converges

in R a.s. then
∑∞

n=1 EYn converges as well.
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Proof. Let (Ω0,B0, P0) be the probability space that {Yn}∞n=1 is defined
on and let

Ω := Ω0 ×Ω0, B := B0 ⊗ B0, and P := P0 ⊗ P0.

Further let Y ′n (ω1, ω2) := Yn (ω1) and Y ′′n (ω1, ω2) := Yn (ω2) and

Zn (ω1, ω2) := Y ′n (ω1, ω2)− Y ′′n (ω1, ω2) = Yn (ω1)− Yn (ω2) .

Then |Zn| ≤ 2c a.s., EZn = 0, and

∞∑
n=1

Zn (ω1, ω2) =
∞∑

n=1

Yn (ω1)−
∞∑

n=1

Yn (ω2) exists

for P a.e. (ω1, ω2) . Hence it follows from Lemma 12.46 that

∞ >
∞∑

n=1

EZ2
n =

∞∑
n=1

Var (Zn) =
∞∑

n=1

Var (Y ′n − Y ′′n )

=
∞∑

n=1

[Var (Y ′n) + Var (Y ′′n )] = 2
∞∑

n=1

Var (Yn) .

Thus by Kolmogorov’s convergence theorem, it follows that
∑∞

n=1 (Yn − EYn)
is convergent. Since

∑∞
n=1 Yn is a.s. convergent, we may conclude that∑∞

n=1 EYn is also convergent.
We are now ready to complete the proof of Theorem 12.12.
Proof. Our goal is to show if {Xn}∞n=1 are independent random variables,

then the random series,
∑∞

n=1Xn, is almost surely convergent iff for all c > 0
the following three series converge;

1.
∑∞

n=1 P (|Xn| > c) <∞,
2.
∑∞

n=1 Var
(
Xn1|Xn|≤c

)
<∞, and

3.
∑∞

n=1 E
(
Xn1|Xn|≤c

)
converges.

Since
∑∞

n=1Xn is almost surely convergent, it follows that limn→∞Xn = 0
a.s. and hence for every c > 0, P ({|Xn| ≥ c i.o.}) = 0. According the Borel
zero one law this implies for every c > 0 that

∑∞
n=1 P (|Xn| > c) <∞. Given

this, we now know that {Xn} and
{
Xc

n := Xn1|Xn|≤c

}
are tail equivalent for

all c > 0 and in particular
∑∞

n=1X
c
n is almost surely convergent for all c > 0.

So according to Lemma 12.48 (with Yn = Xc
n),

∞∑
n=1

EXc
n =

∞∑
n=1

E
(
Xn1|Xn|≤c

)
converges.

Letting Yn := Xc
n − EXc

n, we may now conclude that
∑∞

n=1 Yn is almost
surely convergent. Since {Yn} is uniformly bounded and EYn = 0 for all n, an
application of Lemma 12.46 allows us to conclude
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∞∑
n=1

Var
(
Xn1|Xn|≤c

)
=
∞∑

n=1

EY 2
n <∞.
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Weak Convergence Results

Suppose {Xn}∞n=1 is a sequence of random variables and X is another random
variable (possibly defined on a different probability space). We would like to
understand when, for large n, Xn and X have nearly the “same” distribution.
Alternatively put, if we let µn (A) := P (Xn ∈ A) and µ (A) := P (X ∈ A) ,
when is µn close to µ for large n. This is the question we will address in this
chapter.

13.1 Total Variation Distance

Definition 13.1. Let µ and ν be two probability measure on a measurable
space, (Ω,B) . The total variation distance, dTV (µ, ν) , is defined as

dTV (µ, ν) := sup
A∈B

|µ (A)− ν (A)| .

Remark 13.2. The function, λ : B → R defined by, λ (A) := µ (A)− ν (A) for
all A ∈ B, is an example of a “signed measure.” For signed measures, one
usually defines

‖λ‖TV := sup

{
n∑

i=1

|λ (Ai)| : n ∈ N and partitions, {Ai}n
i=1 ⊂ B of Ω

}
.

You are asked to show in Exercise 13.1 below, that when λ = µ − ν,
dTV (µ, ν) = 1

2 ‖µ− ν‖TV .

Lemma 13.3 (Scheffé’s Lemma). Suppose that m is another positive mea-
sure on (Ω,B) such that there exists measurable functions, f, g : Ω → [0,∞),
such that dµ = fdm and dν = gdm.1 Then

dTV (µ, ν) =
1
2

∫
Ω

|f − g| dm.

Moreover, if {µn}∞n=1 is a sequence of probability measure of the form, dµn =
fndm with fn : Ω → [0,∞), and fn → g, m - a.e., then dTV (µn, ν) → 0 as
n→∞.

1 Fact: it is always possible to do this by taking m = µ + ν for example.
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Proof. Let λ = µ− ν and h := f − g : Ω → R so that dλ = hdm. Since

λ (Ω) = µ (Ω)− ν (Ω) = 1− 1 = 0,

if A ∈ B we have
λ (A) + λ (Ac) = λ (Ω) = 0.

In particular this shows |λ (A)| = |λ (Ac)| and therefore,

|λ (A)| = 1
2

[|λ (A)|+ |λ (Ac)|] =
1
2

[∣∣∣∣∫
A

hdm

∣∣∣∣+ ∣∣∣∣∫
Ac

hdm

∣∣∣∣] (13.1)

≤ 1
2

[∫
A

|h| dm+
∫

Ac

|h| dm
]

=
1
2

∫
Ω

|h| dm.

This shows
dTV (µ, ν) = sup

A∈B
|λ (A)| ≤ 1

2

∫
Ω

|h| dm.

To prove the converse inequality, simply take A = {h > 0} (note Ac =
{h ≤ 0}) in Eq. (13.1) to find

|λ (A)| = 1
2

[∫
A

hdm−
∫

Ac

hdm

]
=

1
2

[∫
A

|h| dm+
∫

Ac

|h| dm
]

=
1
2

∫
Ω

|h| dm.

For the second assertion, let Gn := fn + g and observe that |fn − g| → 0
m – a.e., |fn − g| ≤ Gn ∈ L1 (m) , Gn → G := 2g a.e. and

∫
Ω
Gndm = 2 →

2 =
∫

Ω
Gdm and n → ∞. Therefore, by the dominated convergence theorem

8.34,

lim
n→∞

dTV (µn, ν) =
1
2

lim
n→∞

∫
Ω

|fn − g| dm = 0.

For a concrete application of Scheffé’s Lemma, see Proposition 13.35 below.

Corollary 13.4. Let ‖h‖∞ := supω∈Ω |h (ω)| when h : Ω → R is a bounded
random variable. Continuing the notation in Scheffé’s lemma above, we have

dTV (µ, ν) =
1
2

sup
{∣∣∣∣∫

Ω

hdµ−
∫

Ω

hdν

∣∣∣∣ : ‖h‖∞ ≤ 1
}
. (13.2)

Consequently, ∣∣∣∣∫
Ω

hdµ−
∫

Ω

hdν

∣∣∣∣ ≤ 2dTV (µ, ν) · ‖h‖∞ (13.3)

and in particular, for all bounded and measurable functions, h : Ω → R,
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Ω

hdµn →
∫

Ω

hdν if dTV (µn, ν) → 0. (13.4)

Proof. We begin by observing that∣∣∣∣∫
Ω

hdµ−
∫

Ω

hdν

∣∣∣∣ = ∣∣∣∣∫
Ω

h (f − g) dm
∣∣∣∣ ≤ ∫

Ω

|h| |f − g| dm

≤ ‖h‖∞
∫

Ω

|f − g| dm = 2dTV (µ, ν) ‖h‖∞ .

Moreover, from the proof of Scheffé’s Lemma 13.3, we have

dTV (µ, ν) =
1
2

∣∣∣∣∫
Ω

hdµ−
∫

Ω

hdν

∣∣∣∣
when h := 1f>g−1f≤g. These two equations prove Eqs. (13.2) and (13.3) and
the latter implies Eq. (13.4).

Exercise 13.1. Under the hypothesis of Scheffé’s Lemma 13.3, show

‖µ− ν‖TV =
∫

Ω

|f − g| dm = 2dTV (µ, ν) .

Exercise 13.2. Suppose that Ω is a (at most) countable set, B := 2Ω , and
{µn}∞n=0 are probability measures on (Ω,B) . Let fn (ω) := µn ({ω}) for ω ∈
Ω. Show

dTV (µn, µ0) =
1
2

∑
ω∈Ω

|fn (ω)− f0 (ω)|

and limn→∞ dTV (µn, µ0) = 0 iff limn→∞ µn ({ω}) = µ0 ({ω}) for all ω ∈ Ω.

Notation 13.5 Suppose that X and Y are random variables, let

dTV (X,Y ) := dTV (µX , µY ) = sup
A∈BR

|P (X ∈ A)− P (Y ∈ A)| ,

where µX = P ◦X−1 and µY = P ◦ Y −1.

13.2 Weak Convergence

Example 13.6. Suppose that P
(
Xn = i

n

)
= 1

n for i ∈ {1, 2, . . . , n} so that
Xn is a discrete “approximation” to the uniform distribution, i.e. to U where
P (U ∈ A) = m (A ∩ [0, 1]) for all A ∈ BR. If we let An =

{
i
n : i = 1, 2, . . . , n

}
,

then P (Xn ∈ An) = 1 while P (U ∈ An) = 0. Therefore, it follows that
dTV (Xn, U) = 1 for all n.2

2 More generally, if µ and ν are two probability measure on (R,BR) such that
µ ({x}) = 0 for all x ∈ R while ν concentrates on a countable set, then
dTF (µ, ν) = 1.
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Nevertheless we would like Xn to be close to U in distribution. Let us
observe that if we let Fn (y) := P (Xn ≤ y) and F (y) := P (U ≤ y) , then

Fn (y) = P (Xn ≤ y) =
1
n

#
{
i ∈ {1, 2, . . . , n} :

i

n
≤ y

}
and

F (y) := P (U ≤ y) = (y ∧ 1) ∨ 0.

From these formula, it easily follows that F (y) = limn→∞ Fn (y) for all y ∈ R.
This suggest that we should say that Xn converges in distribution to X iff
P (Xn ≤ y) → P (X ≤ y) for all y ∈ R. However, the next simple example
shows this definition is also too restrictive.

Example 13.7. Suppose that P (Xn = 1/n) = 1 for all n and P (X0 = 0) =
1. Then it is reasonable to insist that Xn converges of X0 in distribution.
However, Fn (y) = 1y≥1/n → 1y≥0 = F0 (y) for all y ∈ R except for y = 0.
Observe that y is the only point of discontinuity of F0.

Notation 13.8 Let (X, d) be a metric space, f : X → R be a function. The
set of x ∈ X where f is continuous (discontinuous) at x will be denoted by
C (f) (D (f)).

Observe that if F : R → [0, 1] is a non-decreasing function, then C (F )
is at most countable. To see this, suppose that ε > 0 is given and let Cε :=
{y ∈ R : F (y+)− F (y−) ≥ ε} . If y < y′ with y, y′ ∈ Cε, then F (y+) <
F (y′−) and (F (y−) , F (y+)) and (F (y′−) , F (y′+)) are disjoint intervals of
length greater that ε. Hence it follows that

1 = m ([0, 1]) ≥
∑
y∈Cε

m ((F (y−) , F (y+))) ≥ ε ·# (Cε)

and hence that # (Cε) ≤ ε−1 < ∞. Therefore C := ∪∞k=1C1/k is at most
countable.

Definition 13.9. Let {F, Fn : n = 1, 2, . . . } be a collection of right continuous
non-increasing functions from R to [0, 1] and by abuse of notation let us also
denote the associated measures, µF and µFn

by F and Fn respectively. Then

1. Fn converges to F vaguely and write, Fn
v→ F, iff Fn ((a, b]) → F ((a, b])

for all a, b ∈ C (F ) .
2. Fn converges to F weakly and write, Fn

w→ F, iff Fn (x) → F (x) for all
x ∈ C (F ) .

3. We say F is proper, if F is a distribution function of a probability mea-
sure, i.e. if F (∞) = 1 and F (−∞) = 0.

Example 13.10. If Xn and U are as in Example 13.6 and Fn (y) := P (Xn ≤ y)
and F (y) := P (Y ≤ y) , then Fn

v→ F and Fn
w→ F.
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Lemma 13.11. Let {F, Fn : n = 1, 2, . . . } be a collection of proper distribu-
tion functions. Then Fn

v→ F iff Fn
w→ F. In the case where Fn and F are

proper and Fn
w→ F, we will write Fn =⇒ F.

Proof. If Fn
w→ F, then Fn ((a, b]) = Fn (b) − Fn (a) → F (b) − F (a) =

F ((a, b]) for all a, b ∈ C (F ) and therefore Fn
v→ F. So now suppose Fn

v→ F
and let a < x with a, x ∈ C (F ) . Then

F (x) = F (a) + lim
n→∞

[Fn (x)− Fn (a)] ≤ F (a) + lim inf
n→∞

Fn (x) .

Letting a ↓ −∞, using the fact that F is proper, implies

F (x) ≤ lim inf
n→∞

Fn (x) .

Likewise,

F (x)−F (a) = lim
n→∞

[Fn (x)− Fn (a)] ≥ lim sup
n→∞

[Fn (x)− 1] = lim sup
n→∞

Fn (x)−1

which upon letting a ↑ ∞, (so F (a) ↑ 1) allows us to conclude,

F (x) ≥ lim sup
n→∞

Fn (x) .

Definition 13.12. A sequence of random variables, {Xn}∞n=1 is said to con-
verge weakly or to converge in distribution to a random variable X
(written Xn =⇒ X) iff Fn (y) := P (Xn ≤ y) =⇒ F (y) := P (X ≤ y) .

Example 13.13 (Central Limit Theorem). The central limit theorem (see the
next chapter) states; if {Xn}∞n=1 are i.i.d. L2 (P ) random variables with µ :=
EX1 and σ2 = Var (X1) , then

Sn − nµ√
n

=⇒ N (0, σ) d= σN (0, 1) .

Written out explicitly we find

lim
n→∞

P

(
a <

Sn − nµ

σ
√
n

≤ b

)
= P (a < N (0, 1) ≤ b)

=
1√
2π

∫ b

a

e−
1
2 x2

dx

or equivalently put

lim
n→∞

P
(
nµ+ σ

√
na < Sn ≤ nµ+ σ

√
nb
)

=
1√
2π

∫ b

a

e−
1
2 x2

dx.

More intuitively, we have

Sn

d∼= nµ+
√
nσN (0, 1) d= N

(
nµ, nσ2

)
.
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Lemma 13.14. Suppose X is a random variable, {cn}∞n=1 ⊂ R, and Xn =
X + cn. If c := limn→∞ cn exists, then Xn =⇒ X + c.

Proof. Let F (x) := P (X ≤ x) and

Fn (x) := P (Xn ≤ x) = P (X + cn ≤ x) = F (x− cn) .

Clearly, if cn → c as n → ∞, then for all x ∈ C (F (· − c)) we have Fn (x) →
F (x− c) . Since F (x− c) = P (X + c ≤ x) , we see that Xn =⇒ X + c.
Observe that Fn (x) → F (x− c) only for x ∈ C (F (· − c)) but this is sufficient
to assert Xn =⇒ X + c.

Example 13.15. Suppose that P (Xn = n) = 1 for all n, then Fn (y) = 1y≥n →
0 = F (y) as n→∞. Notice that F is not a distribution function because all
of the mass went off to +∞. Similarly, if we suppose, P (Xn = ±n) = 1

2 for
all n, then Fn = 1

21[−n,n) + 1[n,∞) → 1
2 = F (y) as n → ∞. Again, F is not

a distribution function on R since half the mass went to −∞ while the other
half went to +∞.

Example 13.16. SupposeX is a non-zero random variables such thatX d= −X,
then Xn := (−1)n

X
d= X for all n and therefore, Xn =⇒ X as n→∞. On

the other hand, Xn does not converge to X almost surely or in probability.

The next theorem summarizes a number of useful equivalent characteriza-
tions of weak convergence. (The reader should compare Theorem 13.17 with
Corollary 13.4.) In this theorem we will write BC (R) for the bounded con-
tinuous functions, f : R → R (or f : R → C) and Cc (R) for those f ∈ C (R)
which have compact support, i.e. f (x) ≡ 0 if |x| is sufficiently large.

Theorem 13.17. Suppose that {µn}∞n=0 is a sequence of probability measures
on (R,BR) and for each n, let Fn (y) := µn ((−∞, y]) be the (proper) distri-
bution function associated to µn. Then the following are equivalent.

1. For all f ∈ BC (R) , ∫
R
fdµn →

∫
R
fdµ0 as n→∞. (13.5)

2. Eq. (13.5) holds for all f ∈ BC (R) which are uniformly continuous.
3. Eq. (13.5) holds for all f ∈ Cc (R) .
4. Fn =⇒ F.
5. There exists a probability space (Ω,B, P ) and random variables, Yn, on

this space such that P ◦ Y −1
n = µn for all n and Yn → Y0 a.s.

Proof. Clearly 1. =⇒ 2. =⇒ 3. and 5. =⇒ 1. by the dominated
convergence theorem. Indeed, we have∫

R
fdµn = E [f (Yn)] D.C.T.→ E [f (Y )] =

∫
R
fdµ0
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for all f ∈ BC (R) . Therefore it suffices to prove 3. =⇒ 4. and 4. =⇒ 5.
The proof of 4. =⇒ 5. will be the content of Skorohod’s Theorem 13.28
below. Given Skorohod’s Theorem, we will now complete the proof.

(3. =⇒ 4.) Let −∞ < a < b < ∞ with a, b ∈ C (F0) and for ε > 0, let
fε (x) ≥ 1(a,b] and gε (x) ≤ 1(a,b] be the functions in Cc (R) pictured in Figure
13.1. Then

lim sup
n→∞

µn ((a, b]) ≤ lim sup
n→∞

∫
R
fεdµn =

∫
R
fεdµ0 (13.6)

and
lim inf
n→∞

µn ((a, b]) ≥ lim inf
n→∞

∫
R
gεdµn =

∫
R
gεdµ0. (13.7)

Since fε → 1[a,b] and gε → 1(a,b) as ε ↓ 0, we may use the dominated con-
vergence theorem to pass to the limit as ε ↓ 0 in Eqs. (13.6) and (13.7) to
conclude,

lim sup
n→∞

µn ((a, b]) ≤ µ0 ([a, b]) = µ0 ((a, b])

and
lim inf
n→∞

µn ((a, b]) ≥ µ0 ((a, b)) = µ0 ((a, b]) ,

where the second equality in each of the equations holds because a and b are
points of continuity of F0. Hence we have shown that limn→∞ µn ((a, b]) exists
and is equal to µ0 ((a, b]) .

Fig. 13.1. The picture definition of the trapezoidal functions, fε and gε.
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Corollary 13.18. Suppose that {Xn}∞n=0 is a sequence of random variables,

such that Xn
P→ X0, then Xn =⇒ X0. (Recall that example 13.16 shows the

converse is in general false.)

Proof. Let g ∈ BC (R) , then by Corollary 11.9, g (Xn) P→ g (X0) and
since g is bounded, we may apply the dominated convergence theorem (see
Corollary 11.8) to conclude that E [g (Xn)] → E [g (X0)] .

Lemma 13.19. Suppose {Xn}∞n=1 is a sequence of random variables on a

common probability space and c ∈ R. Then Xn =⇒ c iff Xn
P→ c.

Proof. Recall that Xn
P→ c iff for all ε > 0, P (|Xn − c| > ε) → 0. Since

{|Xn − c| > ε} = {Xn > c+ ε} ∪ {Xn < c− ε}

it follows Xn
P→ c iff P (Xn > x) → 0 for all x > c and P (Xn < x) → 0 for all

x < c. These conditions are also equivalent to P (Xn ≤ x) → 1 for all x > c
and P (Xn ≤ x) ≤ P (Xn ≤ x′) → 0 for all x < c (where x < x′ < c). So
Xn

P→ c iff

lim
n→∞

P (Xn ≤ x) =
{

0 if x < c
1 if x > c

= F (x)

where F (x) = P (c ≤ x) = 1x≥c. Since C (F ) = R \ {c} , we have shown

Xn
P→ c iff Xn =⇒ c.

We end this section with a few more equivalent characterizations of weak
convergence. The combination of Theorem 13.17 and 13.20 is often called the
Portmanteau Theorem.

Theorem 13.20 (The Portmanteau Theorem). Suppose {Fn}∞n=0 are
proper distribution functions. By abuse of notation, we will denote µFn

(A)
simply by Fn (A) for all A ∈ BR. Then the following are equivalent.

1. Fn =⇒ F0.
2. lim infn→∞ Fn (U) ≥ F0 (U) for open subsets, U ⊂ R.
3. lim supn→∞ Fn (C) ≤ F0 (C) for all closed subsets, C ⊂ R.
4. limn→∞ Fn (A) = F0 (A) for all A ∈ BR such that F0 (∂A) = 0.

Proof. (1. =⇒ 2.) By Theorem 13.28 we may choose random variables,
Yn, such that P (Yn ≤ y) = Fn (y) for all y ∈ R and n ∈ N and Yn → Y0 a.s.
as n→∞. Since U is open, it follows that

1U (Y ) ≤ lim inf
n→∞

1U (Yn) a.s.

and so by Fatou’s lemma,

F (U) = P (Y ∈ U) = E [1U (Y )]
≤ lim inf

n→∞
E [1U (Yn)] = lim inf

n→∞
P (Yn ∈ U) = lim inf

n→∞
Fn (U) .
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(2. ⇐⇒ 3.) This follows from the observations: 1) C ⊂ R is closed iff
U := Cc is open, 2) F (U) = 1 − F (C) , and 3) lim infn→∞ (−Fn (C)) =
− lim supn→∞ Fn (C) .

(2. and 3. ⇐⇒ 4.) If F0 (∂A) = 0, then Ao ⊂ A ⊂ Ā with F0

(
Ā \Ao

)
=

0. Therefore

F0 (A) = F0 (Ao) ≤ lim inf
n→∞

Fn (Ao) ≤ lim sup
n→∞

Fn

(
Ā
)
≤ F0

(
Ā
)

= F0 (A) .

(4. =⇒ 1.) Let a, b ∈ C (F0) and take A := (a, b]. Then F0 (∂A) =
F0 ({a, b}) = 0 and therefore, limn→∞ Fn ((a, b]) = F0 ((a, b]) , i.e. Fn =⇒ F0.

Exercise 13.3. Suppose that F is a continuous proper distribution function.
Show,

1. F : R → [0, 1] is uniformly continuous.
2. If {Fn}∞n=1 is a sequence of distribution functions converging weakly to F,

then Fn converges to F uniformly on R, i.e.

lim
n→∞

sup
x∈R

|F (x)− Fn (x)| = 0.

In particular, it follows that

sup
a<b

|µF ((a, b])− µFn
((a, b])| = sup

a<b
|F (b)− F (a)− (Fn (b)− Fn (a))|

≤ sup
b
|F (b)− Fn (b)|+ sup

a
|Fn (a)− Fn (a)|

→ 0 as n→∞.

Hints for part 2. Given ε > 0, show that there exists, −∞ = α0 < α1 <
· · · < αn = ∞, such that |F (αi+1)− F (αi)| ≤ ε for all i. Now show, for
x ∈ [αi, αi+1), that

|F (x)− Fn (x)| ≤ (F (αi+1)− F (αi))+|F (αi)− Fn (αi)|+(Fn (αi+1)− Fn (αi)) .

13.3 “Derived” Weak Convergence

Lemma 13.21. Let (X, d) be a metric space, f : X → R be a function, and
D (f) be the set of x ∈ X where f is discontinuous at x. Then D (f) is a Borel
measurable subset of X.

Proof. For x ∈ X and δ > 0, let Bx (δ) = {y ∈ X : d (x, y) < δ} . Given
δ > 0, let fδ : X → R∪{∞} be defined by,

fδ (x) := sup
y∈Bx(δ)

f (y) .
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We will begin by showing fδ is lower semi-continuous, i.e.
{
fδ ≤ a

}
is

closed (or equivalently
{
fδ > a

}
is open) for all a ∈ R. Indeed, if fδ (x) > a,

then there exists y ∈ Bx (δ) such that f (y) > a. Since this y is in Bx′ (δ)
whenever d (x, x′) < δ− d (x, y) (because then, d (x′, y) ≤ d (x, y)+ d (x, x′) <
δ) it follows that fδ (x′) > a for all x′ ∈ Bx (δ − d (x, y)) . This shows

{
fδ > a

}
is open in X.

We similarly define fδ : X → R∪{−∞} by

fδ (x) := inf
y∈Bx(δ)

f (y) .

Since fδ = − (−f)δ
, it follows that

{fδ ≥ a} =
{

(−f)δ ≤ −a
}

is closed for all a ∈ R, i.e. fδ is upper semi-continuous. Moreover, fδ ≤
f ≤ fδ for all δ > 0 and fδ ↓ f0 and fδ ↑ f0 as δ ↓ 0, where f0 ≤ f ≤ f0 and
f0 : X → R∪{−∞} and f0 : X → R∪{∞} are measurable functions. The
proof is now complete since it is easy to see that

D (f) =
{
f0 > f0

}
=
{
f0 − f0 6= 0

}
∈ BX .

Remark 13.22. Suppose that xn → x with x ∈ C (f) := D (f)c
. Then f (xn) →

f (x) as n→∞.

Theorem 13.23 (Continuous Mapping Theorem). Let f : R → R be a
Borel measurable functions. If Xn =⇒ X0 and P (X0 ∈ D (f)) = 0, then
f (Xn) =⇒ f (X0) . If in addition, f is bounded, Ef (Xn) → Ef (X0) .

Proof. Let {Yn}∞n=0 be random variables on some probability space as
in Theorem 13.28. For g ∈ BC (R) we observe that D (g ◦ f) ⊂ D (f) and
therefore,

P (Y0 ∈ D (g ◦ f)) ≤ P (Y0 ∈ D (f)) = P (X0 ∈ D (f)) = 0.

Hence it follows that g ◦ f ◦ Yn → g ◦ f ◦ Y0 a.s. So an application of the
dominated convergence theorem (see Corollary 11.8) implies

E [g (f (Xn))] = E [g (f (Yn))] → E [g (f (Y0))]= E [g (f (X0))] . (13.8)

This proves the first assertion. For the second assertion we take g (x) =
(x ∧M) ∨ (−M) in Eq. (13.8) where M is a bound on |f | .

Theorem 13.24 (Slutzky’s Theorem). Suppose that Xn =⇒ X and
Yn

P→ c where c is a constant. Then (Xn, Yn) =⇒ (X, c) in the sense
that E [f (Xn, Yn)] → E [f (X, c)] for all f ∈ BC

(
R2
)
. In particular, by tak-

ing f (x, y) = g (x+ y) and f (x, y) = g (x · y) with g ∈ BC (R) , we learn
Xn + Yn =⇒ X + c and Xn · Yn =⇒ X · c respectively.
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Proof. First suppose that f ∈ Cc

(
R2
)
, and for ε > 0, let δ := δ (ε) be

chosen so that

|f (x, y)− f (x′, y′)| ≤ ε if ‖(x, y)− (x′, y′)‖ ≤ δ.

Then

|E [f (Xn, Yn)− f (Xn, c)]| ≤ E [|f (Xn, Yn)− f (Xn, c)| : |Yn − c| ≤ δ]
+ E [|f (Xn, Yn)− f (Xn, c)| : |Yn − c| > δ]
≤ ε+ 2MP (|Yn − c| > δ) → ε as n→∞,

where M = sup |f | . Since, Xn =⇒ X, we know E [f (Xn, c)] → E [f (X, c)]
and hence we have shown,

lim sup
n→∞

|E [f (Xn, Yn)− f (X, c)]|

≤ lim sup
n→∞

|E [f (Xn, Yn)− f (Xn, c)]|+ lim sup
n→∞

|E [f (Xn, c)− f (X, c)]| ≤ ε.

Since ε > 0 was arbitrary, we learn that limn→∞ Ef (Xn, Yn) = Ef (X, c) .
Now suppose f ∈ BC

(
R2
)

with f ≥ 0 and let ϕk (x, y) ∈ [0, 1] be contin-
uous functions with compact support such that ϕk (x, y) = 1 if |x| ∨ |y| ≤ k
and ϕk (x, y) ↑ 1 as k → ∞. Then applying what we have just proved to
fk := ϕkf, we find

E [fk (X, c)] = lim
n→∞

E [fk (Xn, Yn)] ≤ lim inf
n→∞

E [f (Xn, Yn)] .

Letting k →∞ in this inequality then implies that

E [f (X, c)] ≤ lim inf
n→∞

E [f (Xn, Yn)] .

This inequality with f replaced by M − f ≥ 0 then shows,

M − E [f (X, c)] ≤ lim inf
n→∞

E [M − f (Xn, Yn)] = M − lim sup
n→∞

E [f (Xn, Yn)] .

Hence we have shown,

lim sup
n→∞

E [f (Xn, Yn)] ≤ E [f (X, c)] ≤ lim inf
n→∞

E [f (Xn, Yn)]

and therefore limn→∞ E [f (Xn, Yn)] = E [f (X, c)] for all f ∈ BC
(
R2
)

with
f ≥ 0. This completes the proof since any f ∈ BC

(
R2
)

may be written as a
difference of its positive and negative parts.

Theorem 13.25 (δ – method). Suppose that {Xn}∞n=1 are random vari-
ables, b ∈ R, an ∈ R\ {0} with limn→∞ an = 0, and

Xn − b

an
=⇒ Z.

If g : R → R be a measurable function which is differentiable at b, then

g (Xn)− g (b)
an

=⇒ g′ (b)Z.
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Proof. Observe that

Xn − b = an
Xn − b

an
=⇒ 0 · Z = 0

so that Xn =⇒ b and hence Xn
P→ b. By definition of the derivative of g at

b, we have
g (x+∆) = g (b) + g′ (b)∆+ ε (∆)∆

where ε (∆) → 0 as ∆ → 0. Let Yn and Y be random variables on a fixed
probability space such that Yn

d= Xn−b
an

and Y
d= Z with Yn → Y a.s. Then

Xn
d= anYn + b, so that

g (Xn)− g (b)
an

d=
g (anYn + b)− g (b)

an
= g′ (b)Yn +

anYnε (anYn)
an

= g′ (b)Yn + Ynε (anYn) → g′ (b)Y a.s.

This completes the proof since g′ (b)Y d= g′ (b)Z.

Example 13.26. Suppose that {Un}∞n=1 are i.i.d. random variables which are

uniformly distributed on [0, 1] and let Yn :=
∏n

j=1 U
1
n
j . Our goal is to find

an and bn such that Yn−bn

an
is weakly convergent to a non-constant random

variable. To this end, let

Xn := lnYn =
1
n

n∑
j=1

lnUj .

By the strong law of large numbers,

lim
n→∞

Xn
a.s.= E [lnU1] =

∫ 1

0

lnxdx = [x lnx− x]10 = −1

and therefore, limn→∞ Yn
a.s.= e−1.

Let us further observe that

E
[
ln2 U1

]
=
∫ 1

0

ln2 xdx = 2

so that Var (lnU1) = 2− (−1)2 = 1. Hence by the central limit theorem,

Xn − (−1)
1√
n

=
√
n (Xn + 1) =⇒ N (0, 1) .

Therefore the δ – method implies,

g (Xn)− g (−1)
1√
n

=⇒ g′ (−1)N (0, 1) .
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Taking g (x) := ex using g (Xn) = eXn = Yn, then implies

Yn − e−1

1√
n

=⇒ e−1N (0, 1) d= N
(
0, e−2

)
.

Hence we have shown,

√
n

 n∏
j=1

U
1
n
j − e−1

 =⇒ N
(
0, e−2

)
.

Exercise 13.4. Given a function, f : X → R and a point x ∈ X, let

lim inf
y→x

f (y) := lim
ε↓0

inf
y∈B′x(δ)

f (y) and (13.9)

lim sup
y→x

f (y) := lim
ε↓0

sup
y∈B′x(δ)

f (y) , (13.10)

where
B′x (δ) := {y ∈ X : 0 < d (x, y) < δ} .

Show f is lower (upper) semi-continuous iff lim infy→x f (y) ≥ f (x)(
lim supy→x f (y) ≤ f (x)

)
for all x ∈ X.

Solution to Exercise (13.4). Suppose Eq. (13.9) holds, a ∈ R, and x ∈ X
such that f (x) > a. Since,

lim
ε↓0

inf
y∈B′x(δ)

f (y) = lim inf
y→x

f (y) ≥ f (x) > a,

it follows that infy∈B′x(δ) f (y) > a for some δ > 0. Hence we may conclude
that Bx (δ) ⊂ {f > a} which shows {f > a} is open.

Conversely, suppose now that {f > a} is open for all a ∈ R. Given x ∈
X and a < f (x) , there exists δ > 0 such that Bx (δ) ⊂ {f > a} . Hence
it follows that lim infy→x f (y) ≥ a and then letting a ↑ f (x) then implies
lim infy→x f (y) ≥ f (x) .

13.4 Skorohod and the Convergence of Types Theorems

Notation 13.27 Given a proper distribution function, F : R → [0, 1] , let Y =
F← : (0, 1) → R be the function defined by

Y (x) = F← (x) = sup {y ∈ R : F (y) < x} .

Similarly, let
Y + (x) := inf {y ∈ R : F (y) > x} .

We will need the following simple observations about Y and Y + which are
easily understood from Figure 13.4.
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1. Y (x) ≤ Y + (x) and Y (x) < Y + (x) iff x is the height of a “flat spot” of
F.

2. The set, E := {x ∈ (0, 1) : Y (x) < Y + (x)} , of flat spot heights is at most
countable. This is because, {(Y (x) , Y + (x))}x∈E is a collection of pair-
wise disjoint intervals which is necessarily countable. (Each such interval
contains a rational number.)

3. The following inequality holds,

F (Y (x)−) ≤ x ≤ F (Y (x)) for all x ∈ (0, 1) . (13.11)

Indeed, if y > Y (x) , then F (y) ≥ x and by right continuity of F it
follows that F (Y (x)) ≥ x. Similarly, if y < Y (x) , then F (y) < x and
hence F (Y (x)−) ≤ x.

4. {x ∈ (0, 1) : Y (x) ≤ y0} = (0, F (y0)]∩ (0, 1) . To prove this assertion first
suppose that Y (x) ≤ y0, then according to Eq. (13.11) we have x ≤
F (Y (x)) ≤ F (y0) , i.e. x ∈ (0, F (y0)] ∩ (0, 1) . Conversely, if x ∈ (0, 1)
and x ≤ F (y0) , then Y (x) ≤ y0 by definition of Y.

5. As a consequence of item 4. we see that Y is B(0,1)/BR – measurable and
m ◦ Y −1 = F, where m is Lebesgue measure on

(
(0, 1) ,B(0,1)

)
.

Theorem 13.28 (Baby Skorohod Theorem). Suppose that {Fn}∞n=0 is a
collection of distribution functions such that Fn =⇒ F0. Then there ex-
ists a probability space, (Ω,B, P ) and random variables, {Yn}∞n=1 such that
P (Yn ≤ y) = Fn (y) for all n ∈ N∪{∞} and limn→∞ F←n = limn→∞ Yn =
Y = F← a.s.

Proof. We will take Ω := (0, 1) , B = B(0,1), and P = m – Lebesgue
measure on Ω and let Yn := F←n and Y := F←0 as in Notation 13.27. Because
of the above comments, P (Yn ≤ y) = Fn (y) and P (Y ≤ y) = F0 (y) for all
y ∈ R. So in order to finish the proof it suffices to show, Yn (x) → Y (x)
for all x /∈ E, where E is the countable null set defined as above, E :=
{x ∈ (0, 1) : Y (x) < Y + (x)} .
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We now suppose x /∈ E. If y ∈ C (F0) with y < Y (x) , we have
limn→∞ Fn (y) = F0 (y) < x and in particular, Fn (y) < x for almost all n.
This implies that Yn (x) ≥ y for a.a. n and hence that lim infn→∞ Yn (x) ≥ y.
Letting y ↑ Y (x) with y ∈ C (F0) then implies

lim inf
n→∞

Yn (x) ≥ Y (x) .

Similarly, for x /∈ E and y ∈ C (F0) with Y (x) = Y + (x) < y, we have
limn→∞ Fn (y) = F0 (y) > x and in particular, Fn (y) > x for almost all n.
This implies that Yn (x) ≤ y for a.a. n and hence that lim supn→∞ Yn (x) ≤ y.
Letting y ↓ Y (x) with y ∈ C (F0) then implies

lim sup
n→∞

Yn (x) ≤ Y (x) .

Hence we have shown, for x /∈ E, that

lim sup
n→∞

Yn (x) ≤ Y (x) ≤ lim inf
n→∞

Yn (x)

which shows

lim
n→∞

F←n (x) = lim
n→∞

Yn (x) = Y (x) = F← (x) for all x /∈ E. (13.12)

Definition 13.29. Two random variables, Y and Z, are said to be of the
same type if there exists constants, A > 0 and B ∈ R such that

Z
d= AY +B. (13.13)

Alternatively put, if U (y) := P (Y ≤ y) and V (y) := P (Z ≤ y) , then U and
V should satisfy,

U (y) = P (Y ≤ y) = P (Z ≤ Ay +B) = V (Ay +B) .

For the next theorem we will need the following elementary observation.

Lemma 13.30. If Y is non-constant (a.s.) random variable and U (y) :=
P (Y ≤ y) , then U← (γ1) < U← (γ2) for all γ1 sufficiently close to 0 and γ2

sufficiently close to 1.

Proof. Observe that Y is constant iff U (y) = 1y≥c for some c ∈ R, i.e.
iff U only takes on the values, {0, 1} . So since Y is not constant, there exists
y ∈ R such that 0 < U (y) < 1. Hence if γ2 > U (y) then U← (γ2) ≥ y and
if γ1 < U (y) then U← (γ1) ≤ y. Moreover, if we suppose that γ1 is not the
height of a flat spot of U, then in fact, U← (γ1) < U← (γ2) . This inequality
then remains valid as γ1 decreases and γ2 increases.
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Theorem 13.31 (Convergence of Types). Suppose {Xn}∞n=1 is a sequence
of random variables and an, αn ∈ (0,∞) , bn, βn ∈ R are constants and Y and
Z are non-constant random variables. Then

1. if
Xn − bn
an

=⇒ Y (13.14)

and
Xn − βn

αn
=⇒ Z, (13.15)

then Y and Z are of the same type. Moreover, the limits,

A = lim
n→∞

αn

an
∈ (0,∞) and B := lim

n→∞

βn − bn
an

(13.16)

exists and Y d= AZ +B.
2. If the relations in Eq. (13.16) hold then either of the convergences in Eqs.

(13.14) or (13.15) implies the others with Z and Y related by Eq. (13.13).
3. If there are some constants, an > 0 and bn ∈ R and a non-constant

random variable Y, such that Eq. (13.14) holds, then Eq. (13.15) holds
using αn and βn of the form,

αn := F←n (γ2)− F←n (γ1) and βn := F←n (γ1) (13.17)

for some 0 < γ1 < γ2 < 1. If the Fn are invertible functions, Eq. (13.17)
may be written as

Fn (βn) = γ1 and Fn (αn + βn) = γ2. (13.18)

Proof. (2) Assume the limits in Eq. (13.16) hold. If Eq. (13.14) is satisfied,
then by Slutsky’s Theorem 13.20,

Xn − βn

αn
=
Xn − bn + bn − βn

an

an

αn

=
Xn − bn
an

an

αn
− βn − bn

an

an

αn

=⇒ A−1 (Y −B) =: Z

Similarly, if Eq. (13.15) is satisfied, then

Xn − bn
an

=
Xn − βn

αn

αn

an
+
βn − bn
an

=⇒ AZ +B =: Y.

(1) If Fn (y) := P (Xn ≤ y) , then

P

(
Xn − bn
an

≤ y

)
= Fn (any + bn) and P

(
Xn − βn

αn
≤ y

)
= Fn (αny + βn) .
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By assumption we have

Fn (any + bn) =⇒ U (y) and Fn (αny + βn) =⇒ V (y) .

If w := sup {y : Fn (any + bn) < x} , then anw + bn = F←n (x) and hence

sup {y : Fn (any + bn) < x} =
F←n (x)− bn

an
.

Similarly,

sup {y : Fn (αny + βn) < x} =
F←n (x)− βn

αn
.

With these identities, it now follows from the proof of Skorohod’s Theorem
13.28 (see Eq. (13.12)) that there exists an at most countable subset, Λ, of
(0, 1) such that,

F←n (x)− bn
an

= sup {y : Fn (any + bn) < x} → U← (x) and

F←n (x)− βn

αn
= sup {y : Fn (αny + βn) < x} → V← (x)

for all x /∈ Λ. Since Y and Z are not constants a.s., we can choose, by Lemma
13.30, γ1 < γ2 not in Λ such that U← (γ1) < U← (γ2) and V← (γ1) < V← (γ2) .
In particular it follows that

F←n (γ2)− F←n (γ1)
an

=
F←n (γ2)− bn

an
− F←n (γ1)− bn

an

→ U← (γ2)− U← (γ1) > 0 (13.19)

and similarly

F←n (γ2)− F←n (γ1)
αn

→ V← (γ2)− V← (γ1) > 0.

Taking ratios of the last two displayed equations shows,

αn

an
→ A :=

U← (γ2)− U← (γ1)
V← (γ2)− V← (γ1)

∈ (0,∞) .

Moreover,

F←n (γ1)− bn
an

→ U← (γ1) and (13.20)

F←n (γ1)− βn

an
=
F←n (γ1)− βn

αn

αn

an
→ AV← (γ1)

and therefore,
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βn − bn
an

=
F←n (γ1)− βn

an
− F←n (γ1)− bn

an
→ AV← (γ1)− U← (γ1) := B.

(3) Now suppose that we define αn := F←n (γ2) − F←n (γ1) and βn :=
F←n (γ1) , then according to Eqs. (13.19) and (13.20)we have

αn/an → U← (γ2)− U← (γ1) ∈ (0, 1) and
βn − bn
an

→ U← (γ1) as n→∞.

Thus we may always center and scale the {Xn} using αn and βn of the form
described in Eq. (13.17).

13.5 Weak Convergence Examples

Example 13.32. Suppose that {Xn}∞n=1 are i.i.d. exp (λ) – random variables,
i.e. Xn ≥ 0 a.s. and P (Xn ≥ x) = e−λx for all x ≥ 0. In this case

F (x) := P (X1 ≤ x) = 1− e−λ(x∨0)

Consider Mn := max (X1, . . . , Xn) . We have, for x ≥ 0 and cn ∈ (0,∞) that

Fn (x) := P (Mn ≤ x) = P
(
∩n

j=1 {Xj ≤ x}
)

=
n∏

j=1

P (Xj ≤ x) = [F (x)]n =
(
1− e−λx

)n
.

We now wish to find an > 0 and bn ∈ R such that Mn−bn

an
=⇒ Y.

1. To this end we note that

P

(
Mn − bn

an
≤ x

)
= P (Mn ≤ anx+ bn)

= Fn (anx+ bn) = [F (anx+ bn)]n .

If we demand (c.f. Eq. (13.18) above)

P

(
Mn − bn

an
≤ 0
)

= Fn (bn) = [F (bn)]n → γ1 ∈ (0, 1) ,

then bn →∞ and we find

ln γ1 ∼ n lnF (bn) = n ln
(
1− e−λbn

)
∼ −ne−λbn .

From this it follows that bn ∼ λ−1 lnn. Given this, we now try to find an by
requiring,

P

(
Mn − bn

an
≤ 1
)

= Fn (an + bn) = [F (an + bn)]n → γ2 ∈ (0, 1) .



13.5 Weak Convergence Examples 275

However, by what we have done above, this requires an +bn ∼ λ−1 lnn. Hence
we may as well take an to be constant and for simplicity we take an = 1.

2. We now compute

lim
n→∞

P
(
Mn − λ−1 lnn ≤ x

)
= lim

n→∞

(
1− e−λ(x+λ−1 ln n)

)n

= lim
n→∞

(
1− e−λx

n

)n

= exp
(
−e−λx

)
.

Notice that F (x) is a distribution function for some random variable, Y, and
therefore we have shown

Mn −
1
λ

lnn =⇒ Y as n→∞

where P (Y ≤ x) = exp
(
−e−λx

)
.

Example 13.33. For p ∈ (0, 1) , let Xp denote the number of trials to get
success in a sequence of independent trials with success probability p. Then
P (Xp > n) = (1− p)n and therefore for x > 0,

P (pXp > x) = P

(
Xp >

x

p

)
= (1− p)[

x
p ] = e[

x
p ] ln(1−p)

∼ e−p[ x
p ] → e−x as p→ 0.

Therefore pXp =⇒ T where T d= exp (1) , i.e. P (T > x) = e−x for x ≥ 0 or
alternatively, P (T ≤ y) = 1− e−y∨0.

Remarks on this example. Let us see in a couple of ways where the
appropriate centering and scaling of the Xp come from in this example. For
this let q = 1 − p, then P (Xp = n) = (1− p)n−1

p = qn−1p for n ∈ N. Also
let

Fp (x) = P (Xp ≤ x) = P (Xp ≤ [x]) = 1− q[x]

where [x] :=
∑∞

n=1 n · 1[n,n+1).
Method 1. Our goal is to choose ap > 0 and bp ∈ R such that

limp ↓0 Fp (apx+ bp) exists. As above, we first demand (taking x = 0) that

lim
p ↓0

Fp (bp) = γ1 ∈ (0, 1) .

Since, γ1 ∼ Fp (bp) ∼ 1− qbp we require, qbp ∼ 1− γ1 and hence, c ∼ bp ln q =
bp ln (1− p) ∼ −bpp. This suggests that we take bp = 1/p say. Having done
this, we would like to choose ap such that

F0 (x) := lim
p ↓0

Fp (apx+ bp) exists.

Since,
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F0 (x) ∼ Fp (apx+ bp) ∼ 1− qapx+bp

this requires that

(1− p)apx+bp = qapx+bp ∼ 1− F0 (x)

and hence that

ln (1− F0 (x)) = (apx+ bp) ln q ∼ (apx+ bp) (−p) = −papx− 1.

From this (setting x = 1) we see that pap ∼ c > 0. Hence we might take
ap = 1/p as well. We then have

Fp (apx+ bp) = Fp

(
p−1x+ p−1

)
= 1− (1− p)[p

−1(x+1)]

which is equal to 0 if x ≤ −1, and for x > −1 we find

(1− p)[p
−1(x+1)] = exp

([
p−1 (x+ 1)

]
ln (1− p)

)
→ exp (− (x+ 1)) .

Hence we have shown,

lim
p ↓0

Fp (apx+ bp) = [1− exp (− (x+ 1))] 1x≥−1

Xp − 1/p
1/p

= pXp − 1 =⇒ T − 1

or again that pXp =⇒ T.
Method 2. (Center and scale using the first moment and the variance of

Xp.) The generating function is given by

f (z) := E
[
zXp

]
=
∞∑

n=1

znqn−1p =
pz

1− qz
.

Observe that f (z) is well defined for |z| < 1
q and that f (1) = 1, reflecting the

fact that P (Xp ∈ N) = 1, i.e. a success must occur almost surely. Moreover,
we have

f ′ (z) = E
[
Xpz

Xp−1
]
, f ′′ (z) = E

[
Xp (Xp − 1) zXp−2

]
, . . .

f (k) (z) = E
[
Xp (Xp − 1) . . . (Xp − k + 1) zXp−k

]
and in particular,

E [Xp (Xp − 1) . . . (Xp − k + 1)] = f (k) (1) =
(
d

dz

)k

|z=1
pz

1− qz
.

Since
d

dz

pz

1− qz
=
p (1− qz) + qpz

(1− qz)2
=

p

(1− qz)2
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and
d2

dz2

pz

1− qz
= 2

pq

(1− qz)3

it follows that

µp := EXp =
p

(1− q)2
=

1
p

and

E [Xp (Xp − 1)] = 2
pq

(1− q)3
=

2q
p2
.

Therefore,

σ2
p = Var (Xp) = EX2

p − (EXp)
2 =

2q
p2

+
1
p
−
(

1
p

)2

=
2q + p− 1

p2
=

q

p2
=

1− p

p2
.

Thus, if we had used µp and σp to center and scale Xp we would have consid-
ered,

Xp − 1
p

√
1−p
p

=
pXp − 1√

1− p
=⇒ T − 1

instead.

Theorem 13.34. Let {Xn}∞n=1 be i.i.d. random variables such that P (Xn = ±1) =
1/2 and let Sn := X1 + · · ·+Xn – the position of a drunk after n steps. Ob-
serve that |Sn| is an odd integer if n is odd and an even integer if n is even.
Then Sm√

m
=⇒ N (0, 1) as m→∞.

Proof. (Sketch of the proof.) We start by observing that S2n = 2k iff

# {i ≤ 2n : Xi = 1} = n+ k while
# {i ≤ 2n : Xi = −1} = 2n− (n+ k) = n− k

and therefore,

P (S2n = 2k) =
(

2n
n+ k

)(
1
2

)2n

=
(2n)!

(n+ k)! · (n− k)!

(
1
2

)2n

.

Recall Stirling’s formula states,

n! ∼ nne−n
√

2πn as n→∞

and therefore,
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P (S2n = 2k)

∼ (2n)2n
e−2n

√
4πn

(n+ k)n+k
e−(n+k)

√
2π (n+ k) · (n− k)n−k

e−(n−k)
√

2π (n− k)

(
1
2

)2n

=
√

n

π (n+ k) (n− k)

(
1 +

k

n

)−(n+k)

·
(

1− k

n

)−(n−k)

=
1√
πn

√
1(

1 + k
n

) (
1− k

n

) (1− k2

n2

)−n

·
(

1 +
k

n

)−k

·
(

1− k

n

)k

=
1√
πn

(
1− k2

n2

)−n

·
(

1 +
k

n

)−k−1/2

·
(

1− k

n

)k−1/2

.

So if we let x := 2k/
√

2n, i.e. k = x
√
n/2 and k/n = x√

2n
, we have

P

(
S2n√
2n

= x

)

∼ 1√
πn

(
1− x2

2n

)−n

·
(

1 +
x√
2n

)−x
√

n/2−1/2

·
(

1− x√
2n

)x
√

n/2−1/2

∼ 1√
πn

ex2/2 · e
x√
2n

�
−x
√

n/2−1/2
�
· e−

x√
2n

�
x
√

n/2−1/2
�

∼ 1√
πn

e−x2/2,

wherein we have repeatedly used

(1 + an)bn = ebn ln(1+an) ∼ ebnan when an → 0.

We now compute

P

(
a ≤ S2n√

2n
≤ b

)
=
∑

a≤x≤b

P

(
S2n√
2n

= x

)
=

1√
2π

∑
a≤x≤b

e−x2/2 2√
2n

(13.21)

where the sum is over x of the form, x = 2k√
2n

with k ∈ {0,±1, . . . ,±n} . Since
2√
2n

is the increment of x as k increases by 1, we see the latter expression in
Eq. (13.21) is the Riemann sum approximation to

1√
2π

∫ b

a

e−x2/2dx.

This proves S2n√
2n

=⇒ N (0, 1) . Since
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S2n+1√
2n+ 1

=
S2n +X2n+1√

2n+ 1
=

S2n√
2n

1√
1 + 1

2n

+
X2n+1√
2n+ 1

,

it follows directly (or see Slutsky’s Theorem 13.20) that S2n+1√
2n+1

=⇒ N (0, 1)
as well.

Proposition 13.35. Suppose that {Un}∞n=1 are i.i.d. random variables which
are uniformly distributed in (0, 1) . Let U(k,n) denote the position of the kth –
largest number from the list, {U1, U2, . . . , Un} . Further let k (n) be chosen so
that limn→∞ k (n) = ∞ while limn→∞

k(n)
n = 0 and let

Xn :=
U(k(n),n) − k (n) /n

√
k(n)

n

.

Then dTV (Xn, N (0, 1)) → 0 as n→∞.

Proof. (Sketch only. See Resnick, Proposition 8.2.1 for more details.) Ob-
serve that, for x ∈ (0, 1) , that

P
(
U(k,n) ≤ x

)
= P

(
n∑

i=1

Xi ≥ k

)
=

n∑
l=k

(
n

l

)
xl (1− x)n−l

.

From this it follows that ρn (x) := 1(0,1) (x) d
dxP

(
U(k,n) ≤ x

)
is the probability

density for U(k,n). It now turns out that ρn (x) is a Beta distribution,

ρn (x) =
(
n

k

)
k · xk−1 (1− x)n−k

.

Giving a direct computation of this result is not so illuminating. So let us go
another route. To do this we are going to estimate, P

(
U(k,n) ∈ (x, x+∆]

)
,

for ∆ ∈ (0, 1) . Observe that if U(k,n) ∈ (x, x+∆], then there must be at least
one Ui ∈ (x, x+∆], for otherwise, U(k,n) ≤ x+∆ would imply U(k,n) ≤ x as
well and hence U(k,n) /∈ (x, x+∆]. Let

Ωi := {Ui ∈ (x, x+∆] and Uj /∈ (x, x+∆] for j 6= i} .

Since

P (Ui, Uj ∈ (x, x+∆] for some i 6= j with i, j ≤ n) ≤
∑

i<j≤n

P (Ui, Uj ∈ (x, x+∆])

≤ n2 − n

2
∆2,

we see that
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P
(
U(k,n) ∈ (x, x+∆]

)
=

n∑
i=1

P
(
U(k,n) ∈ (x, x+∆], Ωi

)
+O

(
∆2
)

= nP
(
U(k,n) ∈ (x, x+∆], Ω1

)
+O

(
∆2
)
.

Now on the set, Ω1; U(k,n) ∈ (x, x+∆] iff there are exactly k−1 of U2, . . . , Un

in [0, x] and n− k of these in [x+∆, 1] . This leads to the conclusion that

P
(
U(k,n) ∈ (x, x+∆]

)
= n

(
n− 1
k − 1

)
xk−1 (1− (x+∆))n−k

∆+O
(
∆2
)

and therefore,

ρn (x) = lim
∆↓0

P
(
U(k,n) ∈ (x, x+∆]

)
∆

=
n!

(k − 1)! · (n− k)!
xk−1 (1− x)n−k

.

By Stirling’s formula,

n!
(k − 1)! · (n− k)!

∼ nne−n
√

2πn

(k − 1)(k−1)
e−(k−1)

√
2π (k − 1) (n− k)(n−k)

e−(n−k)
√

2π (n− k)

=
√
ne−1

√
2π

1(
k−1

n

)(k−1)
√

k−1
n

(
n−k

n

)(n−k)
√

n−k
n

=
√
ne−1

√
2π

1(
k−1

n

)(k−1/2) (
1− k

n

)(n−k+1/2)
.

Since (
k − 1
n

)(k−1/2)

=
(
k

n

)(k−1/2)

·
(
k − 1
k

)(k−1/2)

=
(
k

n

)(k−1/2)

·
(

1− 1
k

)(k−1/2)

∼ e−1

(
k

n

)(k−1/2)

we arrive at

n!
(k − 1)! · (n− k)!

∼
√
n√
2π

1(
k
n

)(k−1/2) (
1− k

n

)(n−k+1/2)
.

By the change of variables formula, with

x =
u− k (n) /n√

k(n)

n
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on noting the du =
√

k(n)

n dx, x = −
√
k (n) at u = 0, and

x =
1− k (n) /n√

k(n)

n

=
n− k (n)√

k (n)

=
n√
k (n)

(
1− k (n)

n

)
=
√
n

√
n

k (n)

(
1− k (n)

n

)
=: bn,

E [F (Xn)] =
∫ 1

0

ρn (u)F

u− k (n) /n√
k(n)

n

 du

=
∫ bn

−
√

k(n)

√
k (n)
n

ρn

(√
k (n)
n

x+ k (n) /n

)
F (x) du.

Using this information, it is then shown in Resnick that√
k (n)
n

ρn

(√
k (n)
n

x+ k (n) /n

)
→ e−x2/2

√
2π

which upon an application of Scheffé’s Lemma 13.3 completes the proof.

Remark 13.36. It is possible to understand the normalization constants in the
definition of Xn by computing the mean and the variance of U(n,k). After
some computations (see Chapter ??), one arrives at

EU(k,n) =
∫ 1

0

n!
(k − 1)! · (n− k)!

xk−1 (1− x)n−k
xdx

=
k

n+ 1
∼ k

n
,

EU2
(k,n) =

∫ 1

0

n!
(k − 1)! · (n− k)!

xk−1 (1− x)n−k
x2dx

=
(k + 1) k

(n+ 2) (n+ 1)
and

Var
(
U(k,n)

)
=

(k + 1) k
(n+ 2) (n+ 1)

− k2

(n+ 1)2

=
k

n+ 1

[
k + 1
n+ 2

− k

n+ 1

]
=

k

n+ 1

[
n− k + 1

(n+ 2) (n+ 1)

]
∼ k

n2
.

13.6 Compactness and Tightness

Suppose that Λ ⊂ R is a dense set and F and F̃ are two right continuous
functions. If F = F̃ on Λ, then F = F̃ on R. Indeed, for x ∈ R we have
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F (x) = lim
Λ3λ↓x

F (λ) = lim
Λ3λ↓x

F̃ (λ) = F̃ (x) .

Lemma 13.37. If G : Λ→ R is a non-decreasing function, then

F (x) := G+ (x) := inf {G (λ) : x < λ ∈ Λ} (13.22)

is a non-decreasing right continuous function.

Proof. To show F is right continuous, let x ∈ R and λ ∈ Λ such that
λ > x. Then for any y ∈ (x, λ) ,

F (x) ≤ F (y) = G+ (y) ≤ G (λ)

and therefore,
F (x) ≤ F (x+) := lim

y↓x
F (y) ≤ G (λ) .

Since λ > x with λ ∈ Λ is arbitrary, we may conclude, F (x) ≤ F (x+) ≤
G+ (x) = F (x) , i.e. F (x+) = F (x) .

Proposition 13.38. Suppose that {Fn}∞n=1 is a sequence of distribution func-
tions and Λ ⊂ R is a dense set such that G (λ) := limn→∞ Fn (λ) ∈ [0, 1] exists
for all λ ∈ Λ. If, for all x ∈ R, we define F = G+ as in Eq. (13.22), then
Fn (x) → F (x) for all x ∈ C (F ) . (Note well; as we have already seen, it is
possible that F (∞) < 1 and F (−∞) > 0 so that F need not be a distribution
function for a measure on (R,BR) .)

Proof. Suppose that x, y ∈ R with x < y and and s, t ∈ Λ are chosen so
that x < s < y < t. Then passing to the limit in the inequality,

Fn (s) ≤ Fn (y) ≤ Fn (t)

implies

F (x) = G+ (x) ≤ G (s) ≤ lim inf
n→∞

Fn (y) ≤ lim sup
n→∞

Fn (y) ≤ G (t) .

Taking the infinum over t ∈ Λ ∩ (y,∞) and then letting x ∈ R tend up to y,
we may conclude

F (y−) ≤ lim inf
n→∞

Fn (y) ≤ lim sup
n→∞

Fn (y) ≤ F (y) for all y ∈ R.

This completes the proof, since F (y−) = F (y) for y ∈ C (F ) .
The next theorem deals with weak convergence of measures on

(
R̄,BR̄

)
.

So as not have to introduce any new machinery, the reader should identify R̄
with [−1, 1] ⊂ R via the map,

[−1, 1] 3 x→ tan
(π

2
x
)
∈ R̄.
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Hence a probability measure on
(
R̄,BR̄

)
may be identified with a probability

measure on (R,BR) which is supported on [−1, 1] . Using this identification, we
see that a −∞ should only be considered a point of continuity of a distribution
function, F : R̄ → [0, 1] iff and only if F (−∞) = 0. On the other hand, ∞ is
always a point of continuity.

Theorem 13.39 (Helly’s Selection Theorem). Every sequence of prob-
ability measures, {µn}∞n=1 , on

(
R̄,BR̄

)
has a sub-sequence which is weakly

convergent to a probability measure, µ0 on
(
R̄,BR̄

)
.

Proof. Using the identification described above, rather than viewing µn as
probability measures on

(
R̄,BR̄

)
, we may view them as probability measures

on (R,BR) which are supported on [−1, 1] , i.e. µn ([−1, 1]) = 1. As usual, let

Fn (x) := µn ((−∞, x]) = µn ((−∞, x] ∩ [−1, 1]) .

Since {Fn (x)}∞n=1 ⊂ [0, 1] and [0, 1] is compact, for each x ∈ R we may find a
convergence subsequence of {Fn (x)}∞n=1 . Hence by Cantor’s diagonalization
argument we may find a subsequence, {Gk := Fnk

}∞k=1 of the {Fn}∞n=1 such
that G (x) := limk→∞Gk (x) exists for all x ∈ Λ := Q.

Letting F (x) := G (x+) as in Eq. (13.22), it follows from Lemma 13.37
and Proposition 13.38 that Gk = Fnk

=⇒ F0. Moreover, since Gk (x) = 0
for all x ∈ Q∩ (−∞,−1) and Gk (x) = 1 for all x ∈ Q ∩ [1,∞). Therefore,
F0 (x) = 1 for all x ≥ 1 and F0 (x) = 0 for all x < −1 and the corresponding
measure, µ0 is supported on [−1, 1] . Hence µ0 may now be transferred back
to a measure on

(
R̄,BR̄

)
.

Example 13.40. Suppose δ−n =⇒ δ−∞ and δn =⇒ δ∞ and
1
2 (δn + δ−n) =⇒ 1

2 (δ∞ + δ−∞) . This shows that probability may indeed
transfer to the points at ±∞.

The next question we would like to address is when is the limiting measure,
µ0 on

(
R̄,BR̄

)
concentrated on R. The following notion of tightness is the key

to answering this question.

Definition 13.41. A collection of probability measures, Γ, on (R,BR) is tight
iff for every ε > 0 there exists Mε <∞ such that

inf
µ∈Γ

µ ([−Mε,Mε]) ≥ 1− ε. (13.23)

We further say that a collection of random variables, {Xλ : λ ∈ Λ} is tight iff
the collection probability measures,

{
P ◦X−1

λ : λ ∈ Λ
}

is tight. Equivalently
put, {Xλ : λ ∈ Λ} is tight iff

lim
M→∞

sup
λ∈Λ

P (|Xλ| ≥M) = 0. (13.24)
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Observe that the definition of uniform integrability (see Definition 11.25)
is considerably stronger than the notion of tightness. It is also worth observing
that if α > 0 and C := supλ∈Λ E |Xλ|α <∞, then by Chebyschev’s inequality,

sup
λ
P (|Xλ| ≥M) ≤ sup

λ

[
1
Mα

E |Xλ|α
]
≤ C

Mα
→ 0 as M →∞

and therefore {Xλ : λ ∈ Λ} is tight.

Theorem 13.42. Let Γ := {µn}∞n=1 be a sequence of probability measures on
(R,BR) . Then Γ is tight, iff every subsequently limit measure, µ0, on

(
R̄,BR̄

)
is supported on R. In particular if Γ is tight, there is a weakly convergent
subsequence of Γ converging to a probability measure on (R,BR) .

Proof. Suppose that µnk
=⇒ µ0 with µ0 being a probability measure on(

R̄,BR̄
)
. As usual, let F0 (x) := µ0 ([−∞, x]) . If Γ is tight and ε > 0 is given,

we may find Mε <∞ such that Mε,−Mε ∈ C (F0) and µn ([−Mε,Mε]) ≥ 1−ε
for all n. Hence it follows that

µ0 ([−Mε,Mε]) = lim
k→∞

µnk
([−Mε,Mε]) ≥ 1− ε

and by letting ε ↓ 0 we conclude that µ0 (R) = limε↓0 µ0 ([−Mε,Mε]) = 1.
Conversely, suppose there is a subsequence {µnk

}∞k=1 such that µnk
=⇒

µ0 with µ0 being a probability measure on
(
R̄,BR̄

)
such that µ0 (R) < 1. In

this case ε0 := µ0 ({−∞,∞}) > 0 and hence for all M <∞ we have

µ0 ([−M,M ]) ≤ µ0

(
R̄
)
− µ0 ({−∞,∞}) = 1− ε0.

By choosing M so that −M and M are points of continuity of F0, it then
follows that

lim
k→∞

µnk
([−M,M ]) = µ0 ([−M,M ]) ≤ 1− ε0.

Therefore,
inf
n∈N

µn (([−M,M ])) ≤ 1− ε0 for all M <∞

and {µn}∞n=1 is not tight.

13.7 Weak Convergence in Metric Spaces

(This section may be skipped.)
Definition 13.43. Let X be a metric space. A sequence of probability mea-
sures {Pn}∞n=1 is said to converge weakly to a probability P if limn→∞ Pn(f) =
P (f) for all for every f ∈ BC(X). This is actually weak-* convergence when
viewing Pn ∈ BC(X)∗.
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For simplicity we will now assume that X is a complete metric space
throughout this section.

Proposition 13.44. The following are equivalent:

1. Pn
w→ P as n→∞, i.e. Pn (f) → P (f) for all f ∈∈ BC(X).

2. Pn(f) → P (f) for every f ∈ BC(X) which is uniformly continuous.
3. lim sup

n→∞
Pn(F ) ≤ P (F ) for all F @ X.

4. lim infn→∞ Pn(G) ≥ P (G) for all G ⊂o X.
5. limn→∞ Pn(A) = P (A) for all A ∈ B such that P (bd(A)) = 0.

Proof. 1. =⇒ 2. is obvious. For 2. =⇒ 3., let

ϕ(t) :=

 1 if t ≤ 0
1− t if 0 ≤ t ≤ 1

0 if t ≥ 1
(13.25)

and let fn(x) := ϕ(nd(x, F )). Then fn ∈ BC(X, [0, 1]) is uniformly continu-
ous, 0 ≤ 1F ≤ fn for all n and fn ↓ 1F as n→∞. Passing to the limit n→∞
in the equation

0 ≤ Pn(F ) ≤ Pn(fm)

gives
0 ≤ lim sup

n→∞
Pn(F ) ≤ P (fm)

and then lettingm→∞ in this inequality implies item 3. 3. ⇐⇒ 4. Assuming
item 3., let F = Gc, then

1− lim inf
n→∞

Pn(G) = lim sup
n→∞

(1− Pn(G)) = lim sup
n→∞

Pn(Gc)

≤ P (Gc) = 1− P (G)

which implies 4. Similarly 4. =⇒ 3. 3. ⇐⇒ 5. Recall that bd(A) = Ā \Ao,
so if P (bd(A)) = 0 and 3. (and hence also 4. holds) we have

lim sup
n→∞

Pn(A) ≤ lim sup
n→∞

Pn(Ā) ≤ P (Ā) = P (A) and

lim inf
n→∞

Pn(A) ≥ lim inf
n→∞

Pn(Ao) ≥ P (Ao) = P (A)

from which it follows that limn→∞ Pn(A) = P (A). Conversely, let F @ X and
set Fδ := {x ∈ X : ρ(x, F ) ≤ δ} . Then

bd(Fδ) ⊂ Fδ \ {x ∈ X : ρ(x, F ) < δ} = Aδ

where Aδ := {x ∈ X : ρ(x, F ) = δ} . Since {Aδ}δ>0 are all disjoint, we must
have ∑

δ>0

P (Aδ) ≤ P (X) ≤ 1
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and in particular the set Λ := {δ > 0 : P (Aδ) > 0} is at most countable. Let
δn /∈ Λ be chosen so that δn ↓ 0 as n→∞, then

P (Fδm
) = lim

n→∞
Pn(Fδm

) ≥ lim sup
n→∞

Pn(F ).

Let m → ∞ in this equation to conclude P (F ) ≥ lim supn→∞ Pn(F ) as de-
sired. To finish the proof we will now show 3. =⇒ 1. By an affine change of
variables it suffices to consider f ∈ C(X, (0, 1)) in which case we have

k∑
i=1

(i− 1)
k

1{ (i−1)
k ≤f< i

k} ≤ f ≤
k∑

i=1

i

k
1{ (i−1)

k ≤f< i
k}. (13.26)

Let Fi :=
{

i
k ≤ f

}
and notice that Fk = ∅. Then for any probability P,

k∑
i=1

(i− 1)
k

[P (Fi−1)− P (Fi)] ≤ P (f) ≤
k∑

i=1

i

k
[P (Fi−1)− P (Fi)] . (13.27)

Since

k∑
i=1

(i− 1)
k

[P (Fi−1)− P (Fi)]

=
k∑

i=1

(i− 1)
k

P (Fi−1)−
k∑

i=1

(i− 1)
k

P (Fi)

=
k−1∑
i=1

i

k
P (Fi)−

k∑
i=1

i− 1
k

P (Fi) =
1
k

k−1∑
i=1

P (Fi)

and

k∑
i=1

i

k
[P (Fi−1)− P (Fi)]

=
k∑

i=1

i− 1
k

[P (Fi−1)− P (Fi)] +
k∑

i=1

1
k

[P (Fi−1)− P (Fi)]

=
k−1∑
i=1

P (Fi) +
1
k
,

Eq. (13.27) becomes,

1
k

k−1∑
i=1

P (Fi) ≤ P (f) ≤ 1
k

k−1∑
i=1

P (Fi) + 1/k.

Using this equation with P = Pn and then with P = P we find
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lim sup
n→∞

Pn(f) ≤ lim sup
n→∞

[
1
k

k−1∑
i=1

Pn(Fi) + 1/k

]

≤ 1
k

k−1∑
i=1

P (Fi) + 1/k ≤ P (f) + 1/k.

Since k is arbitrary, lim supn→∞ Pn(f) ≤ P (f). Replacing f by 1 − f in
this inequality also gives lim infn→∞ Pn(f) ≥ P (f) and hence we have shown
limn→∞ Pn(f) = P (f) as claimed.

Theorem 13.45 (Skorohod Theorem). Let (X, d) be a separable metric
space and {µn}∞n=0 be probability measures on (X,BX) such that µn =⇒ µ0

as n → ∞. Then there exists a probability space, (Ω,B, P ) and measurable
functions, Yn : Ω → X, such that µn = P ◦ Y −1

n for all n ∈ N0 := N∪{0} and
limn→∞ Yn = Y a.s.

Proof. See Theorem 4.30 on page 79 of Kallenberg [7].

Definition 13.46. Let X be a topological space. A collection of probability
measures Λ on (X,BX) is said to be tight if for every ε > 0 there exists a
compact set Kε ∈ BX such that P (Kε) ≥ 1− ε for all P ∈ Λ.

Theorem 13.47. Suppose X is a separable metrizable space and Λ =
{Pn}∞n=1 is a tight sequence of probability measures on BX . Then there exists
a subsequence {Pnk

}∞k=1 which is weakly convergent to a probability measure
P on BX .

Proof. First suppose that X is compact. In this case C(X) is a Banach
space which is separable by the Stone – Weirstrass theorem, see Exercise ??.
By the Riesz theorem, Corollary ??, we know that C(X)∗ is in one to one
correspondence with the complex measures on (X,BX). We have also seen
that C(X)∗ is metrizable and the unit ball in C(X)∗ is weak - * compact,
see Theorem ??. Hence there exists a subsequence {Pnk

}∞k=1 which is weak
-* convergent to a probability measure P on X. Alternatively, use the can-
tor’s diagonalization procedure on a countable dense set Γ ⊂ C(X) so find
{Pnk

}∞k=1 such that Λ(f) := limk→∞ Pnk
(f) exists for all f ∈ Γ. Then for

g ∈ C(X) and f ∈ Γ, we have

|Pnk
(g)− Pnl

(g)| ≤ |Pnk
(g)− Pnk

(f)|+ |Pnk
(f)− Pnl

(f)|
+ |Pnl

(f)− Pnl
(g)|

≤ 2 ‖g − f‖∞ + |Pnk
(f)− Pnl

(f)|

which shows
lim sup

n→∞
|Pnk

(g)− Pnl
(g)| ≤ 2 ‖g − f‖∞ .

Letting f ∈ Λ tend to g in C(X) shows lim supn→∞ |Pnk
(g)− Pnl

(g)| = 0 and
hence Λ(g) := limk→∞ Pnk

(g) for all g ∈ C(X). It is now clear that Λ(g) ≥ 0
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for all g ≥ 0 so that Λ is a positive linear functional on X and thus there is a
probability measure P such that Λ(g) = P (g).

General case. By Theorem 18.38 we may assume that X is a subset of
a compact metric space which we will denote by X̄. We now extend Pn to X̄
by setting P̄n(A) := P̄n(A∩X) for all A ∈ BX̄ . By what we have just proved,
there is a subsequence

{
P̄ ′k := P̄nk

}∞
k=1

such that P̄ ′k converges weakly to a
probability measure P̄ on X̄. The main thing we now have to prove is that
“P̄ (X) = 1,” this is where the tightness assumption is going to be used. Given
ε > 0, let Kε ⊂ X be a compact set such that P̄n(Kε) ≥ 1− ε for all n. Since
Kε is compact in X it is compact in X̄ as well and in particular a closed
subset of X̄. Therefore by Proposition 13.44

P̄ (Kε) ≥ lim sup
k→∞

P̄
′

k(Kε) = 1− ε.

Since ε > 0 is arbitrary, this shows with X0 := ∪∞n=1K1/n satisfies P̄ (X0) = 1.
Because X0 ∈ BX ∩ BX̄ , we may view P̄ as a measure on BX by letting
P (A) := P̄ (A ∩ X0) for all A ∈ BX . Given a closed subset F ⊂ X, choose
F̃ @ X̄ such that F = F̃ ∩X. Then

lim sup
k→∞

P ′k(F ) = lim sup
k→∞

P̄ ′k(F̃ ) ≤ P̄ (F̃ ) = P̄ (F̃ ∩X0) = P (F ),

which shows P ′k
w→ P.
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Characteristic Functions (Fourier Transform)

Definition 14.1. Given a probability measure, µ on (Rn,BRn) , let

µ̂ (λ) :=
∫

Rn

eiλ·xdµ (x)

be the Fourier transform or characteristic function of µ. If X =
(X1, . . . , Xn) : Ω → Rn is a random vector on some probability space
(Ω,B, P ) , then we let f (λ) := fX (λ) := E

[
eiλ·X] . Of course, if µ := P ◦X−1,

then fX (λ) = µ̂ (λ) .

Notation 14.2 Given a measure µ on a measurable space, (Ω,B) and a func-
tion, f ∈ L1 (µ) , we will often write µ (f) for

∫
Ω
fdµ.

Definition 14.3. Let µ and ν be two probability measure on (Rn,BRn) . The
convolution of µ and ν, denoted µ ∗ ν, is the measure, P ◦ (X + Y )−1 where
{X,Y } are two independent random vectors such that P ◦ X−1 = µ and
P ◦ Y −1 = ν.

Of course we may give a more direct definition of the convolution of µ and
ν by observing for A ∈ BRn that

µ ∗ ν (A) = P (X + Y ∈ A)

=
∫

Rn

dµ (x)
∫

Rn

dν (y) 1A (x+ y) (14.1)

=
∫

Rn

ν (A− x) dµ (x) (14.2)

=
∫

Rn

µ (A− x) dν (x) . (14.3)

Remark 14.4. Suppose that dµ (x) = u (x) dx where u (x) ≥ 0 and
∫

Rn u (x) dx =
1. Then using the translation invariance of Lebesgue measure and Tonelli’s
theorem, we have

µ ∗ ν (f) =
∫

Rn×Rn

f (x+ y)u (x) dxdν (y) =
∫

Rn×Rn

f (x)u (x− y) dxdν (y)

from which it follows that
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d (µ ∗ ν) (x) =
[∫

Rn

u (x− y) dν (y)
]
dx.

If we further assume that dν (x) = v (x) dx, then we have

d (µ ∗ ν) (x) =
[∫

Rn

u (x− y) v (y) dy
]
dx.

To simplify notation we write,

u ∗ v (x) =
∫

Rn

u (x− y) v (y) dy =
∫

Rn

v (x− y)u (y) dy.

Example 14.5. Suppose that n = 1, dµ (x) = 1[0,1] (x) dx and dν (x) =
1[−1,0] (x) dx so that ν (A) = µ (−A) . In this case

d (µ ∗ ν) (x) =
(
1[0,1] ∗ 1[−1,0]

)
(x) dx

where (
1[0,1] ∗ 1[−1,0]

)
(x) =

∫
R

1[−1,0] (x− y) 1[0,1] (y) dy

=
∫

R
1[0,1] (y − x) 1[0,1] (y) dy

=
∫

R
1[0,1]+x (y) 1[0,1] (y) dy

= m ([0, 1] ∩ (x+ [0, 1])) = (1− |x|)+ .

14.1 Basic Properties of the Characteristic Function

Definition 14.6. A function f : Rn → C is said to be positive definite, iff
f (−λ) = f (λ) for all λ ∈ Rn and for all m ∈ N, {λj}m

j=1 ⊂ Rn the matrix,(
{f (λj − λk)}m

j,.k=1

)
is non-negative. More explicitly we require,

m∑
j,k=1

f (λj − λk) ξj ξ̄k ≥ 0 for all (ξ1, . . . , ξm) ∈ Cm.

Notation 14.7 For l ∈ N ∪ {0} , let Cl (Rn,C) denote the vector space
of functions, f : Rn → C which are l - time continuously differentiable.
More explicitly, if ∂j := ∂

∂xj
, then f ∈ Cl (Rn,C) iff the partial derivatives,

∂j1 . . . ∂jk
f, exist and are continuous for k = 1, 2, . . . , l and all j1, . . . , jk ∈

{1, 2, . . . , n} .

Proposition 14.8 (Basic Properties of µ̂). Let µ and ν be two probability
measures on (Rn,BRn) , then;
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1. µ̂ (0) = 1, and |µ̂ (λ)| ≤ 1 for all λ.
2. µ̂ (λ) is continuous.
3. µ̂ (λ) = µ̂ (−λ) for all λ ∈ Rn and in particular, µ̂ is real valued iff µ is

symmetric, i.e. iff µ (−A) = µ (A) for all A ∈ BRn . (If µ = P ◦X−1 for
some random vector X, then µ is symmetric iff X

d= −X.)
4. µ̂ is a positive definite function. (For the converse of this result, see

Bochner’s Theorem 14.41 below.
5. If

∫
Rn ‖x‖l

dµ (x) <∞, then µ̂ ∈ Cl (Rn,C) and

∂j1 . . . ∂jm
µ̂ (λ) =

∫
Rn

(ixj1 . . . ixjm
) eiλ·xdµ (x) for all m ≤ l.

6. If X and Y are independent random vectors then

fX+Y (λ) = fX (λ) fY (λ) for all λ ∈ Rn.

This may be alternatively expressed as

µ̂ ∗ ν (λ) = µ̂ (λ) ν̂ (λ) for all λ ∈ Rn.

7. If a ∈ R, b ∈ Rn, and X : Ω → Rn is a random vector, then

faX+b (λ) = eiλ·bfX (aλ) .

Proof. The proof of items 1., 2., 6., and 7. are elementary and will be left
to the reader. It also easy to see that µ̂ (λ) = µ̂ (−λ) and µ̂ (λ) = µ̂ (−λ) if
µ is symmetric. Therefore if µ is symmetric, then µ̂ (λ) is real. Conversely if
µ̂ (λ) is real then

µ̂ (λ) = µ̂ (−λ) =
∫

Rn

eiλ·xdν (x) = ν̂ (λ)

where ν (A) := µ (−A) . The uniqueness Proposition 14.10 below then implies
µ = ν, i.e. µ is symmetric. This proves item 3.

Item 5. follows by induction using Corollary 8.38. For item 4. let m ∈ N,
{λj}m

j=1 ⊂ Rn and (ξ1, . . . , ξm) ∈ Cm. Then

m∑
j,k=1

µ̂ (λj − λk) ξj ξ̄k =
∫

Rn

m∑
j,k=1

ei(λj−λk)·xξj ξ̄kdµ (x)

=
∫

Rn

m∑
j,k=1

eiλj ·xξjeiλk·xξkdµ (x)

=
∫

Rn

∣∣∣∣∣∣
m∑

j=1

eiλj ·xξj

∣∣∣∣∣∣
2

dµ (x) ≥ 0.
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Example 14.9 (Example 14.5 continued.). Let dµ (x) = 1[0,1] (x) dx and
ν (A) = µ (−A) . Then

µ̂ (λ) =
∫ 1

0

eiλxdx =
eiλ − 1
iλ

,

ν̂ (λ) = µ̂ (−λ) = µ̂ (λ) =
e−iλ − 1
−iλ

, and

µ̂ ∗ ν (λ) = µ̂ (λ) ν̂ (λ) = |µ̂ (λ)|2 =
∣∣∣∣eiλ − 1

iλ

∣∣∣∣2 =
2
λ2

[1− cosλ] .

According to example 14.5 we also have d (µ ∗ ν) (x) = (1− |x|)+ dx and so
directly we find

µ̂ ∗ ν (λ) =
∫

R
eiλx (1− |x|)+ dx =

∫
R

cos (λx) (1− |x|)+ dx

= 2
∫ 1

0

(1− x) cosλx dx = 2
∫ 1

0

(1− x) d
sinλx
λ

= −2
∫ 1

0

d (1− x)
sinλx
λ

= 2
∫ 1

0

sinλx
λ

dx = 2
− cosλx
λ2

|x=1
x=0

= 2
1− cosλ

λ2
.

Proposition 14.10 (Injectivity of the Fourier Transform). If µ and ν
are two probability measure on (Rn,BRn) such that µ̂ = ν̂, then µ = ν.

Proof. Let H be the subspace of bounded measurable complex functions,
f : Rn → C, such that µ (f) = ν (f) . Then H is closed under bounded
convergence and complex conjugation. Suppose that Λ ⊂ Zd is a finite set,
L > 0 and

p (x) =
∑
λ∈Λ

aλe
iλ·x/(2πL) (14.4)

with aλ ∈ C. Then by assumption,

µ (p) =
∑
λ∈Λ

aλµ̂

(
λ

2πL

)
=
∑
λ∈Λ

aλν̂

(
λ

2πL

)
= ν (p)

so that p ∈ H. From the Stone-Weirstrass theorem (see Exercise 14.7 below)
or the theory of the Fourier series, any f ∈ C (Rn,C) which is L – periodic,
(i.e. f (x+ Lei) = f (x) for all x ∈ Rd and i = 1, 2, . . . , n) may be uniformly
approximated by a trigonometric polynomial of the form in Eq. (14.4), see
Exercise 14.8 below. Hence it follows from the bounded convergence theorem
that f ∈ H for all f ∈ C (Rn,C) which are L – periodic. Now suppose f ∈
Cc (Rn,C) . Then for L > 0 sufficiently large the function,

fL (x) :=
∑

λ∈Zn

f (x+ Lλ) ,
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is continuous and L periodic and hence fL ∈ H. Since fL → f boundedly as
L → ∞, we may further conclude that f ∈ H as well, i.e. Cc (Rn,C) ⊂ H.
An application of the multiplicative system Theorem (see either Theorem 9.3
or Theorem 9.14) implies H contains all bounded σ (Cc (Rn,R)) = BRn –
measurable functions and this certainly implies µ = ν.

For the most part we are now going to stick to the one dimensional case, i.e.
X will be a random variable and µ will be a probability measure on (R,BR) .
The following Lemma is a special case of item 4. of Proposition 14.8.

Lemma 14.11. Suppose n ∈ N and X is random variables such that
E [|X|n] <∞. If µ = P ◦X−1 is the distribution of X, then µ̂ (λ) := E

[
eiλX

]
is Cn – differentiable and

µ̂(l) (λ) = E
[
(iX)l

eiλX
]

=
∫

R
(ix)l

eiλxdµ (x) for l = 0, 1, 2, . . . , n.

In particular it follows that

E
[
X l
]

=
µ̂(l) (0)
il

.

The following theorem is a partial converse to this lemma. Hence the com-
bination of Lemma 14.11 and Theorem 14.12 (see also Corollary 14.34 below)
shows that there is a correspondence between the number of moments of X
and the differentiability of fX .

Theorem 14.12. Let X be a random variable, m ∈ {0, 1, 2, . . . } , f (λ) =
E
[
eiλX

]
. If f ∈ C2m (R,C) such that g := f (2m) is differentiable in a neigh-

borhood of 0 and g′′ (0) = f (2m+2) (0) exists. Then E
[
X2m+2

]
< ∞ and

f ∈ C2m+2 (R,C) .

Proof. This will be proved by induction on m. We start with m = 0 in
which case we automatically we know by Proposition 14.8 or Lemma 14.11
that f ∈ C (R,C)). Since

u (λ) := Re f (λ) = E [cos (λX)] ,

it follows that u is an even function of λ and hence u′ = Re f ′ is an odd
function of λ and in particular, u′ (0) = 0. By the mean value theorem, to
each λ > 0 with λ near 0, there exists 0 < cλ < λ such that

u (λ)− u (0)
λ

= u′ (cλ) = u′ (cλ)− u′ (0) .

Therefore,

u (0)− u (λ)
λcλ

= −u
′ (cλ)− u′ (0)

cλ
→ −u′′ (0) as λ ↓ 0.
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Since

E
[
1− cos (λX)

λ2

]
≤ E

[
1− cos (λX)

λcλ

]
=
u (0)− u (λ)

λcλ

and limλ↓0
1−cos(λX)

λ2 = 1
2X

2, we may apply Fatou’s lemma to conclude,

1
2

E
[
X2
]
≤ lim inf

λ↓0
E
[
1− cos (λX)

λ2

]
≤ −u′′ (0) <∞.

An application of Lemma 14.11 then implies that f ∈ C2 (R,C) .
For the general induction step we assume the truth of the theorem at level

m in which case we know by Lemma 14.11 that

f (2m) (λ) = (−1)m E
[
X2meiλX

]
=: (−1)m

g (λ) .

By assumption we know that g is differentiable in a neighborhood of 0 and
that g′′ (0) exists. We now proceed exactly as before but now with u := Re g.
So for each λ > 0 near 0, there exists cλ ∈ (0, λ) such that

u (0)− u (λ)
λcλ

→ −u′′ (0) as λ ↓ 0

and

E
[
X2m 1− cos (λX)

λ2

]
≤ E

[
X2m 1− cos (λX)

λcλ

]
=
u (0)− u (λ)

λcλ
.

Another use of Fatou’s lemma gives,

1
2

E
[
X2m+2

]
= lim inf

λ↓0
E
[
X2m 1− cos (λX)

λ2

]
≤ −u′′ (0) <∞

from which Lemma 14.11 may be used to show f ∈ C2m+2 (R,C) . This com-
pletes the induction argument.

14.2 Examples

Example 14.13. If −∞ < a < b <∞ and dµ (x) = 1
b−a1[a,b] (x) dx then

µ̂ (λ) =
1

b− a

∫ b

a

eiλxdx =
eiλb − eiλa

iλ (b− a)
.

If a = −c and b = c with c > 0, then

µ̂ (λ) =
sinλc
λc

.

Observe that
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µ̂ (λ) = 1− 1
3!
λ2c2 + . . .

and therefore, µ̂′ (0) = 0 and µ̂′′ (0) = − 1
3c

2 and hence it follows that∫
R
xdµ (x) = 0 and

∫
R
x2dµ (x) =

1
3
c2.

Example 14.14. Suppose Z is a Poisson random variable with mean a > 0, i.e.
P (Z = n) = e−a an

n! . Then

fZ (λ) = E
[
eiλZ

]
= e−a

∞∑
n=0

eiλn a
n

n!
= e−a

∞∑
n=0

(
aeiλ

)n
n!

= exp
(
a
(
eiλ − 1

))
.

Differentiating this result gives,

f ′Z (λ) = iaeiλ exp
(
a
(
eiλ − 1

))
and

f ′′Z (λ) =
(
−a2ei2λ − aeiλ

)
exp

(
a
(
eiλ − 1

))
from which we conclude,

EZ =
1
i
f ′Z (0) = a and EZ2 = −f ′′Z (0) = a2 + a.

Therefore, EZ = a = Var (Z) .

Example 14.15. Suppose T is a positive random variable such that P (T ≥ t+ s|T ≥ s) =
P (T ≥ t) for all s, t ≥ 0, or equivalently

P (T ≥ t+ s) = P (T ≥ t)P (T ≥ s) for all s, t ≥ 0,

then P (T ≥ t) = e−at for some a > 0. (Such exponential random variables
are often used to model “waiting times.”) The distribution function for T is
FT (t) := P (T ≤ t) = 1− e−a(t∨0). Since FT (t) is piecewise differentiable, the
law of T, µ := P ◦ T−1, has a density,

dµ (t) = F ′T (t) dt = ae−at1t≥0dt.

Therefore,

E
[
eiaT

]
=
∫ ∞

0

ae−ateiλtdt =
a

a− iλ
= µ̂ (λ) .

Since
µ̂′ (λ) = i

a

(a− iλ)2
and µ̂′′ (λ) = −2

a

(a− iλ)3

it follows that

ET =
µ̂′ (0)
i

= a−1 and ET 2 =
µ̂′′ (0)
i2

=
2
a2

and hence Var (T ) = 2
a2 −

(
1
a

)2 = a−2.
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Proposition 14.16. If dµ (x) := 1√
2π
e−x2/2dx, then µ̂ (λ) = e−λ2/2. In par-

ticular we have ∫
R
xdµ (x) = 0 and

∫
R
x2dµ (x) = 1.

Proof. Differentiating the formula,

µ̂ (λ) =
1√
2π

∫
R
e−x2/2eiλxdx,

for µ̂ with respect to λ and then integrating by parts implies,

µ̂′ (λ) =
1√
2π

∫
R
ixe−x2/2eiλxdx

=
i√
2π

∫
R

[
− d

dx
e−x2/2

]
eiλxdx

=
i√
2π

∫
R
e−x2/2 d

dx
eiλxdx = −λµ̂ (λ) .

Solving this equation of µ̂ (λ) then implies

µ̂ (λ) = e−λ2/2µ̂ (0) = e−λ2/2µ (R) = e−λ2/2.

Example 14.17. If µ is a probability measure on (R,BR) and n ∈ N, then µ̂n

is the characteristic function of the probability measure, namely the measure

µ∗n :=
n times︷ ︸︸ ︷

µ ∗ · · · ∗ µ. (14.5)

Alternatively put, if {Xk}n
k=1 are i.i.d. random variables with µ = P ◦X−1

k ,
then

fX1+···+Xn
(λ) = fn

X1
(λ) .

Example 14.18. Suppose that {µn}∞n=0 are probability measure on (R,BR) and
{pn}∞n=0 ⊂ [0, 1] such that

∑∞
n=0 pn = 1. Then

∑∞
n=0 pnµ̂n is the characteristic

function of the probability measure,

µ :=
∞∑

n=0

pnµn.

Here is a more interesting interpretation of µ. Let {Xn}∞n=0∪{T} be indepen-
dent random variables with P ◦X−1

n = µn and P (T = n) = pn for all n ∈ N0.
Then µ (A) = P (XT ∈ A) , where XT (ω) := XT (ω) (ω) . Indeed,
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µ (A) = P (XT ∈ A) =
∞∑

n=0

P (XT ∈ A, T = n) =
∞∑

n=0

P (Xn ∈ A, T = n)

=
∞∑

n=0

P (Xn ∈ A, T = n) =
∞∑

n=0

pnµn (A) .

Let us also observe that

µ̂ (λ) = E
[
eiλXT

]
=
∞∑

n=0

E
[
eiλXT : T = n

]
=
∞∑

n=0

E
[
eiλXn : T = n

]
=
∞∑

n=0

E
[
eiλXn

]
P (T = n) =

∞∑
n=0

pnµ̂n (λ) .

Example 14.19. If µ is a probability measure on (R,BR) then
∑∞

n=0 pnµ̂
n is

the characteristic function of a probability measure, ν, on (R,BR) . In this case,
ν =

∑∞
n=0 pnµ

∗n where µ∗n is defined in Eq. (14.5). As an explicit example,
if a > 0 and pn = an

n! e
−a, then

∞∑
n=0

pnµ̂
n =

∞∑
n=0

an

n!
e−aµ̂n = e−aeaµ̂ = ea(µ̂−1)

is the characteristic function of a probability measure. In other words,

fXT
(λ) = E

[
eiλXT

]
= exp (a (fX1 (λ)− 1)) .

14.3 Continuity Theorem

Lemma 14.20 (Tail Estimate). Let X : (Ω,B, P ) → R be a random vari-
able and fX (λ) := E

[
eiλX

]
be its characteristic function. Then for a > 0,

P (|X| ≥ a) ≤ a

2

∫ 2/a

−2/a

(1− fX (λ)) dλ =
a

2

∫ 2/a

−2/a

(1− Re fX (λ)) dλ (14.6)

Proof. Recall that the Fourier transform of the uniform distribution on
[−c, c] is sin λc

λc and hence

1
2c

∫ c

−c

fX (λ) dλ =
1
2c

∫ c

−c

E
[
eiλX

]
dλ = E

[
sin cX
cX

]
.

Therefore,

1
2c

∫ c

−c

(1− fX (λ)) dλ = 1− E
[
sin cX
cX

]
= E [Yc] (14.7)

where
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Yc := 1− sin cX
cX

.

Notice that Yc ≥ 0 (see Eq. (14.47)) and moreover, Yc ≥ 1/2 if |cX| ≥ 2.
Hence we may conclude

E [Yc] ≥ E [Yc : |cX| ≥ 2] ≥ E
[
1
2

: |cX| ≥ 2
]

=
1
2
P (|X| ≥ 2/c) .

Combining this estimate with Eq. (14.7) shows,

1
2c

∫ c

−c

(1− fX (λ)) dλ ≥ 1
2
P (|X| ≥ 2/c) .

Taking a = 2/c in this estimate proves Eq. (14.6).

Theorem 14.21 (Continuity Theorem). Suppose that {µn}∞n=1 is a
sequence of probability measure on (R,BR) and suppose that f (λ) :=
limn→∞ µ̂n (λ) exists for all λ ∈ R. If f is continuous at λ = 0, then f
is the characteristic function of a unique probability measure, µ, on BR and
µn =⇒ µ as n→∞.

Proof. By the continuity of f at λ = 0, for ever ε > 0 we may choose aε

sufficiently large so that

1
2
aε

∫ 2/aε

−2/aε

(1− Re f (λ)) dλ ≤ ε/2.

According to Lemma 14.20 and the DCT,

µn ({x : |x| ≥ aε}) ≤
1
2
aε

∫ 2/aε

−2/aε

(1− Re µ̂n (λ)) dλ

→ 1
2
aε

∫ 2/aε

−2/aε

(1− Re f (λ)) dλ ≤ ε/2.

Hence µn ({x : |x| ≥ aε}) ≤ ε for all sufficiently large n, say n ≥ N. By in-
creasing aε if necessary we can assure that µn ({x : |x| ≥ aε}) ≤ ε for all n
and hence Γ := {µn}∞n=1 is tight.

By Theorem 13.42, we may find a subsequence, {µnk
}∞k=1 and a probability

measure µ on BR such that µnk
=⇒ µ as k →∞. Since x→ eiλx is a bounded

and continuous function, it follows that

µ̂ (λ) = lim
k→∞

µ̂nk
(λ) = f (λ) for all λ ∈ R,

that is f is the characteristic function of a probability measure, µ.
We now claim that µn =⇒ µ as n→∞. If not, we could find a bounded

continuous function, g, such that limn→∞ µn (g) 6= µ (g) or equivalently, there
would exists ε > 0 and a subsequence {µ′k := µnk

} such that
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|µ (g)− µ′k (g)| ≥ ε for all k ∈ N.

However by Theorem 13.42 again, there is a further subsequence, µ′′l = µ′kl

of µ′k such that µ′′l =⇒ ν for some probability measure ν. Since ν̂ (λ) =
liml→∞ µ̂′′l (λ) = f (λ) = µ̂ (λ) , it follows that µ = ν. This leads to a contra-
diction since,

ε ≤ lim
l→∞

|µ (g)− µ′′l (g)| = |µ (g)− ν (g)| = 0.

Remark 14.22. One could also use Bochner’s Theorem 14.41 to conclude; if
f (λ) := limn→∞ µ̂n (λ) is continuous then f is the characteristic function of a
probability measure. Indeed, the condition of a function being positive definite
is preserved under taking pointwise limits.

Exercise 14.1. Suppose now X : (Ω,B, P ) → Rd is a random vector and
fX (λ) := E

[
eiλ·X] is its characteristic function. Show for a > 0,

P (|X|∞ ≥ a) ≤2
(a

4

)d
∫

[−2/a,2/a]d
(1− fX (λ)) dλ

= 2
(a

4

)d
∫

[−2/a,2/a]d
(1− Re fX (λ)) dλ (14.8)

where |X|∞ = maxi |Xi| and dλ = dλ1, . . . , dλd.

Solution to Exercise (14.1). Working as above, we have(
1
2c

)d ∫
[−c,c]d

(
1− eiλ·X) dλ = 1−

d∏
j=1

sin cXj

cXj
=: Yc, (14.9)

where as before, Yc ≥ 0 and Yc ≥ 1/2 if c |Xj | ≥ 2 for some j, i.e. if c |X|∞ ≥ 2.
Therefore taking expectations of Eq. (14.9) implies,(

1
2c

)d ∫
[−c,c]d

(1− fX (λ)) dλ = E [Yc] ≥ E [Yc : |X|∞ ≥ 2/c]

≥ E
[
1
2

: |X|∞ ≥ 2/c
]

=
1
2
P (|X|∞ ≥ 2/c) .

Taking c = 2/a in this expression implies Eq. (14.8).

The following lemma will be needed before giving our first applications of
the continuity theorem.

Lemma 14.23. Suppose that {zn}∞n=1 ⊂ C satisfies, limn→∞ nzn = ξ ∈ C,
then

lim
n→∞

(1 + zn)n = eξ.
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Proof. Since nzn → ξ, it follows that zn ∼ ξ
n → 0 as n→∞ and therefore

by Lemma 14.45 below, (1 + zn) = eln(1+zn) and

ln (1 + zn) = zn +O
(
z2
n

)
= zn +O

(
1
n2

)
.

Therefore,

(1 + zn)n =
[
eln(1+zn)

]n
= en ln(1+zn) = en(zn+O( 1

n2 )) → eξ as n→∞.

Proposition 14.24 (Weak Law of Large Numbers revisited). Suppose
that {Xn}∞n=1 are i.i.d. integrable random variables. Then Sn

n

P→ EX1 =: µ.

Proof. Let f (λ) := fX1 (λ) = E
[
eiλX1

]
. Then by Taylor’s theorem,

f (λ) = 1 + iµλ+ o (λ) . Since,

fSn
n

(λ) =
[
f

(
λ

n

)]n

=
[
1 + iµ

λ

n
+ o

(
1
n

)]n

it follows from Lemma 14.23 that

lim
n→∞

fSn
n

(λ) = eiµλ

which is the characteristic function of the constant random variable, µ. By the
continuity Theorem 14.21, it follows that Sn

n =⇒ µ and since µ is constant

we may apply Lemma 13.19 to conclude Sn

n

P→ µ.

Theorem 14.25 (The Basic Central Limit Theorem). Suppose that
{Xn}∞n=1 are i.i.d. square integrable random variables such that EX1 = 0
and EX2

1 = 1. Then Sn√
n

=⇒ N (0, 1) .

Proof. By Theorem 14.21 and Proposition 14.16, it suffices to show

lim
n→∞

E
[
e
iλ Sn√

n

]
= e−λ2/2 for all λ ∈ R.

Letting f (λ) := E
[
eiλX1

]
, we have by Taylor’s theorem (see Eq. (14.43) and

(14.46)) that

f (λ) = 1− 1
2

(1 + ε (λ))λ2 (14.10)

where ε (λ) → 0 as λ→ 0. Therefore,

f Sn√
n

(λ) = E
[
e
iλ Sn√

n

]
=
[
f

(
λ√
n

)]n

=
[
1− 1

2

(
1 + ε

(
λ√
n

))
λ2

n

]n

→ e−λ2/2,
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wherein we have used Lemma 14.23 with

zn = −1
2

(
1 + ε

(
λ√
n

))
λ2

n
.

Alternative proof. This proof uses Lemma 15.6 below as follows;∣∣∣f Sn√
n

(λ)− e−λ2/2
∣∣∣ = ∣∣∣∣[f ( λ√

n

)]n

−
[
e−λ2/2n

]n∣∣∣∣
≤ n

∣∣∣∣f ( λ√
n

)
− e−λ2/2n

∣∣∣∣
= n

∣∣∣∣1− 1
2

(
1 + ε

(
λ√
n

))
λ2

n
−
(

1− λ2

2n
+O

(
1
n2

))∣∣∣∣
→ 0 as n→∞.

Corollary 14.26. If {Xn}∞n=1 are i.i.d. square integrable random variables
such that EX1 = 0 and EX2

1 = 1, then

sup
λ∈R

∣∣∣∣P ( Sn√
n
≤ y

)
− P (N (0, 1) ≤ y)

∣∣∣∣→ 0 as n→∞. (14.11)

Proof. This is a direct consequence of Theorem 14.25 and Exercise 13.3.

Berry (1941) and Essen̂ (1942) showed there exists a constant, C < ∞,

such that; if ρ3 := E |X1|3 <∞, then

sup
λ∈R

∣∣∣∣P ( Sn√
n
≤ y

)
− P (N (0, 1) ≤ y)

∣∣∣∣ ≤ C
( ρ
σ

)3

/
√
n.

In particular the rate of convergence is n−1/2. The exact value of the best
constant C is still unknown but it is known to be less than 1. We will not
prove this theorem here. However we will give a related result in Theorem
14.28 below.

Remark 14.27. It is now a reasonable question to ask “why” is the limiting
random variable normal in Theorem 14.25. One way to understand this is, if
under the assumptions of Theorem 14.25, we know Sn√

n
=⇒ L where L is

some random variable with EL = 0 and EL2 = 1, then

S2n√
2n

=
1√
2

(∑2n
k=1, k oddXj√

n
+

∑2n
k=1, k evenXj√

n

)
(14.12)

=⇒ 1√
2

(L1 + L2)
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where L1
d= L

d= L2 and L1 and L2 are independent. To rigorously understand
this, using characteristic functions we would conclude from Eq. (14.12) that

f S2n√
2n

(λ) = f Sn√
n

(
λ√
2

)
f Sn√

n

(
λ√
2

)
.

Passing to the limit in this equation then shows, with f (λ) = limn→∞ f Sn√
n

(λ) =

fL (λ) , that

f (λ) =
[
f

(
λ√
2

)]2
.

Iterating this equation then shows

f (λ) =

[
f

(
λ(√
2
)n
)]2n

=

1− 1
2

(
λ(√
2
)n
)2(

1 + ε

(
λ(√
2
)n
))2n

.

An application of Lemma 14.23 then shows

f (λ) = lim
n→∞

1− 1
2

(
λ(√
2
)n
)2(

1 + ε

(
λ(√
2
)n
))2n

= e−
1
2 λ2

= fN(0,1) (λ) .

That is we must have L d= N (0, 1) .

It is interesting to give another proof of the central limit theorem. For this
proof we will assume {Xn}∞n=1 has third moments. The only property about
normal random variables that we shall use the proof is that if {Nn}∞n=1 are
i.i.d. standard normal random variables, then

Tn√
n

:=
N1 + · · ·+Nn√

n

d= N (0, 1) .

Theorem 14.28 (A Non-Characteristic Proof of the CLT). Suppose
that {Xn}∞n=1 are mean zero variance one i.i.d random variables such that
E |X1|3 <∞. Then for f ∈ C3 (R) with M := supx∈R

∣∣f (3) (x)
∣∣ <∞,∣∣∣∣Ef ( Sn√

n

)
− Ef (N)

∣∣∣∣ ≤ 1√
n

M

3!
· E
[
|N |3 + |X1|3

]
(14.13)

where Sn := X1 + · · ·+Xn and N d= N (0, 1) .

Proof. Let
{
X̄n, Nn

}∞
n=1

be independent random variables such that

Nn
d= N (0, 1) and X̄n

d= X1. To simplify notation, we will denote X̄n by
Xn. Let Tn := N1 + · · ·+Nn and for 0 ≤ k ≤ n, let
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Vk := (N1 + · · ·+Nk +Xk+1 + · · ·+Xn) /
√
n

with the convention that Vn = Sn/
√
n and V0 = Tn/

√
n. Then by a telescoping

series argument, it follows that

f
(
Sn/

√
n
)
−f

(
Tn/

√
n
)

= f (Vn)−f (V0) =
n∑

k=1

[f (Vk)− f (Vk−1)] . (14.14)

We now make use of Taylor’s theorem with integral remainder the form,

f (x+∆)− f (x) = f ′ (x)∆+
1
2
f ′′ (x)∆2 + r (x,∆)∆3 (14.15)

where

r (x,∆) :=
1
2

∫ 1

0

f ′′′ (x+ t∆) (1− t)2 dt.

Taking Eq. (14.15) with ∆ replaced by δ and subtracting the results then
implies

f (x+∆)−f (x+ δ) = f ′ (x) (∆− δ)+
1
2
f ′′ (x)

(
∆2 − δ2

)
+ρ (x,∆) , (14.16)

where

|ρ (x,∆)| =
∣∣r (x,∆)∆3 − r (x, δ) δ3

∣∣ ≤ M

3!

[
|∆|3 + |δ|3

]
, (14.17)

wherein we have used the simple estimate, |r (x,∆)| ≤M/3!.
If we define Uk := (N1 + · · ·+Nk−1 +Xk+1 + · · ·+Xn) /

√
n, then Vk =

Uk +Nk/
√
n and Vk−1 = Uk +Xk/

√
n. Hence, using Eq. (14.16) with x = Uk,

∆ = Nk/
√
n and δ = Xk/

√
n, it follows that

f (Vk)− f (Vk−1) = f
(
Uk +Nk/

√
n
)
− f

(
Uk +Xk/

√
n
)

=
1√
n
f ′ (Uk) (Nk −Xk) +

1
2n
f ′′ (Uk)

(
N2

k −X2
k

)
+Rk

(14.18)

where
|Rk| =

M

3! · n3/2

[
|Nk|3 + |Xk|3

]
. (14.19)

Taking expectations of Eq. (14.18) using; Eq. (14.19), ENk = 1 = EXk,
EN2

k = 1 = EX2
k and the fact that Uk is independent of both Xk and Nk, we

find

|E [f (Vk)− f (Vk−1)]| = |ERk| ≤
M

3! · n3/2
E
[
|Nk|3 + |Xk|3

]
≤ M

3! · n3/2
E
[
|N1|3 + |X1|3

]
.
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Combining this estimate with Eq. (14.14) shows,

∣∣E [f (Sn/
√
n
)
− f

(
Tn/

√
n
)]∣∣ = ∣∣∣∣∣

n∑
k=1

ERk

∣∣∣∣∣ ≤
n∑

k=1

E |Rk|

≤ 1√
n

M

3!
· E
[
|N1|3 + |X1|3

]
.

This completes the proof of Eq. (14.13) since Tn√
n

d= N because,

f Tn√
n

(λ) =
[
fN

(
λ√
n

)]n

= exp
(
−1

2
n
λ2

n

)
= exp

(
−λ2/2

)
= fN (λ) .

For more in this direction the reader is advised to look up “Stein’s
method.”

14.4 A Fourier Transform Inversion Formula

Proposition 14.10 guarantees the injectivity of the Fourier transform on the
space of probability measures. Our next goal is to find an inversion formula for
the Fourier transform. To motivate the construction below, let us first recall
a few facts about Fourier series. To keep our exposition as simple as possible,
we now restrict ourselves to the one dimensional case.

For L > 0, let eL
n (x) := e−i n

L x and let

(f, g)L :=
1

2πL

∫ πL

−πL

f (x) ḡ (x) dx

for f, g ∈ L2 ([−πL, πL] , dx) . Then it is well known (and fairly elementary to
prove) that

{
eL
n : n ∈ Z

}
is an orthonormal basis for L2 ([−πL, πL] , dx) . In

particular, if f ∈ Cc (R) with supp(f) ⊂ [−πL, πL] , then for x ∈ [−πL, πL] ,

f (x) =
∑
n∈Z

(
f, eL

n

)
L
eL
n (x) =

1
2πL

∑
n∈Z

(∫ πL

−πL

f (y) ei n
L ydy

)
e−i n

L x

=
1

2πL

∑
n∈Z

f̂
(n
L

)
e−i n

L x (14.20)

where
f̂ (λ) =

∫ ∞
−∞

f (y) eiλydy.

Letting L→∞ in Eq. (14.20) then suggests that

1
2πL

∑
n∈Z

f̂
(n
L

)
e−i n

L x → 1
2π

∫ ∞
−∞

f̂ (λ) e−iλxdλ



14.4 A Fourier Transform Inversion Formula 305

and we are lead to expect,

f (x) =
1
2π

∫ ∞
−∞

f̂ (λ) e−iλxdλ.

Hence if we now think that f (x) is a probability density and let dµ (x) :=
f (x) dx so that µ̂ (λ) = f̂ (λ) , we should expect

µ ([a, b]) =
∫ b

a

f (x) dx =
∫ b

a

[
1
2π

∫ ∞
−∞

µ̂ (λ) e−iλxdλ

]
dx

=
1
2π

∫ ∞
−∞

µ̂ (λ)

(∫ b

a

e−iλxdx

)
dλ

=
1
2π

∫ ∞
−∞

µ̂ (λ)
(
e−iλa − e−iλb

iλ

)
dλ

= lim
c→∞

1
2π

∫ c

−c

µ̂ (λ)
(
e−iλa − e−iλb

iλ

)
dλ.

This should provide some motivation for Theorem 14.30 below. The following
lemma is needed in the proof of the inversion Theorem 14.30 below.

Lemma 14.29. For c > 0, let

S (c) :=
1
2π

∫ c

−c

sinλ
λ

dλ. (14.21)

Then S (c) → π boundedly as c→∞ and∫ c

−c

sinλy
λ

dλ = sgn(y)S (c |y|) for all y ∈ R. (14.22)

where

sgn(y) =

 1 if y > 0
−1 if y < 0
0 if y = 0

.

Proof. The first assertion has already been dealt with in Example 10.12.
We will repeat the argument here for the reader’s convenience. By symmetry
and Fubini’s theorem,

S (c) =
1
π

∫ c

0

sinλ
λ

dλ =
1
π

∫ c

0

sinλ
(∫ ∞

0

e−λtdt

)
dλ

=
1
π

∫ ∞
0

dt

∫ c

0

dλ sinλe−λt

=
1
2

+
1
π

∫ ∞
0

1
1 + t2

e−tc [− cos c− t sin c] dt, (14.23)
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wherein we have used∫ c

0

dλ sinλe−λt = Im
∫ c

0

dλeiλe−λt = Im
∫ c

0

dλe(i−t)λ

= Im
(
e(i−t)c − 1

(i− t)

)
=

1
1 + t2

Im
([
e(i−t)c − 1

]
(−i− t)

)
=

1
1 + t2

(
e−tc [− cos c− t sin c] + 1

)
and

1
π

∫ ∞
0

1
1 + t2

dt =
1
2
.

The the integral in Eq. (14.23) tends to as c→∞ by the dominated conver-
gence theorem. The second assertion in Eq. (14.22) is a consequence of the
change of variables, z = λy.

Theorem 14.30 (Fourier Inversion Formula). If µ is a probability mea-
sure on (R,BR) and −∞ < a < b <∞, then

lim
c→∞

1
2π

∫ c

−c

µ̂ (λ)
(
e−iλa − e−iλb

iλ

)
dλ = µ ((a, b)) +

1
2

(µ ({a}) + µ ({b})) .

Proof. By Fubini’s theorem and Lemma 14.29,

I (c) :=
∫ c

−c

µ̂ (λ)
(
e−iλa − e−iλb

iλ

)
dλ

=
∫ c

−c

(∫
R
eiλxdµ (x)

)(
e−iλa − e−iλb

iλ

)
dλ

=
∫

R
dµ (x)

∫ c

−c

dλeiλx

(
e−iλa − e−iλb

iλ

)
=
∫

R
dµ (x)

∫ c

−c

dλ

(
e−iλ(a−x) − e−iλ(b−x)

iλ

)
.

Since

Im
(
e−iλ(a−x) − e−iλ(b−x)

iλ

)
= −

(
cos (λ (a− x))− cos (λ (b− x))

λ

)
is an odd function of λ it follows that

I (c) =
∫

R
dµ (x)

∫ c

−c

dλRe
(
e−iλ(a−x) − e−iλ(b−x)

iλ

)
=
∫

R
dµ (x)

∫ c

−c

dλ

(
sinλ (x− a)− sinλ (x− b)

λ

)
= 2π

∫
R
dµ (x) [sgn(x− a)S (c |x− a|)− sgn(x− b)S (c |x− b|)] .
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Now letting c→∞ in this expression (using the DCT) shows

lim
c→∞

1
2π
I (c) =

1
2

∫
R
dµ (x) [sgn(x− a)− sgn(x− b)]

=
1
2

∫
R
dµ (x)

[
2 · 1(a,b) (x) + 1{a} (x) + 1{b} (x)

]
= µ ((a, b)) +

1
2

[µ ({a}) + µ ({b})] .

Corollary 14.31. Suppose that µ is a probability measure on (R,BR) such
that µ̂ ∈ L1 (m) , then dµ = ρdm where ρ is a continuous density on R.

Proof. The function,

ρ (x) :=
1
2π

∫
R
µ̂ (λ) e−iλxdλ,

is continuous by the dominated convergence theorem. Moreover,∫ b

a

ρ (x) dx =
1
2π

∫ b

a

dx

∫
R
dλµ̂ (λ) e−iλx

=
1
2π

∫
R
dλµ̂ (λ)

∫ b

a

dxe−iλx

=
1
2π

∫
R
dλµ̂ (λ)

[
e−iλa − e−iλb

iλ

]
=

1
2π

lim
c→∞

∫ c

−c

µ̂ (λ)
[
e−iλa − e−iλb

iλ

]
dλ

= µ ((a, b)) +
1
2

[µ ({a}) + µ ({b})] .

Letting a ↑ b over a ∈ R such that µ ({a}) = 0 in this identity shows µ ({b}) =
0 for all b ∈ R. Therefore we have shown

µ ((a, b]) =
∫ b

a

ρ (x) dx for all −∞ < a < b <∞.

Using one of the multiplicative systems theorems, it is now easy to verify
that µ (A) =

∫
A
ρ (x) dx for all A ∈ BR or

∫
R hdµ =

∫
R hρdµ for all bounded

measurable functions h : R → R. This then implies that ρ ≥ 0, m – a.e., and
the dµ = ρdm.

Example 14.32. Recall from Example 14.9 that∫
R
eiλx (1− |x|)+ dx = 2

1− cosλ
λ2

.
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Hence it follows1 from Corollary 14.31 that

(1− |x|)+ =
1
π

∫
R

1− cosλ
λ2

e−iλxdλ. (14.24)

Corollary 14.33. For all random variables, X, we have

E |X| = 1
π

∫
R

1− Re fX (λ)
λ2

dλ. (14.25)

Proof. Evaluating Eq. (14.24) at x = 0 implies

1 =
1
π

∫ ∞
−∞

1− cosλ
λ2

dλ.

Making the change of variables, λ→Mλ, in the above integral then shows

M =
1
π

∫
R

1− cos (λM)
λ2

dλ.

Now let M = |X| in this expression and then take expectations to find

E |X| = 1
π

∫
R

E
1− cosλX

λ2
dλ =

1
π

∫
R

1− Re fX (λ)
λ2

dλ.

Suppose that we did not know the value of c :=
∫∞
−∞

1−cos λ
λ2 dλ is π, we

could still proceed as above to learn

E |X| = 1
c

∫
R

1− Re fX (λ)
λ2

dλ.

We could then evaluate c by making a judicious choice of X. For example if
X

d= N (0, 1) , we would have on one hand

E |X| = 1√
2π

∫
R
|x| e−x2/2dx =

2√
2π

∫ ∞
0

xe−x2/2dx =

√
2
π
.

On the other hand, fX (λ) = e−λ2/2 and so√
2
π

= −1
c

∫
R

(
1− e−λ2/2

)
d
(
λ−1

)
=

1
c

∫
R
d
(
1− e−λ2/2

) (
λ−1

)
=

1
c

∫
R
e−λ2/2dλ =

√
2π
c

from which it follows, again, that c = π.

1 This identity could also be verified directly using residue calculus techniques from
complex variables.
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Corollary 14.34. Suppose X is a random variable such that u (λ) := fX (λ)
continuously differentiable for λ ∈ (−2ε, 2ε) for some ε > 0. We further
assume ∫ ε

0

|u′ (λ)|
λ

dλ <∞. (14.26)

Then E |X| <∞ and fX ∈ C1 (R,C) . (Since u is even, u′ is odd and u′ (0) =
0. Hence if u′ (λ) were α – Hölder continuous for some α > 0, then Eq. (14.26)
would hold.)

Proof. Let u (λ) := Re fX (λ) = E [cosλX] and assume that u ∈
C1 ((−2ε, 2ε) ,C) . Then according to Eq. (14.25)

π · E |X| =
∫

R

1− u (λ)
λ2

dλ =
∫
|λ|≤ε

1− u (λ)
λ2

dλ+
∫
|λ|>ε

1− u (λ)
λ2

dλ.

Since 0 ≤ 1− u (λ) ≤ 2 and 2/λ2 is integrable for |λ| > ε, it suffices to show

∞ >

∫
|λ|≤ε

1− u (λ)
λ2

dλ = lim
δ↓0

∫
δ≤|λ|≤ε

1− u (λ)
λ2

dλ.

By an integration by parts we find∫
δ≤|λ|≤ε

1− u (λ)
λ2

dλ =
∫

δ≤|λ|≤ε

(1− u (λ)) d
(
−λ−1

)
=
u (λ)− 1

λ
|εδ +

u (λ)− 1
λ

|−δ
−ε −

∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ

= −
∫

δ≤|λ|≤ε

λ−1u′ (λ) dλ+
u (ε)− 1

ε
− u (−ε)− 1

−ε

+
u (−δ)− 1

−δ
− u (δ)− 1

δ
.

→ − lim
δ↓0

∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ+
u (ε) + u (−ε)

ε
+ u′ (0)− u′ (0)

≤
∫
|λ|≤ε

|u′ (λ)|
|λ|

dλ+
u (ε) + u (−ε)

ε

= 2
∫ ε

0

|u′ (λ)|
λ

dλ+
u (ε) + u (−ε)

ε
<∞.

Passing the limit as δ ↓ 0 using the fact that u′ (λ) is an odd function, we
learn ∫

|λ|≤ε

1− u (λ)
λ2

dλ = lim
δ↓0

∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ+
u (ε) + u (−ε)

ε

≤ 2
∫ ε

0

|u′ (λ)|
λ

dλ+
u (ε) + u (−ε)

ε
<∞.
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14.5 Exercises

Exercise 14.2. For x, λ ∈ R, let

ϕ (λ, x) :=


eiλx−1−iλx

x2 if x 6= 0

− 1
2λ

2 if x = 0.

(It is easy to see that ϕ (λ, 0) = limx→0 ϕ (λ, x) and in fact that ϕ (λ, x) is
smooth in (λ, x) .) Let {xk}n

k=1 ⊂ R \ {0} , {Zk}n
k=1 ∪ {N} be independent

random variables with N
d= N (0, 1) and Zk being Poisson random variables

with mean ak > 0, i.e. P (Zk = n) = e−ak
an

k

n! for n = 0, 1, 2 . . . . With Y :=∑n
k=1 xk (Zk − ak) + αN, show

fY (λ) := E
[
eiλY

]
= exp

(∫
R
ϕ (λ, x) dν (x)

)
where ν is the discrete measure on (R,BR) given by

ν = α2δ0 +
n∑

k=1

akx
2
kδxk

. (14.27)

Exercise 14.3. To each finite and compactly supported measure, ν, on
(R,BR) show there exists a sequence {νn}∞n=1 of finitely supported finite mea-
sures on (R,BR) such that νn =⇒ ν. Here we say ν is compactly supported
if there exists M <∞ such that ν ({x : |x| ≥M}) = 0 and we say ν is finitely
supported if there exists a finite subset, Λ ⊂ R such that ν (R \ Λ) = 0. Please
interpret νn =⇒ ν to mean,∫

R
fdνn →

∫
R
fdν for all f ∈ BC (R) .

Exercise 14.4. Show that if ν is a finite measure on (R,BR) , then

f (λ) := exp
(∫

R
ϕ (λ, x) dν (x)

)
(14.28)

is the characteristic function of a probability measure on (R,BR) . Here is an
outline to follow. (You may find the calculus estimates in Section 14.8 to be
of help.)

1. Show f (λ) is continuous.
2. Now suppose that ν is compactly supported. Show, using Exercises 14.2,

14.3, and the continuity Theorem 14.21 that exp
(∫

R ϕ (λ, x) dν (x)
)

is the
characteristic function of a probability measure on (R,BR) .

3. For the general case, approximate ν by a sequence of finite measures with
compact support as in item 2.
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Exercise 14.5 (Exercise 2.3 in [14]). Let µ be the probability measure
on (R,BR) , such that µ ({n}) = p (n) = c 1

n2 ln|n|1|n|≥2 with c chosen so that∑
n∈Z p (n) = 1. Show that µ̂ ∈ C1 (R,C) even though

∫
R |x| dµ (x) = ∞. To

do this show,

g (t) :
∑
n≥2

1− cosnt
n2 lnn

is continuously differentiable.

Exercise 14.6 (Polya’s Criterioin [1, Problem 26.3 on p. 305.] and
[3, p. 104-107.]). Suppose ϕ (λ) is a non-negative symmetric continuous
function such that ϕ (0) = 1, ϕ (λ) is non-increasing and convex for λ ≥ 0.
Show ϕ (λ) = ν̂ (λ) for some probability measure, ν, on (R,BR) .

Solution to Exercise (14.6). Because of the continuity theorem and some
simple limiting arguments, it suffices to prove the result for a function ϕ as
pictured in Figure 14.1. From Example 14.32, we know that (1− |λ|)+ = µ̂ (λ)

Fig. 14.1. Here is a piecewise linear convex function. We will assume that dn > 0
for all n and that ϕ (λ) = 0 for λ sufficiently large. This last restriction may be
removed later by a limiting argument.

where µ is the probability measure,

dµ (x) :=
1
π

1− cosx
x2

dx.

For a > 0, let µa (A) = µ (aA) in which case µa (f) = µ
(
f
(
a−1·

))
for all

bounded measurable f and in particular, µ̂a (λ) = µ̂
(
a−1λ

)
. To finish the

proof it suffices to show that ϕ (λ) may be expressed as

ϕ (λ) =
∞∑

n=1

pnµ̂an (λ) =
∞∑

n=1

pn

(
1−

∣∣∣∣ λan

∣∣∣∣)
+

(14.29)
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for some an > 0 and pn ≥ 0 such that
∑∞

n=1 pn. Indeed, if this is the case we
may take, ν :=

∑∞
n=1 pnµan

.
It is pretty clear that we should take an = d1 + · · ·+dn for all n ∈ N. Since

we are assuming ϕ (λ) = 0 for large λ, there is a first index, N ∈ N, such that

0 = ϕ (aN ) = 1−
N∑

n=1

dnsn. (14.30)

Notice that sn = 0 for all n > N.
Since

ϕ′ (λ) = −
∞∑

n=k

pn
1
an

when ak−1 < λ < ak

we must require,

sk =
∞∑

n=k

pn
1
an

for all k

which then implies pk
1

ak
= sk − sk+1 or equivalently that

pk = ak (sk − sk+1) . (14.31)

Since ϕ is convex, we know that −sk ≤ −sk+1 or sk ≥ sk+1 for all k and
therefore pk ≥ 0 and pk = 0 for all k > N. Moreover,

∞∑
k=1

pk =
∞∑

k=1

ak (sk − sk+1) =
∞∑

k=1

aksk −
∞∑

k=2

ak−1sk

= a1s1 +
∞∑

k=2

sk (ak − ak−1) = d1s1 +
∞∑

k=2

skdk

=
∞∑

k=1

skdk = 1

where the last equality follows from Eq. (14.30). Working backwards with pk

defined as in Eq. (14.31) it is now easily shown that d
dλ

∑∞
n=1 pn

(
1−

∣∣∣ λ
an

∣∣∣)
+

=

ϕ′ (λ) for λ /∈ {a1, a2, . . . } and since both functions are equal to 1 at λ = 0
we may conclude that Eq. (14.29) is indeed valid.

14.6 Appendix: Bochner’s Theorem

Definition 14.35. A function f ∈ C(Rn,C) is said to have rapid decay or
rapid decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .
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Equivalently, for each N ∈ N there exists constants CN < ∞ such that
|f(x)| ≤ CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said
to have (at most) polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C < ∞ such that |f(x)| ≤ C(1 + |x|)N for all
x ∈ Rn.

Definition 14.36 (Schwartz Test Functions). Let S denote the space of
functions f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid
decay and let

‖f‖N,α = sup
x∈Rn

∣∣(1 + |x|)N∂αf(x)
∣∣

so that
S =

{
f ∈ C∞(Rn) : ‖f‖N,α <∞ for all N and α

}
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its
derivatives have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for
all multi-indices α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)

Definition 14.37. A function χ : Rn → C is said to be positive (semi)
definite iff the matrices A := {χ(ξk − ξj)}m

k,j=1 are positive definite for all
m ∈ N and {ξj}m

j=1 ⊂ Rn.

Proposition 14.38. Suppose that χ : Rn → C is said to be positive definite
with χ (0) = 1. If χ is continuous at 0 then in fact χ is uniformly continuous
on all of Rn.

Proof. Taking ξ1 = x, ξ2 = y and ξ3 = 0 in Definition 14.37 we conclude
that

A :=

 1 χ (x− y) χ (x)
χ (y − x) 1 χ (y)
χ (−x) χ (−y) 1

 =

 1 χ (x− y) χ (x)
χ̄ (x− y) 1 χ (y)
χ̄ (x) χ̄ (y) 1


is positive definite. In particular,

0 ≤ detA = 1 + χ (x− y)χ (y) χ̄ (x) + χ (x) χ̄ (x− y) χ̄ (y)

− |χ (x)|2 − |χ (y)|2 − |χ (x− y)|2 .

Combining this inequality with the identity,

|χ (x)− χ (y)|2 = |χ (x)|2 + |χ (y)|2 − χ (x) χ̄ (y)− χ (y) χ̄ (x) ,
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gives

0 ≤ 1− |χ (x− y)|2 + χ (x− y)χ (y) χ̄ (x) + χ (x) χ̄ (x− y) χ̄ (y)

−
{
|χ (x)− χ (y)|2 + χ (x) χ̄ (y) + χ (y) χ̄ (x)

}
= 1− |χ (x− y)|2 − |χ (x)− χ (y)|2

+ χ (x− y)χ (y) χ̄ (x)− χ (y) χ̄ (x) + χ (x) χ̄ (x− y) χ̄ (y)− χ (x) χ̄ (y)

= 1− |χ (x− y)|2 − |χ (x)− χ (y)|2 + 2 Re ((χ (x− y)− 1)χ (y) χ̄ (x))

≤ 1− |χ (x− y)|2 − |χ (x)− χ (y)|2 + 2 |χ (x− y)− 1| .

Hence we have

|χ (x)− χ (y)|2 ≤ 1− |χ (x− y)|2 + 2 |χ (x− y)− 1|
= (1− |χ (x− y)|) (1 + |χ (x− y)|) + 2 |χ (x− y)− 1|
≤ 4 |1− χ (x− y)|

which completes the proof.

Lemma 14.39. If χ ∈ C(Rn,C) is a positive definite function, then

1. χ(0) ≥ 0.
2. χ(−ξ) = χ(ξ) for all ξ ∈ Rn.
3. |χ(ξ)| ≤ χ(0) for all ξ ∈ Rn.
4. For all f ∈ S(Rd), ∫

Rn×Rn

χ(ξ − η)f(ξ)f(η)dξdη ≥ 0. (14.32)

Proof. Taking m = 1 and ξ1 = 0 we learn χ(0) |λ|2 ≥ 0 for all λ ∈ C
which proves item 1. Taking m = 2, ξ1 = ξ and ξ2 = η, the matrix

A :=
[

χ(0) χ(ξ − η)
χ(η − ξ) χ(0)

]
is positive definite from which we conclude χ(ξ−η) = χ(η − ξ) (since A = A∗

by definition) and

0 ≤ det
[

χ(0) χ(ξ − η)
χ(η − ξ) χ(0)

]
= |χ(0)|2 − |χ(ξ − η)|2 .

and hence |χ(ξ)| ≤ χ(0) for all ξ. This proves items 2. and 3. Item 4. follows
by approximating the integral in Eq. (14.32) by Riemann sums,∫

Rn×Rn

χ(ξ − η)f(ξ)f(η)dξdη

= lim
ε↓0

ε−2n
∑

ξ,η∈(εZn)∩[−ε−1,ε−1]n

χ(ξ − η)f(ξ)f(η) ≥ 0.

The details are left to the reader.
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Lemma 14.40. If µ is a finite positive measure on BRn , then χ := µ̂ ∈
C(Rn,C) is a positive definite function.

Proof. As has already been observed after Definition ??, the dominated
convergence theorem implies µ̂ ∈ C(Rn,C). Since µ is a positive measure (and
hence real),

µ̂(−ξ) =
∫

Rn

eiξ·xdµ(x) =
∫

Rn

e−iξ·xdµ(x) = µ̂(−ξ).

From this it follows that for any m ∈ N and {ξj}m
j=1 ⊂ Rn, the matrix

A := {µ̂(ξk − ξj)}m
k,j=1 is self-adjoint. Moreover if λ ∈ Cm,

m∑
k,j=1

µ̂(ξk − ξj)λkλ̄j =
∫

Rn

m∑
k,j=1

e−i(ξk−ξj)·xλkλ̄jdµ(x)

=
∫

Rn

m∑
k,j=1

e−iξk·xλke−iξj ·xλjdµ(x)

=
∫

Rn

∣∣∣∣∣
m∑

k=1

e−iξk·xλk

∣∣∣∣∣
2

dµ(x) ≥ 0

showing A is positive definite.

Theorem 14.41 (Bochner’s Theorem). Suppose χ ∈ C(Rn,C) is positive
definite function, then there exists a unique positive measure µ on BRn such
that χ = µ̂.

Proof. If χ(ξ) = µ̂(ξ), then for f ∈ S we would have∫
Rn

fdµ =
∫

Rn

(f∨)ˆ dµ =
∫

Rn

f∨(ξ)µ̂(ξ)dξ.

This suggests that we define

I(f) :=
∫

Rn

χ(ξ)f∨(ξ)dξ for all f ∈ S.

We will now show I is positive in the sense if f ∈ S and f ≥ 0 then I(f) ≥ 0.
For general f ∈ S we have

I(|f |2) =
∫

Rn

χ(ξ)
(
|f |2

)∨
(ξ)dξ =

∫
Rn

χ(ξ)
(
f∨Ff̄∨

)
(ξ)dξ

=
∫

Rn

χ(ξ)f∨(ξ − η)f̄∨(η)dηdξ =
∫

Rn

χ(ξ)f∨(ξ − η)f∨(−η)dηdξ

=
∫

Rn

χ(ξ − η)f∨(ξ)f∨(η)dηdξ ≥ 0. (14.33)
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For t > 0 let pt(x) := t−n/2e−|x|
2/2t ∈ S and define

It (x) := IFpt(x) := I(pt(x− ·)) = I(
∣∣∣√pt(x− ·)

∣∣∣2)
which is non-negative by Eq. (14.33) and the fact that

√
pt(x− ·) ∈ S. Using

[pt(x− ·)]∨ (ξ) =
∫

Rn

pt(x− y)eiy·ξdy =
∫

Rn

pt(y)ei(y+x)·ξdy

= eix·ξp∨t (ξ) = eix·ξe−t|ξ|2/2,

〈It, ψ〉 =
∫

Rn

I(pt(x− ·))ψ(x)dx

=
∫

Rn

(∫
Rn

χ(ξ) [pt(x− ·)]∨ (ξ)ψ(x)dξ
)

dx

=
∫

Rn

(∫
Rn

χ(ξ)eix·ξe−t|ξ|2/2ψ(x)dξ
)

dx

=
∫

Rn

χ(ξ)ψ∨(ξ)e−t|ξ|2/2dξ

which coupled with the dominated convergence theorem shows

〈IFpt, ψ〉 →
∫

Rn

χ(ξ)ψ∨(ξ)dξ = I(ψ) as t ↓ 0.

Hence if ψ ≥ 0, then I(ψ) = limt↓0〈It, ψ〉 ≥ 0.
Let K ⊂ R be a compact set and ψ ∈ Cc(R, [0,∞)) be a function such

that ψ = 1 on K. If f ∈ C∞c (R,R) is a smooth function with supp(f) ⊂ K,
then 0 ≤ ‖f‖∞ ψ − f ∈ S and hence

0 ≤ 〈I, ‖f‖∞ ψ − f〉 = ‖f‖∞ 〈I, ψ〉 − 〈I, f〉

and therefore 〈I, f〉 ≤ ‖f‖∞ 〈I, ψ〉. Replacing f by −f implies, −〈I, f〉 ≤
‖f‖∞ 〈I, ψ〉 and hence we have proved

|〈I, f〉| ≤ C(supp(f)) ‖f‖∞ (14.34)

for all f ∈ DRn := C∞c (Rn,R) where C(K) is a finite constant for each
compact subset of Rn. Because of the estimate in Eq. (14.34), it follows that
I|DRn has a unique extension I to Cc(Rn,R) still satisfying the estimates in
Eq. (14.34) and moreover this extension is still positive. So by the Riesz –
Markov Theorem ??, there exists a unique Radon – measure µ on Rn such
that such that 〈I, f〉 = µ(f) for all f ∈ Cc(Rn,R).

To finish the proof we must show µ̂(η) = χ(η) for all η ∈ Rn given

µ(f) =
∫

Rn

χ(ξ)f∨(ξ)dξ for all f ∈ C∞c (Rn,R). (14.35)
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Let f ∈ C∞c (Rn,R+) be a radial function such f(0) = 1 and f(x) is decreasing
as |x| increases. Let fε(x) := f(εx), then by Theorem ??,

F−1
[
e−iηxfε(x)

]
(ξ) = ε−nf∨(

ξ − η

ε
)

and therefore, from Eq. (14.35),∫
Rn

e−iηxfε(x)dµ(x) =
∫

Rn

χ(ξ)ε−nf∨(
ξ − η

ε
)dξ. (14.36)

Because
∫

Rn f
∨(ξ)dξ = Ff∨(0) = f(0) = 1, we may apply the approximate δ

– function Theorem ?? to Eq. (14.36) to find∫
Rn

e−iηxfε(x)dµ(x) → χ(η) as ε ↓ 0. (14.37)

On the the other hand, when η = 0, the monotone convergence theorem
implies µ(fε) ↑ µ(1) = µ(Rn) and therefore µ(Rn) = µ(1) = χ(0) < ∞. Now
knowing the µ is a finite measure we may use the dominated convergence
theorem to concluded

µ(e−iηxfε(x)) → µ(e−iηx) = µ̂(η) as ε ↓ 0

for all η. Combining this equation with Eq. (14.37) shows µ̂(η) = χ(η) for all
η ∈ Rn.

14.7 Appendix: A Multi-dimensional Weirstrass
Approximation Theorem

The following theorem is the multi-dimensional generalization of Theorem
4.23.

Theorem 14.42 (Weierstrass Approximation Theorem). Suppose that
K = [a1, b1] × . . . [ad, bd] with −∞ < ai < bi < ∞ is a compact rectangle in
Rd. Then for every f ∈ C(K,C), there exists polynomials pn on Rd such that
pn → f uniformly on K.

Proof. By a simple scaling and translation of the arguments of f we may
assume without loss of generality that K = [0, 1]d . By considering the real
and imaginary parts of f separately, it suffices to assume f ∈ C([0,1],R).

Given x ∈ K, let
{
Xn =

(
X1

n, . . . , X
d
n

)}∞
n=1

be i.i.d. random vectors with
values in Rd such that

P (Xn = ε) =
d∏

i=1

(1− xi)
1−εi xεi

i
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for all ε = (ε1, . . . , εd) ∈ {0, 1}d
. Since each Xj

n is a Bernoulli random variable
with P

(
Xj

n = 1
)

= xj , we know that

EXn = x and Var
(
Xj

n

)
= xj − x2

j = xj(1− xj).

As usual let Sn = Sn := X1 + · · ·+Xn ∈ Rd, then

E
[
Sn

n

]
= x and

E

[∥∥∥∥Sn

n
− x

∥∥∥∥2
]

=
d∑

j=1

E
(
Sj

n

n
− xj

)2

=
d∑

j=1

Var
(
Sj

n

n
− xj

)

=
d∑

j=1

Var
(
Sj

n

n

)
=

1
n2

·
d∑

j=1

n∑
k=1

Var
(
Xj

k

)

=
1
n

d∑
j=1

xj(1− xj) ≤
d

4n
.

This shows Sn/n→ x in L2 (P ) and hence by Chebyshev’s inequality, Sn/n
P→

x in and by a continuity theorem, f
(

Sn

n

) P→ f (x) as n→∞. This along with
the dominated convergence theorem shows

pn(x) := E
[
f

(
Sn

n

)]
→ f (x) as n→∞, (14.38)

where

pn(x) =
∑

ε(·)∈{0,1}d

f

(
ε (1) + · · ·+ ε (n)

n

)
P (X1 = ε (1) , . . . , Xn = ε (n))

=
∑

ε(·)∈{0,1}d

f

(
ε (1) + · · ·+ ε (n)

n

) n∏
k=1

d∏
i=1

(1− xi)
1−εi(k)

x
εi(k)
i

is a polynomial of degree nd. In fact more is true.
Suppose ε > 0 is given, M = sup {|f(x)| : x ∈ K} , and

δε = sup {|f(y)− f(x)| : x, y ∈ K and ‖y − x‖ ≤ ε} .

By uniform continuity of f on K, limε↓0 δε = 0. Therefore,

|f(x)− pn(x)| =
∣∣∣∣E(f(x)− f(

Sn

n
)
)∣∣∣∣ ≤ E

∣∣∣∣f(x)− f(
Sn

n
)
∣∣∣∣

≤E
[∣∣∣∣f(x)− f(

Sn

n
)
∣∣∣∣ : ‖Sn − x‖ > ε

]
+ E

[∣∣∣∣f(x)− f(
Sn

n
)
∣∣∣∣ : ‖Sn − x‖ ≤ ε

]
≤2MP (‖Sn − x‖ > ε) + δε. (14.39)
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By Chebyshev’s inequality,

P (‖Sn − x‖ > ε) ≤ 1
ε2

E ‖Sn − x‖2 =
d

4nε2
,

and therefore, Eq. (14.39) yields the estimate

sup
x∈K

|f (x)− pn (x)| ≤ 2dM
nε2

+ δε

and hence
lim sup

n→∞
sup
x∈K

|f (x)− pn (x)| ≤ δε → 0 as ε ↓ 0.

Here is a version of the complex Weirstrass approximation theorem.

Theorem 14.43 (Complex Weierstrass Approximation Theorem).
Suppose that K ⊂ Cd ∼= Rd × Rd is a compact rectangle. Then there ex-
ists polynomials in (z = x+ iy, z̄ = x− iy) , pn(z, z̄) for z ∈ Cd, such that
supz∈K |qn(z, z̄)− f(z)| → 0 as n→∞ for every f ∈ C (K,C) .

Proof. The mapping (x, y) ∈ Rd×Rd → z = x+iy ∈ Cd is an isomorphism
of vector spaces. Letting z̄ = x− iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on Rd×Rd may be
written as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x + iy, x − iy). Hence the result now follows from
Theorem 14.42.

Example 14.44. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of polyno-
mials in (z, z̄) restricted to S1. Then A is dense in C(S1). To prove this first
observe if f ∈ C

(
S1
)

then F (z) = |z| f( z
|z| ) for z 6= 0 and F (0) = 0 defines

F ∈ C(C) such that F |S1 = f. By applying Theorem 14.43 to F restricted to
a compact rectangle containing S1 we may find qn (z, z̄) converging uniformly
to F on K and hence on S1. Since z̄ = z−1 on S1, we have shown polynomials
in z and z−1 are dense in C(S1). This example generalizes in an obvious way
to K =

(
S1
)d ⊂ Cd.

Exercise 14.7. Use Example 14.44 to show that any 2π – periodic continuous
function, g : Rd → C, may be uniformly approximated by a trigonometric
polynomial of the form

p (x) =
∑
λ∈Λ

aλe
iλ·x

where Λ is a finite subset of Zd and aλ ∈ C for all λ ∈ Λ. Hint: start by
showing there exists a unique continuous function, f :

(
S1
)d → C such that

f
(
eix1 , . . . , eixd

)
= F (x) for all x = (x1, . . . , xd) ∈ Rd.
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Solution to Exercise (14.7). I will write out the solution when d = 1. For
z ∈ S1, define F (z) := f(eiθ) where θ ∈ R is chosen so that z = eiθ. Since
f is 2π – periodic, F is well defined since if θ solves eiθ = z then all other
solutions are of the form {θ + 2πn : n ∈ Z} . Since the map θ → eiθ is a local

homeomorphism, i.e. for any J = (a, b) with b−a < 2π, the map θ ∈ J φ→ J̃ :={
eiθ : θ ∈ J

}
⊂ S1 is a homeomorphism, it follows that F (z) = f ◦φ−1(z) for

z ∈ J̃ . This shows F is continuous when restricted to J̃ . Since such sets cover
S1, it follows that F is continuous. It now follows from Example 14.44 that
polynomials in z and z−1 are dense in C(S1). Hence for any ε > 0 there exists

p(z, z̄) =
∑

am,nz
mz̄n =

∑
am,nz

mz−n =
∑

am,nz
m−n

such that |F (z)− p(z, z̄)| ≤ ε for all z. Taking z = eiθ then implies there
exists bn ∈ C and N ∈ N such that

pε (θ) :=
N∑

n=−N

bne
inθ (14.40)

satisfies
sup

θ

∣∣f̄(θ)− p (θ)
∣∣ ≤ ε.

Exercise 14.8. Suppose f ∈ C (R,C) is a 2π – periodic function (i.e.
f (x+ 2π) = f (x) for all x ∈ R) and∫ 2π

0

f (x) einxdx = 0 for all n ∈ Z,

show again that f ≡ 0. Hint: Use Exercise 14.7.

Solution to Exercise (14.8). By assumption,
∫ 2π

0
f (θ) einθdθ = 0 for all n

and so by the linearity of the Riemann integral,

0 =
∫ 2π

0

f (θ) pε (θ) dθ. (14.41)

Choose trigonometric polynomials, pε, as in Eq. (14.40) such that pε (θ) →
f̄ (θ) uniformly in θ as ε ↓ 0. Passing to the limit in Eq. (14.41) implies

0 = lim
ε↓0

∫ 2π

0

f (θ) pε (θ) dθ =
∫ 2π

0

f (θ) f̄ (θ) dθ =
∫ 2π

0

|f (θ)|2 dθ.

From this it follows that f ≡ 0, for if |f (θ0)| > 0 for some θ0 then |f (θ)| ≥
ε > 0 for θ in a neighborhood of θ0 by continuity of f. It would then follow
that

∫ 2π

0
|f (θ)|2 dθ > 0.
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14.8 Appendix: Some Calculus Estimates

We end this section by gathering together a number of calculus estimates that
we will need in the future.

1. Taylor’s theorem with integral remainder states, if f ∈ Ck (R) and
z,∆ ∈ R or f be holomorphic in a neighborhood of z ∈ C and ∆ ∈ C be
sufficiently small so that f (z + t∆) is defined for t ∈ [0, 1] , then

f (z +∆) =
k−1∑
n=0

f (n) (z)
∆n

n!
+∆krk (z,∆) (14.42)

=
k−1∑
n=0

f (n) (z)
∆n

n!
+∆k

[
1
k!
f (k) (z) + ε (z,∆)

]
(14.43)

where

rk (z,∆) =
1

(k − 1)!

∫ 1

0

f (k) (z + t∆) (1− t)k−1
dt (14.44)

=
1
k!
f (k) (z) + ε (z,∆) (14.45)

and

ε (z,∆) =
1

(k − 1)!

∫ 1

0

[
f (k) (z + t∆)− f (k) (z)

]
(1− t)k−1

dt→ 0 as ∆→ 0.

(14.46)
To prove this, use integration by parts to show,

rk (z,∆) =
1
k!

∫ 1

0

f (k) (z + t∆)
(
− d

dt

)
(1− t)k

dt

= − 1
k!

[
f (k) (z + t∆) (1− t)k

]t=1

t=0
+
∆

k!

∫ 1

0

f (k+1) (z + t∆) (1− t)k
dt

=
1
k!
f (k) (z) +∆rk+1 (z,∆) ,

i.e.
∆krk (z,∆) =

1
k!
f (k) (z)∆k +∆k+1rk+1 (z,∆) .

The result now follows by induction.
2. For y ∈ R, sin y = y

∫ 1

0
cos (ty) dt and hence

|sin y| ≤ |y| . (14.47)

3. For y ∈ R we have

cos y = 1 + y2

∫ 1

0

− cos (ty) (1− t) dt ≥ 1 + y2

∫ 1

0

− (1− t) dt = 1− y2

2
.
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Equivalently put2,

g (y) := cos y − 1 + y2/2 ≥ 0 for all y ∈ R. (14.48)

4. Since

|ez − 1− z| =
∣∣∣∣z2

∫ 1

0

etz (1− t) dt
∣∣∣∣ ≤ |z|2

∫ 1

0

et Re z (1− t) dt,

if Re z ≤ 0, then
|ez − 1− z| ≤ |z|2 /2 (14.49)

and if Re z > 0 then

|ez − 1− z| ≤ eRe z |z|2 /2.

Combining these into one estimate gives,

|ez − 1− z| ≤ e0∨Re z · |z|
2

2
. (14.50)

5. Since eiy − 1 = iy
∫ 1

0
eitydt,

∣∣eiy − 1
∣∣ ≤ |y| and hence∣∣eiy − 1

∣∣ ≤ 2 ∧ |y| for all y ∈ R. (14.51)

Lemma 14.45. For z = reiθ with −π < θ < π and r > 0, let ln z = ln r+ iθ.
Then ln : C \ (−∞, 0] → C is a holomorphic function such that eln z = z3 and
if |z| < 1 then
2 Alternatively,

|sin y| =
����
Z y

0

cos xdx

���� ≤
����
Z y

0

|cos x| dx

���� ≤ |y|

and for y ≥ 0 we have,

cos y − 1 =

Z y

0

− sin xdx ≥
Z y

0

−xdx = −y2/2.

This last inequality may also be proved as a simple calculus exercise following
from; g (±∞) = ∞ and g′ (y) = 0 iff sin y = y which happens iff y = 0.

3 For the purposes of this lemma it suffices to define ln (1 + z) = −
P∞

n=1 (−z)n /n
and to then observe: 1)

d

dz
ln (1 + z) =

∞X
n=0

(−z)n =
1

1 + z
,

and 2) the functions 1 + z and eln(1+z) both solve

f ′ (z) =
1

1 + z
f (z) with f (0) = 1

and therefore eln(1+z) = 1 + z.
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|ln (1 + z)− z| ≤ |z|2 1
2 (1− |z|)2

for |z| < 1. (14.52)

Proof. Clearly eln z = z and ln z is continuous. Therefore by the inverse
function theorem for holomorphic functions, ln z is holomorphic and

z
d

dz
ln z = eln z d

dz
ln z = 1.

Therefore, d
dz ln z = 1

z and d2

dz2 ln z = − 1
z2 . So by Taylor’s theorem,

ln (1 + z) = z − z2

∫ 1

0

1
(1 + tz)2

(1− t) dt. (14.53)

If t ≥ 0 and |z| < 1, then∣∣∣∣ 1
(1 + tz)

∣∣∣∣ ≤ ∞∑
n=0

|tz|n =
1

1− t |z|
≤ 1

1− |z|
.

and therefore, ∣∣∣∣∣
∫ 1

0

1
(1 + tz)2

(1− t) dt

∣∣∣∣∣ ≤ 1
2 (1− |z|)2

. (14.54)

Eq. (14.52) is now a consequence of Eq. (14.53) and Eq. (14.54).

Lemma 14.46. For all y ∈ R and n ∈ N∪{0} ,∣∣∣∣∣eiy −
n∑

k=0

(iy)k

k!

∣∣∣∣∣ ≤ |y|n+1

(n+ 1)!
(14.55)

and in particular, ∣∣∣∣eiy −
(

1 + iy − y2

2!

)∣∣∣∣ ≤ y2 ∧ |y|
3

3!
. (14.56)

More generally for all n ∈ N we have∣∣∣∣∣eiy −
n∑

k=0

(iy)k

k!

∣∣∣∣∣ ≤ |y|n+1

(n+ 1)!
∧ 2 |y|n

n!
. (14.57)

Proof. By Taylor’s theorem (see Eq. (14.42) with f (y) = eiy, x = 0 and
∆ = y) we have∣∣∣∣∣eiy −

n∑
k=0

(iy)k

k!

∣∣∣∣∣ =
∣∣∣∣yn+1

n!

∫ 1

0

in+1eity (1− t)n
dt

∣∣∣∣
≤ |y|n+1

n!

∫ 1

0

(1− t)n
dt =

|y|n+1

(n+ 1)!
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which is Eq. (14.55). Using Eq. (14.55) with n = 1 implies∣∣∣∣eiy −
(

1 + iy − y2

2!

)∣∣∣∣ ≤ ∣∣eiy − (1 + iy)
∣∣+ ∣∣∣∣y2

2

∣∣∣∣
≤
∣∣∣∣y2

2

∣∣∣∣+ ∣∣∣∣y2

2

∣∣∣∣ = y2

and using Eq. (14.55) with n = 2 implies∣∣∣∣eiy −
(

1 + iy − y2

2!

)∣∣∣∣ ≤ |y|3

3!
.

Combining the last two inequalities completes the proof of Eq. (14.56). Equa-
tion (14.57) is proved similarly and hence will be omitted.

Lemma 14.47. If X is a square integrable random variable, then

f (λ) := E
[
eiλX

]
= 1 + iλEX − λ2

2!
E
[
X2
]
+ r (λ)

where

r (λ) := λ2E

[
X2 ∧ |λ| |X|

3

3!

]
= λ2ε (λ)

and

ε (λ) := E

[
X2 ∧ |λ| |X|

3

3!

]
→ 0 as λ→ 0. (14.58)

Proof. Using Eq. (14.56) with y = λX and taking expectations implies,∣∣∣∣f (λ)−
(

1 + iλEX − λ2

2!
E
[
X2
])∣∣∣∣ ≤ E

∣∣∣∣eiλX −
(

1 + iλX − λ2X
2

2!

)∣∣∣∣
≤ λ2E

[
X2 ∧ |λ| |X|

3

3!

]
=: λ2ε (λ) .

The DCT, with X2 ∈ L1 (P ) being the dominating function, allows us to
conclude that limε→0 ε (λ) = 0.



15

Weak Convergence of Random Sums

Throughout this chapter, we will assume the following standing notation un-
less otherwise stated. For each n ∈ N, let {Xn,k}n

k=1 be independent random
variables and let

Sn :=
n∑

k=1

Xn,k. (15.1)

Until further notice we are going to assume E [Xn,k] = 0, σ2
n,k = E

[
X2

n,k

]
<

∞, and Var (Sn) =
∑n

k=1 σ
2
n,k = 1. Also let

fnk (λ) := E
[
eiλXn,k

]
(15.2)

denote the characteristic function of Xn,k.

Example 15.1. Suppose {Xn}∞n=1 are mean zero square integrable random
variables with σ2

k = Var (Xn) . If we let s2n :=
∑n

k=1 Var (Xk) =
∑n

k=1 σ
2
k,

σ2
n,k := σ2

k/s
2
n, and Xn,k := Xk/sn, then {Xn,k}n

k=1 satisfy the above hypoth-
esis and Sn = 1

sn

∑n
k=1Xk.

Our main interest in this chapter is to consider the limiting behavior of
Sn as n → ∞. In order to do this, it will be useful to put conditions on the
{Xn,k} such that no one term dominates sum defining the sum defining Sn in
Eq. (15.1) in the limit as n→∞.

Definition 15.2. We say that {Xn,k} satisfies the Lindeberg Condition
(LC) iff

lim
n→∞

n∑
k=1

E
[
X2

n,k : |Xn,k| > t
]

= 0 for all t > 0. (15.3)

We say {Xn,k} satisfies condition (M) if

Dn := max
{
σ2

n,k : k ≤ n
}
→ 0 as n→∞, (15.4)

and we say {Xn,k} is uniformly asymptotic negligibility (UAN) if for
all ε > 0,

lim
n→∞

max
k≤n

P (|Xn,k| > ε) = 0. (15.5)

Remark 15.3. The reader should observe that in order for condition (M) to
hold in the setup in Example 15.1 it is necessary that limn→∞ s2n = ∞.
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Lemma 15.4. Let us continue the notation in Example 15.1. Then {Xn,k := Xk/sn}
satisfies (LC) if either of two conditions hold;

1. {Xn}∞n=1 are i.i.d.
2. The {Xn}∞n=1 satisfy Liapunov condition; there exists some α > 2 such

that

lim
n→∞

∑n
k=1 E |Xk|α

sα
n

= 0. (15.6)

More generally, if {Xn,k} satisfies the Liapunov condition,

lim
n→∞

n∑
k=1

E
[
X2

n,kϕ (|Xn,k|)
]

= 0

where ϕ : [0,∞) → [0,∞) is a non-decreasing function such that ϕ (t) > 0 for
all t > 0, then {Xn,k} satisfies (LC) .

Proof. 1. If {Xn}∞n=1 are i.i.d., then sn =
√
nσ where σ2 = EX2

1 and

n∑
k=1

E
[
X2

n,k : |Xn,k| > t
]

=
1
s2n

n∑
k=1

E
[
X2

k : |Xk| > snt
]

(15.7)

=
1
nσ2

n∑
k=1

E
[
X2

1 : |X1| >
√
nσt
]

=
1
σ2

E
[
X2

1 : |X1| >
√
nσt
]

which, by DCT, tends to zero as n→∞.
2. Assuming Eq. (15.6), then for any t > 0,

n∑
k=1

E
[
X2

n,k : |Xn,k| > t
]
≤

n∑
k=1

E

[
X2

n,k

∣∣∣∣Xn,k

t

∣∣∣∣α−2

: |Xn,k| > t

]

≤ 1
tα−2

n∑
k=1

E [|Xn,k|α] =
1

tα−2sα
n

n∑
k=1

E |Xk|α → 0.

For the last assertion, working as above we have

n∑
k=1

E
[
X2

n,k : |Xn,k| > t
]
≤

n∑
k=1

E
[
X2

n,k

ϕ (|Xn,k|)
ϕ (t)

: |Xn,k| > t

]

≤ 1
ϕ (t)

n∑
k=1

E
[
X2

n,kϕ (|Xn,k|)
]
→ 0

as n→∞.

Lemma 15.5. Let {Xn,k}∞n=1 be as above, then (LC) =⇒ (M) =⇒
(UAN) .
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Proof. For k ≤ n,

σ2
n,k = E

[
X2

n,k

]
= E

[
X2

n,k1|Xn,k|≤t

]
+ E

[
X2

n,k1|Xn,k|>t

]
≤ t2 + E

[
X2

n,k1|Xn,k|>t

]
≤ t2 +

n∑
m=1

E
[
X2

n,m1|Xn,m|>t

]
and therefore using (LC) we find

lim
n→∞

max
k≤n

σ2
n,k ≤ t2 for all t > 0.

This clearly implies (M) holds. The assertion that (M) implies (UAN) follows
by Chebyschev’s inequality,

max
k≤n

P (|Xn,k| > ε) ≤ max
k≤n

1
ε2

E
[
|Xn,k|2 : |Xn,k| > ε

]
≤ 1
ε2

n∑
k=1

E
[
|Xn,k|2 : |Xn,k| > ε

]
→ 0.

In fact the same argument shows that (M) implies

n∑
k=1

P (|Xn,k| > ε) ≤ 1
ε2

n∑
k=1

E
[
|Xn,k|2 : |Xn,k| > ε

]
→ 0.

We will need the following lemma for our subsequent applications of the
continuity theorem.

Lemma 15.6. Suppose that ai, bi ∈ C with |ai| , |bi| ≤ 1 for i = 1, 2, . . . , n.
Then ∣∣∣∣∣

n∏
i=1

ai −
n∏

i=1

bi

∣∣∣∣∣ ≤
n∑

i=1

|ai − bi| .

Proof. Let a :=
∏n−1

i=1 ai and b :=
∏n−1

i=1 bi and observe that |a| , |b| ≤ 1
and that

|ana− bnb| ≤ |ana− anb|+ |anb− bnb|
= |an| |a− b|+ |an − bn| |b|
≤ |a− b|+ |an − bn| .

The proof is now easily completed by induction on n.

Theorem 15.7 (Lindeberg-Feller CLT (I)). Suppose {Xn,k} satisfies
(LC) , then

Sn =⇒ N (0, 1) . (15.8)

(See Theorem 15.11 for a converse to this theorem.)
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To prove this theorem we must show

E
[
eiλSn

]
→ e−λ2/2 as n→∞. (15.9)

Before starting the formal proof, let me give an informal explanation for Eq.
(15.9). Using

fnk (λ) ∼ 1− λ2

2
σ2

nk,

we might expect

E
[
eiλSn

]
=

n∏
k=1

fnk (λ) = e
Pn

k=1 ln fnk(λ)

= e
Pn

k=1 ln(1+fnk(λ)−1)

(A)∼ e
Pn

k=1(fnk(λ)−1)

(
=

n∏
k=1

e(fnk(λ)−1)

)
(B)∼ e

Pn
k=1−

λ2
2 σ2

nk = e−
λ2
2 .

The question then becomes under what conditions are these approximations
valid. It turns out that approximation (A), namely that

lim
n→∞

∣∣∣∣∣
n∏

k=1

fnk (λ)− exp

(
n∑

k=1

(fnk (λ)− 1)

)∣∣∣∣∣ = 0, (15.10)

is valid if condition (M) holds, see Lemma 15.9 below. It is shown in the
estimate Eq. (15.11) below that the approximation (B) is valid, i.e.

lim
n→∞

n∑
k=1

(fnk (λ)− 1) = −1
2
λ2,

if (LC) is satisfied. These observations would then constitute a proof of The-
orem 15.7. The proof given below of Theorem 15.7 will not quite follow this
route and will not use Lemma 15.9 directly. However, this lemma will be used
in the proofs of Theorems 15.11 and 15.14.

Proof. Now on to the formal proof of Theorem 15.7. Since

E
[
eiλSn

]
=

n∏
k=1

fnk (λ) and e−λ2/2 =
n∏

k=1

e−λ2σ2
n,k/2,

we may use Lemma 15.6 to conclude,∣∣∣E [eiλSn
]
− e−λ2/2

∣∣∣ ≤ n∑
k=1

∣∣∣fnk (λ)− e−λ2σ2
n,k/2

∣∣∣ = n∑
k=1

(An,k +Bn,k)
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where

An,k :=

∣∣∣∣∣fnk (λ)−

[
1−

λ2σ2
n,k

2

]∣∣∣∣∣ and

Bn,k :=

∣∣∣∣∣
[
1−

λ2σ2
n,k

2

]
− e−λ2σ2

n,k/2

∣∣∣∣∣ .
Now, using Lemma 14.47,

An,k =
∣∣∣∣E [eiλXn,k − 1 +

λ2

2
X2

n,k

]∣∣∣∣ ≤ E
∣∣∣∣eiλXn,k − 1 +

λ2

2
X2

n,k

∣∣∣∣
≤ λ2E

[
X2

n,k ∧
|λ| |Xn,k|3

3!

]

≤ λ2E

[
X2

n,k ∧
|λ| |Xn,k|3

3!
: |Xn,k| ≤ ε

]
+ λ2E

[
X2

n,k ∧
|λ| |Xn,k|3

3!
: |Xn,k| > ε

]

≤ λ2E

[
|λ| |Xn,k|3

3!
: |Xn,k| ≤ ε

]
+ λ2E

[
X2

n,k : |Xn,k| > ε
]

≤ λ2

3!
|λ| ε · E

[
|Xn,k|2 : |Xn,k| ≤ ε

]
+ λ2E

[
X2

n,k : |Xn,k| > ε
]

=
|λ|3 ε

6
σ2

n,k + λ2E
[
X2

n,k : |Xn,k| > ε
]
.

From this estimate and (LC) it follows that

lim sup
n→∞

n∑
k=1

An,k ≤ lim sup
n→∞

(
λ3ε

6
+ λ2

n∑
k=1

E
[
X2

n,k : |Xn,k| > ε
])

=
λ3ε

6
(15.11)

and since ε > 0 is arbitrary, we may conclude that lim supn→∞
∑n

k=1An,k = 0.
To estimate

∑n
k=1Bn,k, we use the estimate, |e−u − 1 + u| ≤ u2/2 valid

for u ≥ 0 (see Eq. 14.49 with z = −u). With this estimate we find,

n∑
k=1

Bn,k =
n∑

k=1

∣∣∣∣∣
[
1−

λ2σ2
n,k

2

]
− e−λ2σ2

n,k/2

∣∣∣∣∣
≤

n∑
k=1

1
2

[
λ2σ2

n,k

2

]2

=
λ4

8

n∑
k=1

σ4
n,k

≤ λ4

8
max
k≤n

σ2
n,k

n∑
k=1

σ2
n,k =

λ4

8
max
k≤n

σ2
n,k → 0,

wherein we have used (M) (which is implied by (LC)) in taking the limit as
n→∞.
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As an application of Theorem 15.7 we can give half of the proof of Theorem
12.12.

Theorem 15.8 (Converse assertion in Theorem 12.12). If {Xn}∞n=1 are
independent random variables and the random series,

∑∞
n=1Xn, is almost

surely convergent, then for all c > 0 the following three series converge;

1.
∑∞

n=1 P (|Xn| > c) <∞,
2.
∑∞

n=1 Var
(
Xn1|Xn|≤c

)
<∞, and

3.
∑∞

n=1 E
(
Xn1|Xn|≤c

)
converges.

Proof. Since
∑∞

n=1Xn is almost surely convergent, it follows that
limn→∞Xn = 0 a.s. and hence for every c > 0, P ({|Xn| ≥ c i.o.}) =
0. According the Borel zero one law this implies for every c > 0 that∑∞

n=1 P (|Xn| > c) < ∞. Since Xn → 0 a.s., {Xn} and
{
Xc

n := Xn1|Xn|≤c

}
are tail equivalent for all c > 0. In particular

∑∞
n=1X

c
n is almost surely con-

vergent for all c > 0.
Fix c > 0, let Yn := Xc

n − E [Xc
n] and let

s2n = Var (Y1 + · · ·+ Yn) =
n∑

k=1

Var (Yk) =
n∑

k=1

Var (Xc
k) =

n∑
k=1

Var
(
Xk1|Xk|≤c

)
.

For the sake of contradictions, suppose s2n → ∞ as n → ∞. Since |Yk| ≤ 2c,
it follows that

∑n
k=1 E

[
Y 2

k 1|Yk|>snt

]
= 0 for all sufficiently large n and hence

lim
n→∞

1
s2n

n∑
k=1

E
[
Y 2

k 1|Yk|>snt

]
= 0,

i.e. {Yn,k := Yk/sn}∞n=1 satisfies (LC) – see Examples 15.1 and Remark 15.3.
So by the central limit Theorem 15.7, it follows that

1
s2n

n∑
k=1

(Xc
n − E [Xc

n]) =
1
s2n

n∑
k=1

Yk =⇒ N (0, 1) .

On the other hand we know

lim
n→∞

1
s2n

n∑
k=1

Xc
n =

∑∞
k=1X

c
k

limn→∞ s2n
= 0 a.s.

and so by Slutsky’s theorem,

1
s2n

n∑
k=1

E [Xc
n] =

1
s2n

n∑
k=1

Xc
n −

1
s2n

n∑
k=1

Yk =⇒ N (0, 1) .

But it is not possible for constant (i.e. non-random) variables, cn :=
1

s2
n

∑n
k=1 E [Xc

n] , to converge to a non-degenerate limit. (Think about this ei-
ther in terms of characteristic functions or in terms of distribution functions.)
Thus we must conclude that
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∞∑
n=1

Var
(
Xn1|Xn|≤c

)
=
∞∑

n=1

Var (Xc
n) = lim

n→∞
s2n <∞.

An application of Kolmogorov’s convergence criteria (Theorem 12.11) im-
plies that

∞∑
n=1

(Xc
n − E [Xc

n]) is convergent a.s.

Since we already know that
∑∞

n=1X
c
n is convergent almost surely we may now

conclude
∑∞

n=1 E
(
Xn1|Xn|≤c

)
is convergent.

Let us now turn to the converse of Theorem 15.7, see Theorem 15.11 below.

Lemma 15.9. Suppose that {Xn,k} satisfies property (M) , i.e. Dn :=
maxk≤n σ

2
n,k → 0. If we define,

ϕn,k (λ) := fn,k (λ)− 1 = E
[
eiλXn,k − 1

]
,

then;

1. limn→∞maxk≤n |ϕn,k (λ)| = 0 and
2. fSn

(λ)−
∏n

k=1 e
ϕn,k(λ) → 0 as n→∞, where

fSn
(λ) = E

[
eiλSn

]
=

n∏
k=1

fn,k (λ) .

Proof. For the first item we estimate,∣∣EeiλX − 1
∣∣ ≤ E

∣∣eiλX − 1
∣∣ ≤ E [2 ∧ |λX|]

= E [2 ∧ |λX| : |X| ≥ ε] + E [2 ∧ |λX| : |X| < ε]

≤ 2P [|X| ≥ ε] + |λ| ε ≤ 2
ε2

E |X|2 + |λ| ε

Replacing X by Xn,k and in the above inequality shows

|ϕn,k (λ)| = |fn,k (λ)− 1| ≤ 2
ε2

E |Xn,k|2 + |λ| ε =
2σ2

n,k

ε2
+ |λ| ε.

Therefore,

lim sup
n→∞

max
k≤n

|ϕn,k (λ)| ≤ lim sup
n→∞

[
2Dn

ε2
+ |λ| ε

]
= |λ| ε→ 0 as ε ↓ 0.

For the second item, observe that Reϕn,k (λ) = Re fn,k (λ) − 1 ≤ 0 and
hence ∣∣∣eϕn,k(λ)

∣∣∣ = eRe ϕn,k(λ) ≤ e0 = 1

and hence we have from Lemma 15.6 and the estimate (14.49),
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n∏

k=1

fn,k (λ)−
n∏

k=1

eϕn,k(λ)

∣∣∣∣∣ ≤
n∑

k=1

∣∣∣fn,k (λ)− eϕn,k(λ)
∣∣∣

=
n∑

k=1

∣∣∣eϕn,k(λ) − 1− ϕn,k (λ)
∣∣∣

≤ 1
2

n∑
k=1

|ϕn,k (λ)|2

≤ 1
2

max
k≤n

|ϕn,k (λ)| ·
n∑

k=1

|ϕn,k (λ)| .

Moreover since EXn,k = 0, the estimate in Eq. (14.49) implies

n∑
k=1

|ϕn,k (λ)| =
n∑

k=1

∣∣E [eiλXn,k − 1− iλXn,k

]∣∣
≤

n∑
k=1

∣∣∣∣E [1
2
|λXn,k|2

]∣∣∣∣ ≤ λ2

2

n∑
k=1

σ2
n,k =

λ2

2
.

Thus we have shown,∣∣∣∣∣
n∏

k=1

fn,k (λ)−
n∏

k=1

eϕn,k(λ)

∣∣∣∣∣ ≤ λ2

4
max
k≤n

|ϕn,k (λ)|

and the latter expression tends to zero by item 1.

Lemma 15.10. Let X be a random variable such that EX2 <∞ and EX = 0.
Further let f (λ) := E

[
eiλX

]
and u (λ) := Re (f (λ)− 1) . Then for all c > 0,

u (λ) +
λ2

2
E
[
X2
]
≥ E

[
X2

[
λ2

2
− 2
c2

]
: |X| > c

]
(15.12)

or equivalently

E
[
cosλX − 1 +

λ2

2
X2

]
≥ E

[
X2

[
λ2

2
− 2
c2

]
: |X| > c

]
. (15.13)

In particular if we choose |λ| ≥
√

6/ |c| , then

E
[
cosλX − 1 +

λ2

2
X2

]
≥ 1
c2

E
[
X2 : |X| > c

]
. (15.14)

Proof. For all λ ∈ R, we have (see Eq. (14.48)) cosλX − 1 + λ2

2 X
2 ≥ 0

and cosλX − 1 ≥ −2. Therefore,
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u (λ) +
λ2

2
E
[
X2
]

= E
[
cosλX − 1 +

λ2

2
X2

]
≥ E

[
cosλX − 1 +

λ2

2
X2 : |X| > c

]
≥ E

[
−2 +

λ2

2
X2 : |X| > c

]
≥ E

[
−2

|X|2

c2
+
λ2

2
X2 : |X| > c

]
which gives Eq. (15.12).

Theorem 15.11 (Lindeberg-Feller CLT (II)). Suppose {Xn,k} satisfies
(M) and also the central limit theorem in Eq. (15.8) holds, then {Xn,k} satis-
fies (LC) . So under condition (M) , Sn converges to a normal random variable
iff (LC) holds.

Proof. By assumption we have

lim
n→∞

max
k≤n

σ2
n,k = 0 and lim

n→∞

n∏
k=1

fn,k (λ) = e−λ2/2.

The second inequality combined with Lemma 15.9 implies,

lim
n→∞

e
Pn

k=1 ϕn,k(λ) = lim
n→∞

n∏
k=1

eϕn,k(λ) = e−λ2/2.

Taking the modulus of this equation then implies,

lim
n→∞

e
Pn

k=1 Re ϕn,k(λ) = lim
n→∞

∣∣∣ePn
k=1 ϕn,k(λ)

∣∣∣ = e−λ2/2

from which we may conclude

lim
n→∞

n∑
k=1

Reϕn,k (λ) = −λ2/2.

We may write this last limit as

lim
n→∞

n∑
k=1

E
[
cos (λXn,k)− 1 +

λ2

2
X2

n,k

]
= 0

which by Lemma 15.10 implies

lim
n→∞

n∑
k=1

E
[
X2

n,k : |Xn,k| > c
]

= 0

for all c > 0 which is (LC) .
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15.1 Infinitely Divisible and Stable Symmetric
Distributions

To get some indication as to what we might expect to happen when the Lin-
deberg condition is relaxed, we consider the following Poisson limit theorem.

Theorem 15.12 (A Poisson Limit Theorem). For each n ∈ N, let
{Xn,k}n

k=1 be independent Bernoulli random variables with P (Xn,k = 1) =
pn,k and P (Xn,k = 0) = qn,k := 1− pn,k. Suppose;

1. limn→∞
∑n

k=1 pn,k = a ∈ (0,∞) and
2. limn→∞max1≤k≤n pn,k = 0. (So no one term is dominating the sums in

item 1.)

Then Sn =
∑n

k=1Xn,k =⇒ Z where Z is a Poisson random variable with
mean a. (See Section 2.6 of Durrett[3] for more on this theorem.)

Proof. Recall from Example 14.14 that for any a > 0,

E
[
eiλZ

]
= exp

(
a
(
eiλ − 1

))
.

Since
E
[
eiλXn,k

]
= eiλpn,k + (1− pn,k) = 1 + pn,k

(
eiλ − 1

)
,

it follows that

E
[
eiλSn

]
=

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]
.

Since 1+pn,k

(
eiλ − 1

)
lies on the line segment joining 1 to eiλ, it follows that∣∣1 + pn,k

(
eiλ − 1

)∣∣ ≤ 1.

Hence we may apply Lemma 15.6 to find
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n∏

k=1

exp
(
pn,k

(
eiλ − 1

))
−

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]∣∣∣∣∣
≤

n∑
k=1

∣∣exp
(
pn,k

(
eiλ − 1

))
−
[
1 + pn,k

(
eiλ − 1

)]∣∣
=

n∑
k=1

|exp (zn,k)− [1 + zn,k]|

where
zn,k = pn,k

(
eiλ − 1

)
.

Since Re zn,k = pn,k (cosλ− 1) ≤ 0, we may use the calculus estimate in Eq.
(14.49) to conclude,∣∣∣∣∣

n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
−

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]∣∣∣∣∣
≤ 1

2

n∑
k=1

|zn,k|2 ≤
1
2

max
1≤k≤n

|zn,k|
n∑

k=1

|zn,k|

≤ 2 max
1≤k≤n

pn,k

n∑
k=1

pn,k.

Using the assumptions, we may conclude∣∣∣∣∣
n∏

k=1

exp
(
pn,k

(
eiλ − 1

))
−

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]∣∣∣∣∣→ 0 as n→∞.

Since

n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
= exp

(
n∑

k=1

pn,k

(
eiλ − 1

))
→ exp

(
a
(
eiλ − 1

))
,

we have shown

lim
n→∞

E
[
eiλSn

]
= lim

n→∞

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]
= lim

n→∞

n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
= exp

(
a
(
eiλ − 1

))
.

The result now follows by an application of the continuity Theorem 14.21.

Remark 15.13. Keeping the notation in Theorem 15.12, we have

E [Xn,k] = pn,k and Var (Xn,k) = pn,k (1− pn,k)
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and

s2n :=
n∑

k=1

Var (Xn,k) =
n∑

k=1

pn,k (1− pn,k) .

Under the assumptions of Theorem 15.12, we see that s2n → a as n → ∞.

Let Yn,k := Xn,k−pn,k

sn
so that E [Yn,k] = 0 and σ2

n,k := Var (Yn,k) =
1

s2
n

Var (Xn,k) = 1
s2

n
pn,k (1− pn,k) which satisfies condition (M) . Let us ob-

serve that, for large n,

E
[
Y 2

n,k : |Yn,k| > t
]

= E
[
Y 2

n,k :
∣∣∣∣Xn,k − pn,k

sn

∣∣∣∣ > t

]
= E

[
Y 2

n,k : |Xn,k − pn,k| > snt
]

≥ E
[
Y 2

n,k : |Xn,k − pn,k| > 2at
]

= E
[
Y 2

n,k : Xn,k = 1
]

= pn,k

(
1− pn,k

sn

)2

from which it follows that

lim
n→∞

n∑
k=1

E
[
Y 2

n,k : |Yn,k| > t
]

= lim
n→∞

n∑
k=1

pn,k

(
1− pn,k

sn

)2

= a.

Therefore {Yn,k} do not satisfy (LC) . Nevertheless we have

n∑
k=1

Yn,k =
∑n

k=1Xn,k −
∑n

k=1 pn,k

sn
=⇒ Z − a

a

where Z is a Poisson random variable with mean a. Notice that the limit is
not a normal random variable.

We wish to characterize the possible limiting distributions of sequences
{Sn}∞n=1 when we relax the Lindeberg condition (LC) to condition (M) . We
have the following theorem.

Theorem 15.14. Suppose {Xn,k}n
k=1 satisfy property (M) and Sn :=

∑n
k=1Xn,k =⇒

L for some random variable L. Then the characteristic function fL (λ) :=
E
[
eiλL

]
must be of the form,

fL (λ) = exp
(∫

R

eiλx − 1− iλx

x2
dν (x)

)
where ν – is a finite positive measure on (R,BR) such that ν (R) ≤ 1. (Recall
that you proved in Exercise 14.4 that exp

(∫
R

eiλx−1−iλx
x2 dν (x)

)
is always the

characteristic function of a probability measure.)
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Proof. As before, let fn,k (λ) = E
[
eiλXn,k

]
and ϕn,k (λ) := fn,k (λ) − 1.

By the continuity theorem we are assuming

lim
n→∞

fSn
(λ) = lim

n→∞

n∏
k=1

fn,k (λ) = f (λ)

where f (λ) is continuous at λ = 0. We are also assuming property (M) , i.e.

lim
n→∞

max
k≤n

σ2
n,k = 0.

Under condition (M) , we expect fn,k (λ) ∼= 1 for n large. Therefore we expect

fn,k (λ) = eln fn,k(λ) = eln[1+(fn,k(λ)−1)] ∼= e(fn,k(λ)−1)

and hence that

E
[
eiλSn

]
=

n∏
k=1

fn,k (λ) ∼=
n∏

k=1

e(fn,k(λ)−1) = exp

(
n∑

k=1

(fn,k (λ)− 1)

)
.

(15.15)
This is in fact correct, since Lemma 15.9 indeed implies

lim
n→∞

[
E
[
eiλSn

]
− exp

(
n∑

k=1

(fn,k (λ)− 1)

)]
= 0. (15.16)

Since E [Xn,k] = 0,

fn,k (λ)− 1 = E
[
eiλXn,k − 1

]
= E

[
eiλXn,k − 1− iλXn,k

]
=
∫

R

(
eiλx − 1− iλx

)
dµn,k (x)

where µn,k := P ◦X−1
n,k is the law of Xn,k. Therefore we have

exp

(
n∑

k=1

(fn,k (λ)− 1)

)
= exp

(
n∑

k=1

∫
R

(
eiλx − 1− iλx

)
dµn,k (x)

)

= exp

(∫
R

(
eiλx − 1− iλx

) n∑
k=1

dµn,k (x)

)

= exp
(∫

R

(
eiλx − 1− iλx

)
dν∗n (x)

)
(15.17)

where ν∗n :=
∑n

k=1 µn,k. Let us further observe that∫
R
x2dν∗n (x) =

n∑
k=1

∫
R
x2dµn,k (x) =

n∑
k=1

σ2
n,k = 1.
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Hence if we define dν∗ (x) := x2dν∗n (x) , then νn is a probability measure and
we have from Eqs. (15.16) and Eq. (15.17) that∣∣∣∣fSn

(λ)− exp
(∫

R

eiλx − 1− iλx

x2
dνn (x)

)∣∣∣∣→ 0. (15.18)

Since h (x) := eiλx−1−iλx
x2 is a continuous function of R̄ with h (±∞) = 0, there

is a subsequence, {nl} of {n} such that νnl
(h) → ν̄ (h) for some probability

measure on
(
R̄,BR̄

)
. Combining this with Eq. (15.18) allows us to conclude,

fL (λ) = lim
l→∞

E
[
eiλSnl

]
= lim

l→∞
exp

(∫
R

(
eiλx − 1− iλx

)
dν∗nl

(x)
)

= exp
(∫

R

eiλx − 1− iλx

x2
dν (x)

)
.

Definition 15.15. We say that {Xn,k}n
k=1 has bounded variation (BV ) iff

sup
n

Var (Sn) = sup
n

n∑
k=1

σ2
n,k <∞. (15.19)

Corollary 15.16. Suppose {Xn,k}n
k=1 satisfy properties (M) and (BV ) . If

Sn :=
∑n

k=1Xn,k =⇒ L for some random variable L, then

fL (λ) = exp
(∫

R

eiλx − 1− iλx

x2
dν (x)

)
(15.20)

where ν – is a finite positive measure on (R,BR) .

Proof. Let s2n := Var (Sn) . If limn→∞ sn = 0, then Sn → 0 in L2 and
hence weakly, therefore Eq. (15.20) holds with ν ≡ 0. So let us now sup-
pose limn→∞ sn 6= 0. Since {sn}∞n=1 is bounded, we may by passing to a
subsequence if necessary, assume limn→∞ sn = s > 0. By replacing Xn,k

by Xn,k/sn and hence Sn by Sn/sn, we then know by Slutsky’s theorem that
Sn/sn =⇒ L/s. Hence by an application of Theorem 15.14, we may conclude

fL (λ/s) = fL/s (λ) = exp
(∫

R

eiλx − 1− iλx

x2
dν (x)

)
where ν – is a finite positive measure on (R,BR) such that ν (R) ≤ 1. Letting
λ→ sλ in this expression then implies

fL (λ) = exp
(∫

R

eiλsx − 1− iλsx

x2
dν (x)

)
= exp

(∫
R

eiλsx − 1− iλsx

(sx)2
s2dν (x)

)

= exp
(∫

R

eiλx − 1− iλx

x2
dνs (x)

)
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where νs is the finite measure on (R,BR) defined by

νs (A) := s2ν
(
s−1A

)
for all A ∈ BR.

The reader should observe that

eiλx − 1− iλx

x2
=

1
x2

∞∑
k=2

(iλx)k

k!
=

1
x2

∞∑
k=2

ik

k!
λkxk−2

and hence (λ, x) → eiλx−1−iλx
x2 is smooth. Moreover,

d

dλ

eiλx − 1− iλx

x2
=
ixeiλx − ix

x2
= i

eiλx − 1
x

and
d2

dλ2

eiλx − 1− iλx

x2
= i

ixeiλx

x
= −eiλx.

Using these remarks and the fact that ν (R) <∞, it is easy to see that

f ′L (λ) =
(∫

R
i
eiλx − 1

x
dνs (x)

)
fL (λ)

and

f ′′L (λ) =

(∫
R
−eiλxdνs (x) +

[(∫
R
i
eiλx − 1

x
dνs (x)

)2
])

fL (λ)

and in particular, f ′L (0) = 0 and f ′′L (0) = −νs (R) . Therefore the probability
measure, µ, on (R,BR) such that µ̂ (λ) = fL (λ) has mean zero and variance,
νs (R) <∞.

Definition 15.17. A probability distribution, µ, on (R,BR) is infinitely di-
visible iff for all n ∈ N there exists i.i.d. nondegenerate random variables,
{Xn,k}n

k=1 , such that Xn,1 + · · · + Xn,n
d= µ. This can be formulated in

the following two equivalent ways. For all n ∈ N there should exists a non-
degenerate probability measure, µn, on (R,BR) such that µ∗nn = µ. For all
n ∈ N, µ̂ (λ) = [g (λ)]n for some non-constant characteristic function, g.

Theorem 15.18. The following class of symmetric distributions on (R,BR)
are equal;

1. C1 – all possible limiting distributions under properties (M) and (BV ) .
2. C2 – all distributions with characteristic functions of the form given in

Corollary 15.16.
3. C3 – all infinitely divisible distributions with mean zero and finite variance.
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Proof. The inclusion, C1 ⊂ C2, is the content of Corollary 15.16. For
C2 ⊂ C3, observe that if

µ̂ (λ) = exp
(∫

R

eiλx − 1− iλx

x2
dν (x)

)
then µ̂ (λ) = [µ̂n (λ)]n where µn is the unique probability measure on (R,BR)
such that

µ̂n (λ) = exp
(∫

R

eiλx − 1− iλx

x2

1
n
dν (x)

)
.

For C3 ⊂ C1, simply define {Xn,k}n
k=1 to be i.i.d with E

[
eiλXn,k

]
= µ̂n (λ) .

In this case Sn =
∑n

k=1Xn,k
d= µ.

15.1.1 Stable Laws

See the file, dynkin-stable-infinitely-divs.pdf, and Durrett [3, Example 3.10
on p. 106 and Section 2.7.].
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Conditional Expectations and Martingales





16

Hilbert Space Basics

Definition 16.1. Let H be a complex vector space. An inner product on H is
a function, 〈·|·〉 : H ×H → C, such that

1. 〈ax+ by|z〉 = a〈x|z〉+ b〈y|z〉 i.e. x→ 〈x|z〉 is linear.
2. 〈x|y〉 = 〈y|x〉.
3. ‖x‖2 := 〈x|x〉 ≥ 0 with equality ‖x‖2 = 0 iff x = 0.

Notice that combining properties (1) and (2) that x→ 〈z|x〉 is conjugate
linear for fixed z ∈ H, i.e.

〈z|ax+ by〉 = ā〈z|x〉+ b̄〈z|y〉.

The following identity will be used frequently in the sequel without further
mention,

‖x+ y‖2 = 〈x+ y|x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x|y〉+ 〈y|x〉
= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉. (16.1)

Theorem 16.2 (Schwarz Inequality). Let (H, 〈·|·〉) be an inner product
space, then for all x, y ∈ H

|〈x|y〉| ≤ ‖x‖‖y‖

and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y 6= 0 and
observe; if x = αy for some α ∈ C, then 〈x|y〉 = ᾱ ‖y‖2 and hence

|〈x|y〉| = |α| ‖y‖2 = ‖x‖‖y‖.

Now suppose that x ∈ H is arbitrary, let z := x − ‖y‖−2〈x|y〉y. (So z is the
“orthogonal projection” of x onto y, see Figure 16.1.) Then

0 ≤ ‖z‖2 =
∥∥∥∥x− 〈x|y〉

‖y‖2
y

∥∥∥∥2

= ‖x‖2 +
|〈x|y〉|2

‖y‖4
‖y‖2 − 2Re〈x| 〈x|y〉

‖y‖2
y〉

= ‖x‖2 − |〈x|y〉|2

‖y‖2

from which it follows that 0 ≤ ‖y‖2‖x‖2 − |〈x|y〉|2 with equality iff z = 0 or
equivalently iff x = ‖y‖−2〈x|y〉y.
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Fig. 16.1. The picture behind the proof of the Schwarz inequality.

Corollary 16.3. Let (H, 〈·|·〉) be an inner product space and ‖x‖ :=
√
〈x|x〉.

Then the Hilbertian norm, ‖·‖, is a norm on H. Moreover 〈·|·〉 is continuous
on H ×H, where H is viewed as the normed space (H, ‖·‖).

Proof. If x, y ∈ H, then, using Schwarz’s inequality,

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x|y〉
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

Taking the square root of this inequality shows ‖·‖ satisfies the triangle in-
equality.

Checking that ‖·‖ satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If x, x′, y, y′ ∈ H, then

|〈x+∆x|y +∆y〉 − 〈x|y〉| = |〈x|∆y〉+ 〈∆x|y〉+ 〈∆x|∆y〉|
≤ ‖x‖‖∆y‖+ ‖y‖‖∆x‖+ ‖∆x‖‖∆y‖
→ 0 as ∆x,∆y → 0,

from which it follows that 〈·|·〉 is continuous.

Definition 16.4. Let (H, 〈·|·〉) be an inner product space, we say x, y ∈ H
are orthogonal and write x ⊥ y iff 〈x|y〉 = 0. More generally if A ⊂ H is a
set, x ∈ H is orthogonal to A (write x ⊥ A) iff 〈x|y〉 = 0 for all y ∈ A. Let
A⊥ = {x ∈ H : x ⊥ A} be the set of vectors orthogonal to A. A subset S ⊂ H
is an orthogonal set if x ⊥ y for all distinct elements x, y ∈ S. If S further
satisfies, ‖x‖ = 1 for all x ∈ S, then S is said to be an orthonormal set.

Proposition 16.5. Let (H, 〈·|·〉) be an inner product space then

1. (Parallelogram Law)

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (16.2)

for all x, y ∈ H.
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2. (Pythagorean Theorem) If S ⊂⊂ H is a finite orthogonal set, then∥∥∥∥∥∑
x∈S

x

∥∥∥∥∥
2

=
∑
x∈S

‖x‖2. (16.3)

3. If A ⊂ H is a set, then A⊥ is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;

‖x+ y‖2 + ‖x− y‖2

= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉+ ‖x‖2 + ‖y‖2 − 2Re〈x|y〉
= 2‖x‖2 + 2‖y‖2,

and ∥∥∥∥∥∑
x∈S

x

∥∥∥∥∥
2

= 〈
∑
x∈S

x|
∑
y∈S

y〉 =
∑

x,y∈S

〈x|y〉

=
∑
x∈S

〈x|x〉 =
∑
x∈S

‖x‖2.

Item 3. is a consequence of the continuity of 〈·|·〉 and the fact that

A⊥ = ∩x∈A Nul(〈·|x〉)

where Nul(〈·|x〉) = {y ∈ H : 〈y|x〉 = 0} – a closed subspace of H.

Definition 16.6. A Hilbert space is an inner product space (H, 〈·|·〉) such
that the induced Hilbertian norm is complete.

Example 16.7. For any measure space, (Ω,B, µ) , H := L2 (µ) with inner prod-
uct,

〈f |g〉 =
∫

Ω

f (ω) ḡ (ω) dµ (ω)

is a Hilbert space – see Theorem 11.17 for the completeness assertion.

Definition 16.8. A subset C of a vector space X is said to be convex if for
all x, y ∈ C the line segment [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} joining x to
y is contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 16.9 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M ⊂ H is a closed convex subset of H. Then for any x ∈ H
there exists a unique y ∈M such that

‖x− y‖ = d(x,M) = inf
z∈M

‖x− z‖.

Moreover, if M is a vector subspace of H, then the point y may also be char-
acterized as the unique point in M such that (x− y) ⊥M.
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Fig. 16.2. The geometry of convex sets.

Proof. Uniqueness. By replacing M by M − x := {m− x : m ∈M} we
may assume x = 0. Let δ := d(0,M) = infm∈M ‖m‖ and y, z ∈M, see Figure
16.2.

By the parallelogram law and the convexity of M,

2‖y‖2 + 2‖z‖2 = ‖y + z‖2 + ‖y − z‖2

= 4
∥∥∥∥y + z

2

∥∥∥∥2

+ ‖y − z‖2 ≥ 4δ2 + ‖y − z‖2. (16.4)

Hence if ‖y‖ = ‖z‖ = δ, then 2δ2 +2δ2 ≥ 4δ2 +‖y− z‖2, so that ‖y− z‖2 = 0.
Therefore, if a minimizer for d(0, ·)|M exists, it is unique.

Existence. Let yn ∈ M be chosen such that ‖yn‖ = δn → δ ≡ d(0,M).
Taking y = ym and z = yn in Eq. (16.4) shows

2δ2m + 2δ2n ≥ 4δ2 + ‖yn − ym‖2.

Passing to the limit m,n→∞ in this equation implies,

2δ2 + 2δ2 ≥ 4δ2 + lim sup
m,n→∞

‖yn − ym‖2,

i.e. lim supm,n→∞ ‖yn − ym‖2 = 0. Therefore, by completeness of H, {yn}∞n=1

is convergent. Because M is closed, y := lim
n→∞

yn ∈M and because the norm
is continuous,

‖y‖ = lim
n→∞

‖yn‖ = δ = d(0,M).

So y is the desired point in M which is closest to 0.
Now suppose M is a closed subspace of H and x ∈ H. Let y ∈ M be the

closest point in M to x. Then for w ∈M, the function

g(t) := ‖x− (y + tw)‖2 = ‖x− y‖2 − 2tRe〈x− y|w〉+ t2‖w‖2

has a minimum at t = 0 and therefore 0 = g′(0) = −2Re〈x − y|w〉. Since
w ∈M is arbitrary, this implies that (x− y) ⊥M.
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Finally suppose y ∈ M is any point such that (x− y) ⊥ M. Then for
z ∈M, by Pythagorean’s theorem,

‖x− z‖2 = ‖x− y + y − z‖2 = ‖x− y‖2 + ‖y − z‖2 ≥ ‖x− y‖2

which shows d(x,M)2 ≥ ‖x− y‖2. That is to say y is the point in M closest
to x.

Definition 16.10. Suppose that A : H → H is a bounded operator, i.e.

‖A‖ := sup {‖Ax‖ : x ∈ H with ‖x‖ = 1} <∞.

The adjoint of A, denoted A∗, is the unique operator A∗ : H → H such that
〈Ax|y〉 = 〈x|A∗y〉. (The proof that A∗ exists and is unique will be given in
Proposition 16.15 below.) A bounded operator A : H → H is self - adjoint
or Hermitian if A = A∗.

Definition 16.11. Let H be a Hilbert space and M ⊂ H be a closed subspace.
The orthogonal projection of H onto M is the function PM : H → H such that
for x ∈ H, PM (x) is the unique element in M such that (x − PM (x)) ⊥ M,
i.e. PM (x) is the unique element in M such that

〈x|m〉 = 〈PM (x)|m〉 for all m ∈M. (16.5)

Theorem 16.12 (Projection Theorem). Let H be a Hilbert space and
M ⊂ H be a closed subspace. The orthogonal projection PM satisfies:

1. PM is linear and hence we will write PMx rather than PM (x).
2. P 2

M = PM (PM is a projection).
3. P ∗M = PM (PM is self-adjoint).
4. Ran(PM ) = M and Nul(PM ) = M⊥.
5. If N ⊂M ⊂ H is another closed subspace, the PNPM = PMPN = PN .

Proof.

1. Let x1, x2 ∈ H and α ∈ C, then PMx1 + αPMx2 ∈M and

PMx1 + αPMx2 − (x1 + αx2) = [PMx1 − x1 + α(PMx2 − x2)] ∈M⊥

showing PMx1 + αPMx2 = PM (x1 + αx2), i.e. PM is linear.
2. Obviously Ran(PM ) = M and PMx = x for all x ∈ M . Therefore P 2

M =
PM .

3. Let x, y ∈ H, then since (x− PMx) and (y − PMy) are in M⊥,

〈PMx|y〉 = 〈PMx|PMy + y − PMy〉 = 〈PMx|PMy〉
= 〈PMx+ (x− PMx)|PMy〉 = 〈x|PMy〉.

4. We have already seen, Ran(PM ) = M and PMx = 0 iff x = x− 0 ∈ M⊥,
i.e. Nul(PM ) = M⊥.
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5. If N ⊂ M ⊂ H it is clear that PMPN = PN since PM = Id on N =
Ran(PN ) ⊂ M. Taking adjoints gives the other identity, namely that
PNPM = PN . More directly, if x ∈ H and n ∈ N, we have

〈PNPMx|n〉 = 〈PMx|PNn〉 = 〈PMx|n〉 = 〈x|PMn〉 = 〈x|n〉 .

Since this holds for all n we may conclude that PNPMx = PNx.

Corollary 16.13. If M ⊂ H is a proper closed subspace of a Hilbert space H,
then H = M ⊕M⊥.

Proof. Given x ∈ H, let y = PMx so that x − y ∈ M⊥. Then x =
y+ (x− y) ∈M +M⊥. If x ∈M ∩M⊥, then x ⊥ x, i.e. ‖x‖2 = 〈x|x〉 = 0. So
M ∩M⊥ = {0} .

Exercise 16.1. Suppose M is a subset of H, then M⊥⊥ = span(M).

Theorem 16.14 (Riesz Theorem). Let H∗ be the dual space of H (i.e. that
linear space of continuous linear functionals on H). The map

z ∈ H j−→ 〈·|z〉 ∈ H∗ (16.6)

is a conjugate linear1 isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x, z ∈ H,

|〈x|z〉| ≤ ‖x‖ ‖z‖ for all x ∈ H

with equality when x = z. This implies that ‖jz‖H∗ = ‖〈·|z〉‖H∗ = ‖z‖ .
Therefore j is isometric and this implies j is injective. To finish the proof
we must show that j is surjective. So let f ∈ H∗ which we assume, without
loss of generality, is non-zero. Then M =Nul(f) – a closed proper subspace
of H. Since, by Corollary 16.13, H = M ⊕M⊥, f : H/M ∼= M⊥ → F is a
linear isomorphism. This shows that dim(M⊥) = 1 and hence H = M ⊕ Fx0

where x0 ∈ M⊥ \ {0} .2 Choose z = λx0 ∈ M⊥ such that f(x0) = 〈x0|z〉, i.e.
λ = f̄(x0)/ ‖x0‖2 . Then for x = m+ λx0 with m ∈M and λ ∈ F,

f(x) = λf(x0) = λ〈x0|z〉 = 〈λx0|z〉 = 〈m+ λx0|z〉 = 〈x|z〉

which shows that f = jz.

1 Recall that j is conjugate linear if

j (z1 + αz2) = jz1 + ᾱjz2

for all z1, z2 ∈ H and α ∈ C.
2 Alternatively, choose x0 ∈ M⊥ \ {0} such that f(x0) = 1. For x ∈ M⊥ we have

f(x − λx0) = 0 provided that λ := f(x). Therefore x − λx0 ∈ M ∩M⊥ = {0} ,
i.e. x = λx0. This again shows that M⊥ is spanned by x0.
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Proposition 16.15 (Adjoints). Let H and K be Hilbert spaces and A :
H → K be a bounded operator. Then there exists a unique bounded operator
A∗ : K → H such that

〈Ax|y〉K = 〈x|A∗y〉H for all x ∈ H and y ∈ K. (16.7)

Moreover, for all A,B ∈ L(H,K) and λ ∈ C,

1. (A+ λB)∗ = A∗ + λ̄B∗,
2. A∗∗ := (A∗)∗ = A,
3. ‖A∗‖ = ‖A‖ and
4. ‖A∗A‖ = ‖A‖2 .
5. If K = H, then (AB)∗ = B∗A∗. In particular A ∈ L (H) has a bounded

inverse iff A∗ has a bounded inverse and (A∗)−1 =
(
A−1

)∗
.

Proof. For each y ∈ K, the map x → 〈Ax|y〉K is in H∗ and therefore
there exists, by Theorem 16.14, a unique vector z ∈ H (we will denote this z
by A∗ (y)) such that

〈Ax|y〉K = 〈x|z〉H for all x ∈ H.

This shows there is a unique map A∗ : K → H such that 〈Ax|y〉K =
〈x|A∗(y)〉H for all x ∈ H and y ∈ K.

To see A∗ is linear, let y1, y2 ∈ K and λ ∈ C, then for any x ∈ H,

〈Ax|y1 + λy2〉K = 〈Ax|y1〉K + λ̄〈Ax|y2〉K
= 〈x|A∗(y1)〉K + λ̄〈x|A∗(y2)〉H
= 〈x|A∗(y1) + λA∗(y2)〉H

and by the uniqueness of A∗(y1 + λy2) we find

A∗(y1 + λy2) = A∗(y1) + λA∗(y2).

This shows A∗ is linear and so we will now write A∗y instead of A∗(y).
Since

〈A∗y|x〉H = 〈x|A∗y〉H = 〈Ax|y〉K = 〈y|Ax〉K
it follows that A∗∗ = A. The assertion that (A+ λB)∗ = A∗+ λ̄B∗ is Exercise
16.2.

Items 3. and 4. Making use of Schwarz’s inequality (Theorem 16.2), we
have

‖A∗‖ = sup
k∈K:‖k‖=1

‖A∗k‖

= sup
k∈K:‖k‖=1

sup
h∈H:‖h‖=1

|〈A∗k|h〉|

= sup
h∈H:‖h‖=1

sup
k∈K:‖k‖=1

|〈k|Ah〉| = sup
h∈H:‖h‖=1

‖Ah‖ = ‖A‖
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so that ‖A∗‖ = ‖A‖ . Since

‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2

and

‖A‖2 = sup
h∈H:‖h‖=1

‖Ah‖2 = sup
h∈H:‖h‖=1

|〈Ah|Ah〉|

= sup
h∈H:‖h‖=1

|〈h|A∗Ah〉| ≤ sup
h∈H:‖h‖=1

‖A∗Ah‖ = ‖A∗A‖ (16.8)

we also have ‖A∗A‖ ≤ ‖A‖2 ≤ ‖A∗A‖ which shows ‖A‖2 = ‖A∗A‖ .
Alternatively, from Eq. (16.8),

‖A‖2 ≤ ‖A∗A‖ ≤ ‖A‖ ‖A∗‖ (16.9)

which then implies ‖A‖ ≤ ‖A∗‖ . Replacing A by A∗ in this last inequality
shows ‖A∗‖ ≤ ‖A‖ and hence that ‖A∗‖ = ‖A‖ . Using this identity back in
Eq. (16.9) proves ‖A‖2 = ‖A∗A‖ .

Now suppose that K = H. Then

〈ABh|k〉 = 〈Bh|A∗k〉 = 〈h|B∗A∗k〉

which shows (AB)∗ = B∗A∗. If A−1 exists then(
A−1

)∗
A∗ =

(
AA−1

)∗
= I∗ = I and

A∗
(
A−1

)∗
=
(
A−1A

)∗
= I∗ = I.

This shows that A∗ is invertible and (A∗)−1 =
(
A−1

)∗
. Similarly if A∗ is

invertible then so is A = A∗∗.

Exercise 16.2. Let H,K,M be Hilbert spaces, A,B ∈ L(H,K), C ∈
L(K,M) and λ ∈ C. Show (A+ λB)∗ = A∗ + λ̄B∗ and (CA)∗ = A∗C∗ ∈
L(M,H).

Exercise 16.3. Let H = Cn and K = Cm equipped with the usual inner
products, i.e. 〈z|w〉H = z ·w̄ for z, w ∈ H. Let A be an m×n matrix thought of
as a linear operator from H to K. Show the matrix associated to A∗ : K → H
is the conjugate transpose of A.

Lemma 16.16. Suppose A : H → K is a bounded operator, then:

1. Nul(A∗) = Ran(A)⊥.
2. Ran(A) = Nul(A∗)⊥.
3. if K = H and V ⊂ H is an A – invariant subspace (i.e. A(V ) ⊂ V ), then
V ⊥ is A∗ – invariant.
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Proof. An element y ∈ K is in Nul(A∗) iff 0 = 〈A∗y|x〉 = 〈y|Ax〉
for all x ∈ H which happens iff y ∈ Ran(A)⊥. Because, by Exercise 16.1,
Ran(A) = Ran(A)⊥⊥, and so by the first item, Ran(A) = Nul(A∗)⊥. Now
suppose A(V ) ⊂ V and y ∈ V ⊥, then

〈A∗y|x〉 = 〈y|Ax〉 = 0 for all x ∈ V

which shows A∗y ∈ V ⊥.
The next elementary theorem (referred to as the bounded linear transfor-

mation theorem, or B.L.T. theorem for short) is often useful.

Theorem 16.17 (B. L. T. Theorem). Suppose that Z is a normed space,
X is a Banach3 space, and S ⊂ Z is a dense linear subspace of Z. If T :
S → X is a bounded linear transformation (i.e. there exists C <∞ such that
‖Tz‖ ≤ C ‖z‖ for all z ∈ S), then T has a unique extension to an element
T̄ ∈ L(Z,X) and this extension still satisfies∥∥T̄ z∥∥ ≤ C ‖z‖ for all z ∈ S̄.

Proof. Let z ∈ Z and choose zn ∈ S such that zn → z. Since

‖Tzm − Tzn‖ ≤ C ‖zm − zn‖ → 0 as m,n→∞,

it follows by the completeness of X that limn→∞ Tzn =: T̄ z exists. Moreover,
if wn ∈ S is another sequence converging to z, then

‖Tzn − Twn‖ ≤ C ‖zn − wn‖ → C ‖z − z‖ = 0

and therefore T̄ z is well defined. It is now a simple matter to check that
T̄ : Z → X is still linear and that∥∥T̄ z∥∥ = lim

n→∞
‖Tzn‖ ≤ lim

n→∞
C ‖zn‖ = C ‖z‖ for all x ∈ Z.

Thus T̄ is an extension of T to all of the Z. The uniqueness of this extension
is easy to prove and will be left to the reader.

16.1 Compactness Results for Lp – Spaces

In this section we are going to identify the sequentially “weak” compact sub-
sets of Lp (Ω,B, P ) for 1 ≤ p < ∞, where (Ω,B, P ) is a probability space.
The key to our proofs will be the following Hilbert space compactess result.

Theorem 16.18. Suppose {xn}∞n=1 is a bounded sequence in H (i.e. C :=
supn ‖xn‖ < ∞), then there exists a sub-sequence, yk := xnk

and an x ∈ H
such that limk→∞ 〈yk|h〉 = 〈x|h〉 for all h ∈ H. We say that yk converges to
x weakly in this case and denote this by yk

w→ x.

3 A Banach space is a complete normed space. The main examples for us are Hilbert
spaces.
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Proof. Let H0 := span(xk : k ∈ N). Then H0 is a closed separable Hilbert
subspace of H and {xk}∞k=1 ⊂ H0. Let {hn}∞n=1 be a countable dense sub-
set of H0. Since |〈xk|hn〉| ≤ ‖xk‖ ‖hn‖ ≤ C ‖hn‖ < ∞, the sequence,
{〈xk|hn〉}∞k=1 ⊂ C, is bounded and hence has a convergent sub-sequence for
all n ∈ N. By the Cantor’s diagonalization argument we can find a a sub-
sequence, yk := xnk

, of {xn} such that limk→∞ 〈yk|hn〉 exists for all n ∈ N.
We now show ϕ (z) := limk→∞ 〈yk|z〉 exists for all z ∈ H0. Indeed, for any

k, l, n ∈ N, we have

|〈yk|z〉 − 〈yl|z〉| = |〈yk − yl|z〉| ≤ |〈yk − yl|hn〉|+ |〈yk − yl|z − hn〉|
≤ |〈yk − yl|hn〉|+ 2C ‖z − hn‖ .

Letting k, l→∞ in this estimate then shows

lim sup
k,l→∞

|〈yk|z〉 − 〈yl|z〉| ≤ 2C ‖z − hn‖ .

Since we may choose n ∈ N such that ‖z − hn‖ is as small as we please, we
may conclude that lim supk,l→∞ |〈yk|z〉 − 〈yl|z〉| , i.e. ϕ (z) := limk→∞ 〈yk|z〉
exists.

The function, ϕ̄ (z) = limk→∞ 〈z|yk〉 is a bounded linear functional on H
because

|ϕ̄ (z)| = lim inf
k→∞

|〈z|yk〉| ≤ C ‖z‖ .

Therefore by the Riesz Theorem 16.14, there exists x ∈ H0 such that ϕ̄ (z) =
〈z|x〉 for all z ∈ H0. Thus, for this x ∈ H0 we have shown

lim
k→∞

〈yk|z〉 = 〈x|z〉 for all z ∈ H0. (16.10)

To finish the proof we need only observe that Eq. (16.10) is valid for all
z ∈ H. Indeed if z ∈ H, then z = z0 + z1 where z0 = PH0z ∈ H0 and
z1 = z − PH0z ∈ H⊥0 . Since yk, x ∈ H0, we have

lim
k→∞

〈yk|z〉 = lim
k→∞

〈yk|z0〉 = 〈x|z0〉 = 〈x|z〉 for all z ∈ H.

Since unbounded subsets ofH are clearly not sequentially weakly compact,
the previous states that a set is sequentially precompact in H iff it is bounded.
Let us now use Theorem 16.18 to identify the sequentially compact subsets of
Lp (Ω,B, P ) for all 1 ≤ p <∞. We begin with the case p = 1.

Theorem 16.19. If {Xn}∞n=1 ⊂ L1 (Ω,B, P ) is a uniformly integrable subset
of L1 (Ω,B, P ) , there exists a subsequence Yk := Xnk

of {Xn}∞n=1 and X ∈
L1 (Ω,B, P ) such that

lim
k→∞

E [Ykh] = E [Xh] for all h ∈ Bb. (16.11)
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Proof. For each m ∈ N let Xm
n := Xn1|Xn|≤m. The truncated sequence

{Xm
n }
∞
n=1 is a bounded subset of the Hilbert space, L2 (Ω,B, P ) , for allm ∈ N.

Therefore by Theorem16.18, {Xm
n }
∞
n=1 has a weakly convergent sub-sequence

for all m ∈ N. By Cantor’s diagonalization argument, we can find Y m
k := Xm

nk

and Xm ∈ L2 (Ω,B, P ) such that Y m
k

w→ Xm as m→∞ and in particular

lim
k→∞

E [Y m
k h] = E [Xmh] for all h ∈ Bb.

Our next goal is to show Xm → X in L1 (Ω,B, P ) . To this end, for m < M
and h ∈ Bb we have∣∣E [(XM −Xm

)
h
]∣∣ = lim

k→∞

∣∣E [(Y M
k − Y m

k

)
h
]∣∣ ≤ lim inf

k→∞
E
[∣∣Y M

k − Y m
k

∣∣ |h|]
≤ ‖h‖∞ · lim inf

k→∞
E [|Yk| : M ≥ |Yk| > m]

≤ ‖h‖∞ · lim inf
k→∞

E [|Yk| : |Yk| > m] .

Taking h = sgn(XM −Xm) in this inequality shows

E
[∣∣XM −Xm

∣∣] ≤ lim inf
k→∞

E [|Yk| : |Yk| > m]

with the right member of this inequality going to zero as m,M → ∞ with
M ≥ m by the assumed uniform integrability of the {Xn} . Therefore there
exists X ∈ L1 (Ω,B, P ) such that limm→∞ E |X −Xm| = 0.

We are now ready to verify Eq. (16.11) is valid. For h ∈ Bb,

|E [(X − Yk)h]| ≤ |E [(Xm − Y m
k )h]|+ |E [(X −Xm)h]|+ |E [(Yk − Y m

k )h]|
≤ |E [(Xm − Y m

k )h]|+ ‖h‖∞ · (E [|X −Xm|] + E [|Yk| : |Yk| > m])

≤ |E [(Xm − Y m
k )h]|+ ‖h‖∞ ·

(
E [|X −Xm|] + sup

l
E [|Yl| : |Yl| > m]

)
.

Passing to the limit as k →∞ in the above inequality shows

lim sup
k→∞

|E [(X − Yk)h]| ≤ ‖h‖∞ ·
(

E [|X −Xm|] + sup
l

E [|Yl| : |Yl| > m]
)
.

Since Xm → X in L1 and supl E [|Yl| : |Yl| > m] → 0 by uniform integrability,
it follows that, lim supk→∞ |E [(X − Yk)h]| = 0.

Example 16.20. Let (Ω,B, P ) =
(
(0, 1) ,B(0,1),m

)
where m is Lebesgue mea-

sure and let Xn (ω) = 2n10<ω<2−n . Then EXn = 1 for all n and hence
{Xn}∞n=1 is bounded in L1 (Ω,B, P ) (but is not uniformly integrable). Suppose
for sake of contradiction that there existed X ∈ L1 (Ω,B, P ) and subsequence,
Yk := Xnk

such that Yk
w→ X. Then for h ∈ Bb and any ε > 0 we would have

E
[
Xh1(ε,1)

]
= lim

k→∞
E
[
Ykh1(ε,1)

]
= 0.
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Then by DCT it would follow that E [Xh] = 0 for all h ∈ Bb and hence that
X ≡ 0. On the other hand we would also have

0 = E [X · 1] = lim
k→∞

E [Yk · 1] = 1

and we have reached the desired contradiction. Hence we must conclude that
bounded subset of L1 (Ω,B, P ) need not be weakly compact and thus we can
not drop the uniform integrability assumption made in Theorem 16.19.

When 1 < p <∞, the situation is simpler.

Theorem 16.21. Let p ∈ (1,∞) and q = p (p− 1)−1 ∈ (1,∞) be its conjugate
exponent. If {Xn}∞n=1 is a bounded sequence in Lp (Ω,B, P ) , there exists X ∈
Lp (Ω,B, P ) and a subsequence Yk := Xnk

of {Xn}∞n=1 such that

lim
k→∞

E [Ykh] = E [Xh] for all h ∈ Lq (Ω,B, P ) . (16.12)

Proof. Let C := supn∈N ‖Xn‖p < ∞ and recall that Lemma 11.35 guar-
antees that {Xn}∞n=1 is a uniformly integrable subset of L1 (Ω,B, P ) . There-
fore by Theorem 16.19, there exists X ∈ L1 (Ω,B, P ) and a subsequence,
Yk := Xnk

, such that Eq. (16.11) holds. We will complete the proof by show-
ing; a) X ∈ Lp (Ω,B, P ) and b) and Eq. (16.12) is valid.

a) For h ∈ Bb we have

|E [Xh]| ≤ lim inf
k→∞

E [|Ykh|] ≤ lim inf
k→∞

‖Yk‖p · ‖h‖q ≤ C ‖h‖q .

For M < ∞, taking h = sgn(X) |X|p−1 1|X|≤M in the previous inequality
shows

E
[
|X|p 1|X|≤M

]
≤ C

∥∥∥sgn(X) |X|p−1 1|X|≤M

∥∥∥
q

= C
(
E
[
|X|(p−1)q 1|X|≤M

])1/q

≤ C
(
E
[
|X|p 1|X|≤M

])1/q

from which it follows that(
E
[
|X|p 1|X|≤M

])1/p ≤
(
E
[
|X|p 1|X|≤M

])1−1/q ≤ C.

Using the monotone convergence theorem, we may letM →∞ in this equation
to find ‖X‖p = (E [|X|p])1/p ≤ C <∞.

b) Now that we know X ∈ Lp (Ω,B, P ) , in make sense to consider
E [(X − Yk)h] for all h ∈ Lp (Ω,B, P ) . For M < ∞, let hM := h1|h|≤M ,
then

|E [(X − Yk)h]| ≤
∣∣E [(X − Yk)hM

]∣∣+ ∣∣E [(X − Yk)h1|h|>M

]∣∣
≤
∣∣E [(X − Yk)hM

]∣∣+ ‖X − Yk‖p

∥∥h1|h|>M

∥∥
q

≤
∣∣E [(X − Yk)hM

]∣∣+ 2C
∥∥h1|h|>M

∥∥
q
.
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Since hM ∈ Bb, we may pass to the limit k →∞ in the previous inequality to
find,

lim sup
k→∞

|E [(X − Yk)h]| ≤ 2C
∥∥h1|h|>M

∥∥
q
.

This completes the proof, since
∥∥h1|h|>M

∥∥
q
→ 0 as M →∞ by DCT.

16.2 Exercises

Exercise 16.4. Suppose that {Mn}∞n=1 is an increasing sequence of closed
subspaces of a Hilbert space, H. Let M be the closure of M0 := ∪∞n=1Mn.
Show limn→∞ PMnx = PMx for all x ∈ H. Hint: first prove this for x ∈ M0

and then for x ∈M. Also consider the case where x ∈M⊥.

Solution to Exercise (16.4). Let Pn := PMn and P = PM . If y ∈M0, then
Pny = y = Py for all n sufficiently large. and therefore, limn→∞ Pny = Py.
Now suppose that x ∈M and y ∈M0. Then

‖Px− Pnx‖ ≤ ‖Px− Py‖+ ‖Py − Pny‖+ ‖Pny − Pnx‖
≤ 2 ‖x− y‖+ ‖Py − Pny‖

and passing to the limit as n→∞ then shows

lim sup
n→∞

‖Px− Pnx‖ ≤ 2 ‖x− y‖ .

The left hand side may be made as small as we like by choosing y ∈ M0

arbitrarily close to x ∈M = M̄0.

For the general case, if x ∈ H, then x = Px+y where y = x−Px ∈M⊥ ⊂
M⊥n for all n. Therefore,

Pnx = PnPx→ Px as n→∞

by what we have just proved.

Exercise 16.5 (The Mean Ergodic Theorem). Let U : H → H be a uni-
tary operator on a Hilbert space H, M = Nul(U − I), P = PM be orthogonal
projection onto M, and Sn = 1

n

∑n−1
k=0 U

k. Show Sn → PM strongly by which
we mean limn→∞ Snx = PMx for all x ∈ H.

Hints: 1. Show H is the orthogonal direct sum of M and Ran(U − I) by
first showing Nul(U∗−I) = Nul(U−I) and then using Lemma 16.16. 2. Verify
the result for x ∈ Nul(U − I) and x ∈ Ran(U − I). 3. Use a limiting argument
to verify the result for x ∈ Ran(U − I).

Solution to Exercise (16.5). Let M = Nul(U − I), then Snx = x for all
x ∈ M. Notice that x ∈ Nul(U∗ − I) iff x = U∗x iff Ux = UU∗x = x, iff
x ∈ Nul(U − I) = M. Therefore
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Ran(U − I) = Nul(U∗ − I)⊥ = Nul(U − I)⊥ = M⊥.

Suppose that x = Uy − y ∈ Ran(U − I) for some y ∈ H, then

Snx =
1
n

(Uny − y) → 0 as n→∞.

Finally if x ∈M⊥ and y ∈ Ran(U − I), we have

‖Snx− Sny‖ ≤ ‖x− y‖

and hence
lim sup

n→∞
‖Snx− Sny‖ ≤ ‖x− y‖

from which it follows that lim supn→∞ ‖Snx‖ ≤ ‖x− y‖ . Letting y → x
shows that lim supn→∞ ‖Snx‖ = 0 for all x ∈ M⊥. Therefore if x ∈ H and
x = m+m⊥ ∈M ⊕M⊥, then

lim
n→∞

Snx = lim
n→∞

Snm+ lim
n→∞

Snm
⊥ = m+ 0 = PMx.
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The Radon-Nikodym Theorem

Theorem 17.1 (A Baby Radon-Nikodym Theorem). Suppose (X,M)
is a measurable space, λ and ν are two finite positive measures on M such
that ν(A) ≤ λ(A) for all A ∈ M. Then there exists a measurable function,
ρ : X → [0, 1] such that dν = ρdλ.

Proof. If f is a non-negative simple function, then

ν (f) =
∑
a≥0

aν (f = a) ≤
∑
a≥0

aλ (f = a) = λ (f) .

In light of Theorem 6.32 and the MCT, this inequality continues to hold
for all non-negative measurable functions. Furthermore if f ∈ L1 (λ) , then
ν (|f |) ≤ λ (|f |) <∞ and hence f ∈ L1 (ν) and

|ν (f)| ≤ ν (|f |) ≤ λ (|f |) ≤ λ (X)1/2 · ‖f‖L2(λ) .

Therefore, L2 (λ) 3 f → ν (f) ∈ C is a continuous linear functional on L2(λ).
By the Riesz representation Theorem 16.14, there exists a unique ρ ∈ L2(λ)
such that

ν(f) =
∫

X

fρdλ for all f ∈ L2(λ).

In particular this equation holds for all bounded measurable functions, f :
X → R and for such a function we have

ν (f) = Re ν (f) = Re
∫

X

fρdλ =
∫

X

f Re ρ dλ. (17.1)

Thus by replacing ρ by Re ρ if necessary we may assume ρ is real.
Taking f = 1ρ<0 in Eq. (17.1) shows

0 ≤ ν (ρ < 0) =
∫

X

1ρ<0ρ dλ ≤ 0,

from which we conclude that 1ρ<0ρ = 0, λ – a.e., i.e. λ (ρ < 0) = 0. Therefore
ρ ≥ 0, λ – a.e. Similarly for α > 1,

λ (ρ > α) ≥ ν (ρ > α) =
∫

X

1ρ>αρ dλ ≥ αλ (ρ > α)

which is possible iff λ (ρ > α) = 0. Letting α ↓ 1, it follows that λ (ρ > 1) = 0
and hence 0 ≤ ρ ≤ 1, λ - a.e.
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Definition 17.2. Let µ and ν be two positive measure on a measurable space,
(X,M). Then:

1. µ and ν are mutually singular (written as µ ⊥ ν) if there exists A ∈M
such that ν (A) = 0 and µ (Ac) = 0. We say that ν lives on A and µ lives
on Ac.

2. The measure ν is absolutely continuous relative to µ (written as
ν � µ) provided ν(A) = 0 whenever µ (A) = 0.

As an example, suppose that µ is a positive measure and ρ ≥ 0 is a
measurable function. Then the measure, ν := ρµ is absolutely continuous
relative to µ. Indeed, if µ (A) = 0 then

ν (A) =
∫

A

ρdµ = 0.

We will eventually show that if µ and ν are σ – finite and ν � µ, then
dν = ρdµ for some measurable function, ρ ≥ 0.

Definition 17.3 (Lebesgue Decomposition). Let µ and ν be two positive
measure on a measurable space, (X,M). Two positive measures νa and νs

form a Lebesgue decomposition of ν relative to µ if ν = νa + νs, νa � µ,
and νs ⊥ µ.

Lemma 17.4. If µ1, µ2 and ν are positive measures on (X,M) such that
µ1 ⊥ ν and µ2 ⊥ ν, then (µ1 + µ2) ⊥ ν. More generally if {µi}∞i=1 is a
sequence of positive measures such that µi ⊥ ν for all i then µ =

∑∞
i=1 µi is

singular relative to ν.

Proof. It suffices to prove the second assertion since we can then take
µj ≡ 0 for all j ≥ 3. Choose Ai ∈M such that ν (Ai) = 0 and µi (Ac

i ) = 0 for
all i. Letting A := ∪iAi we have ν (A) = 0. Moreover, since Ac = ∩iA

c
i ⊂ Ac

m

for all m, we have µi (Ac) = 0 for all i and therefore, µ (Ac) = 0. This shows
that µ ⊥ ν.

Lemma 17.5. Let ν and µ be positive measures on (X,M). If there exists a
Lebesgue decomposition, ν = νs + νa, of the measure ν relative to µ then this
decomposition is unique. Moreover: if ν is a σ – finite measure then so are νs

and νa.

Proof. Since νs ⊥ µ, there exists A ∈M such that µ(A) = 0 and νs (Ac) =
0 and because νa � µ, we also know that νa (A) = 0. So for C ∈M,

ν (C ∩A) = νs (C ∩A) + νa (C ∩A) = νs (C ∩A) = νs (C) (17.2)

and

ν (C ∩Ac) = νs (C ∩Ac) + νa (C ∩Ac) = νa (C ∩Ac) = νa (C) . (17.3)
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Now suppose we have another Lebesgue decomposition, ν = ν̃a + ν̃s with
ν̃s ⊥ µ and ν̃a � µ. Working as above, we may choose Ã ∈ M such that
µ(Ã) = 0 and Ãc is ν̃s – null. Then B = A ∪ Ã is still a µ – null set and and
Bc = Ac ∩ Ãc is a null set for both νs and ν̃s. Therefore we may use Eqs.
(17.2) and (17.3) with A being replaced by B to conclude,

νs(C) = ν(C ∩B) = ν̃s(C) and
νa(C) = ν(C ∩Bc) = ν̃a(C) for all C ∈M.

Lastly if ν is a σ – finite measure then there exists Xn ∈M such that X =∑∞
n=1Xn and ν(Xn) < ∞ for all n. Since ∞ > ν(Xn) = νa(Xn) + νs(Xn),

we must have νa(Xn) <∞ and νs(Xn) <∞, showing νa and νs are σ – finite
as well.

Lemma 17.6. Suppose µ is a positive measure on (X,M) and f, g : X →
[0,∞] are functions such that the measures, fdµ and gdµ are σ – finite and
further satisfy, ∫

A

fdµ =
∫

A

gdµ for all A ∈M. (17.4)

Then f(x) = g(x) for µ – a.e. x.

Proof. By assumption there exists Xn ∈ M such that Xn ↑ X and∫
Xn

fdµ < ∞ and
∫

Xn
gdµ < ∞ for all n. Replacing A by A ∩ Xn in Eq.

(17.4) implies∫
A

1Xn
fdµ =

∫
A∩Xn

fdµ =
∫

A∩Xn

gdµ =
∫

A

1Xn
gdµ

for all A ∈ M. Since 1Xnf and 1Xng are in L1(µ) for all n, this equation
implies 1Xn

f = 1Xn
g, µ – a.e. Letting n→∞ then shows that f = g, µ – a.e.

Remark 17.7. Lemma 17.6 is in general false without the σ – finiteness as-
sumption. A trivial counterexample is to take M = 2X , µ(A) = ∞ for all
non-empty A ∈M, f = 1X and g = 2 · 1X . Then Eq. (17.4) holds yet f 6= g.

Theorem 17.8 (Radon Nikodym Theorem for Positive Measures).
Suppose that µ and ν are σ – finite positive measures on (X,M). Then ν has
a unique Lebesgue decomposition ν = νa + νs relative to µ and there exists
a unique (modulo sets of µ – measure 0) function ρ : X → [0,∞) such that
dνa = ρdµ. Moreover, νs = 0 iff ν � µ.

Proof. The uniqueness assertions follow directly from Lemmas 17.5 and
17.6.

Existence when µ and ν are both finite measures. (Von-Neumann’s
Proof. See Remark 17.9 for the motivation for this proof.) First suppose that
µ and ν are finite measures and let λ = µ + ν. By Theorem 17.1, dν = hdλ
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with 0 ≤ h ≤ 1 and this implies, for all non-negative measurable functions f,
that

ν(f) = λ(fh) = µ(fh) + ν(fh) (17.5)

or equivalently
ν(f(1− h)) = µ(fh). (17.6)

Taking f = 1{h=1} in Eq. (17.6) shows that

µ ({h = 1}) = ν(1{h=1}(1− h)) = 0,

i.e. 0 ≤ h (x) < 1 for µ - a.e. x. Let

ρ := 1{h<1}
h

1− h

and then take f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (17.6) to learn

ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg).

Hence if we define

νa := 1{h<1}ν and νs := 1{h=1}ν,

we then have νs ⊥ µ (since νs “lives” on {h = 1} while µ (h = 1) = 0) and
νa = ρµ and in particular νa � µ. Hence ν = νa + νs is the desired Lebesgue
decomposition of ν. If we further assume that ν � µ, then µ (h = 1) = 0
implies ν (h = 1) = 0 and hence that νs = 0 and we conclude that ν = νa =
ρµ.

Existence when µ and ν are σ-finite measures. Write X =
∑∞

n=1Xn

where Xn ∈M are chosen so that µ(Xn) <∞ and ν(Xn) <∞ for all n. Let
dµn = 1Xndµ and dνn = 1Xndν. Then by what we have just proved there exists
ρn ∈ L1(X,µn) ⊂ L1(X,µ) and measure νs

n such that dνn = ρndµn+dνs
n with

νs
n ⊥ µn. Since µn and νs

n “live” on Xn there exists An ∈ MXn
such that

µ (An) = µn (An) = 0 and

νs
n (X \An) = νs

n (Xn \An) = 0.

This shows that νs
n ⊥ µ for all n and so by Lemma 17.4, νs :=

∑∞
n=1 ν

s
n is

singular relative to µ. Since

ν =
∞∑

n=1

νn =
∞∑

n=1

(ρnµn + νs
n) =

∞∑
n=1

(ρn1Xn
µ+ νs

n) = ρµ+ νs, (17.7)

where ρ :=
∑∞

n=1 1Xn
ρn, it follows that ν = νa + νs with νa = ρµ. Hence this

is the desired Lebesgue decomposition of ν relative to µ.
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Remark 17.9. Here is the motivation for the above construction. Suppose that
dν = dνs + ρdµ is the Radon-Nikodym decomposition and X = A

∑
B such

that νs(B) = 0 and µ(A) = 0. Then we find

νs(f) + µ(ρf) = ν(f) = λ(hf) = ν(hf) + µ(hf).

Letting f → 1Af then implies that

ν(1Af) = νs(1Af) = ν(1Ahf)

which show that h = 1, ν –a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf) = ν(h1Bf) + µ(h1Bf) = µ(ρh1Bf) + µ(h1Bf)

which implies, ρ = ρh+ h, µ – a.e. on B, i.e.

ρ (1− h) = h, µ– a.e. on B.

In particular it follows that h < 1, µ = ν – a.e. on B and that ρ = h
1−h1h<1,

µ – a.e. So up to sets of ν – measure zero, A = {h = 1} and B = {h < 1} and
therefore,

dν = 1{h=1}dν + 1{h<1}dν = 1{h=1}dν +
h

1− h
1h<1dµ.
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Conditional Expectation

In this section let (Ω,B, P ) be a probability space and G ⊂ B be a sub – sigma
algebra of B. We will write f ∈ Gb iff f : Ω → C is bounded and f is (G,BC)
– measurable. If A ∈ B and P (A) > 0, we will let

E [X|A] :=
E [X : A]
P (A)

and P (B|A) := E [1B |A] :=
P (A ∩B)
P (A)

for all integrable random variables, X, and B ∈ B. We will often use the
factorization Lemma 6.33 in this section. Because of this let us repeat it here.

Lemma 18.1. Suppose that (Y,F) is a measurable space and Y : Ω → Y is
a map. Then to every (σ(Y ),BR̄) – measurable function, H : Ω → R̄, there is
a (F ,BR̄) – measurable function h : Y → R̄ such that H = h ◦ Y.

Proof. First suppose that H = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma
is valid in this case with h = 1B . More generally if H =

∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai
= 1Bi

◦Y and henceH = h◦Y
with h :=

∑
ai1Bi

– a simple function on R̄.
For a general (F ,BR̄) – measurable function, H, from Ω → R̄, choose

simple functions Hn converging to H. Let hn : Y → R̄ be simple functions
such that Hn = hn ◦ Y. Then it follows that

H = lim
n→∞

Hn = lim sup
n→∞

Hn = lim sup
n→∞

hn ◦ Y = h ◦ Y

where h := lim sup
n→∞

hn – a measurable function from Y to R̄.

Lemma 18.2 (Integral Comparison). Suppose that F,G : Ω → [0,∞] are
B – measurable functions. Then F ≥ G a.s. iff

E [F : A] ≥ E [G : A] for all A ∈ B. (18.1)

In particular F = G a.s. iff equality holds in Eq. (18.1). Moreover, for F ∈
L1 (Ω,B, P ) , F = 0 a.s. iff E [F : A] = 0 for all A ∈ B.

Proof. It is clear that F ≥ G a.s. implies Eq. (18.1). For the converse
assertion, if we take A = {F = 0} in Eq. (18.1) we learn that

0 = E [F : F = 0] ≥ E [G : F = 0]
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and hence that G1F=0 = 0 a.s., i.e.

G = 0 a.s. on {F = 0} . (18.2)

Similarly if A := {G > αF} with α > 1 in Eq. (18.1), then

E [F : G > αF ] ≥ E [G : G > αF ] ≥ E [αF : G > αF ] = αE [F : G > αF ] .

Since α > 1, the only way this can happen is if E [F : G > αF ] = 0. By the
MCT we may now let α ↓ 1 to conclude, 0 = E [F : G > F ] . This implies
F1G>F = 0 a.s. or equivalently

G ≤ F a.s on {F > 0} . (18.3)

Since Ω = {F = 0} ∪ {F > 0} and on both sets, by Eqs. (18.2) and (18.3) we
have G ≤ F a.s. we may conclude that G ≤ F a.s. on Ω as well. If equality
holds in Eq. (18.1), then we know that G ≤ F and F ≤ G a.s., i.e. F = G a.s.

If F ∈ L1 (Ω,B, P ) and E [F : A] = 0 for all A ∈ B, we may conclude
by a simple limiting argument that E [Fh] = 0 for all h ∈ Bb. Taking h :=
sgn(F ) := F̄

|F |1|F |>0 in this identity then implies

0 = E [Fh] = E
[
F
F̄

|F |
1|F |>0

]
= E

[
|F | 1|F |>0

]
= E [|F |]

which implies that F = 0 a.s.

Definition 18.3 (Conditional Expectation). Let EG : L2(Ω,B, P ) →
L2(Ω,G, P ) denote orthogonal projection of L2(Ω,B, P ) onto the closed sub-
space L2(Ω,G, P ). For f ∈ L2(Ω,B, P ), we say that EGf ∈ L2(Ω,G, P ) is the
conditional expectation of f.

Remark 18.4 (Basic Properties of EG). Let f ∈ L2(Ω,B, P ). By the orthog-
onal projection Theorem 16.12 we know that F ∈ L2(Ω,G, P ) is EGf a.s. iff
either of the following two conditions hold;

1. ‖f − F‖2 ≤ ‖f − g‖2 for all g ∈ L2(Ω,G, P ) or
2. E [fh] = E [Fh] for all h ∈ L2(Ω,G, P ).

Moreover if G0 ⊂ G1 ⊂ B then L2(Ω,G0, P ) ⊂ L2(Ω,G1, P ) ⊂ L2(Ω,B, P )
and therefore,

EG0EG1f = EG1EG0f = EG0f a.s. for all f ∈ L2 (Ω,B, P ) . (18.4)

It is also useful to observe that condition 2. above may expressed as

E [f : A] = E [F : A] for all A ∈ G (18.5)

or
E [fh] = E [Fh] for all h ∈ Gb. (18.6)
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Indeed, if Eq. (18.5) holds, then by linearity we have E [fh] = E [Fh] for all G
– measurable simple functions, h and hence by the approximation Theorem
6.32 and the DCT for all h ∈ Gb. Therefore Eq. (18.5) implies Eq. (18.6). If
Eq. (18.6) holds and h ∈ L2(Ω,G, P ), we may use DCT to show

E [fh] DCT= lim
n→∞

E
[
fh1|h|≤n

] (18.6)
= lim

n→∞
E
[
Fh1|h|≤n

] DCT= E [Fh] ,

which is condition 2. in Remark 18.4. Taking h = 1A with A ∈ G in condition
2. or Remark 18.4, we learn that Eq. (18.5) is satisfied as well.

Theorem 18.5. Let (Ω,B, P ) and G ⊂ B be as above and let f, g ∈
L1(Ω,B, P ). The operator EG : L2(Ω,B, P ) → L2(Ω,G, P ) extends uniquely
to a linear contraction from L1(Ω,B, P ) to L1(Ω,G, P ). This extension enjoys
the following properties;

1. If f ≥ 0, P – a.e. then EGf ≥ 0, P – a.e.
2. Monotonicity. If f ≥ g, P – a.e. there EGf ≥ EGg, P – a.e.
3. L∞ – contraction property. |EGf | ≤ EG |f | , P – a.e.
4. Averaging Property. If f ∈ L1(Ω,B, P ) then F = EGf iff F ∈
L1(Ω,G, P ) and

E(Fh) = E(fh) for all h ∈ Gb. (18.7)

5. Pull out property or product rule. If g ∈ Gb and f ∈ L1(Ω,B, P ),
then EG(gf) = g · EGf, P – a.e.

6. Tower or smoothing property. If G0 ⊂ G1 ⊂ B. Then

EG0EG1f = EG1EG0f = EG0f a.s. for all f ∈ L1 (Ω,B, P ) . (18.8)

Proof. By the definition of orthogonal projection, f ∈ L2 (Ω,B, P ) and
h ∈ Gb,

E(fh) = E(f · EGh) = E(EGf · h). (18.9)

Taking

h = sgn (EGf) :=
EGf
EGf

1|EGf |>0 (18.10)

in Eq. (18.9) shows

E(|EGf |) = E(EGf · h) = E(fh) ≤ E(|fh|) ≤ E(|f |). (18.11)

It follows from this equation and the BLT (Theorem 16.17) that EG extends
uniquely to a contraction form L1(Ω,B, P ) to L1(Ω,G, P ). Moreover, by a
simple limiting argument, Eq. (18.9) remains valid for all f ∈ L1 (Ω,B, P )
and h ∈ Gb. Indeed, (without reference to Theorem 16.17) if fn := f1|f |≤n ∈
L2 (Ω,B, P ) , then fn → f in L1(Ω,B, P ) and hence

E [|EGfn − EGfm|] = E [|EG (fn − fm)|] ≤ E [|fn − fm|] → 0 as m,n→∞.



366 18 Conditional Expectation

By the completness of L1(Ω,G, P ), F := L1(Ω,G, P )-limn→∞ EGfn exists.
Moreover the function F satisfies,

E(F · h) = E( lim
n→∞

EGfn · h) = lim
n→∞

E(fn · h) = E(f · h) (18.12)

for all h ∈ Gb and by Lemma 18.2 there is at most one, F ∈ L1(Ω,G, P ),
which satisfies Eq. (18.12). We will again denote F by EGf. This proves the
existence and uniqueness of F satisfying the defining relation in Eq. (18.7) of
item 4. The same argument used in Eq. (18.11) again shows E |F | ≤ E |f | and
therefore that EG : L1 (Ω,B, P ) → L1 (Ω,G, P ) is a contraction.

Items 1 and 2. If f ∈ L1 (Ω,B, P ) with f ≥ 0, then

E(EGf · h) = E(fh) ≥ 0 ∀ h ∈ Gb with h ≥ 0. (18.13)

An application of Lemma 18.2 then shows that EGf ≥ 0 a.s.1 The proof of
item 2. follows by applying item 1. with f repalced by f − g ≥ 0.

Item 3. If f is real, ±f ≤ |f | and so by Item 2., ±EGf ≤ EG |f | , i.e.
|EGf | ≤ EG |f | , P – a.e. For complex f, let h ≥ 0 be a bounded and G –
measurable function. Then

E [|EGf |h] = E
[
EGf · sgn (EGf)h

]
= E

[
f · sgn (EGf)h

]
≤ E [|f |h] = E [EG |f | · h] .

Since h ≥ 0 is an arbitrary G – measurable function, it follows, by Lemma
18.2, that |EGf | ≤ EG |f | , P – a.s. Recall the item 4. has already been proved.

Item 5. If h, g ∈ Gb and f ∈ L1 (Ω,B, P ) , then

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .

Thus EG (gf) = g · EGf, P – a.e.
Item 6., by the item 5. of the projection Theorem 16.12, Eq. (18.8) holds

on L2(Ω,B, P ). By continuity of conditional expectation on L1 (Ω,B, P ) and
the density of L1 probability spaces in L2 – probability spaces shows that Eq.
(18.8) continues to hold on L1(Ω,B, P ).

Second Proof. For h ∈ (G0)b , we have

E [EG0EG1f · h] = E [EG1f · h] = E [f · h] = E [EG0f · h]

which shows EG0EG1f = EG0f a.s. By the product rule in item 5., it also
follows that

EG1 [EG0f ] = EG1 [EG0f · 1] = EG0f · EG1 [1] = EG0f a.s.

Notice that EG1 [EG0f ] need only be G1 – measurable. What the statement
says there are representatives of EG1 [EG0f ] which is G0 – measurable and any
such representative is also a representative of EG0f.
1 This can also easily be proved directly here by taking h = 1EGf<0 in Eq. (18.13).
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Remark 18.6. There is another standard construction of EGf based on the
characterization in Eq. (18.7) and the Radon Nikodym Theorem 17.8. It goes
as follows, for 0 ≤ f ∈ L1 (P ) , let Q := fP and observe that Q|G � P |G and
hence there exists 0 ≤ g ∈ L1 (Ω,G, P ) such that dQ|G = gdP |G . This then
implies that ∫

A

fdP = Q (A) =
∫

A

gdP for all A ∈ G,

i.e. g = EGf. For general real valued, f ∈ L1 (P ) , define EGf = EGf+−EGf−
and then for complex f ∈ L1 (P ) let EGf = EG Re f + iEG Im f.

Notation 18.7 In the future, we will often write EGf as E [f |G] . Moreover,
if (X,M) is a measurable space and X : Ω → X is a measurable map. We
will often simply denote E [f |σ (X)] simply by E [f |X] . We will further let
P (A|G) := E [1A|G] be the conditional probability of A given G, and
P (A|X) := P (A|σ (X)) be conditional probability of A given X.

Exercise 18.1. Suppose f ∈ L1 (Ω,B, P ) and f > 0 a.s. Show E [f |G] > 0
a.s. Use this result to conclude if f ∈ (a, b) a.s. for some a, b such that −∞ ≤
a < b ≤ ∞, then E [f |G] ∈ (a, b) a.s. More precisely you are to show that any
version, g, of E [f |G] satisfies, g ∈ (a, b) a.s.

18.1 Examples

Example 18.8. Suppose G is the trivial σ – algebra, i.e. G = {∅, Ω} . In this
case EGf = Ef a.s.

Example 18.9. On the opposite extreme, if G = B, then EGf = f a.s.

Lemma 18.10. Suppose (X,M) is a measurable space, X : Ω → X is a
measurable function, and G is a sub-σ-algebra of B. If X is independent of G
and f : X → R is a measurable function such that f (X) ∈ L1 (Ω,B, P ) , then
EG [f (X)] = E [f (X)] a.s.. Conversely if EG [f (X)] = E [f (X)] a.s. for all
bounded measurable functions, f : X → R, then X is independent of G.

Proof. Suppose that X is independent of G, f : X → R is a measurable
function such that f (X) ∈ L (Ω,B, P ) , µ := E [f (X)] , and A ∈ G. Then, by
independence,

E [f (X) : A] = E [f (X) 1A] = E [f (X)] E [1A] = E [µ1A] = E [µ : A] .

Therefore EG [f (X)] = µ = E [f (X)] a.s.
Conversely if EG [f (X)] = E [f (X)] = µ and A ∈ G, then

E [f (X) 1A] = E [f (X) : A] = E [µ : A] = µE [1A] = E [f (X)] E [1A] .

Since this last equation is assumed to hold true for all A ∈ G and all bounded
measurable functions, f : X → R, X is independent of G.
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The following remark is often useful in computing conditional expecta-
tions. The following Exercise should help you gain some more intuition about
conditional expectations.

Remark 18.11 (Note well.). According to Lemma 18.1, E (f |X) = f̃ (X) a.s.
for some measurable function, f̃ : X → R. So computing E (f |X) = f̃ (X) is
equivalent to finding a function, f̃ : X → R, such that

E [f · h (X)] = E
[
f̃ (X)h (X)

]
(18.14)

for all bounded and measurable functions, h : X → R.

Exercise 18.2. Suppose (Ω,B, P ) is a probability space and P := {Ai}∞i=1 ⊂
B is a partition of Ω. (Recall this means Ω =

∑∞
i=1Ai.) Let G be the σ –

algebra generated by P. Show:

1. B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
2. g : Ω → R is G – measurable iff g =

∑∞
i=1 λi1Ai

for some λi ∈ R.
3. For f ∈ L1(Ω,B, P ), let E [f |Ai] := E [1Ai

f ] /P (Ai) if P (Ai) 6= 0 and
E [f |Ai] = 0 otherwise. Show

EGf =
∞∑

i=1

E [f |Ai] 1Ai
a.s. (18.15)

Solution to Exercise (18.2). We will only prove part 3. here. To do this,
suppose that EGf =

∑∞
i=1 λi1Ai

for some λi ∈ R. Then

E [f : Aj ] = E [EGf : Aj ] = E

[ ∞∑
i=1

λi1Ai
: Aj

]
= λjP (Aj)

which holds automatically if P (Aj) = 0 no matter how λj is chosen. Therefore,
we must take

λj =
E [f : Aj ]
P (Aj)

= E [f |Aj ]

which verifies Eq. (18.15).

Proposition 18.12. Suppose that (Ω,B, P ) is a probability space, (X,M, µ)
and (Y,N , ν) are two σ – finite measure spaces, X : Ω → X and Y : Ω → Y
are measurable functions, and there exists 0 ≤ ρ ∈ L1(Ω,B, µ ⊗ ν) such that
P ((X,Y ) ∈ U) =

∫
U
ρ (x, y) dµ (x) dν (y) for all U ∈M⊗N . Let

ρ̄ (x) :=
∫

Y
ρ (x, y) dν (y) (18.16)

and x ∈ X and B ∈ N , let
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Q (x,B) :=
{ 1

ρ̄(x)

∫
B
ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)
δy0 (B) if ρ̄ (x) ∈ {0,∞} (18.17)

where y0 is some arbitrary but fixed point in Y. Then for any bounded (or
non-negative) measurable function, f : X× Y → R, we have

E [f (X,Y ) |X] = Q (X, f (X, ·)) =:
∫

Y
f (X, y)Q (X, dy) = g (X) a.s.

(18.18)
where,

g (x) :=
∫

Y
f (x, y)Q (x, dy) = Q (x, f (x, ·)) .

As usual we use the notation,

Q (x, v) :=
∫

Y
v (y)Q (x, dy) =

{ 1
ρ̄(x)

∫
Y v (y) ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)
δy0 (v) = v (y0) if ρ̄ (x) ∈ {0,∞} .

for all bounded measurable functions, v : Y → R,

Proof. Our goal is to compute E [f (X,Y ) |X] . According to Remark
18.11, we are searching for a bounded measurable function, g : X → R, such
that

E [f (X,Y )h (X)] = E [g (X)h (X)] for all h ∈Mb. (18.19)

(Throughout this argument we are going to repeatedly use the Tonelli - Fubini
theorems.) We now explicitly write out both sides of Eq. (18.19);

E [f (X,Y )h (X)] =
∫

X×Y
h (x) f (x, y) ρ (x, y) dµ (x) dν (y)

=
∫

X
h (x)

[∫
Y
f (x, y) ρ (x, y) dν (y)

]
dµ (x) (18.20)

E [g (X)h (X)] =
∫

X×Y
h (x) g (x) ρ (x, y) dµ (x) dν (y)

=
∫

X
h (x) g (x) ρ̄ (x) dµ (x) . (18.21)

Since the right sides of Eqs. (18.20) and (18.21) must be equal for all h ∈Mb,
we must demand,∫

Y
f (x, y) ρ (x, y) dν (y) = g (x) ρ̄ (x) for µ – a.e. x. (18.22)

There are two possible problems in solving this equation for g (x) at a partic-
ular point x; the first is when ρ̄ (x) = 0 and the second is when ρ̄ (x) = ∞.
Since
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X
ρ̄ (x) dµ (x) =

∫
X

[∫
Y
ρ (x, y) dν (y)

]
dµ (x) = 1,

we know that ρ̄ (x) <∞ for µ – a.e. x and therefore

P (X ∈ {ρ̄ = 0}) = P (ρ̄ (X) = 0) =
∫

X
1ρ̄=0ρ̄dµ = 0.

Hence the points where ρ̄ (x) = ∞ will not cause any problems.
For the first problem, namely points x where ρ̄ (x) = 0, we know that

ρ (x, y) = 0 for ν – a.e. y and therefore∫
Y
f (x, y) ρ (x, y) dν (y) = 0. (18.23)

Hence at such points, x where ρ̄ (x) = 0, Eq. (18.22) will be valid no matter
how we choose g (x) . Therefore, if we let y0 ∈ Y be an arbitrary but fixed
point and then define

g (x) :=
{ 1

ρ̄(x)

∫
Y f (x, y) ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)

f (x, y0) if ρ̄ (x) ∈ {0,∞} ,

then we have shown E [f (X,Y ) |X] = g (X) = Q (X, f) a.s. as desired. (Ob-
serve where that when ρ̄ (x) < ∞, ρ (x, ·) ∈ L1 (ν) and hence the integral in
the definition of g is well defined.)

Just for added security, let us check directly that g (X) = E [f (X,Y ) |X]
a.s.. According to Eq. (18.21) we have

E [g (X)h (X)] =
∫

X
h (x) g (x) ρ̄ (x) dµ (x)

=
∫

X∩{0<ρ̄<∞}
h (x) g (x) ρ̄ (x) dµ (x)

=
∫

X∩{0<ρ̄<∞}
h (x) ρ̄ (x)

(
1

ρ̄ (x)

∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

=
∫

X∩{0<ρ̄<∞}
h (x)

(∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

=
∫

X
h (x)

(∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

= E [f (X,Y )h (X)] (by Eq. (18.20)),

wherein we have repeatedly used µ (ρ̄ = ∞) = 0 and Eq. (18.23) holds when
ρ̄ (x) = 0. This completes the verification that g (X) = E [f (X,Y ) |X] a.s..

This proposition shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables in the
integrand. Whereas to compute the expectation, one should integrate over all
of the variables. It also gives an example of regular conditional probabilities.
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Definition 18.13. Let (X,M) and (Y,N ) be measurable spaces. A function,
Q : X×N → [0, 1] is a probability kernel on X× Y iff

1. Q (x, ·) : N → [0, 1] is a probability measure on (Y,N ) for each x ∈ X and
2. Q (·, B) : X → [0, 1] is M/BR – measurable for all B ∈ N .

If Q is a probability kernel on X × Y and f : Y → R is a bounded mea-
surable function or a positive measurable function, then x → Q (x, f) :=∫

Y f (y)Q (x, dy) is M/BR – measurable. This is clear for simple functions
and then for general functions via simple limiting arguments.

Definition 18.14. Let (X,M) and (Y,N ) be measurable spaces and X : Ω →
X and Y : Ω → Y be measurable functions. A probability kernel, Q, on X×Y
is said to be a regular conditional distribution of Y given X iff Q (X,B)
is a version of P (Y ∈ B|X) for each B ∈ N . Equivalently, we should have
Q (X, f) = E [f (Y ) |X] a.s. for all f ∈ Nb. When X = Ω and M = G is a
sub-σ – algebra of B, we say that Q is the regular conditional distribution
of Y given G.

The probability kernel, Q, defined in Eq. (18.17) is an example of a regular
conditional distribution of Y given X. In general if G is a sub-σ-algebra of B.
Letting PG (A) = P (A|G) := E [1A|G] ∈ L2 (Ω,B, P ) for all A ∈ B, then PG :
B → L2 (Ω,G, P ) is a map such that whenever A,An ∈ B with A =

∑∞
n=1An,

we have (by cDCT) that

PG (A) =
∞∑

n=1

PG (An) (equality in L2 (Ω,G, P ) . (18.24)

Now suppose that we have chosen a representative, P̄G (A) : Ω → [0, 1] , of
PG (A) for each A ∈ B. From Eq. (18.24) it follows that

P̄G (A) (ω) =
∞∑

n=1

P̄G (An) (ω) for P -a.e. ω. (18.25)

However, note well, the exceptional set of ω’s depends on the sets A,An ∈ B.
The goal of regular conditioning is to carefully choose the representative,
P̄G (A) : Ω → [0, 1] , such that Eq. (18.25) holds for all ω ∈ Ω and all A,An ∈
B with A =

∑∞
n=1An.

Remark 18.15. Unfortunately, regular conditional distributions do not always
exists. However, if we require Y to be a “standard Borel space,” (i.e. Y is
isomorphic to a Borel subset of R), then a conditional distribution of Y given
X will always exists. See Theorem 18.25. Moreover, it is known that all “rea-
sonable” measure spaces are standard Borel spaces, see Section 18.4 below for
more details. So in most instances of interest a regular conditional distribution
of Y given X will exist.
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Exercise 18.3. Suppose that (X,M) and (Y,N ) are measurable spaces, X :
Ω → X and Y : Ω → Y are measurable functions, and there exists a regular
conditional distribution, Q, of Y given X. Show:

1. For all bounded measurable functions, f : (X× Y,M⊗N ) → R, the
function X 3 x→ Q (x, f (x, ·)) is measurable and

Q (X, f (X, ·)) = E [f (X,Y ) |X] a.s. (18.26)

Hint: let H denote the set of bounded measurable functions, f, on X×Y
such that the two assertions are valid.

2. If A ∈M⊗N and µ := P ◦X−1 be the law of X, then

P ((X,Y ) ∈ A) =
∫

X
Q (x, 1A (x, ·)) dµ (x) =

∫
X
dµ (x)

∫
Y

1A (x, y)Q (x, dy) .

(18.27)

Exercise 18.4. Keeping the same notation as in Exercise 18.3 and further
assume that X and Y are independent. Find a regular conditional distribution
of Y given X and prove

E [f (X,Y ) |X] = hf (X) a.s. ∀ bounded measurable f : X× Y → R,

where
hf (x) := E [f (x, Y )] for all x ∈ X,

i.e.
E [f (X,Y ) |X] = E [f (x, Y )] |x=X a.s.

Exercise 18.5. Suppose (Ω,B, P ) and (Ω′,B′, P ′) are two probability spaces,
(X,M) and (Y,N ) are measurable spaces, X : Ω → X, X ′ : Ω′ → X, Y :
Ω → Y,and Y ′ : Ω → Y are measurable functions such that P ◦ (X,Y )−1 =
P ′◦(X ′, Y ′) , i.e. (X,Y ) d= (X ′, Y ′) . If f : (X× Y,M⊗N ) → R is a bounded
measurable function and f̃ : (X,M) → R is a measurable function such that
f̃ (X) = E [f (X,Y ) |X] P - a.s. then

E′ [f (X ′, Y ′) |X ′] = f̃ (X ′) P ′ a.s.

18.2 Additional Properties of Conditional Expectations

The next theorem is devoted to extending the notion of conditional expecta-
tions to all non-negative functions and to proving conditional versions of the
MCT, DCT, and Fatou’s lemma.

Theorem 18.16 (Extending EG). If f : Ω → [0,∞] is B – measurable, the
function F :=↑ limn→∞ EG [f ∧ n] exists a.s. and is, up to sets of measure
zero, uniquely determined by as the G – measurable function, F : Ω → [0,∞] ,
satisfying

E [f : A] = E [F : A] for all A ∈ G. (18.28)

Hence it is consistent to denote F by EGf. In addition we now have;
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1. Properties 2., 5. (with 0 ≤ g ∈ Gb), and 6. of Theorem 18.5 still hold for
any B – measurable functions such that 0 ≤ f ≤ g. Namely;
a) Order Preserving. EGf ≤ EGg a.s. when 0 ≤ f ≤ g,
b) Pull out Property. EG [hf ] = hEG [f ] a.s. for all h ≥ 0 and G –

measurable.
c) Tower or smoothing property. If G0 ⊂ G1 ⊂ B. Then

EG0EG1f = EG1EG0f = EG0f a.s.

2. Conditional Monotone Convergence (cMCT). Suppose that, almost
surely, 0 ≤ fn ≤ fn+1 for all n, then then limn→∞ EGfn = EG [limn→∞ fn]
a.s.

3. Conditional Fatou’s Lemma (cFatou). Suppose again that 0 ≤ fn ∈
L1 (Ω,B, P ) a.s., then

EG
[
lim inf
n→∞

fn

]
≤ lim inf

n→∞
EG [fn] a.s. (18.29)

4. Conditional Dominated Convergence (cDCT). If fn → f a.s. and
|fn| ≤ g ∈ L1 (Ω,B, P ) , then EGfn → EGf a.s.

Remark 18.17. Regarding item 4. above. Suppose that fn
P→ f, |fn| ≤ gn ∈

L1 (Ω,B, P ) , gn
P→ g ∈ L1 (Ω,B, P ) and Egn → Eg. Then by the DCT in

Corollary 11.8, we know that fn → f in L1 (Ω,B, P ) . Since EG is a contrac-
tion, it follows that EGfn → EGf in L1 (Ω,B, P ) and hence in probability.

Proof. Since f ∧ n ∈ L1 (Ω,B, P ) and f ∧ n is increasing, it follows that
F :=↑ limn→∞ EG [f ∧ n] exists a.s. Moreover, by two applications of the
standard MCT, we have for any A ∈ G, that

E [F : A] = lim
n→∞

E [EG [f ∧ n] : A] = lim
n→∞

E [f ∧ n : A] = lim
n→∞

E [f : A] .

Thus Eq. (18.28) holds and this uniquely determines F follows from Lemma
18.2.

Item 1. a) If 0 ≤ f ≤ g, then

EGf = lim
n→∞

EG [f ∧ n] ≤ lim
n→∞

EG [g ∧ n] = EGg a.s.

and so EG still preserves order. We will prove items 1b and 1c at the end of
this proof.

Item 2. Suppose that, almost surely, 0 ≤ fn ≤ fn+1 for all n, then EGfn

is a.s. increasing in n. Hence, again by two applications of the MCT, for any
A ∈ G, we have

E
[

lim
n→∞

EGfn : A
]

= lim
n→∞

E [EGfn : A] = lim
n→∞

E [fn : A]

= E
[

lim
n→∞

fn : A
]

= E
[
EG
[

lim
n→∞

fn

]
: A
]



374 18 Conditional Expectation

from which it follows that limn→∞ EGfn = EG [limn→∞ fn] a.s.
Item 3. For 0 ≤ fn, let gk := infn≥k fn. Then gk ≤ fk for all k and

gk ↑ lim infn→∞ fn and hence by cMCT and item 1.,

EG
[
lim inf
n→∞

fn

]
= lim

k→∞
EGgk ≤ lim inf

k→∞
EGfk a.s.

Item 4. As usual it suffices to consider the real case. Let fn → f a.s. and
|fn| ≤ g a.s. with g ∈ L1 (Ω,B, P ) . Then following the proof of the Dominated
convergence theorem, we start with the fact that 0 ≤ g ± fn a.s. for all n.
Hence by cFatou,

EG (g ± f) = EG
[
lim inf
n→∞

(g ± fn)
]

≤ lim inf
n→∞

EG (g ± fn) = EGg +
{

lim infn→∞ EG (fn) in + case
− lim supn→∞ EG (fn) in − case,

where the above equations hold a.s. Cancelling EGg from both sides of the
equation then implies

lim sup
n→∞

EG (fn) ≤ EGf ≤ lim inf
n→∞

EG (fn) a.s.

Item 1. b) If h ≥ 0 is a G – measurable function and f ≥ 0, then by cMCT,

EG [hf ] cMCT= lim
n→∞

EG [(h ∧ n) (f ∧ n)]

= lim
n→∞

(h ∧ n) EG [(f ∧ n)] cMCT= hEGf a.s.

Item 1. c) Similarly by multiple uses of cMCT,

EG0EG1f = EG0 lim
n→∞

EG1 (f ∧ n) = lim
n→∞

EG0EG1 (f ∧ n)

= lim
n→∞

EG0 (f ∧ n) = EG0f

and

EG1EG0f = EG1 lim
n→∞

EG0 (f ∧ n) = lim
n→∞

EG1EG0 [f ∧ n]

= lim
n→∞

EG0 (f ∧ n) = EG0f.

The next result in Lemma 18.19 shows how to localize conditional expec-
tations. We first need the following definition.

Definition 18.18. Suppose that F and G are sub-sigma-fileds of B and A ∈
B. We say that F = G on A iff A ∈ F ∩ G and FA = GA. Recall that
FA = {B ∩A : B ∈ F} .
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Notice that if F = G on A then F = G = F ∩ G on A as well. Indeed, if
B ∈ FA then B ∈ GA and so B∩A ∈ F ∩G and hence B∩A = (B ∩A)∩A ∈
[F ∩ G]A . Moreover, because [F ∩ G]A ⊂ FA we have FA = GA implies

FA = GA = [F ∩ G]A . (18.30)

Lemma 18.19 (Localizing Conditional Expectations). Let (Ω,B, P ) be
a probability space, F and G be sub-sigma-fileds of B, X, Y ∈ L1 (Ω,B, P ) or
X,Y : (Ω,B) → [0,∞] are measurable, and A ∈ F ∩ G. If F = G on A and
X = Y a.s. on A, then

EFX = EF∩GX = EF∩GY = EGY a.s. on A. (18.31)

Alternatively put, if A ∈ F ∩ G and FA = GA then

1AEF = 1AEF∩G = 1AEG . (18.32)

Proof. Let us start with the observation that if X is an F – measurable
random variable, then 1AX is F ∩G measurable. This can be checked directly
(see Remark 18.20 below) or as follows. If X = 1B with B ∈ F , then 1A1B =
1A∩B and A ∩ B ∈ FA = GA = [F ∩ G]A ⊂ F ∩ G and so 1A1B is F ∩ G –
measurable. The general X case now follows by linearity and then passing to
the limit.

Suppose X ∈ L1 (Ω,B, P ) or X ≥ 0 and let X̄ be a representative of EFX.
By the previous observation, 1AX̄ is F ∩ G – measurable. Therefore,

1AX̄ = EF∩G
[
1AX̄

]
= 1AEF∩G

[
X̄
]

= 1AEF∩G [EFX] = 1AEF∩GX a.s.,

i.e. 1AEFX = 1AEF∩GX a.s. This proves the first equality in Eq. (18.32)
while the second follows by interchanging the roles of F and G.

Equation (18.31) is now easily verified. First notice that X = Y a.s. on A
iff 1AX = 1AY a.s.. Now from Eq. (18.32), the tower property of conditional
expectation, and the fact that 1A = 1A · 1A,we find

1AEFX = 1AEF [1AX] = 1AEF [1AY ] = 1AEFY = 1AEF∩GY

from which it follows that EFX = EF∩GY a.s. on A.

Remark 18.20. For the direct verification that 1AX is F ∩ G measurable, we
have,

{1AX 6= 0} = A ∩ {X 6= 0} ∈ FA = GA = (F ∩ G)A ⊂ F ∩ G.

So for B ∈ BR,

{1AX ∈ B} = A ∩ {X ∈ B} ∈ FA ⊂ F ∩ G if 0 /∈ B

while if 0 ∈ B,

{1AX ∈ B} = {1AX = 0}c ∪A ∩ {X ∈ (B \ {0})}
= {1AX 6= 0}c ∪A ∩ {X ∈ (B \ {0})} ∈ F ∩ G.
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Theorem 18.21 (Conditional Jensen’s inequality). Let (Ω,B, P ) be a
probability space, −∞ ≤ a < b ≤ ∞, and ϕ : (a, b) → R be a convex function.
Assume f ∈ L1(Ω,B, P ; R) is a random variable satisfying, f ∈ (a, b) a.s. and
ϕ(f) ∈ L1(Ω,B, P ; R). Then ϕ(EGf) ∈ L1 (Ω,G, P ) ,

ϕ(EGf) ≤ EG [ϕ(f)] a.s. (18.33)

and
E [ϕ(EGf)] ≤ E [ϕ(f)] (18.34)

Proof. Let Λ := Q∩(a, b) – a countable dense subset of (a, b) . By Theorem
11.38 (also see Lemma 7.31) and Figure 7.2 when ϕ is C1)

ϕ(y) ≥ ϕ(x) + ϕ′−(x)(y − x) for all for all x, y ∈ (a, b) ,

where ϕ′−(x) is the left hand derivative of ϕ at x. Taking y = f and then
taking conditional expectations imply,

EG [ϕ(f)] ≥ EG
[
ϕ(x) + ϕ′−(x)(f − x)

]
= ϕ(x)+ϕ′−(x)(EGf−x) a.s. (18.35)

Since this is true for all x ∈ (a, b) (and hence all x in the countable set, Λ) we
may conclude that

EG [ϕ(f)] ≥ sup
x∈Λ

[
ϕ(x) + ϕ′−(x)(EGf − x)

]
a.s.

By Exercise 18.1, EGf ∈ (a, b) , and hence it follows from Corollary 11.39 that

sup
x∈Λ

[
ϕ(x) + ϕ′−(x)(EGf − x)

]
= ϕ (EGf) a.s.

Combining the last two estimates proves Eq. (18.33).
From Eqs. (18.33) and (18.35) we infer,

|ϕ(EGf)| ≤ |EG [ϕ(f)]| ∨
∣∣ϕ(x) + ϕ′−(x)(EGf − x)

∣∣ ∈ L1 (Ω,G, P )

and hence ϕ(EGf) ∈ L1 (Ω,G, P ) . Taking expectations of Eq. (18.33) is now
allowed and immediately gives Eq. (18.34).

Corollary 18.22. The conditional expectation operator, EG maps Lp (Ω,B, P )
into Lp (Ω,B, P ) and the map remains a contraction for all 1 ≤ p ≤ ∞.

Proof. The case p = ∞ and p = 1 have already been covered in Theorem
18.5. So now suppose, 1 < p <∞, and apply Jensen’s inequality with ϕ (x) =
|x|p to find |EGf |p ≤ EG |f |p a.s. Taking expectations of this inequality gives
the desired result.
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Lemma 18.23. Suppose that (X,M) is a measurable space and F : X×R → R
is a function such that; 1) F (·, t) : X → R is M/BR – measurable for all
t ∈ R, and 2) F (x, ·) : R → R is right continuous for all x ∈ X. Then F is
M⊗BR/BR – measurable.

Proof. For n ∈ N, the function,

Fn (x, t) :=
∞∑

k=−∞

F
(
x, (k + 1) 2−n

)
1(k2−n,(k+1)2−n] (t) ,

is M⊗BR/BR – measurable. Using the right continuity assumption, it follows
that F (x, t) = limn→∞ Fn (x, t) for all (x, t) ∈ X× R and therefore F is also
M⊗BR/BR – measurable.

Theorem 18.24. Suppose that (X,M) is a measurable space, X : Ω → X is
a measurable function and Y : Ω → R is a random variable. Then there exits
a probability kernel, Q, on X×R such that E [f (Y ) |X] = Q (X, f) , P – a.s.,
for all bounded measurable functions, f : R → R.

Proof. For each r ∈ Q, let qr : X → [0, 1] be a measurable function such
that

E [1Y≤r|X] = qr (X) a.s.

Let ν := P ◦ X−1 be the law of X. Then using the basic properties of
conditional expectation, qr ≤ qs ν – a.s. for all r ≤ s, limr↑∞ qr = 1 and
limr↓∞ qr = 0, ν – a.s. Hence the set, X0 ⊂ X where qr (x) ≤ qs (x) for all r ≤
s, limr↑∞ qr (x) = 1, and limr↓∞ qr (x) = 0 satisfies, ν (X0) = P (X ∈ X0) = 1.
For t ∈ R, let

F (x, t) := 1X0 (x) · inf {qr (x) : r > t}+ 1X\X0 (x) · 1t≥0.

Then F (·, t) : X → R is measurable for each t ∈ R and F (x, ·) is a distribution
function on R for each x ∈ X. Hence an application of Lemma 18.23 shows
F : X× R → [0, 1] is measurable.

For each x ∈ X and B ∈ BR, let Q (x,B) = µF (x,·) (B) where µF de-
notes the probability measure on R determined by a distribution function,
F : R → [0, 1] .

We will now show that Q is the desired probability kernel. To prove this,
let H be the collection of bounded measurable functions, f : R → R, such
that X 3 x → Q (x, f) ∈ R is measurable and E [f (Y ) |X] = Q (X, f) ,
P – a.s. It is easily seen that H is a linear subspace which is closed under
bounded convergence. We will finish the proof by showing that H contains
the multiplicative class, M =

{
1(−∞,t] : t ∈ R

}
.

Notice that Q
(
x, 1(−∞,t]

)
= F (x, t) is measurable. Now let r ∈ Q and

g : X → R be a bounded measurable function, then
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E [1Y≤r · g (X)] = E [E [1Y≤r|X] g (X)] = E [qr (X) g (X)]
= E [qr (X) 1X0 (X) g (X)] .

For t ∈ R, we may let r ↓ t in the above equality (use DCT) to learn,

E [1Y≤t · g (X)] = E [F (X, t) 1X0 (X) g (X)] = E [F (X, t) g (X)] .

Since g was arbitrary, we may conclude that

Q
(
X, 1(−∞,t]

)
= F (X, t) = E [1Y≤t|X] a.s.

This completes the proof.
This result leads fairly immediately to the following far reaching general-

ization.

Theorem 18.25. Suppose that (X,M) is a measurable space and (Y,N ) is a
standard Borel space, see Appendix 18.4 below. Suppose that X : Ω → X and
Y : Ω → Y are measurable functions. Then there exits a probability kernel,
Q, on X × Y such that E [f (Y ) |X] = Q (X, f) , P – a.s., for all bounded
measurable functions, f : Y → R.

Proof. By definition of a standard Borel space, we may assume that Y ∈
BR and N = BY. In this case Y may also be viewed to be a measurable
map form Ω → R such that Y (Ω) ⊂ Y. By Theorem 18.24, we may find a
probability kernel, Q0, on X× R such that

E [f (Y ) |X] = Q0 (X, f) , P – a.s., (18.36)

for all bounded measurable functions, f : R → R.
Taking f = 1Y in Eq. (18.36) shows

1 = E [1Y (Y ) |X] = Q0 (X,Y) a.s..

Thus if we let X0 := {x ∈ X : Q0 (x,Y) = 1} , we know that P (X ∈ X0) = 1.
Let us now define

Q (x,B) := 1X0 (x)Q0 (x,B) + 1X\X0 (x) δy (B) for (x,B) ∈ X× BY,

where y is an arbitrary but fixed point in Y. Then and hence Q is a probability
kernel on X× Y. Moreover if B ∈ BY ⊂ BR, then

Q (X,B) = 1X0 (X)Q0 (X,B) = 1X0 (X) E [1B (Y ) |X] = E [1B (Y ) |X] a.s.

This shows that Q is the desired regular conditional probability.

Corollary 18.26. Suppose G is a sub-σ – algebra, (Y,N ) is a standard Borel
space, and Y : Ω → Y is a measurable function. Then there exits a probability
kernel, Q, on (Ω,G)× (Y,N ) such that E [f (Y ) |G] = Q (·, f) , P - a.s. for all
bounded measurable functions, f : Y → R.

Proof. This is a special case of Theorem 18.25 applied with (X,M) =
(Ω,G) and Y : Ω → Ω being the identity map which is B/G – measurable.
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For more information along the lines of this section, see Royden [12].

Definition 18.27. Two measurable spaces, (X,M) and (Y,N ) are said to be
isomorphic if there exists a bijective map, f : X → Y such that f (M) = N
and f−1 (N ) = M, i.e. both f and f−1 are measurable. In this case we say f
is a measure theoretic isomorphism and we will write X ∼= Y.

Definition 18.28. A measurable space, (X,M) is said to be a standard
Borel space if (X,M) ∼= (B,BB) where B is a Borel subset of

(
(0, 1) ,B(0,1)

)
.

Definition 18.29 (Polish spaces). A Polish space is a separable topolog-
ical space (X, τ) which admits a complete metric, ρ, such that τ = τρ.

The main goal of this chapter is to prove every Borel subset of a Polish
space is a standard Borel space, see Corollary 18.39 below. Along the way we
will show a number of spaces, including [0, 1] , , (0, 1], [0, 1]d , Rd, and RN, are
all isomorphic to (0, 1) . Moreover we also will see that the a countable product
of standard Borel spaces is again a standard Borel space, see Corollary 18.36.

On first reading, you may wish to skip the rest of this
section.

Lemma 18.30. Suppose (X,M) and (Y,N ) are measurable spaces such that
X =

∑∞
n=1Xn, Y =

∑∞
n=1 Yn, with Xn ∈ M and Yn ∈ N . If (Xn,MXn

) is
isomorphic to (Yn,NYn

) for all n then X ∼= Y. Moreover, if (Xn,Mn) and
(Yn,Nn) are isomorphic measure spaces, then (X :=

∏∞
n=1Xn,⊗∞n=1Mn) are

(Y :=
∏∞

n=1 Yn,⊗∞n=1Nn) are isomorphic.

Proof. For each n ∈ N, let fn : Xn → Yn be a measure theoretic isomor-
phism. Then define f : X → Y by f = fn on Xn. Clearly, f : X → Y is a
bijection and if B ∈ N , then

f−1 (B) = ∪∞n=1f
−1 (B ∩ Yn) = ∪∞n=1f

−1
n (B ∩ Yn) ∈M.

This shows f is measurable and by similar considerations, f−1 is measurable
as well. Therefore, f : X → Y is the desired measure theoretic isomorphism.

For the second assertion, let fn : Xn → Yn be a measure theoretic isomor-
phism of all n ∈ N and then define

f (x) = (f1 (x1) , f2 (x2) , . . . ) with x = (x1, x2, . . . ) ∈ X.

Again it is clear that f is bijective and measurable, since

f−1

( ∞∏
n=1

Bn

)
=
∞∏

n=1

f−1
n (Bn) ∈ ⊗∞n=1Nn

for all Bn ∈ Mn and n ∈ N. Similar reasoning shows that f−1 is measurable
as well.
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Proposition 18.31. Let −∞ < a < b <∞. The following measurable spaces
equipped with there Borel σ – algebras are all isomorphic; (0, 1) , [0, 1] , (0, 1],
[0, 1), (a, b) , [a, b] , (a, b], [a, b), R, and (0, 1)∪Λ where Λ is a finite or countable
subset of R \ (0, 1) .

Proof. It is easy to see by that any bounded open, closed, or half open
interval is isomorphic to any other such interval using an affine transformation.
Let us now show (−1, 1) ∼= [−1, 1] . To prove this it suffices, by Lemma 18.30,to
observe that

(−1, 1) = {0} ∪
∞∑

n=0

(
(−2−n,−2−n] ∪ [2−n−1, 2−n)

)
and

[−1, 1] = {0} ∪
∞∑

n=0

(
[−2−n,−2−n−1) ∪ (2−n−1, 2−n]

)
.

Similarly (0, 1) is isomorphic to (0, 1] because

(0, 1) =
∞∑

n=0

[2−n−1, 2−n) and (0, 1] =
∞∑

n=0

(2−n−1, 2−n].

The assertion involving R can be proved using the bijection, tan :
(−π/2, π/2) → R.

If Λ = {1} , then by Lemma 18.30 and what we have already proved,
(0, 1) ∪ {1} = (0, 1] ∼= (0, 1) . Similarly if N ∈ N with N ≥ 2 and Λ =
{2, . . . , N + 1} , then

(0, 1) ∪ Λ ∼= (0, 1] ∪ Λ = (0, 2−N+1] ∪

[
N−1∑
n=1

(2−n, 2−n−1]

]
∪ Λ

while

(0, 1) =
(
0, 2−N+1

)
∪

[
N−1∑
n=1

(
2−n, 2−n−1

)]
∪
{
2−n : n = 1, 2, . . . , N

}
and so again it follows from what we have proved and Lemma 18.30 that
(0, 1) ∼= (0, 1) ∪Λ. Finally if Λ = {2, 3, 4, . . . } is a countable set, we can show
(0, 1) ∼= (0, 1) ∪ Λ with the aid of the identities,

(0, 1) =

[ ∞∑
n=1

(
2−n, 2−n−1

)]
∪
{
2−n : n ∈ N

}
and

(0, 1) ∪ Λ ∼= (0, 1] ∪ Λ =

[ ∞∑
n=1

(2−n, 2−n−1]

]
∪ Λ.
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Notation 18.32 Suppose (X,M) is a measurable space and A is a set. Let
πa : XA → X denote projection operator onto the ath – component of XA (i.e.
πa (ω) = ω (a) for all a ∈ A) and let M⊗A := σ (πa : a ∈ A) be the product σ
– algebra on XA.

Lemma 18.33. If ϕ : A→ B is a bijection of sets and (X,M) is a measurable
space, then

(
XA,M⊗A

) ∼= (XB ,M⊗B
)
.

Proof. The map f : XB → XA defined by f (ω) = ω ◦ ϕ for all ω ∈ XB

is a bijection with f−1 (α) = α ◦ ϕ−1. If a ∈ A and ω ∈ XB , we have

πXA

a ◦ f (ω) = f (ω) (a) = ω (ϕ (a)) = πXB

ϕ(a) (ω) ,

where πXA

a and πXB

b are the projection operators on XA and XB respectively.
Thus πXA

a ◦ f = πXB

ϕ(a) for all a ∈ A which shows f is measurable. Similarly,

πXB

b ◦ f−1 = πXA

ϕ−1(b) showing f−1 is measurable as well.

Proposition 18.34. Let Ω := {0, 1}N
, πi : Ω → {0, 1} be projection onto the

ith component, and B := σ (π1, π2, . . . ) be the product σ – algebra on Ω. Then
(Ω,B) ∼=

(
(0, 1) ,B(0,1)

)
.

Proof. We will begin by using a specific binary digit expansion of a point
x ∈ [0, 1) to construct a map from [0, 1) → Ω. To this end, let r1 (x) = x,

γ1 (x) := 1x≥2−1 and r2 (x) := x− 2−1γ1 (x) ∈ (0, 2−1),

then let γ2 := 1r2≥2−2 and r3 = r2 − 2−2γ2 ∈
(
0, 2−2

)
. Working inductively,

we construct {γk (x) , rk (x)}∞k=1 such that γk (x) ∈ {0, 1} , and

rk+1 (x) = rk (x)− 2−kγk (x) = x−
k∑

j=1

2−jγj (x) ∈
(
0, 2−k

)
(18.37)

for all k. Let us now define g : [0, 1) → Ω by g (x) := (γ1 (x) , γ2 (x) , . . . ) .
Since each component function, πj ◦ g = γj : [0, 1) → {0, 1} , is measurable it
follows that g is measurable.

By construction,

x =
k∑

j=1

2−jγj (x) + rk+1 (x)

and rk+1 (x) → 0 as k →∞, therefore

x =
∞∑

j=1

2−jγj (x) and rk+1 (x) =
∞∑

j=k+1

2−jγj (x) . (18.38)
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Hence if we define f : Ω → [0, 1] by f =
∑∞

j=1 2−jπj , then f (g (x)) = x for
all x ∈ [0, 1). This shows g is injective, f is surjective, and f in injective on
the range of g.

We now claim that Ω0 := g ([0, 1)) , the range of g, consists of those ω ∈ Ω
such that ωi = 0 for infinitely many i. Indeed, if there exists an k ∈ N such
that γj (x) = 1 for all j ≥ k, then (by Eq. (18.38)) rk+1 (x) = 2−k which
would contradict Eq. (18.37). Hence g ([0, 1)) ⊂ Ω0. Conversely if ω ∈ Ω0 and
x = f (ω) ∈ [0, 1), it is not hard to show inductively that γj (x) = ωj for all
j, i.e. g (x) = ω. For example, if ω1 = 1 then x ≥ 2−1 and hence γ1 (x) = 1.
Alternatively, if ω1 = 0, then

x =
∞∑

j=2

2−jωj <
∞∑

j=2

2−j = 2−1

so that γ1 (x) = 0. Hence it follows that r2 (x) =
∑∞

j=2 2−jωj and by similar
reasoning we learn r2 (x) ≥ 2−2 iff ω2 = 1, i.e. γ2 (x) = 1 iff ω2 = 1. The full
induction argument is now left to the reader.

Since single point sets are in B and

Λ := Ω \Ω0 = ∪∞n=1 {ω ∈ Ω : ωj = 1 for j ≥ n}

is a countable set, it follows that Λ ∈ B and therefore Ω0 = Ω \Λ ∈ B. Hence
we may now conclude that g :

(
[0, 1),B[0,1)

)
→ (Ω0,BΩ0) is a measurable bi-

jection with measurable inverse given by f |Ω0 , i.e.
(
[0, 1),B[0,1)

) ∼= (Ω0,BΩ0) .
An application of Lemma 18.30 and Proposition 18.31 now implies

Ω = Ω0 ∪ Λ ∼= [0, 1) ∪ N ∼= [0, 1) ∼= (0, 1) .

Corollary 18.35. The following spaces are all isomorphic to
(
(0, 1) ,B(0,1)

)
;

(0, 1)d and Rd for any d ∈ N and [0, 1]N and RN where both of these spaces
are equipped with their natural product σ – algebras, .

Proof. In light of Lemma 18.30 and Proposition 18.31 we know that
(0, 1)d ∼= Rd and (0, 1)N ∼= [0, 1]N ∼= RN. So, using Proposition 18.34, it suffices
to show (0, 1)d ∼= Ω ∼= (0, 1)N and to do this it suffices to show Ωd ∼= Ω and
ΩN ∼= Ω.

To reduce the problem further, let us observe that Ωd ∼= {0, 1}N×{1,2,...,d}

and ΩN ∼= {0, 1}N2

. For example, let g : ΩN → {0, 1}N2

be defined by

g (ω) (i, j) = ω (i) (j) for all ω ∈ ΩN =
[
{0, 1}N

]N
. Then g is a bijection

and since π{0,1}N2

(i,j) ◦ g (ω) = πΩ
j

(
πΩN

i (ω)
)
, it follows that g is measurable.

The inverse, g−1 : {0, 1}N2

→ ΩN, to g is given by g−1 (α) (i) (j) = α (i, j) .
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To see this map is measurable, we have πΩN

i ◦ g−1 : {0, 1}N2

→ Ω = {0, 1}N is
given πΩN

i ◦ g−1 (α) = g−1 (α) (i) (·) = α (i, ·) and hence

πΩ
j ◦ πΩN

i ◦ g (α) = α (i, j) = π
{0,1}N2

i,j (α)

from which it follows that πΩ
j ◦ πΩN

i ◦ g−1 = π{0,1}N2

is measurable for all
i, j ∈ N and hence πΩN

i ◦ g−1 is measurable for all i ∈ N and hence g−1 is
measurable. This shows ΩN ∼= {0, 1}N2

. The proof that Ωd ∼= {0, 1}N×{1,2,...,d}

is analogous.
We may now complete the proof with a couple of applications of Lemma

18.33. Indeed N, N × {1, 2, . . . , d} , and N2 all have the same cardinality and
therefore,

{0, 1}N×{1,2,...,d} ∼= {0, 1}N2 ∼= {0, 1}N = Ω.

Corollary 18.36. Suppose that (Xn,Mn) for n ∈ N are standard Borel
spaces, then X :=

∏∞
n=1Xn equipped with the product σ – algebra, M :=

⊗∞n=1Mn is again a standard Borel space.

Proof. Let An ∈ B[0,1] be Borel sets on [0, 1] such that there exists a
measurable isomorpohism, fn : Xn → An. Then f : X → A :=

∏∞
n=1An

defined by f (x1, x2, . . . ) = (f1 (x1) , f2 (x2) , . . . ) is easily seen to me a mea-
sure theoretic isomorphism when A is equipped with the product σ – algebra,
⊗∞n=1BAn

. So according to Corollary 18.35, to finish the proof it suffice to
show ⊗∞n=1BAn = MA where M := ⊗∞n=1B[0,1] is the product σ – algebra on
[0, 1]N .

The σ – algebra, ⊗∞n=1BAn
, is generated by sets of the form, B :=

∏∞
n=1Bn

where Bn ∈ BAn ⊂ B[0,1].On the other hand, the σ – algebra,MA is generated
by sets of the form, A ∩ B̃ where B̃ :=

∏∞
n=1 B̃n with B̃n ∈ B[0,1]. Since

A ∩ B̃ =
∞∏

n=1

(
B̃n ∩An

)
=
∞∏

n=1

Bn

where Bn = B̃n∩An is the generic element in BAn
, we see that ⊗∞n=1BAn

and
MA can both be generated by the same collections of sets, we may conclude
that ⊗∞n=1BAn = MA.

Our next goal is to show that any Polish space with its Borel σ – algebra
is a standard Borel space.

Notation 18.37 Let Q := [0, 1]N denote the (infinite dimensional) unit cube
in RN. For a, b ∈ Q let

d(a, b) :=
∞∑

n=1

1
2n
|an − bn| =

∞∑
n=1

1
2n
|πn (a)− πn (b)| . (18.39)
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Exercise 18.6. Show d is a metric and that the Borel σ – algebra on (Q, d)
is the same as the product σ – algebra.

Solution to Exercise (18.6). It is easily seen that d is a metric on Q which,
by Eq. (18.39) is measurable relative to the product σ – algebra, M.. There-
fore, M contains all open balls and hence contains the Borel σ – algebra, B.
Conversely, since

|πn (a)− πn (b)| ≤ 2nd (a, b) ,

each of the projection operators, πn : Q→ [0, 1] is continuous. Therefore each
πn is B – measurable and hence M = σ ({πn}∞n=1) ⊂ B.

Theorem 18.38. To every separable metric space (X, ρ), there exists a con-
tinuous injective map G : X → Q such that G : X → G(X) ⊂ Q is a
homeomorphism. Moreover if the metric, ρ, is also complete, then G (X) is a
Gδ –set, i.e. the G (X) is the countable intersection of open subsets of (Q, d) .
In short, any separable metrizable space X is homeomorphic to a subset of
(Q, d) and if X is a Polish space then X is homeomorphic to a Gδ – subset
of (Q, d).

Proof. (This proof follows that in Rogers and Williams [11, Theorem 82.5
on p. 106.].) By replacing ρ by ρ

1+ρ if necessary, we may assume that 0 ≤ ρ < 1.
Let D = {an}∞n=1 be a countable dense subset of X and define

G (x) = (ρ (x, a1) , ρ (x, a2) , ρ (x, a3) , . . . ) ∈ Q

and

γ (x, y) = d (G (x) , G (y)) =
∞∑

n=1

1
2n
|ρ (x, an)− ρ (y, an)|

for x, y ∈ X. To prove the first assertion, we must show G is injective and γ
is a metric on X which is compatible with the topology determined by ρ.

If G (x) = G (y) , then ρ (x, a) = ρ (y, a) for all a ∈ D. Since D is a dense
subset of X, we may choose αk ∈ D such that

0 = lim
k→∞

ρ (x, αk) = lim
k→∞

ρ (y, αk) = ρ (y, x)

and therefore x = y. A simple argument using the dominated convergence
theorem shows y → γ (x, y) is ρ – continuous, i.e. γ (x, y) is small if ρ (x, y) is
small. Conversely,

ρ (x, y) ≤ ρ (x, an) + ρ (y, an) = 2ρ (x, an) + ρ (y, an)− ρ (x, an)
≤ 2ρ (x, an) + |ρ (x, an)− ρ (y, an)| ≤ 2ρ (x, an) + 2nγ (x, y) .

Hence if ε > 0 is given, we may choose n so that 2ρ (x, an) < ε/2 and so if
γ (x, y) < 2−(n+1)ε, it will follow that ρ (x, y) < ε. This shows τγ = τρ. Since
G : (X, γ) → (Q, d) is isometric, G is a homeomorphism.
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Now suppose that (X, ρ) is a complete metric space. Let S := G (X) and
σ be the metric on S defined by σ (G (x) , G (y)) = ρ (x, y) for all x, y ∈ X.
Then (S, σ) is a complete metric (being the isometric image of a complete
metric space) and by what we have just prove, τσ = τdS

. Consequently, if
u ∈ S and ε > 0 is given, we may find δ′ (ε) such that Bσ (u, δ′ (ε)) ⊂
Bd (u, ε) . Taking δ (ε) = min (δ′ (ε) , ε) , we have diamd (Bd (u, δ (ε))) < ε
and diamσ (Bd (u, δ (ε))) < ε where

diamσ (A) := {supσ (u, v) : u, v ∈ A} and
diamd (A) := {sup d (u, v) : u, v ∈ A} .

Let S̄ denote the closure of S inside of (Q, d) and for each n ∈ N let

Nn := {N ∈ τd : diamd (N) ∨ diamσ (N ∩ S) < 1/n}

and let Un := ∪Nn ∈ τd. From the previous paragraph, it follows that S ⊂ Un

and therefore S ⊂ S̄ ∩ (∩∞n=1Un) .
Conversely if u ∈ S̄ ∩ (∩∞n=1Un) and n ∈ N, there exists Nn ∈ Nn such

that u ∈ Nn. Moreover, since N1∩· · ·∩Nn is an open neighborhood of u ∈ S̄,
there exists un ∈ N1 ∩ · · · ∩ Nn ∩ S for each n ∈ N. From the definition of
Nn, we have limn→∞ d (u, un) = 0 and σ (un, um) ≤ max

(
n−1,m−1

)
→ 0

as m,n → ∞. Since (S, σ) is complete, it follows that {un}∞n=1 is convergent
in (S, σ) to some element u0 ∈ S. Since (S, dS) has the same topology as
(S, σ) it follows that d (un, u0) → 0 as well and thus that u = u0 ∈ S. We
have now shown, S = S̄∩(∩∞n=1Un) . This completes the proof because we may
write S̄ =

(⋂∞
n=1 S1/n

)
where S1/n :=

{
u ∈ Q : d

(
u, S̄

)
< 1/n

}
and therefore,

S = (
⋂∞

n=1 Un) ∩
(⋂∞

n=1 S1/n

)
is a Gδ set.

Corollary 18.39. Every Polish space, X, with its Borel σ – algebra is a stan-
dard Borel space. Consequently and Borel subset of X is also a standard Borel
space.

Proof. Theorem 18.38 shows that X is homeomorphic to a measurable
(in fact a Gδ) subset Q0 of (Q, d) and hence X ∼= Q0. Since Q is a standard
Borel space so is Q0 and hence so is X.
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(Sub and Super) Martingales

Notation 19.1 A filtered probability space is a probability space, (Ω,B, P )
endowed with a sequence of sub-σ -algebras, {Bn}∞n=0 such that Bn ⊂ Bn+1 ⊂
B for all n = 0, 1, 2 . . . . We further define

B∞ := ∨∞n=0Bn := σ (∪∞n=0Bn) ⊂ B. (19.1)

Through out this chapter, we will assume (Ω,B, {Bn}∞n=0 , P ) is a filtered
probability space and B∞ is defined as in Eq. (19.1).

Definition 19.2. A sequence of random variables, {Yn}∞n=0 are adapted to
the filtration if Yn is Bn – measurable for all n. We say {Zn}∞n=1 is pre-
dictable if each Zn is Bn−1 – measurable for all n ∈ N.

A typical example is when {Xn}∞n=0 is a sequence of random variables on
a probability space (Ω,B, P ) and Bn := σ (X0, . . . , Xn) . An application of
Lemma 18.1 shows that {Yn} is adapted to the filtration iff there are measur-
able functions, fn : Rn+1 → R such that Yn = fn (X0, . . . , Xn) for all n ∈ N0

and {Zn}∞n=1 is predictable iff there exists, there are measurable functions,
fn : Rn → R such that Zn = fn (X0, . . . , Xn−1) for all n ∈ N.

Definition 19.3. Let X := {Xn}∞n=0 is a be an adapted sequence of integrable
random variables. Then;

1. X is a {Bn}∞n=0 – martingale if E [Xn+1|Bn] = Xn a.s. for all n ∈ N0.
2. X is a {Bn}∞n=0 – submartingale if E [Xn+1|Bn] ≥ Xn a.s. for all n ∈

N0.
3. X is a {Bn}∞n=0 – supermartingale if E [Xn+1|Bn] ≤ Xn a.s. for all
n ∈ N0.

By induction one shows that X is a supermartingale, martingale, or sub-
martingale iff

E [Xm|Bn]
≤
=
≥
Xn a.s for all m ≥ n, (19.2)

to be read from top to bottom respectively. This last equation may also be
expressed as

E [Xm|Bn]
≤
=
≥
Xm∧n a.s for all m,n ∈ N0. (19.3)
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The reader should also note that E [Xn] is decreasing, constant, or increas-
ing respectively. The next lemma shows that we may shrink the filtration,
{Bn}∞n=0 , within limits and still have X retain the property of being a super-
martingale, martingale, or submartingale.

Lemma 19.4 (Shrinking the filtration). Suppose that X is a {Bn}∞n=0 –
supermartingale, martingale, submartingale respectively and {B′n}

∞
n=0 is an-

other filtration such that σ (X0, . . . , Xn) ⊂ B′n ⊂ Bn for all n. Then X is a
{B′n}

∞
n=0 – supermartingale, martingale, submartingale respectively.

Proof. Since {Xn}∞n=0 is adapted to {Bn}∞n=0 and σ (X0, . . . , Xn) ⊂ B′n ⊂
Bn, for all n,

EB′nXn+1 = EB′nEBn
Xn+1

≤
=
≥

EB′nXn = Xn,

when X is a {Bn}∞n=0 – supermartingale, martingale, submartingale respec-
tively – read from top to bottom.

Enlarging the filtration is another matter all together. In what follows we
will simply say X is a supermartingale, martingale, submartingale if it is a
{Bn}∞n=0 – supermartingale, martingale, submartingale.

19.1 (Sub and Super) Martingale Examples

Example 19.5. Suppose that (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space
and X ∈ L1 (Ω,B, P ) . Then Xn := E [X|Bn] is a martingale. Indeed, by the
tower property of conditional expectations,

E [Xn+1|Bn] = E [E [X|Bn+1] |Bn] = E [X|Bn] = Xn a.s.

Example 19.6. Suppose that Ω = [0, 1] , B = B[0,1], and P = m – Lebesgue

measure. Let Pn =
{(

k
2n ,

k+1
2n

]}2n−1

k=1
∪
{[

0, 1
2n

]}
and Bn := σ (Pn) for each

n ∈ N. Then Mn := 2n1(0,2−n] for n ∈ N is a martingale such that E |Mn| = 1
for all n. However, there is no X ∈ L1 (Ω,B, P ) such that Mn = E [X|Bn] .
To verify this last assertion, suppose such an X existed. Let . We would then
have for 2n > k > 0 and any m > n, that

E
[
X :

(
k

2n
,
k + 1
2n

]]
= E

[
EBm

X :
(
k

2n
,
k + 1
2n

]]
= E

[
Mm :

(
k

2n
,
k + 1
2n

]]
= 0.

Using E [X : A] = 0 for allA in the π – system,Q := ∪∞n=1

{(
k
2n ,

k+1
2n

]
: 0 < k < 2n

}
,

an application of the π – λ theorem shows E [X : A] = 0 for all A ∈ σ (Q) = B.
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Therefore X = 0 a.s. by Lemma 18.2. But this is impossible since 1 = EMn =
EX.

Moral: not all L1 – bounded martingales are of the form in example 19.5.
Proposition 19.7 shows what is missing from this martingale in order for it to
be of the form in Example 19.5.

Proposition 19.7. Suppose 1 ≤ p < ∞ and X ∈ Lp (Ω,B, P ) . Then the
collection of random variables, Γ := {E [X|G] : G ⊂ B} is a bounded subset of
Lp (Ω,B, P ) which is also uniformly integrable.

Proof. Since EG is a contraction on all Lp – spaces it follows that Γ is
bounded in Lp with

sup
G⊂B

‖E [X|G]‖p ≤ ‖X‖p .

For the p > 1 the uniform integrability of Γ follows directly from Lemma
11.35.

We now concentrate on the p = 1 case. Recall that |EGX| ≤ EG |X| a.s.
and therefore,

E [|EGX| : |EGX| ≥ a] ≤ E [|X| : |EGX| ≥ a] for all a > 0.

But by Chebyshev’s inequality,

P (|EGX| ≥ a) ≤ 1
a

E |EGX| ≤
1
a

E |X| .

Since {|X|} is uniformly integrable, it follows from Proposition 11.29 that,
by choosing a sufficiently large, E [|X| : |EGX| ≥ a] is as small as we please
uniformly in G ⊂ B and therefore,

lim
a→∞

sup
G⊂B

E [|EGX| : |EGX| ≥ a] = 0.

Example 19.8. This example generalizes Example 19.6. Suppose (Ω,B, {Bn}∞n=0 , P )
is a filtered probability space and Q is another probability measure on (Ω,B) .
Let us assume that Q|Bn

� P |Bn
for all n, which by the Raydon-Nikodym

Theorem 17.8, implies there exists 0 ≤ Xn ∈ L1 (Ω,Bn, P ) with EXn = 1
such that dQ|Bn

= XndP |Bn
, or equivalently put, for any B ∈ Bn we have

Q (B) =
∫

B

XndP = E [Xn : B] .

Since B ∈ Bn ⊂ Bn+1, we also have E [Xn+1 : B] = Q (B) = E [Xn : B] for
all B ∈ Bn and hence E [Xn+1|Bn] = Xn a.s., i.e. X = {Xn}∞n=0 is a positive
martingale.

Example 19.6 is of this form with Q = δ0. Notice that δ0|Bn � m|Bn for
all n < ∞ while δ0 ⊥ m on B[0,1] = B∞. See Section 20.3 for more in the
direction of this example.
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It is often fruitful to view Xn as your earnings at time n while playing
some game of chance. In this interpretation, your expected earnings at time
n+1 given the history of the game up to time n is the same, greater than, less
than your earnings at time n if X = {Xn}∞n=0 is a martingale, submartingale
or supermartingale respectively. In this interpretation, martingales are fair
games, submartingales are favorable games, and supermartingales are unfa-
vorable games.

Example 19.9. Suppose at each time n, we flip a fair coin and record the value,
Xn ∈ {0, 1} . Let us suppose that a gambler is going to bet one dollar between
flips that either a 0 or a 1 is going to occur and if she is correct she will be
paid 1+α dollars in return, otherwise she loses his dollar to the house. Let us
say Yn+1 is the gambler’s prediction for the value of Xn+1 at time n. Hence
if we let Mn denote the gamblers fortune at time n we have

Mn+1 = Mn − 1 + (1 + α) 1Yn+1=Xn+1 .

Assuming the gambler can not see into the future, his/her prediction at time
n can only depend on the game up to time n, i.e. we should have Yn+1 =
fn+1(X0, . . . , Xn) or equivalently, Yn+1 is Bn = σ (X0, . . . , Xn) measurable.
In this situation {Mn}∞n=1 is an adapted process and moreover,

E [Mn+1|Bn] = E
[
Mn − 1 + (1 + α) 1Yn+1=Xn+1 |Bn

]
= Mn − 1 + (1 + α) E

[
1Yn+1=Xn+1 |Bn

]
= Mn − 1 + (1 + α)

1
2

= Mn +
1
2

(α− 1)

wherein we have used Exercise 18.4 in the last line. Hence we see that {Mn}∞n=1

is a martingale if α = 1, a sub-martingale of α > 1 and as supermartingale of
α < 1.

Exercise 19.1. Suppose that {Xn}∞n=1 are i.i.d. random functions taking val-
ues in a finite set, S, and let p (s) := P (Xn = s) for all s ∈ S and assume
p (s) > 0 for all s. As above let Bn := σ (X1, . . . , Xn) with B0 = {∅, Ω} and
suppose that α : S → R is a payoff function. Let Yn be the predictions of
a gambler as to the value of Xn based on the values of {X1, . . . , Xn−1} , i.e.
Yn ∈ S is a Bn−1 – measurable random variable with the convention that
B0 = {∅, Ω} . Also let Mn be the gambler’s fortune at time n. Assuming
the gambler always wages one dollar and receives a pay off of 1 + α (s) if
Yn+1 = s = Xn+1 for some s ∈ S, then

Mn+1 = Mn − 1 +
∑
s∈S

(1 + α (s)) 1Yn+1=s=Xn+1 .

Show {Mn} is a martingale, submartingale, supermartingale, if α = 1−p
p ,1

α ≥ 1−p
p , or α ≤ 1−p

p respectively.

1 In more detail, α (s) = 1−p(s)
p(s)

for all s ∈ S.
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Lemma 19.10. Let X := {Xn}∞n=0 be an adapted process of integrable ran-
dom variables on a filtered probability space, (Ω,B, {Bn}∞n=0 , P ) and let
dn := Xn − Xn−1 with X−1 := EX0. Then X is a martingale (respectively
submartingale or supermartingale) iff E [dn+1|Bn] = 0 (E [dn+1|Bn] ≥ 0 or
E [dn+1|Bn] ≤ 0 respectively) for all n ∈ N0.

Conversely if {dn}∞n=1 is an adapted sequence of integrable random vari-
ables and X0 is a B0 -measurable integral random variable. Then Xn =
X0 +

∑n
j=1 dj is a martingale (respectively submartingale or supermartingale)

iff E [dn+1|Bn] = 0 (E [dn+1|Bn] ≥ 0 or E [dn+1|Bn] ≤ 0 respectively) for all
n ∈ N.

Proof. We prove the assertions for martingales only, the other all being
similar. Clearly X is a martingale iff

0 = E [Xn+1|Bn]−Xn = E [Xn+1 −Xn|Bn] = E [dn+1|Bn] .

The second assertion is an easy consequence of the first assertion.

Example 19.11. Suppose that {Xn}∞n=0 is a sequence of independent random
variables, Sn = X0 + · · · + Xn, and Bn := σ (X0, . . . , Xn) = σ (S0, . . . , Sn) .
Then

E [Sn+1|Bn] = E [Sn +Xn+1|Bn] = Sn + E [Xn+1|Bn] = Sn + E [Xn+1] .

Therefore {Sn}∞n=0 is a martingale respectively submartingale or supermartin-
gale) iff EXn = 0 (EXn ≥ 0 or EXn ≤ 0 respectively) for all n ∈ N.

Example 19.12. Suppose that {Zn}∞n=0 is a sequence of independent integrable
random variables, Xn = Z0 . . . Zn, and Bn := σ (Z0, . . . , Zn) . (Observe that
E |Xn| =

∏n
k=0 E |Zk| < ∞.) If EZn = 1 for all n then X is a martingale

while if Zn ≥ 0 and EZn ≤ 1 (EZn ≥ 1) for all n then X is a supermartingale
(submartingale). Indeed, this follows from the simple identity;

E [Xn+1|Bn] = E [XnZn+1|Bn] = XnE [Zn+1|Bn] = Xn · E [Zn+1] a.s.

Proposition 19.13. Suppose that X = {Xn}∞n=0 is a martingale and ϕ is a
convex function such that ϕ (Xn) ∈ L1 for all n. Then ϕ (X) = {ϕ (Xn)}∞n=0

is a submartingale. If ϕ is also assumed to be increasing, it suffices to assume
that X is a submartingale in order to conclude that ϕ (X) is a submartingale.
(For example if X is a positive submartingale, p ∈ (1,∞) , and EXp

n <∞ for
all n, then Xp := {Xp

n}
∞
n=0 is another positive submartingale.

Proof. When X is a martingale, by the conditional Jensen’s inequality
18.21,

ϕ (Xn) = ϕ (EBn
Xn+1) ≤ EBn

[ϕ (Xn+1)]

which shows ϕ (X) is a submartingale. Similarly, if X is a submartingale and
ϕ is convex and increasing, then ϕ preserves the inequality, Xn ≤ EBn

Xn+1,
and hence

ϕ (Xn) ≤ ϕ (EBn
Xn+1) ≤ EBn

[ϕ (Xn+1)]

so again ϕ (X) is a submartingale.
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19.2 Decompositions

Notation 19.14 Given a sequence {Zk}∞k=0 , let ∆kZ := Zk − Zk−1 for k =
1, 2, . . . .

Lemma 19.15 (Doob Decomposition). To each adapted sequence, {Zn}∞n=0 ,
of integrable random variables has a unique decomposition,

Zn = Mn +An (19.4)

where {Mn}∞n=0 is a martingale and An is a predictable process such that
A0 = 0. Moreover this decomposition is given by A0 = 0,

An :=
n∑

k=1

EBk−1 [∆kZ] for n ≥ 1 (19.5)

and

Mn = Zn −An = Zn −
n∑

k=1

EBk−1 [∆kZ] (19.6)

= Z0 +
n∑

k=1

(
Zk − EBk−1Zk

)
. (19.7)

In particular, {Zn}∞n=0 is a submartingale (supermartingale) iff An is increas-
ing (decreasing) almost surely.

Proof. Assuming Zn has a decomposition as in Eq. (19.4), then

EBn [∆n+1Z] = EBn [∆n+1M +∆n+1A] = ∆n+1A (19.8)

wherein we have used M is a martingale and A is predictable so that
EBn [∆n+1M ] = 0 and EBn [∆n+1A] = ∆n+1A. Hence we must define, for
m ≥ 1,

An :=
n∑

k=1

∆kA =
n∑

k=1

EBk−1 [∆kZ]

which is a predictable process. This proves the uniqueness of the decomposi-
tion and the validity of Eq. (19.5).

For existence, from Eq. (19.5) it follows that

EBn
[∆n+1Z] = ∆n+1A = EBn

[∆n+1A] .

Hence, if we define Mn := Zn −An, then

EBn
[∆n+1M ] = EBn

[∆n+1Z −∆n+1A] = 0

and hence {Mn}∞n=0 is a martingale. Moreover, Eq. (19.7) follows from Eq.
(19.6) since,



19.2 Decompositions 393

Mn = Z0 +
n∑

k=1

(
∆kZ − EBk−1 [∆kZ]

)
and

∆kZ − EBk−1 [∆kZ] = Zk − Zk−1 − EBk−1 [Zk − Zk−1]

= Zk − Zk−1 −
(
EBk−1Zk − Zk−1

)
= Zk − EBk−1Zk.

Remark 19.16. Suppose that X = {Xn}∞n=0 is a submartingale and Xn =
Mn +An is it Doob decomposition. Then A∞ =↑ limn→∞An exists a.s.,

EAn = E [Xn −Mn] = EXn − EM0 = E [Xn −X0] (19.9)

and hence by MCT,
EA∞ =↑ lim

n→∞
E [Xn −X0] . (19.10)

Hence if limn→∞ E [Xn −X0] = supn E [Xn −X0] <∞, then EA∞ <∞ and
so by DCT, An → A∞ in L1 (Ω,B, P ) . In particular if supn E |Xn| < ∞,
we may conclude that {Xn}∞n=0 is L1 (Ω,B, P ) convergent iff {Mn}∞n=0 is
L1 (Ω,B, P ) convergent. (We will see below in Corollary 19.46 that X∞ :=
limn→∞Xn andM∞ := limn→∞Mn exist almost surely under the assumption
that supn E |Xn| <∞.)

Example 19.17. Suppose that N = {Nn}∞n=0 is a square integrable martingale,
i.e. EN2

n < ∞ for all n. Then from Proposition 19.13, X :=
{
Xn = N2

n

}∞
n=0

is a positive submartingale. In this case

EBk−1∆kX = EBk−1

(
N2

k −N2
k−1

)
= EBk−1 [(Nk −Nk−1) (Nk +Nk−1)]

= EBk−1 [(Nk −Nk−1) (Nk −Nk−1)]

= EBk−1 (Nk −Nk−1)
2

wherein the second to last equality we have used

EBk−1 [(Nk −Nk−1)Nk−1] = Nk−1EBk−1 (Nk −Nk−1) = 0 a.s.

in order to change (Nk +Nk−1) to (Nk −Nk−1) . Hence the increasing pre-
dictable process, An, in the Doob decomposition may be written as

An =
∑
k≤n

EBk−1∆kX =
∑
k≤n

EBk−1 (∆kN)2 . (19.11)

For the next result we will use the following remarks.

Remark 19.18. If X is a real valued random variable, then X = X+ − X−,
|X| = X+ +X−, X+ ≤ |X| = 2X+ −X, so that
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EX+ ≤ E |X| = 2EX+ − EX.

Hence if {Xn}∞n=0 is a submartingale then

EX+
n ≤ E |Xn| = 2EX+

n − EXn ≤ 2EX+
n − EX0

from which it follows that

sup
n

EX+
n ≤ sup

n
E |Xn| ≤ 2 sup

n
EX+

n − EX0. (19.12)

Theorem 19.19 (Krickeberg Decomposition). Suppose that X is an in-
tegrable submartingale such that C := supn E [X+

n ] < ∞ or equivalently
supn E |Xn| <∞, see Eq. (19.12). Then

Mn :=↑ lim
p→∞

E
[
X+

p |Bn

]
exists a.s.,

M = {Mn}∞n=0 is a positive martingale, Y = {Yn}∞n=0 with Yn := Xn−Mn is
a positive supermartingale, and hence Xn = Mn−Yn. So X can be decomposed
into the difference of a positive martingale and a positive supermartingale.

Proof. From Proposition 19.13 we know that X+ = {X+
n } is a still a

positive submartingale. Therefore for each n ∈ N, and p ≥ n,

EBn

[
X+

p+1

]
= EBn

EBp

[
X+

p+1

]
≥ EBn

X+
p a.s.

Therefore EBn
X+

p is increasing in p for p ≥ n and therefore, Mn :=
limp→∞ EBn

[
X+

p

]
exists in [0,∞] . By Fatou’s lemma, we know that

EMn ≤ lim inf
p→∞

E
[
EBn

[
X+

p

]]
≤ lim inf

p→∞
E
[
X+

p

]
= C <∞

which shows M is integrable. By cMCT and the tower property of conditional
expectation,

EBnMn+1 = EBn lim
p→∞

EBn+1

[
X+

p

]
= lim

p→∞
EBnEBn+1

[
X+

p

]
= lim

p→∞
EBn

[
X+

p

]
= Mn a.s.,

which shows M = {Mn} is a martingale.
We now define Yn := Mn −Xn. Using the submartingale property of X+

implies,

Yn = Mn −Xn = lim
p→∞

EBn

[
X+

p

]
−Xn = lim

p→∞
EBn

[
X+

p

]
−X+

n +X−n

= lim
p→∞

EBn

[
X+

p −X+
n

]
+X−n ≥ 0 a.s..

Moreover,

E [Yn+1|Bn] = E [Mn+1 −Xn+1|Bn] = Mn − E [Xn+1|Bn] ≥Mn −Xn = Yn

wherein we have use M is a martingale in the second equality and X is
submartingale the last inequality.
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19.3 Stopping Times

Definition 19.20. Again let {Bn}∞n=0 be a filtration on (Ω,B) and assume
that B = B∞ := ∨∞n=0Bn := σ (∪∞n=0Bn) . A function, τ : Ω → N̄ := N∪{0,∞}
is said to be a stopping time if {τ ≤ n} ∈ Bn for all n ∈ N̄. Equivalently put,
τ : Ω → N̄ is a stopping time iff the process, n→ 1τ≤n is adapted.

Lemma 19.21. Let {Bn}∞n=0 be a filtration on (Ω,B) and τ : Ω → N̄ be a
function. Then the following are equivalent;

1. τ is a stopping time.
2. {τ ≤ n} ∈ Bn for all n ∈ N0.
3. {τ > n} = {τ ≥ n+ 1} ∈ Bn for all n ∈ N0.
4. {τ = n} ∈ Bn for all n ∈ N0.

Moreover if any of these conditions hold for n ∈ N0 then they also hold for
n = ∞.

Proof. (1.⇐⇒ 2.) Observe that if {τ ≤ n} ∈ Bn for all n ∈ N0, then
{τ <∞} = ∪∞n=1 {τ ≤ n} ∈ B∞ and therefore {τ = ∞} = {τ <∞}c ∈ B∞
and hence {τ ≤ ∞} = {τ <∞} ∪ {τ = ∞} ∈ B∞. Hence in order to check
that τ is a stopping time, it suffices to show {τ ≤ n} ∈ Bn for all n ∈ N0.

The equivalence of 2., 3., and 4. follows from the identities

{τ > n}c = {τ ≤ n} ,
{τ = n} = {τ ≤ n} \ {τ ≤ n− 1} , and
{τ ≤ n} = ∪n

k=0 {τ = k}

from which we conclude that 2. =⇒ 3. =⇒ 4. =⇒ 1.
Clearly any constant function, τ : Ω → N̄, is a stopping time. The reader

should also observe that if Bn = σ (X0, . . . , Xn) , then τ : Ω → N̄ is a stopping
time iff, for each n ∈ N0 there exists a measurable function, fn : Rn+1 → R
such that 1{τ=n} = fn (X0, . . . , Xn) . Here is another common example of a
stopping time.

Example 19.22 (First hitting times). Suppose that X := {Xn}∞n=0 is an
adapted process on the filtered space, (Ω,B, {Bn}∞n=0) and A ∈ BR. Then
the first hitting time of A,

τ := inf {n ∈ N0 : Xn ∈ A} ,

(with convention that inf ∅ = ∞) is a stopping time. To see this, observe that

{τ = n} = {X0 ∈ Ac, . . . , Xn−1 ∈ Ac, Xn ∈ A} ∈ σ (X0, . . . , Xn) ⊂ Bn.

More generally if σ is a stopping time, then the first hitting time after σ,

τ := inf {k ≥ σ : Xk ∈ A} ,
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is also a stopping time. Indeed,

{τ = n} = {σ ≤ n} ∩ {Xσ /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}
= ∪0≤k≤n {σ = k} ∩ {Xk /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}

which is in Bn for all n. Here we use the convention that

{Xk /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A} = {Xn ∈ A} if k = n.

On the other hand the last hitting time, τ = sup {n ∈ N0 : Xn ∈ A} , of a
set A is typically not a stopping time. Indeed, in this case

{τ = n} = {Xn ∈ A,Xn+1 /∈ A,Xn+2 /∈ A, . . . } ∈ σ (Xn, Xn+1, . . . )

which typically will not be in Bn.

Proposition 19.23 (New Stopping Times from Old). Let (Ω,B, {Bn}∞n=0)
be a filtered measure space and suppose σ, τ, and {τn}∞n=1 are all stopping
times. Then

1. τ ∧ σ, τ ∨ σ, τ + σ are all stopping times.
2. If τk ↑ τ∞ or τk ↓ τ∞, then τ∞ is a stopping time.
3. In general, supk τk = limk→∞max {τ1, . . . , τk} and infk τk = limk→∞min {τ1, . . . , τk}

are also stopping times.

Proof.

1. Since {τ ∧ σ > n} = {τ > n} ∩ {σ > n} ∈ Bn, {τ ∨ σ ≤ n} = {τ ≤ n} ∩
{σ ≤ n} ∈ Bn for all n, and

{τ + σ = n} = ∪n
k=0 {τ = k, σ = n− k} ∈ Bn

for all n, τ ∧ σ, τ ∨ σ, τ + σ are all stopping times.
2. If τk ↑ τ∞, then {τ∞ ≤ n} = ∩k {τk ≤ n} ∈ Bn and so τ∞ is a stopping

time. Similarly, if τk ↓ τ∞, then {τ∞ > n} = ∩k {τk > n} ∈ Bn and so τ∞
is a stopping time. (Recall that {τ∞ > n} = {τ∞ ≥ n+ 1} .)

3. This follows from items 1. and 2.

Lemma 19.24. If τ is a stopping time, then the processes, fn := 1{τ≤n}, and
fn := 1{τ=n} are adapted and fn := 1{τ<n} is predictable. Moreover, if σ and
τ are two stopping times, then fn := 1σ<n≤τ is predictable.

Proof. These are all trivial to prove. For example, if fn := 1σ<n≤τ , then
fn is Bn−1 measurable since,

{σ < n ≤ τ} = {σ < n} ∩ {n ≤ τ} = {σ < n} ∩ {τ < n}c ∈ Bn−1.



19.3 Stopping Times 397

Notation 19.25 (Stochastic intervals) If σ, τ : Ω → N̄, let

(σ, τ ] :=
{
(ω, n) ∈ Ω × N̄ : σ (ω) < n ≤ τ (ω)

}
and we will write 1(σ,τ ] for the process, 1σ<n≤τ .

Our next goal is to define the “stopped” σ – algebra, Bτ . To motivate the
upcoming definition, suppose Xn : Ω → R are given functions for all n ∈ N0,
Bn := σ (X0, . . . , Xn) , and τ : Ω → N0 is a B· – stopping time. Recalling that
a function Y : Ω → R is Bn measurable iff Y (ω) = fn (X0 (ω) , . . . Xn (ω)) for
some measurable function, fn : Rn+1 → R, it is reasonable to suggest that Y is
Bτ measurable iff Y (ω) = fτ(ω)

(
X0 (ω) , . . . Xτ(ω) (ω)

)
, where fn : Rn+1 → R

are measurable random variables. If this is the case, then we would have
1τ=nY = fn (X0, . . . , Xn) is Bn – measurable for all n. Hence we should
define A ⊂ Ω to be in Bτ iff 1A is Bτ measurable iff 1τ=n1A is Bn measurable
for all n which happens iff {τ = n} ∩A ∈ Bn for all n.

Definition 19.26 (Stopped σ – algebra). Given a stopping time τ on a
filtered measure space (Ω,B, {Bn}∞n=0) with B∞ := ∨∞n=0Bn := σ (∪∞n=0Bn) ,
let

Bτ := {A ⊂ Ω : {τ = n} ∩A ∈ Bn for all n ≤ ∞} . (19.13)

Lemma 19.27. Suppose σ and τ are stopping times.

1. A set, A ⊂ Ω is in Bτ iff A ∩ {τ ≤ n} ∈ Bn for all n ≤ ∞.
2. Bτ is a sub-σ-algebra of B∞.
3. If σ ≤ τ, then Bσ ⊂ Bτ .

Proof. 1. Since

A ∩ {τ ≤ n} = ∪k≤n [A ∩ {τ ≤ k}] and
A ∩ {τ = n} = [A ∩ {τ ≤ n}] \ [A ∩ {τ ≤ n− 1}] ,

it easily follows that A ⊂ Ω is in Bτ iff A ∩ {τ ≤ n} ∈ Bn for all n ≤ ∞.
2. Since Ω ∩ {τ ≤ n} = {τ ≤ n} ∈ Bn for all n, it follows that Ω ∈ Bτ . If

A ∈ Bτ , then, for all n ∈ N0,

Ac ∩ {τ ≤ n} = {τ ≤ n} \A = {τ ≤ n} \ [A ∩ {τ ≤ n}] ∈ Bn.

This shows Ac ∈ Bτ . Similarly if {Ak}∞k=1 ⊂ Bτ , then

{τ ≤ n} ∩ (∩∞k=1Ak) = ∩∞k=1 ({τ ≤ n} ∩Ak) ∈ Bn

and hence ∩∞k=1Ak ∈ Bτ . This completes the proof the Bτ is a σ – algebra.
Since A = A ∩ {τ ≤ ∞} , it also follows that Bτ ⊂ B∞.

3. Now suppose that σ ≤ τ and A ∈ Bσ. Since A ∩ {σ ≤ n} and {τ ≤ n}
are in Bn for all n ≤ ∞, we find

A ∩ {τ ≤ n} = [A ∩ {σ ≤ n}] ∩ {τ ≤ n} ∈ Bn ∀ n ≤ ∞

which shows A ∈ Bτ .
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Proposition 19.28 (Bτ – measurable random variables). Let (Ω,B, {Bn}∞n=0)
be a filtered measure space. Let τ be a stopping time and Z : Ω → R be a func-
tion. Then the following are equivalent;

1. Z is Bτ – measurable,
2. 1{τ≤n}Z is Bn – measurable for all n ≤ ∞,
3. 1{τ=n}Z is Bn – measurable for all n ≤ ∞.
4. There exists, Yn : Ω → R which are Bn – measurable for all n ≤ ∞ such

that
Z = Yτ =

∑
n∈N̄

1{τ=n}Yn.

Proof. 1. =⇒ 2. By definition, if A ∈ Bτ , then 1{τ≤n}1A = 1{τ≤n}∩A

is Bn – measurable for all n ≤ ∞. Consequently any simple Bτ – measurable
function, Z, satisfies 1{τ≤n}Z is Bn – measurable for all n. So by the usual
limiting argument (Theorem 6.32), it follows that 1{τ≤n}Z is Bn – measurable
for all n for any Bτ – measurable function, Z.

2. =⇒ 3. This property follows from the identity,

1{τ=n}Z = 1{τ≤n}Z − 1{τ<n}Z.

3. =⇒ 4. Simply take Yn = 1{τ=n}Z.
4. =⇒ 1. Since Z =

∑
n∈N̄ 1{τ=n}Yn, it suffices to show 1{τ=n}Yn is Bτ –

measurable if Yn is Bn – measurable. Further, by the usual limiting arguments
using Theorem 6.32, it suffices to assume that Yn = 1A for some A ∈ Bn. In
this case 1{τ=n}Yn = 1A∩{τ=n}. Hence we must show A∩{τ = n} ∈ Bτ which
indeed is true because

A ∩ {τ = n} ∩ {τ = k} =
{

∅ ∈ Bk if k 6= n
A ∩ {τ = n} ∈ Bk if k = n

.

Alternatively proof for 1. =⇒ 2. If Z is Bτ measurable, then
{Z ∈ B} ∩ {τ ≤ n} ∈ Bn for all n ≤ ∞ and B ∈ BR. Hence if B ∈ BR
with 0 /∈ B, then{

1{τ≤n}Z ∈ B
}

= {Z ∈ B} ∩ {τ ≤ n} ∈ Bn for all n

and similarly,{
1{τ≤n}Z = 0

}c =
{
1{τ≤n}Z 6= 0

}
= {Z 6= 0} ∩ {τ ≤ n} ∈ Bn for all n.

From these two observations, it follows that
{
1{τ≤n}Z ∈ B

}
∈ Bn for all

B ∈ BR and therefore, 1{τ≤n}Z is Bn – measurable.

Lemma 19.29 (Bσ – conditioning). Suppose σ is a stopping time and Z ∈
L1 (Ω,B, P ) or Z ≥ 0, then

E [Z|Bσ] =
∑

n≤∞

1σ=nE [Z|Bn] = Yσ (19.14)
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where
Yn := E [Z|Bn] for all n ∈ N̄. (19.15)

Proof. By Proposition 19.28, Yσ is Bσ – measurable. Moreover if Z is
integrable, then∑

n≤∞

E
[
1{σ=n} |Yn|

]
=
∑

n≤∞

E1{σ=n} |E [Z|Bn]|

≤
∑

n≤∞

E
[
1{σ=n}E [|Z| |Bn]

]
=
∑

n≤∞

E
[
E
[
1{σ=n} |Z| |Bn

]]
=
∑

n≤∞

E
[
1{σ=n} |Z|

]
= E |Z| <∞ (19.16)

and therefore

E |Yσ| = E

∣∣∣∣∣∣
∑

n≤∞

[
1{σ=n}Yn

]∣∣∣∣∣∣
≤
∑

n≤∞

E
[
1{σ=n} |Yn|

]
≤ E |Z| <∞.

Furthermore if A ∈ Bσ, then

E [Z : A] =
∑

n≤∞

E [Z : A ∩ {σ = n}] =
∑

n≤∞

E [Yn : A ∩ {σ = n}]

=
∑

n≤∞

E
[
1{σ=n}Yn : A

]
= E

∑
n≤∞

1{σ=n}Yn : A


= E [Yσ : A] ,

wherein the interchange of the sum and the expectation in the second to last
equality is justified by the estimate in 19.16 or by the fact that everything in
sight is positive when Z ≥ 0.

Exercise 19.2. Suppose σ and τ are two stopping times. Show;

1. {σ < τ} , {σ = τ} , and {σ ≤ τ} are all in Bσ ∩ Bτ ,
2. Bσ∧τ = Bσ ∩ Bτ ,
3. Bσ∨τ = Bσ ∨ Bτ := σ (Bσ ∪ Bτ ) , and
4. (Bσ){σ≤τ} ⊂ Bσ∧τ and (Bσ){σ<τ} ⊂ Bσ∧τ .

Recall that
(Bσ){σ≤τ} = {A ∩ {σ ≤ τ} : A ∈ Bσ} .
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Exercise 19.3 (Tower Property II). Let X ∈ L1 (Ω,B, P ) or X : Ω →
[0,∞] be a B – measurable function. Then given any two stopping times, σ
and τ, show

EBσ EBτX = EBτ EBσX = EBσ∧τX. (19.17)

(Hints: 1. It suffices to consider the case whereX ≥ 0. 2. Make use of Exercise
19.2, Lemma 19.29 and the basic properties of conditional expectations. If you
want to be sophisticated you may also want to use the localization Lemma
18.19 – but it can be avoided if you choose.)

Exercise 19.4. Show, by example, that it is not necessarily true that

EG1EG2 = EG1∧G2

for arbitrary G1 and G2 – sub-sigma algebras of B.
Hint: it suffices to take (Ω,B, P ) with Ω = {1, 2, 3} , B = 2Ω , and

P ({j}) = 1
3 for j = 1, 2, 3.

19.4 Stochastic Integrals and Optional Stopping

Notation 19.30 Suppose that {un}∞n=1 and {xn}∞n=0 are two sequences of
numbers, let udx denote the sequence of numbers defined by

(u ·∆x)n =
n∑

j=1

uj (xj − xj−1) =
n∑

j=1

uj∆jx for n ≥ 1.

For a gambling interpretation of (u ·∆x)n , let xj represent the price of
a stock at time j. Suppose that you, the investor, then buys uj−1 shares at
time j−1 and then sells these shares back at time j. With this interpretation,
uj−1∆jx represents your profit (or loss if negative) in the time interval form
j−1 to j and (u ·∆x)n represents your profit (or loss) from time 0 to time n.
By the way, if you want to buy 5 shares of the stock at time n = 0 and then
sell them all at time n, you would take uk = 5 · 1k<n.

Example 19.31. Suppose that 0 ≤ σ ≤ τ where σ, τ ∈ N̄0 and let un :=
1σ<n≤τ . Then

(u ·∆x)n =
n∑

j=1

1σ<j≤τ (xj − xj−1) =
∞∑

j=1

1σ<j≤τ∧n (xj − xj−1)

= xτ∧n − xσ∧n.

Proposition 19.32 (The Discrete Stochastic Integral). Let X =
{Xn}∞n=0 be an adapted integrable process, i.e. E |Xn| < ∞ for all n. If X
is a martingale and {Un}∞n=1 is a predictable sequence of bounded random
variables, then {(U ·∆X)n}

∞
n=1 is still a martingale. If X := {Xn}∞n=0 is a
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submartingale (supermartingale) (necessarily real valued) and Un ≥ 0, then
{(U ·∆X)n}

∞
n=1 is a submartingale (supermartingale).

Conversely if X is an adapted process of integrable functions such that
E [(U ·∆X)n] = 0 for all bounded predictable processes, {Un}∞n=1 , then X is
a martingale. Similarly if X is real valued adapted process such that

E [(U ·∆X)n]
≤
=
≥

0 (19.18)

for all n and for all bounded, non-negative predictable processes, U, then X is
a supermartingale, martingale, or submartingale respectively.

Proof. For any adapted process X, we have

E
[
(U ·∆X)n+1 |Bn

]
= E [(U ·∆X)n + Un+1 (Xn+1 −Xn) |Bn]

= (U ·∆X)n + Un+1E [(Xn+1 −Xn) |Bn] . (19.19)

The first assertions easily follow from this identity.
Now suppose thatX is an adapted process of integrable functions such that

E [(U ·∆X)n] = 0 for all bounded predictable processes, {Un}∞n=1 . Taking
expectations of Eq. (19.19) then allows us to conclude that

E [Un+1E [(Xn+1 −Xn) |Bn]] = 0

for all bounded Bn – measurable random variables, Un+1. Taking Un+1 :=
sgn(E [(Xn+1 −Xn) |Bn]) shows |E [(Xn+1 −Xn) |Bn]| = 0 a.s. and hence X
is a martingale. Similarly, if for all non-negative, predictable U, Eq. (19.18)
holds for all n ≥ 1, and Un ≥ 0, then taking A ∈ Bn and Uk = δk,n+11A in
Eq. (19.12) allows us to conclude that

E [Xn+1 −Xn : A] = E
[
(U ·∆X)n+1

] ≤
=
≥

0,

i.e. X is a supermartingale, martingale, or submartingale respectively.

Example 19.33. Suppose that {Xn}∞n=0 are mean zero independent integrable
random variables and fn : Rn → R are bounded measurable functions. Then

Yn :=
n∑

j=1

fn (X0, . . . , Xn−1) (Xn −Xn−1) (19.20)

defines a martingale sequence.

Notation 19.34 Given an adapted process, X, and a stopping time τ, let
Xτ

n := Xτ∧n. We call Xτ := {Xτ
n}
∞
n=0 the process X stopped by τ.

Theorem 19.35 (Optional stopping theorem). Suppose X = {Xn}∞n=0 is
a supermartingale, martingale, or submartingale and τ is a stopping time, then
Xτ is a {Bn}∞n=0 – supermartingale, martingale, or submartingale respectively.
This valid if either E |Xn| <∞ for all n or if Xn ≥ 0 for all n.
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Proof. First proof. Since 1τ≤nXτ =
∑n

k=0 1τ=nXn is Bn measurable,
{τ > n} ∈ Bn, and

Xτ∧(n+1) = 1τ≤nXτ + 1τ>nXn+1,

we have

EBn

[
Xτ∧(n+1)

]
=1τ≤nXτ + 1τ>nEBnXn+1

≤
=
≥

1τ≤nXτ + 1τ>nXn = Xτ∧n.

Second proof in case E |Xn| < ∞. Let Uk := 10<k≤τ for k = 1, 2, . . . .
Then U is a bounded predictable process and

(U ·∆X)n =
∑
k≤n

10<k≤τ∆kX =
∑

0<k≤τ∧n

∆kX = Xτ∧n −X0.

Therefore, by Proposition 19.32, Xτ
n = X0 + (U ·∆X)n is (respectively) a

supermartingale, martingale, or submartingale.
Third proof. See Remark 19.37 below.

Theorem 19.36 (Optional sampling theorem I). Suppose that σ and τ
are two stopping times and τ is bounded, i.e. there exists N ∈ N such that τ ≤
N <∞ a.s. If X = {Xn}∞n=0 is an integrable supermartingale, martingale, or
submartingale, then Xτ is integrable and

E [Xτ |Bσ]
≤
=
≥
Xσ∧τ a.s. (19.21)

respectively2 from top to bottom. Moreover, Eq. (19.21) is valid with no inte-
grability assumptions on X provided Xn ≥ 0 a.s. for all n <∞.

Proof. Since

|Xτ | =

∣∣∣∣∣∣
∑

0≤k≤τ

1τ=kXk

∣∣∣∣∣∣ ≤
∑

0≤k≤τ

1τ=k |Xk| ≤
∑

0≤k≤N

|Xk| ,

if Xn ∈ L1 (Ω,B, P ) for all n we see that E |Xτ | ≤
∑

0≤k≤N E |Xk| < ∞.

Hence it remains to prove Eq. (19.21) in case Xn ≥ 0 or Xn ∈ L1 (Ω,B, P )
for all n.

According to Lemma 19.29

E [Xτ |Bσ] =
∞∑

n=0

1σ=nE [Xτ |Bn] . (19.22)

2 This is the natural generalization of Eq. (19.3) to the stopping time setting.
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On the other hand we know Xτ is a supermartingale, martingale, or sub-
martingale respectively and therefore, for any n <∞ and m ≥ max (n,N) we
have

E [Xτ |Bn] = E [Xτ
m|Bn]

≤
=
≥
Xτ

n = Xτ∧n.

Combining this equation with Eq. (19.22) shows

E [Xτ |Bσ]
≤
=
≥

∞∑
n=0

1σ=nXτ∧n = Xτ∧σ.

This completes the proof. Nevertheless we will give two more proofs of Eq.
(19.22) under the assumption that Xn ∈ L1 (Ω,B, P ) for all n.

First alternative proof. First suppose X is a martingale in which case
Xn = EBnXN for all n ≤ N and hence

Xτ =
∑
n≤N

1τ=nXn =
∑
n≤N

1τ=nEBnXN =
∑

n≤∞

1τ=nEBnXN = EBτXN .

Therefore, by Exercise 19.3

EBσXτ = EBσ EBτXN = EBσ∧τXN = Xσ∧τ .

Now suppose that X is a submartingale. By the Doob decomposition
(Lemma 19.15), Xn = Mn + An where M is a martingale and A is an in-
creasing predictable process. In this case we have

EBσ
Xτ = EBσ

Mτ + EBσ
Aτ = Mσ∧τ + EBσ

Aτ

≥Mσ∧τ + EBσ
Aσ∧τ = Mσ∧τ +Aσ∧τ = Xσ∧τ .

The supermartingale case follows from the submartingale result just proved
applied to −X.

Second alternative proof. Let A ∈ Bσ and Un := 1A · 1σ<n≤τ . Then
U is predictable since

A ∩ {σ < n ≤ τ} = (A ∩ {σ < n}) ∩ {n ≤ τ} ∈ Bn−1 for all n.

Let us also observe that

(U ·∆X)n =
∑
k≤n

1A · 1σ<k≤τ∆kX =
∑

1A · 1σ∧τ<k≤τ∧n∆kX

= 1A (Xτ∧n −Xσ∧τ ) for all n ≥ 1.

By Proposition 19.32, (U ·∆X) is a supermartingale, martingale, or sub-
martingale respectively and hence

E [1A (Xτ −Xσ∧τ )] = E [1A (Xτ∧N −Xσ∧τ )] = E [(U ·∆X)N ]
≤
=
≥

0 respectively.

Since A ∈ Bσ is arbitrary and Xσ∧τ is Bσ – measurable (in fact Bσ∧τ –
measurable), Eq. (19.21) has been proved.
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Remark 19.37. Theorem 19.36 can be used to give a simple proof of the Op-
tional stopping Theorem 19.35. For example, if X = {Xn}∞n=0 is a submartin-
gale and τ is a stopping time, then

EBn
Xτ∧(n+1) ≥ X[τ∧(n+1)]∧n = Xτ∧n,

i.e. Xτ is a submartingale.

19.5 Submartingale Inequalities

For a process, X = {Xn}∞n=0 let

X∗N := max {|X0| , . . . , |XN |} . (19.23)

19.5.1 Maximal Inequalities

Proposition 19.38 (Maximal Inequalities of Bernstein and Lévy). Let
{Xn} be a submartingale on a filtered probability space, (Ω,B, {Bn}∞n=0 , P ) .
Then3 for any a ≥ 0 and N ∈ N,

aP

(
max
n≤N

Xn ≥ a

)
≤ E

[
XN : max

n≤N
Xn ≥ a

]
≤ E

[
X+

N

]
, (19.24)

aP

(
min
n≤N

Xn ≤ −a
)
≤ E

[
XN : min

k≤N
Xk > −a

]
− E [X0] (19.25)

≤ E
[
X+

N

]
− E [X0] , (19.26)

and
aP (X∗N ≥ a) ≤ 2E

[
X+

N

]
− E [X0] . (19.27)

Proof. Initially let X be any integrable adapted process and τ be the
stopping time defined by, τ := inf {n : Xn ≥ a} . Since Xτ ≥ a on

{τ ≤ N} =
{

max
n≤N

Xn ≥ a

}
, (19.28)

we have

aP

(
max
n≤N

Xn ≥ a

)
= E [a : τ ≤ N ] ≤ E [Xτ : τ ≤ N ] (19.29)

= E [XN : τ ≤ N ]− E [XN −Xτ : τ ≤ N ]
= E [XN : τ ≤ N ]− E [XN −Xτ∧N ] . (19.30)

3 The first inequality is the most important.
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Let me emphasize again that in deriving Eq. (19.30), we have not used any
special properties (not even adaptedness) of X.

If X is now assumed to be a submartingale, by the optional sampling
Theorem 19.36, EBτ∧N

XN ≥ Xτ∧N and in particular E [XN −Xτ∧N ] ≥ 0.
Combining this observation with Eq. (19.30) and Eq. (19.28) gives Eq. (19.24).
(Alternatively, since {τ ≤ N} ∈ Bτ∧N , it follows by optional sampling that

E [Xτ : τ ≤ N ] = E [Xτ∧N : τ ≤ N ] ≤ E [XN : τ ≤ N ]

which combined with Eq. (19.29) gives Eq. (19.24).)
Secondly we may apply Eq. (19.30) with Xn replaced by −Xn to find

aP

(
min
n≤N

Xn ≤ −a
)

= aP

(
−min

n≤N
Xn ≥ a

)
= aP

(
max
n≤N

(−Xn) ≥ a

)
≤ −E [XN : τ ≤ N ] + E [XN −Xτ∧N ] (19.31)

where now,
τ := inf {n : −Xn ≥ a} = inf {n : Xn ≤ −a} .

By the optional sampling Theorem 19.36, E [Xτ∧N −X0] ≥ 0 and adding this
to right side of Eq. (19.31) gives the estimate

aP

(
min
n≤N

Xn ≤ −a
)
≤ −E [XN : τ ≤ N ] + E [XN −Xτ∧N ] + E [Xτ∧N −X0]

≤ E [XN −X0]− E [XN : τ ≤ N ]
= E [XN : τ > N ]− E [X0]

= E
[
XN : min

k≤N
Xk > −a

]
− E [X0]

which proves Eq. (19.25) and hence Eq. (19.26). Adding Eqs. (19.24) and
(19.26) gives the estimate in Eq. (19.27).

Remark 19.39. It is of course possible to give a direct proof of Proposition
19.38. For example,

E
[
XN : max

n≤N
Xn ≥ a

]
=

N∑
k=1

E [XN : X1 < a, . . . ,Xk−1 < a,Xk ≥ a]

≥
N∑

k=1

E [Xk : X1 < a, . . . ,Xk−1 < a,Xk ≥ a]

≥
N∑

k=1

E [a : X1 < a, . . . ,Xk−1 < a,Xk ≥ a]

= aP

(
max
n≤N

Xn ≥ a

)
which proves Eq. (19.24).
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Example 19.40. Let {Xn} be a sequence of independent random variables with
mean zero, Sn := X1 + · · · + Xn, and S∗n = maxj≤n |Sj | . Since {Sn}∞n=1 is
a martingale and {|Sn|p}

∞
n=1 is an (possibly extended) submartingale for any

p ∈ [1,∞). Therefore an application of Eq. (19.24) of Proposition 19.38 show

P (S∗N ≥ α) = P
(
S∗pN ≥ αp

)
≤ 1
αp

E [|SN |p : S∗N ≥ α] .

When p = 2, this is Kolmogorov’s Inequality, see Theorem 12.28.

Lemma 19.41. Suppose that X and Y are two non-negative random variables
such that P (Y ≥ y) ≤ 1

y E [X : Y ≥ y] for all y > 0. Then for all p ∈ (1,∞) ,

EY p ≤
(

p

p− 1

)p

EXp. (19.32)

Proof. We will begin by proving Eq. (19.32) under the additional assump-
tion that Y ∈ Lp (Ω,B, P ) . Since

EY p = pE
∫ ∞

0

1y≤Y · yp−1dy = p

∫ ∞
0

E [1y≤Y ] · yp−1dy

= p

∫ ∞
0

P (Y ≥ y) · yp−1dy ≤ p

∫ ∞
0

1
y

E [X : Y ≥ y] · yp−1dy

= pE
∫ ∞

0

X1y≤Y · yp−2dy =
p

p− 1
E
[
XY p−1

]
.

Now apply Hölder’s inequality, with q = p (p− 1)−1
, to find

E
[
XY p−1

]
≤ ‖X‖p ·

∥∥Y p−1
∥∥

q
= ‖X‖p · [E |Y |

p]1/q
.

Combining thew two inequalities shows and solving for ‖Y ‖p shows ‖Y ‖p ≤
p

p−1 ‖X‖p which proves Eq. (19.32) under the additional restriction of Y being
in Lp (Ω,B, P ) .

To remove the integrability restriction on Y, for M > 0 let Z := Y ∧M
and observe that

P (Z ≥ y) = P (Y ≥ y) ≤ 1
y

E [X : Y ≥ y] =
1
y

E [X : Z ≥ y] if y ≤M

while
P (Z ≥ y) = 0 =

1
y

E [X : Z ≥ y] if y > M.

Since Z is bounded, the special case just proved shows

E [(Y ∧M)p] = EZp ≤
(

p

p− 1

)p

EXp.

We may now use the MCT to pass to the limit, M ↑ ∞, and hence conclude
that Eq. (19.32) holds in general.
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Corollary 19.42 (Doob’s Inequality). If X = {Xn}∞n=0 be a non-negative
submartingale and 1 < p <∞, then

EX∗pN ≤
(

p

p− 1

)p

EXp
N . (19.33)

Proof. Equation 19.33 follows by applying Lemma 19.41 with the aid of
Proposition 19.38.

Corollary 19.43 (Doob’s Inequality). If {Mn}∞n=0 is a martingale and
1 < p <∞, then for all a > 0,

P (M∗N ≥ a) ≤ 1
a

E [|M |N : M∗N ≥ a] ≤ 1
a

E [|MN |] (19.34)

and

EM∗pN ≤
(

p

p− 1

)p

E |MN |p . (19.35)

Proof. By the conditional Jensen’s inequality, it follows that Xn := |Mn|
is a submartingale. Hence Eq. (19.34) follows from Eq. (19.24) and Eq. (19.35)
follows from Eq. (19.33).

19.5.2 Upcrossing Inequalities and Convergence Results

Given a function, N0 3 n→ Xn ∈ R and −∞ < a < b <∞, let

τ0 = 0, τ1 = inf {n ≥ τ0 : Xn ≤ a}
τ2 = inf {n ≥ τ1 : Xn ≥ b} , τ3 := inf {n ≥ τ2 : Xn ≤ a}

...
τ2k = inf {n ≥ τ2k−1 : Xn ≥ b} , τ2k+1 := inf {n ≥ τ2k : Xn ≤ a} (19.36)

...

with the usual convention that inf ∅ = ∞ in the definitions above, see Figures
19.1 and 19.2. Observe that τn+1 ≥ τn + 1 for all n ≥ 1 and hence τn ≥ n− 1
for all n ≥ 1. Further, for each N ∈ N̄ let

UX
N (a, b) = max {k : τ2k ≤ N}

be the number of upcrossings of X across [a, b] in the time interval,
[0, N ] .

Lemma 19.44. Suppose X = {Xn}∞n=0 is a sequence of extended real num-
bers such that UX

∞ (a, b) < ∞ for all a, b ∈ Q with a < b. Then X∞ :=
limn→∞Xn exists in R̄.
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Fig. 19.1. A sample path of a positive martingale with crossing levels, a = 1 and
b = 2 marked off.

Proof. If limn→∞Xn does not exists in R̄, then there would exists a, b ∈ Q
such that

lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

and for this choice of a and b, we must have Xn < a and Xn > b infinitely
often. Therefore, UX

∞ (a, b) = ∞.

Theorem 19.45 (Doob’s Upcrossing Inequality – buy low sell high).
If {Xn}∞n=0 is a submartingale and −∞ < a < b <∞, then for all N ∈ N,

E
[
UX

N (a, b)
]
≤ 1
b− a

[
E (XN − a)+ − E (X0 − a)+

]
.

Proof. We first suppose that Xn ≥ 0, a = 0 and b > 0. Let

τ0 = 0, τ1 = inf {n ≥ τ0 : Xn = 0}
τ2 = inf {n ≥ τ1 : Xn ≥ b} , τ3 := inf {n ≥ τ2 : Xn = 0}

...
τ2k = inf {n ≥ τ2k−1 : Xn ≥ b} , τ2k+1 := inf {n ≥ τ2k : Xn = 0}

...
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Fig. 19.2. A sample path of a positive submartingale along with stopping times
τ2j and τ2j+1, successive hitting times of 2 and 0 respectively. Notice that Xτ4∧70−
Xτ3∧70 ≥ 2 while Xτ6∧70 −Xτ5∧70 ≥ 0. Also observe that Xτ8∧90 −Xτ7∧90 = 0.

a sequence of stopping times. Suppose that N is given and we choose k such
that 2k > N. Then we know that τ2k ≥ N. Thus if we let τ ′n := τn ∧ N, we
know that τ ′n = N for all n ≥ 2k. Therefore,

XN −X0 =
2k∑

n=1

(
Xτ ′n

−Xτ ′n−1

)
=

k∑
n=1

(
Xτ ′2n

−Xτ ′2n−1

)
+

k∑
n=1

(
Xτ ′2n−1

−Xτ ′2n−2

)
≥ bUX

N (0, b) +
k∑

n=1

(
Xτ ′2n−1

−Xτ ′2n−2

)
, (19.37)
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wherein we have used Xτ ′2n
− Xτ ′2n−1

≥ b if there were an upcrossing in the
interval

[
τ ′2n−1, τ

′
2n

]
andXτ ′2n

−Xτ ′2n−1
≥ 0 otherwise,4 see Figure 19.2. Taking

expectations of Eq. (19.37) implies

EXN − EX0 ≥ bEUX
N (0, b) +

k∑
n=1

E
(
Xτ ′2n−1

−Xτ ′2n−2

)
≥ bEUX

N (0, b)

wherein we have used the optional sampling theorem to guarantee,

E
(
Xτ ′2n−1

−Xτ ′2n−2

)
≥ 0.

If X is a general submartingale and −∞ < a < b < ∞, we know by
Jensen’s inequality that (Xn − a)+ is still a sub-martingale and moreover

UX
N (a, b) = U (X−a)+ (0, b− a)

and therefore

(b− a) E
[
UX

N (a, b)
]

= (b− a) E
[
U (X−a)+ (0, b− a)

]
≤ E (XN − a)+ − E (X0 − a)+ .

It is worth contemplating a bit how is that E
(
Xτ ′2n−1

−Xτ ′2n−2

)
≥ 0

given that are strategy is to buy high and sell low. On the {τ2n−1 ≤ N} ,
Xτ2n−1 −Xτ2n−2 ≤ 0− b = −b and therefore,

0 ≤E
(
Xτ ′2n−1

−Xτ ′2n−2

)
= E

(
Xτ2n−1 −Xτ2n−2 : τ2n−1 ≤ N

)
+ E

(
Xτ ′2n−1

−Xτ ′2n−2
: τ2n−1 > N

)
≤− bP (τ2n−1 ≤ N) + E

(
XN −Xτ ′2n−2

: τ2n−1 > N
)
.

Therefore we must have

E
(
XN −Xτ2n−2∧N : τ2n−1 > N

)
≥ bP (τ2n−1 ≤ N)

so that XN must be sufficiently large sufficiently often on the set where
τ2n−1 > N.

Corollary 19.46. Suppose {Xn}∞n=0 is an integrable submartingale such that
supn EX+

n < ∞ (or equivalently C := supn E |Xn| < ∞, see Remark 19.18),
then X∞ := limn→∞Xn exists in R a.s. and moreover, X∞ ∈ L1 (Ω,B, P ) .

4 If τ2n−1 ≥ N, then Xτ ′2n
− Xτ ′2n−1

= XN − XN = 0, while if τ2n−1 < N,

Xτ ′2n
−Xτ ′2n−1

= Xτ ′2n
− 0 ≥ 0.
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Proof. For any −∞ < a < b < ∞, by Doob’s upcrossing inequality
(Theorem 19.45) and the MCT,

E
[
UX
∞ (a, b)

]
≤ 1
b− a

[
sup
N

E (XN − a)+ − E (X0 − a)+

]
<∞

where
UX
∞ (a, b) := lim

N→∞
UX

N (a, b)

is the total number of upcrossings of X across [a, b] . In particular it follows
that

Ω0 := ∩
{
UX
∞ (a, b) <∞ : a, b ∈ Q with a < b

}
has probability one. Hence by Lemma 19.44, for ω ∈ Ω0 we have X∞ (ω) :=
limn→∞Xn (ω) exists in R̄. By Fatou’s lemma we know that

E [|X∞|] = E
[
lim inf
n→∞

|Xn|
]
≤ lim inf

n→∞
E [|Xn|] ≤ C <∞ (19.38)

and therefore that X∞ ∈ R a.s.
Second Proof. We may also give another proof based on the Krickeberg

Decomposition Theorem 19.19 and the supermartingale convergence Corollary
19.54 below. Indeed, by Theorem 19.19, Xn = Mn−Yn where M is a positive
martingale and Y is a positive supermartingale. Hence by two applications of
Corollary 19.54 we may conclude that

X∞ = lim
n→∞

Xn = lim
n→∞

Mn − lim
n→∞

Yn

exists in R almost surely.

Notation 19.47 Given a probability space, (Ω,B, P ) and A,B ∈ B, we say
A = B a.s. iff P (A4B) = 0.

Corollary 19.48 (Localizing Corollary Eq. 19.46). Suppose M =
{Mn}∞n=0 is a martingale and c < ∞ such that ∆nM ≤ c a.s. for all n.
Then {

lim
n→∞

Mn exists in R
}

=
{

sup
n
Mn <∞

}
a.s.

Proof. Let τm := inf {n : Mn ≥ m} for all m ∈ N. Then by the optional
stopping theorem, n → Mτm

n is still a martingale. Since Mτm
n ≤ m + c, it

follows that E (Mτm
n )+ ≤ m+ c <∞ for all n. Hence we may apply Corollary

19.46 to conclude, limn→∞Mτm
n = Mτm

∞ exists in R almost surely. Therefore
n→Mn is convergent in R almost surely on the set

∪m {Mτm = M} =
{

sup
n
Mn <∞

}
.

Conversely if n→Mn is convergent in R, then supnMn <∞.
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Corollary 19.49. Suppose M = {Mn}∞n=0 is a martingale, and c < ∞ such
that |∆nM | ≤ c a.s. for all n. Let

C :=
{

lim
n→∞

Mn exists in R
}

and

D :=
{

lim sup
n→∞

Mn = ∞
}
∩
{

lim inf
n→∞

Mn = −∞
}
.

Then, P (C ∪D) = 1.

Proof. Since both M and −M satisfy the hypothesis of Corollary 19.48,
we may conclude that almost surely,

C =
{

sup
n
Mn <∞

}
=
{

inf
n
Mn > −∞

}
and hence almost surely,

Cc =
{

sup
n
Mn = ∞

}
=
{

inf
n
Mn = −∞

}
=
{

sup
n
Mn = ∞

}
∩
{

inf
n
Mn = −∞

}
= D.

Corollary 19.50. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space
and An ∈ Bn for all n. Then

{An i.o.} =

{∑
n

E [1An
|Bn−1] = ∞

}
a.s. (19.39)

Proof. Let ∆nM := 1An
−E [1An

|Bn−1] and then set Mn :=
∑

k≤n∆nM.
Then M is a martingale with |∆nM | ≤ 1 for all n. Since

{An i.o.} =

{∑
n

1An
= ∞

}
,

it follows that on C we have {An i.o.} = {
∑

n E [1An
|Bn−1] = ∞} a.s. More-

over, on D, we must have
∑

n 1An = ∞ and
∑

n E [1An |Bn−1] = ∞ and hence
again it follows that Eq. (19.39) holds. Since C ∪ D = Ω a.s., the proof is
complete.

See Durrett [3, Chapter 4.3] for more in this direction.

19.6 Supermartingale inequalities

As the optional sampling theorem was our basic tool for deriving submartin-
gale inequalities, the following switching lemma will be our basic tool for
deriving positive supermartingale inequalities.
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Lemma 19.51 (Switching Lemma). Suppose that X and Y are two su-
permartingales and τ is a stopping time such that Xτ ≥ Yτ on {τ <∞} .
Then

Zn = 1n<τXn + 1n≥vYn =
{
Xn if n < τ
Yn if n ≥ τ

is again a supermartingale. (In short we can switch from X to Y at time, τ,
provided Y ≤ X at the switching time, τ.) This lemma is valid if Xn, Yn ∈
L1 (Ω,Bn, P ) for all n or if both Xn, Yn ≥ 0 for all n. In the latter case, we
should be using the extended notion of conditional expectations.

Proof. We begin by observing,

Zn+1 = 1n+1<τXn+1 + 1n+1≥vYn+1

= 1n+1<τXn+1 + 1n≥vYn+1 + 1τ=n+1Yn+1

≤ 1n+1<τXn+1 + 1n≥vYn+1 + 1τ=n+1Xn+1

= 1n<τXn+1 + 1n≥vYn+1.

Since {n < τ} and {n ≥ τ} are Bn – measurable, it now follows from the
supermartingale property of X and Y that

EBnZn+1 ≤ EBn [1n<τXn+1 + 1n≥vYn+1]
= 1n<τEBn [Xn+1] + 1n≥vEBn [Yn+1]
≤ 1n<τXn + 1n≥vYn = Zn.

19.6.1 Maximal Inequalities

Theorem 19.52 (Supermartingale maximal inequality). Let X be a
positive supermartingale (in the extended sense) and a ∈ B0 with a ≥ 0,
then

aP

[
sup

n
Xn ≥ a|B0

]
≤ a ∧X0 (19.40)

and moreover

P

[
sup

n
Xn = ∞|B0

]
= 0 on {X0 <∞} . (19.41)

In particular if X0 <∞ a.s. then supnXn <∞ a.s.

Proof. Let τ := inf {n : Xn ≥ a} which is a stopping time since,

{τ ≤ n} = {Xn ≥ a} ∈ Bn for all n.

Since Xτ ≥ a on {τ <∞} and Yn := a is a supermartingale, it follows by the
switching Lemma 19.51 that
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Zn := 1n<τXn + a1n≥τ

is a supermartingale (in the extended sense). In particular it follows

aP (τ ≤ n|B0) = EB0 [a1n≥τ ] ≤ EB0Zn ≤ Z0,

and
Z0 = 10<τ X0 + a1τ=0 = 1X0<aX0 + 1X0≥aa = a ∧X0.

Therefore, using the cMCT,

aP

[
sup

n
Xn ≥ a|B0

]
= aP [τ <∞|B0] = lim

n→∞
aP (τ ≤ n|B0)

≤ Z0 = a ∧X0

which proves Eq. (19.40).
For the last assertion, take a > 0 to be constant in Eq. (19.40) and then

use the cDCT to let a ↑ ∞ to conclude

P

[
sup

n
Xn = ∞|B0

]
= lim

a↑∞
P

[
sup

n
Xn ≥ a|B0

]
≤ lim

a↑∞
1 ∧ X0

a
= 1X0=∞.

Multiplying this equation by 1X0<∞ and then taking expectations implies

E
[
1supn Xn=∞1X0<∞

]
= E [1X0=∞1X0<∞] = 0

which implies 1supn Xn=∞1X0<∞ = 0 a.s., i.e. supnXn < ∞ a.s. on
{X0 <∞} .

19.6.2 The upcrossing inequality and convergence result

Theorem 19.53 (Dubin’s Upcrossing Inequality). Suppose X = {Xn}∞n=0

is a positive supermartingale and 0 < a < b <∞. Then

P
(
UX
∞ (a, b) ≥ k|B0

)
≤
(a
b

)k
(

1 ∧ X0

a

)
, for k ≥ 1 (19.42)

and U∞ (a, b) <∞ a.s. and in fact

E
[
UX
∞ (a, b)

]
≤ 1
b/a− 1

=
a

b− a
<∞.

Proof. Since
UX

N (a, b) = U
X/a
N (1, b/a) ,

it suffices to consider the case where a = 1 and b > 1. Let τn be the stopping
times defined in Eq. (19.36) with a = 1 and b > 1, i.e.
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τ0 = 0, τ1 = inf {n ≥ τ0 : Xn ≤ 1}
τ2 = inf {n ≥ τ1 : Xn ≥ b} , τ3 := inf {n ≥ τ2 : Xn ≤ 1}

...
τ2k = inf {n ≥ τ2k−1 : Xn ≥ b} , τ2k+1 := inf {n ≥ τ2k : Xn ≤ 1} ,

...

see Figure 19.1.
Let k ≥ 1 and use the switching Lemma 19.51 repeatedly to define a new

positive supermatingale Yn = Y
(k)
n (see Exercise 19.5 below) as follows,

Y (k)
n = 1n<τ1 + 1τ1≤n<τ2Xn

+ b1τ2≤n<τ3 + bXn1τ3≤n<τ4

+ b21τ4≤n<τ5 + b2Xn1τ5≤n<τ6

...

+ bk−11τ2k−2≤n<τ2k−1 + bk−1Xn1τ2k−1≤n<τ2k

+ bk1τ2k≤n. (19.43)

Since E [Yn|B0] ≤ Y0 a.s., Yn ≥ bk1τ2k≤n, and

Y0 = 10<τ1 + 1τ1=0X0 = 1X0>1 + 1X0≤1X0 = 1 ∧X0,

we may infer that

bkP (τ2k ≤ n|B0) = E
[
bk1τ2k≤n|B0

]
≤ E [Yn|B0] ≤ 1 ∧X0 a.s.

Using cMCT, we may now let n→∞ to conclude

P
(
UX (1, b) ≥ k|B0

)
≤ P (τ2k <∞|B0) ≤

1
bk

(1 ∧X0) a.s.

which is Eq. (19.42). Using cDCT, we may let k ↑ ∞ in this equation to
discover P

(
UX
∞ (1, b) = ∞|B0

)
= 0 a.s. and in particular, UX

∞ (1, b) < ∞ a.s.
In fact we have

E
[
UX
∞ (1, b)

]
=
∞∑

k=1

P
(
UX
∞ (1, b) ≥ k

)
≤
∞∑

k=1

E
[

1
bk

(1 ∧X0)
]

=
1
b

1
1− 1/b

E [(1 ∧X0)] ≤
1

b− 1
<∞.

Exercise 19.5. In this exercise you are asked to fill in the details showing Yn

in Eq. (19.43) is still a supermartingale. To do this, define Y (k)
n via Eq. (19.43)
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and then show (making use of the switching Lemma 19.51twice) Y (k+1)
n is a

submartingale under the assumption that Y (k)
n is a submartingale. Finish off

the induction argument by observing that the constant process, Un := 1 and
Vn = 0 are supermartingales such that Uτ1 = 1 ≥ 0 = Vτ1 on {τ1 <∞} , and
therefore by the switching Lemma 19.51,

Y (1)
n = 10≤n<τ1Un + 1τ1≤nVn = 10≤n<τ1

is also a supermartingale.

Corollary 19.54 (Positive Supermartingale convergence). Suppose
X = {Xn}∞n=0 is a positive supermartingale (possibly in the extended sense),
then X∞ = limn→∞Xn exists a.s. and we have

E [X∞|Bn] ≤ Xn for all n ∈ N̄. (19.44)

In particular,
EX∞ ≤ EXn ≤ EX0 for all n <∞. (19.45)

Proof. The set,

Ω0 := ∩
{
UX
∞ (a, b) <∞ : a, b ∈ Q with a < b

}
,

has full measure (P (Ω0) = 1) by Dubin’s upcrossing inequality in Theorem
19.53. So by Lemma 19.44, for ω ∈ Ω0 we have X∞ (ω) := limn→∞Xn (ω)
exists5 in [0,∞] . For definiteness, let X∞ = 0 on Ωc

0. Equation (19.44) is now
a consequence of cFatou;

E [X∞|Bn] = E
[

lim
m→∞

Xm|Bn

]
≤ lim inf

m→∞
E [Xm|Bn] ≤ lim inf

m→∞
Xn = Xn a.s.

The supermartingale property guarantees that EXn ≤ EX0 for all n < ∞
while taking expectations of Eq. (19.44) implies EX∞ ≤ EXn.

Theorem 19.55 (Optional sampling II – Positive supermartingales).
Suppose that X = {Xn}∞n=0 is a positive supermartingale, X∞ := limn→∞Xn

(which exists a.s. by Corollary 19.54), and σ and τ are arbitrary stopping
times. Then Xτ

n := Xτ∧n is a positive {Bn}∞n=0 – super martingale, Xτ
∞ =

limn→∞Xτ
τ∧n, and

E [Xτ |Bσ] ≤ Xσ∧τ a.s. (19.46)

Moreover, if EX0 <∞, then E [Xτ ] = E [Xτ
∞] <∞.

Proof. We already know that Xτ is a positive supermatingale by optional
stopping Theorem 19.35. Hence an application of Corollary 19.54 implies that
limn→∞Xτ

n = limn→∞Xτ∧n is convergent and

5 If EX0 < ∞, this may also be deduced by applying Corollary 19.46 to {−Xn}∞n=0 .
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E
[

lim
n→∞

Xτ
n |Bm

]
≤ Xτ

m = Xτ∧m for all m <∞. (19.47)

On the set {τ <∞} , limn→∞Xτ∧n = Xτ and on the set {τ = ∞} ,
limn→∞Xτ∧n = limn→∞Xn = X∞ = Xτ a.s. Therefore it follows that
limn→∞Xτ

n = Xτ and Eq. (19.47) may be expressed as

E [Xτ |Bm] ≤ Xτ∧m for all m <∞. (19.48)

An application of Lemma 19.29 now implies

E [Xτ |Bσ] =
∑

m≤∞

1σ=mE [Xτ |Bm] ≤
∑

m≤∞

1σ=mXτ∧m = Xτ∧σ a.s.

19.7 Martingale Closure and Regularity Results

Theorem 19.56. Let M := {Mn}∞n=0 be an L1 – bounded martingale, i.e.
C := supn E |Mn| < ∞ and let M∞ := limn→∞Mn which exists a.s. and
satisfies, E |M∞| <∞ by Corollary 19.46. Then the following are equivalent;

1. There exists X ∈ L1 (Ω,B, P ) such that Mn = E [X|Bn] for all n.
2. {Mn}∞n=0 is uniformly integrable.
3. Mn →M∞ in L1 (Ω,B, P ) .

Moreover, if any of the above equivalent conditions hold we may take X =
M∞.

Proof. 1. =⇒ 2. was already proved in Proposition 19.7. 2. =⇒ 3.
follows from Theorem 11.31.

3. =⇒ 2. If Mn → M∞ in L1 (Ω,B, P ) and A ∈ Bm, then E [Mn : A] =
E [Mm : A] for all n ≥ m and

E [M∞ : A] = lim
n→∞

E [Mn : A] = E [Mm : A] .

Since A ∈ Bm was arbitrary, it follows that Mn = E [M∞|Bn] .

Definition 19.57. A martingale satisfying any and all of the equivalent state-
ments in Theorem 19.56 is said to be regular.

Theorem 19.58. Suppose 1 < p <∞ and M := {Mn}∞n=0 is an Lp – bounded
martingale. Then Mn →M∞ almost surely and in Lp.

Proof. Again, the almost sure convergence follows from Corollary 19.46.
So, because of Corollary 11.34, to finish the proof it suffices to show
{|Mn|p}

∞
n=0 is uniformly integrable. But by Doob’s inequality, Corollary 19.43,

and the MCT, we find
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E
[
sup

n
|Mn|p

]
≤
(

p

p− 1

)p

sup
n

E [|Mn|p] <∞.

It now follows by an application of Proposition 11.29 that {|Mn|p}
∞
n=0 is

uniformly integrable.

Theorem 19.59 (Optional sampling III – regular martingales). Sup-
pose that M = {Mn}∞n=0 is a regular martingale, σ and τ are arbitrary
stopping times. Define M∞ := limn→∞Mn a.s.. Then M∞ ∈ L1 (P ) ,

Mτ = E [M∞|Bτ ] , E |Mτ | <∞ (19.49)

and
E [Mτ |Bσ] = Mσ∧τ a.s. (19.50)

Proof. By Theorem 19.56, M∞ ∈ L1 (Ω,B, P ) and Mn := EBn
M∞ a.s.

for all n ≤ ∞. By Lemma 19.29,

EBτ
M∞ =

∑
n≤∞

1τ=nEBn
M∞ =

∑
n≤∞

1τ=nMn = Mτ .

Hence we have |Mτ | = |EBτ
M∞| ≤ EBτ

|M∞| a.s. and E |Mτ | ≤ E |M∞| <∞.
An application of Exercise 19.3 now concludes the proof;

EBσMτ = EBσ EBτM∞ = EBσ∧τM∞ = Mσ∧τ .

Definition 19.60. Let M = {Mn}∞n=0 be a martingale. We say that τ is a
regular stopping time for M if Mτ is a regular martingale.

Remark 19.61. If τ is regular for M, then limn→∞Mτ
n := Mτ

∞ exists a.s. and
hence

lim
n→∞

Mn = Mτ
∞ a.s. on {τ = ∞} . (19.51)

Thus if τ is regular of M, we may define Mτ as,

Mτ := Mτ
∞ = lim

n→∞
Mn∧τ .

Also observe by Fatou’s lemma that,

E |Mτ | ≤ lim inf
n→∞

E |Mτ
n | ≤ sup

n
E |Mτ

n | .

Theorem 19.62. Suppose M = {Mn}∞n=0 is a martingale and σ, τ, are stop-
ping times such that τ is a regular stopping time for M. Then

1.
EBσ

Mτ = Mτ∧σ. (19.52)
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2. If σ ≤ τ a.s. then Mσ
n = EBn

[EBσ
Mτ ] and σ is regular for M.

Proof. By assumption, Mτ = limn→∞Mn∧τ exists almost surely and in
L1 (P ) and Mτ

n = E [Mτ |Bn] for n ≤ ∞.
1. Equation (19.52) is a consequence of;

EBσ
Mτ =

∑
n≤∞

1σ=nEBn
Mτ =

∑
n≤∞

1σ=nM
τ
n = Mσ∧τ .

2. By Theorem 19.59 and Exercise 19.3,

Mσ
n = Mσ∧n = Mτ

σ∧n = EBσ∧nM
τ
∞ = EBσ∧nMτ= EBn [EBσMτ ]

from which it follows that Mσ is a regular martingale.

Proposition 19.63. Suppose that M is a martingale and τ is a stopping time.
Then the τ is regular for M iff;

1. E [|Mτ | : τ <∞] <∞ and
2. {Mn1n<τ}∞n=0 is a uniformly integrable sequence of random variables.

Moreover, condition 1. is automatically satisfied if M is L1 – bounded, i.e.
if C := supn E |Mn| <∞.

Proof. ( =⇒ ) If τ is regular for M, Mτ ∈ L1 (P ) and Mn = EBn
Mτ . In

particular it follows that

E [|Mτ | : τ <∞] ≤ E |Mτ | <∞.

Moreover,
|Mn1n<τ | ≤ |EBn

Mτ1n<τ | ≤ EBn
|Mτ | a.s.

from which it follows that {Mn1n<τ}∞n=0 is uniformly integrable.
( ⇐= ) Our goal is to show {Mτ

n}
∞
n=0 is uniformly integrable. We begin

with the identity;

E [|Mτ
n | : |Mτ

n | ≥ a] = E [|Mτ
n | : |Mτ

n | ≥ a, τ ≤ n]
+ E [|Mτ

n | : |Mτ
n | ≥ a, n < τ ] .

Since (by assumption 1.) E [|Mτ1τ<∞|] <∞ and

E [|Mτ | : |Mτ | ≥ a, τ ≤ n] ≤ E [|Mτ1τ<∞| : |Mτ1τ<∞| ≥ a] ,

if follows that
lim

a→∞
sup

n
E [|Mτ | : |Mτ | ≥ a, τ ≤ n] = 0.

Moreover,

sup
n

E [|Mτ
n | : |Mτ

n | ≥ a, n < τ ] = sup
n

E [|Mτ
n1n<τ | : |Mτ

n1n<τ | ≥ a]
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goes to zero as n→∞ by assumption 2. Hence we have shown,

lim
a→∞

sup
n

E [|Mτ
n | : |Mτ

n | ≥ a] = 0

as desired.
For the last assertion, by Corollary 19.46, M∞ := limn→∞Mn a.s. and

E |M∞| <∞. Therefore,

E [|Mτ | : τ <∞] ≤ E |Mτ | = E
[

lim
n→∞

|Mτ∧n|
]

≤ lim inf
n→∞

E [|Mτ∧n|] ≤ lim inf
n→∞

E [|Mn|] <∞

wherein we have used the optional sampling theorem (Mτ∧n = EBτ∧nMn) and
cJensen to conclude |Mτ∧n| ≤ EBτ∧n |Mn| .

Corollary 19.64. Suppose that M is an L1 – bounded martingale and J ∈ BR
is a bounded set, then τ = inf {n : Mn /∈ J} is a regular stopping time for M.

Proof. According to Proposition 19.63, it suffices to show {Mn1n<τ}∞n=0

is a uniformly integrable sequence of random variables. However, if we choose
A < ∞ such that J ⊂ [−A,A] , since Mn1n<τ ∈ J we have |Mn1n<τ | ≤ A
which is sufficient to complete the proof.

Exercise 19.6. Suppose {Mn}∞n=0 is a square integrable martingale. Show;

1. E
[
M2

n+1 −M2
n|Bn

]
= E

[
(Mn+1 −Mn)2 |Bn

]
. Conclude from this that

the Doob decomposition of M2
n is of the form,

M2
n = Nn +An

where
An :=

∑
1≤k≤n

E
[
(Mk −Mk−1)

2 |Bk−1

]
.

2. If we further assume that Mk − Mk−1 is independent of Bk−1 for all
k = 1, 2, . . . , explain why,

An =
∑

1≤k≤n

E (Mk −Mk−1)
2
.

For the next four exercises, let {Zn}∞n=1 be a sequence of Bernoulli random
variables with P (Zn = ±1) = 1

2 and let S0 = 0 and Sn := Z1 + · · ·+Zn. Then
S becomes a martingale relative to the filtration, Bn := σ (Z1, . . . , Zn) with
B0 := {∅, Ω} – of course Sn is the (fair) simple random walk on Z. For any
a ∈ Z, let

σa := inf {n : Sn = a} .
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Exercise 19.7. For a < 0 < b with a, b ∈ Z, let τ = σa ∧ σb. Explain why τ
is regular for S. Use this to show P (τ = ∞) = 0. Hint: make use of Remark
19.61 and the fact that |Sn − Sn−1| = |Zn| = 1 for all n.

Exercise 19.8. In this exercise, you are asked to give a central limit theorem
argument for the result, P (τ = ∞) = 0, Exercise 19.7. Hints: Use the central
limit theorem to show

1√
2π

∫
R
f (x) e−x2/2dx ≥ f (0)P (τ = ∞) (19.53)

for all bounded continuous functions, f : R → [0,∞). Use this inequality to
conclude that P (τ = ∞) = 0.

Exercise 19.9. Show

P (σb < σa) =
|a|

b+ |a|
(19.54)

and use this to conclude P (σb <∞) = 1, i.e. every b ∈ N is almost surely
visited by Sn. (This last result also follows by the Hewitt-Savage Zero-One
Law, see Example 7.45 where it is shown b is visited infinitely often.)

Hint: Using properties of martingales and Exercise 19.7, compute
limn→∞ E [Sσa∧σb

n ] in two different ways.

Exercise 19.10. Let τ := σa ∧ σb. In this problem you are asked to show
E [τ ] = |a| b with the aid of the following outline.

1. Use Exercise 19.6 above to conclude Nn := S2
n − n is a martingale.

2. Now show
0 = EN0 = ENτ∧n = ES2

τ∧n − E [τ ∧ n] . (19.55)

3. Now use DCT and MCT along with Exercise 19.9 to compute the limit
as n→∞ in Eq. (19.55) to find

E [σa ∧ σb] = E [τ ] = b |a| . (19.56)

4. By considering the limit, a→ −∞ in Eq. (19.56), show E [σb] = ∞.

19.7.1 More Random Walk Exercises

Suppose now that P (Zn = 1) = p > 1
2 and P (Zn = −1) = q = 1− p < 1

2 . As
before let Bn = σ (Z1, . . . , Zn) , S0 = 0 and Sn = Z1 + · · ·+ Zn for n ∈ N. In
order to follow the procedures above, we start by looking for a function, ϕ,
such that ϕ (Sn) is a martingale. Such a function must satisfy,

ϕ (Sn) = EBn
ϕ (Sn+1) = ϕ (Sn + 1) p+ ϕ (Sn − 1) q,

and this then leads us to try to solve the following difference equation for ϕ;



422 19 (Sub and Super) Martingales

ϕ (x) = pϕ (x+ 1) + qϕ (x− 1) for all x ∈ Z. (19.57)

Similar to the theory of second order ODE’s this equation has two linearly
independent solutions which could be found by solving Eq. (19.57) with initial
conditions, ϕ (0) = 1 and ϕ (1) = 0 and then with ϕ (0) = 0 and ϕ (1) = 0
for example. Rather than doing this, motivated by second order constant
coefficient ODE’s, let us try to find solutions of the form ϕ (x) = λx with λ
to be determined. Doing so leads to the equation, λx = pλx+1 + qλx−1, or
equivalently to the characteristic equation,

pλ2 − λ+ q = 0.

The solutions to this equation are

λ =
1±

√
1− 4pq
2p

=
1±

√
1− 4p (1− p)

2p

=
1±

√
4p2 − 4p+ 1

2p
=

1±
√

(2p− 1)2

2p
= {1, (1− p) /p} = {1, q/p} .

The most general solution to Eq. (19.57) is then given by

ϕ (x) = A+B (q/p)x
.

Below we will take A = 0 and B = 1. As before let σa = inf {n ≥ 0 : Sn = a} .

Exercise 19.11. Let a < 0 < b and τ := σa ∧ σb.

1. Apply the method in Exercise 19.7 with Sn replaced by Mn := (q/p)Sn to
show P (τ = ∞) = 0.

2. Now use the method in Exercise 19.9 to show

P (σa < σb) =
(q/p)b − 1

(q/p)b − (q/p)a
. (19.58)

3. By letting a→ −∞ in Eq. (19.58), conclude P (σb = ∞) = 0.
4. By letting b→∞ in Eq. (19.58), conclude P (σa <∞) = (q/p)|a| .

Exercise 19.12. Verify,

Mn := Sn − n (p− q)

and
Nn := M2

n − σ2n

are martingales, where σ2 = 1− (p− q)2 .
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Exercise 19.13. Using exercise 19.12, show

E (σa ∧ σb) =

b [1− (q/p)a] + a
[
(q/p)b − 1

]
(q/p)b − (q/p)a

 (p− q)−1
. (19.59)

By considering the limit of this equation as a→ −∞, show

E [σb] =
b

p− q

and by considering the limit as b→∞, show E [σa] = ∞.

19.8 More Exercises:

Exercise 19.14. Let (Mn)∞n=0 be a martingale with M0 = 0 and E[M2
n] <∞

for all n. Show that for all λ > 0,

P

(
max

1≤m≤n
Mm ≥ λ

)
≤ E[M2

n]
E[M2

n] + λ2
.

Hints: First show that for any c > 0 that
{
Xn := (Mn + c)2

}∞
n=0

is a
submartingale and then observe,{

max
1≤m≤n

Mm ≥ λ

}
⊂
{

max
1≤m≤n

Xn ≥ (λ+ c)2
}
.

Now use Doob’ Maximal inequality to estimate the probability of the last
set and then choose c so as to optimize the resulting estimate you get for
P (max1≤m≤nMm ≥ λ) .

Exercise 19.15. Let {Zn}∞n=1 be independent random variables, S0 = 0 and
Sn := Z1 + · · ·+ Zn, and fn (λ) := E

[
eiλZn

]
. Suppose EeiλSn =

∏N
n=1 fn (λ)

converges to a continuous function, F (λ) , as N → ∞. Show for each λ ∈ R
that

P
(

lim
n→∞

eiλSn exists
)

= 1. (19.60)

Hints:

1. Show it is enough to find an ε > 0 such that Eq. (19.60) holds for |λ| ≤ ε.
2. Choose ε > 0 such that |F (λ)− 1| < 1/2 for |λ| ≤ ε. For |λ| ≤ ε,

show Mn (λ) := eiλSn

EeiλSn
is a bounded complex6 martingale relative to the

filtration, Bn = σ (Z1, . . . , Zn) .
6 Please use the obvious generalization of a martingale for complex valued pro-

cesses. It will be useful to observe that the real and imaginary parts of a complex
martingales are real martingales.
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Exercise 19.16 (Continuation of Exercise 19.15). Let {Zn}∞n=1 be in-
dependent random variables. Prove the series,

∑∞
n=1 Zn, converges in R a.s.

iff
∏N

n=1 fn (λ) converges to a continuous function, F (λ) as N → ∞. Con-
clude from this that

∑∞
n=1 Zn is a.s. convergent iff

∑∞
n=1 Zn is convergent in

distribution. (See Doob [2, Chapter VII.5].)

19.9 Backwards Submartingales

In this section we will consider submartingales indexed by Z− := {. . . ,−n,−n+ 1, . . . ,−2,−1, 0} .
So again we assume that we have an increasing filtration, {Bn : n ≤ 0} , i.e.
· · · ⊂ B−2 ⊂ B−1 ⊂ B0 ⊂ B. As usual, we say an adapted process {Xn}n≤0

is a submartingale (martingale) provided E [Xm −Xn|Bn] ≥ 0 (= 0) for all
m ≥ n. Observe that EXm ≥ EXn for m ≥ n, so that EX−n decreases as n
increases. Also observe that

(
X−n, X−(n−1), . . . , X−1, X0

)
is a “finite string”

submartingale relative to the filtration, B−n ⊂ B−(n−1) ⊂ · · · ⊂ B−1 ⊂ B0.

Theorem 19.65 (Backwards Submartingale Convergence). Let {Bn : n ≤ 0}
be a reverse filtration, {Xn}n≤0 is a backwards submartingale. Then X−∞ =
limn→−∞Xn exists a.s. in {−∞}∪R and X+

−∞ ∈ L1 (Ω,B, P ) . If we further
assume that

C := lim
n→−∞

EXn = inf
n≤0

EXn > −∞, (19.61)

then {Xn}n≤0 uniformly integrability, X−∞ ∈ L1 (Ω,B, P ) , and limn→−∞ E |Xn −X−∞| =
0.

Proof. The number of downcrossings of
(
X0, X−1, . . . , X−(n−1), X−n

)
across [a, b] , (denoted by Dn (a, b)) is equal to the number of upcrossings,(
X−n, X−(n−1), . . . , X−1, X0

)
across [a, b] . Since

(
X−n, X−(n−1), . . . , X−1, X0

)
is a B−n ⊂ B−(n−1) ⊂ · · · ⊂ B−1 ⊂ B0 submartingale, we may apply Doob’s
upcrossing inequality (Theorem 19.45) to find;

(b− a) E [Dn (a, b)] ≤ E (X0 − a)+ − E (X−n − a)+
≤ E (X0 − a)+ <∞. (19.62)

Letting D∞ (a, b) :=↑ limn→∞Dn (a, b) be the total number of downcrossing
of (X0, X−1, . . . , X−n, . . . ) , using the MCT to pass to the limit in Eq. (19.62),
we have

(b− a) E [D∞ (a, b)] ≤ E (X0 − a)+ <∞.

In particular it follows that D∞ (a, b) <∞ a.s. for all a < b.
As in the proof of Corollary 19.46 (making use of the obvious downcrossing

analogue of Lemma 19.44), it follows that X−∞ := limn→−∞Xn exists in R̄
a.s. At the end of the proof, we will show that X−∞ takes values in {−∞}∪R
almost surely.
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Now suppose that C > −∞. We begin by computing the Doob decom-
position of Xn as Xn = Mn + An with An being predictable, increasing and
satisfying, A−∞ = limn→−∞An = 0. If such an A is to exist, following Lemma
19.15, we should define

An =
∑
k≤n

E [∆kX|Bk−1] .

This is a well defined increasing predictable process since that submartingale
property implies E [∆kX|Bk−1] ≥ 0. Moreover we have

EA0 =
∑
k≤0

E [E [∆kX|Bk−1]] =
∑
k≤0

E [∆kX]

= lim
N→∞

(EX0 − EX−N ) = EX0 − inf
n≤0

EXn = EX0 − C <∞.

As 0 ≤ An ≤ A∗n = A0 ∈ L1 (P ) , it follows that {An}n≤0 is uniformly
integrable Moreover if we define Mn := Xn −An, then

E [∆nM |Bn−1] = E [∆nX −∆nA|Bn−1] = E [∆nX|Bn−1]−∆nA = 0 a.s.

Thus M is a martingale and therefore, Mn = E [M0|Bn] with M0 = X0−A0 ∈
L1 (P ) . An application of Proposition 19.7 implies {Mn}n≤0 is uniformly
integrable and hence Xn = Mn + An is uniformly integrable as well. (See
Remark 19.66 for an alternate proof of the uniform integrability of X.)

Therefore X−∞ ∈ L1 (Ω,B, P ) and Xn → X−∞ in L1 (Ω,B, P ) as n→∞.
To finish the proof we must show, without assumptions on C > −∞,

that X+
−∞ ∈ L1 (Ω,B, P )which will certainly imply P (X−∞ = ∞) = 0. To

prove this, notice that X+
−∞ = limn→−∞X+

n and that by Jensen’s inequality,
{X+

n }
∞
n=1 is a non-negative backwards submartingale. Since inf EX+

n ≥ 0 >
−∞, it follows by what we have just proved that X+

−∞ ∈ L1 (Ω,B, P ) .

Remark 19.66. Let us give a direct proof of the fact that X is uniformly inte-
grable if C > −∞. We begin with Jensen’s inequality;

E |Xn| = 2EX+
n − EXn ≤ 2EX+

0 − EXn ≤ 2EX+
0 − C = K <∞, (19.63)

which shows that {Xn}∞n=1 is L1 - bounded. For uniform integrability we will
use the following identity;

E [|X| : |X| ≥ λ] = E [X : X ≥ λ]− E [X : X ≤ −λ]
= E [X : X ≥ λ]− (EX−E [X : X > −λ])
= E [X : X ≥ λ] + E [X : X > −λ]− EX.

Taking X = Xn and k ≥ n, we find
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E [|Xn| : |Xn| ≥ λ] = E [Xn : Xn ≥ λ] + E [Xn : Xn > −λ]− EXn

≤ E [Xk : Xn ≥ λ] + E [Xk : Xn > −λ]− EXk + (EXk − EXn)
= E [Xk : Xn ≥ λ]− E [Xk : Xn ≤ −λ] + (EXk − EXn)
= E [|Xk| : |Xn| ≥ λ] + (EXk − EXn) .

Given ε > 0 we may choose k = kε < 0 such that if n ≤ k, 0 ≤ EXk−EXn ≤ ε
and hence

lim sup
λ↑∞

sup
n≤k

E [|Xn| : |Xn| ≥ λ] ≤ lim sup
λ↑∞

E [|Xk| : |Xn| ≥ λ] + ε ≤ ε

wherein we have used Eq. (19.63), Chebyschev’s inequality to conclude
P (|Xn| ≥ λ) ≤ K/λ and then the uniform integrability of the singleton set,
{|Xk|} ⊂ L1 (Ω,B, P ) . From this it now easily follows that {Xn}n≤0 is a
uniformly integrable.

Corollary 19.67. Suppose 1 ≤ p < ∞ and Mn in Theorem 19.65 is an
Lp – bounded martingale. Then Mn → M−∞ in Lp (P ) . Moreover M−∞ =
E [M0|B−∞]

Proof. Since Mn = E [M0|Bn] for all n, it follows by cJensen that |Mn|p ≤
E [|M0|p |Bn] for all n. By Proposition 19.7, {E [|M0|p |Bn]}n≤0 is uniformly
integrable and so is {|Mn|p}n≤0 . By Theorem 19.65, Mn →M−∞ a.s.. Hence
we may now apply Corollary 11.34 to see that Mn →M−∞ in Lp (P ) .

Example 19.68 (SLLN). In this example we are going to give another proof
of the strong law of large numbers in Theorem 12.44. Let {Xn}∞n=1 be i.i.d.
random variables such that EXn = 0 and let S−n := X1 + · · · + Xn and
B−n = σ (Sn, Sn+1, Sn+2, . . . ) so that Sn is B−n measurable for all n.

1. For any permutation σ of the set {1, 2, . . . , n} ,

(X1, . . . , Xn, Sn, Sn+1, Sn+2, . . . )
d= (Xσ1, . . . , Xσn, Sn, Sn+1, Sn+2, . . . )

and in particular

(Xj , Sn, Sn+1, Sn+2, . . . )
d= (X1, Sn, Sn+1, Sn+2, . . . ) for all j ≤ n.

2. By Exercise 18.5 we may conclude that

E [Xj |Sn, Sn+1, Sn+2, . . . ] = E [X1|Sn, Sn+1, Sn+2, . . . ] for all j ≤ n.
(19.64)

3. Summing Eq. (19.64) over j = 1, 2, . . . , n gives,

Sn = E [Sn|Sn, Sn+1, Sn+2, . . . ] = nE [X1|Sn, Sn+1, Sn+2, . . . ]

from which it follows that

Mn :=
Sn

n
:= E [X1|Sn, Sn+1, Sn+2, . . . ] (19.65)

and hence
{
Mn = 1

nSn

}
is a backwards martingale.
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4. By Theorem 19.65 we know;

lim
n→∞

Sn

n
= lim

n→∞
Mn exists a.s.

5. By Kolmogorov’s zero one law (Proposition 7.41) we know that limn→∞
Sn

n =
c a.s. for some constant c.

6. Equation (19.65) along with Proposition 19.7 shows
{

Sn

n

}∞
n=1

is uniformly
integrable. Therefore,

lim
n→∞

Sn

n

a.s.= c = E
[

lim
n→∞

Sn

n

]
= lim

n→∞
E
[
Sn

n

]
= EX1

wherein we have use Theorem 11.31 to justify the interchange of the limit
with the expectation. This shows c = EX1.

We have proved the strong law of large numbers.

19.10 Appendix: Some Alternate Proofs

This section may be safely omitted.

Proof. Alternate proof of Theorem 19.36. Let A ∈ Bσ. Then

E [Xτ −Xσ : A] = E

[
N−1∑
k=0

1σ≤k<τ∆k+1X : A

]

=
N∑

k=1

E [∆kX : A ∩ {σ ≤ k < τ}] .

Since A ∈ Bσ, A∩{σ ≤ k} ∈ Bk and since {k < τ} = {τ ≤ k}c ∈ Bk, it follows
that A ∩ {σ ≤ k < τ} ∈ Bk. Hence we know that

E [∆k+1X : A ∩ {σ ≤ k < τ}]
≤
=
≥

0 respectively.

and hence that

E [Xτ −Xσ : A]
≤
=
≥

0 respectively.

Since this true for all A ∈ Bσ, Eq. (19.21) follows.

Lemma 19.69. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space, 1 ≤
p < ∞, and let B∞ := ∨∞n=1Bn := σ (∪∞n=1Bn) . Then ∪∞n=1L

p (Ω,Bn, P ) is
dense in Lp (Ω,B∞, P ) .
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Proof. Let Mn := Lp (Ω,Bn, P ) , then Mn is an increasing sequence of
closed subspaces of M∞ = Lp (Ω,B∞, P ) . Further let A be the algebra of
functions consisting of those f ∈ ∪∞n=1Mn such that f is bounded. As a
consequence of the density Theorem 9.8, we know that A and hence ∪∞n=1Mn

is dense in M∞ = Lp (Ω,B∞, P ) . This completes the proof. However for the
readers convenience let us quickly review the proof of Theorem 9.8 in this
context.

Let H denote those bounded B∞ – measurable functions, f : Ω → R, for
which there exists {ϕn}∞n=1 ⊂ A such that limn→∞ ‖f − ϕn‖Lp(P ) = 0. A rou-
tine check shows H is a subspace of the bounded B∞ –measurable R – valued
functions on Ω, 1 ∈ H, A ⊂ H and H is closed under bounded convergence. To
verify the latter assertion, suppose fn ∈ H and fn → f boundedly. Then, by
the dominated (or bounded) convergence theorem, limn→∞ ‖(f − fn)‖Lp(P ) =
0.7 We may now choose ϕn ∈ A such that ‖ϕn − fn‖Lp(P ) ≤

1
n then

lim sup
n→∞

‖f − ϕn‖Lp(P ) ≤ lim sup
n→∞

‖(f − fn)‖Lp(P )

+ lim sup
n→∞

‖fn − ϕn‖Lp(P ) = 0,

which implies f ∈ H.
An application of Dynkin’s Multiplicative System Theorem 9.3, now shows

H contains all bounded σ (A) = B∞ – measurable functions onΩ. Since for any
f ∈ Lp (Ω,B, P ) , f1|f |≤n ∈ H there exists ϕn ∈ A such that ‖fn − ϕn‖p ≤
n−1. Using the DCT we know that fn → f in Lp and therefore by Minikowski’s
inequality it follows that ϕn → f in Lp.

Theorem 19.70. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space,
1 ≤ p < ∞, and let B∞ := ∨∞n=1Bn := σ (∪∞n=1Bn) . Then for every X ∈
Lp (Ω,B, P ) , Xn = E [X|Bn] is a martingale and Xn → X∞ := E [X|B∞] in
Lp (Ω,B∞, P ) as n→∞.

Proof. We have already seen in Example 19.5 that Xn = E [X|Bn] is
always a martingale. Since conditional expectation is a contraction on Lp it
follows that E |Xn|p ≤ E |X|p <∞ for all n ∈ N∪{∞} . So to finish the proof
we need to show Xn → X∞ in Lp (Ω,B, P ) as n→∞.

Let Mn := Lp (Ω,Bn, P ) and M∞ = Lp (Ω,B∞, P ) . If X ∈ ∪∞n=1Mn, then
Xn = X for all sufficiently large n and for n = ∞. Now suppose that X ∈M∞
and Y ∈ ∪∞n=1Mn. Then

‖EB∞X − EBnX‖p ≤ ‖EB∞X − EB∞Y ‖p + ‖EB∞Y − EBnY ‖p + ‖EBnY − EBnX‖p

≤ 2 ‖X − Y ‖p + ‖EB∞Y − EBn
Y ‖p

and hence
lim sup

n→∞
‖EB∞X − EBn

X‖p ≤ 2 ‖X − Y ‖p .

7 It is at this point that the proof would break down if p = ∞.
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Using the density Lemma 19.69 we may choose Y ∈ ∪∞n=1Mn as close to X ∈
M∞ as we please and therefore it follows that lim supn→∞ ‖EB∞X − EBn

X‖p =
0.

For general X ∈ Lp (Ω,B, P ) it suffices to observe that X∞ := E [X|B∞] ∈
Lp (Ω,B∞, P ) and by the tower property of conditional expectations,

E [X∞|Bn] = E [E [X|B∞] |Bn] = E [X|Bn] = Xn.

So again Xn → X∞ in Lp as desired.
We are now ready to prove the converse of Theorem 19.70.

Theorem 19.71. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space,
1 ≤ p < ∞, B∞ := ∨∞n=1Bn := σ (∪∞n=1Bn) , and {Xn}∞n=1 ⊂ Lp (Ω,B, P )
is a martingale. Further assume that supn ‖Xn‖p < ∞ and that {Xn}∞n=1 is
uniformly integrable if p = 1. Then there exists X∞ ∈ Lp (Ω,B∞, P ) such that
Xn := E [X∞|B∞] . Moreover by Theorem 19.70 we know that Xn → X∞ in
Lp (Ω,B∞, P ) as n→∞ and hence X∞ is uniquely determined by {Xn}∞n=1 .

Proof. By Theorems 16.19 and 16.21, there exists X∞ ∈ Lp (Ω,B∞, P )
and a subsequence, Yk = Xnk

such that

lim
k→∞

E [Ykh] = E [X∞h] for all h ∈ Lq (Ω,B∞, P )

where q := p (p− 1)−1
. Using the martingale property, if h ∈ (Bn)b for some

n, it follows that E [Ykh] = E [Xnh] for all large k and therefore that

E [X∞h] = E [Xnh] for all h ∈ (Bn)b .

This implies that Xn = E [X∞|Bn] as desired.

Theorem 19.72 (Almost sure convergence). Suppose (Ω,B, {Bn}∞n=0 , P )
is a filtered probability space, 1 ≤ p < ∞, and let B∞ := ∨∞n=1Bn :=
σ (∪∞n=1Bn) . Then for every X ∈ L1 (Ω,B, P ) , the martingale, Xn =
E [X|Bn] , converges almost surely to X∞ := E [X|B∞] .

Before starting the proof, recall from Proposition 1.5, if {an}∞n=1 and
{bn}∞n=1 are two bounded sequences, then

lim sup
n→∞

(an + bn)− lim inf
n→∞

(an + bn)

≤ lim sup
n→∞

an + lim sup
n→∞

bn −
(
lim inf
n→∞

an + lim inf
n→∞

bn

)
= lim sup

n→∞
an − lim inf

n→∞
an + lim sup

n→∞
bn − lim inf

n→∞
bn. (19.66)

Proof. Since

Xn = E [X|Bn] = E [E [X|B∞] |Bn] = E [X∞|Bn] ,
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there is no loss in generality in assuming X = X∞. If X ∈ Mn :=
L1 (Ω,Bn, P ) , then Xm = X∞ a.s. for all m ≥ n and hence Xm → X∞
a.s. Therefore the theorem is valid for any X in the dense (by Lemma 19.69)
of L1 (Ω,B∞, P ) .

For general X ∈ L1 (Ω,B∞, P ) , let Yj ∈ ∪Mn such that Yj → X ∈
L1 (Ω,B∞, P ) and let Yj,n := E [Yj |Bn] and Xn := E [X|Bn] . We know that
Yj,n → Yj,∞ a.s. for each j ∈ N and our goal is to show Xn → X∞ a.s.
By Doob’s inequality in Corollary 19.43 and the L1 - contraction property of
conditional expectation we know that

P (X∗N ≥ a) ≤ 1
a

E |XN | ≤
1
a

E |X|

and so passing to the limit as N →∞ we learn that

P

(
sup

n
|Xn| ≥ a

)
≤ 1
a

E |X| for all a > 0. (19.67)

Letting a ↑ ∞ then shows P (supn |Xn| = ∞) = 0 and hence supn |Xn| < ∞
a.s. Hence we may use Eq. (19.66) with an = Xn−Yj,n and bn := Yj,n to find

D = lim sup
n→∞

Xn − lim inf
n→∞

Xn

≤ lim sup
n→∞

an − lim inf
n→∞

an + lim sup
n→∞

bn − lim inf
n→∞

bn

= lim sup
n→∞

an − lim inf
n→∞

an ≤ 2 sup
n
|an|

= 2 sup
n
|Xn − Yj,n| ,

wherein we have used lim supn→∞ bn − lim infn→∞ bn = 0 a.s. since Yj,n →
Yj,∞ a.s.

We now apply Doob’s inequality one more time, i.e. use Eq. (19.67) with
Xn → Xn − Yj,n and X → X − Yj , to conclude,

P (D ≥ a) ≤ P

(
sup

n
|Xn − Yj,n| ≥

a

2

)
≤ 2
a

E |X − Yj | → 0 as j →∞.

Since a > 0 is arbitrary here, it follows that D = 0 a.s., i.e. lim supn→∞Xn =
lim infn→∞Xn and hence limn→∞Xn exists in R almost surely. Since we
already know that Xn → X∞ in L1 (Ω,B, P ) , we may conclude that
limn→∞Xn = X∞ a.s.
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Some Martingale Examples and Applications

Exercise 20.1. Let Sn be the total assets of an insurance company in year
n. Assume that for all n, we have Sn = Sn−1 + ξn, where ξn = c − Zn and
Z1, Z2, . . . are i.i.d. random variables having the normal distribution with
mean µ < c and variance σ2. (The number c is to be interpreted as the yearly
premium.) Let R be the event that Sn ≤ 0 for some n. Show that if S0 > 0 is
constant, then

P (Ruin) = P (R) ≤ e−2(c−µ)S0/σ2
.

Solution to Exercise (20.1). Let us first fine λ such that 1 = E
[
eλξn

]
. To

do this let N be a standard normal random variable in which case,

1 set= E
[
eλξn

]
= E

[
eλ(c−µ−σN)

]
= eλ(c−µ)e(σ2λ2)/2,

leads to the equation for λ;

σ2

2
λ2 + λ (c− µ) = 0.

Hence we should take λ = −2 (c− µ) /σ2 – the other solution, λ = 0, is
uninteresting. Since E

[
eλξn

]
= 1, we know from Example 19.12 that

Yn := eS0

n∏
j=1

eλξj = exp (λSn)

is a non-negative Bn = σ(Z1, . . . , Zn) – martingale. By the super-martingale
or the sub-martingale convergence theorem, it follows that limn→∞ Yn = Y∞
exists and τ is any stopping time,

EYτ = E lim
n→∞

Yτ∧n ≤ lim inf
n→∞

EYτ∧n = EY0 = e−λS0

as follows from Fatou’s Lemma and the optional sampling theorem.
Let us now take τ = inf{n : Sn ≤ 0} and observe that Sτ ≤ 0 on R =

{τ <∞} . Because λ < 0, it follows that Yτ = eλSτ ≥ 1 on R and therefore,

P (R) ≤ EYτ ≤ e−λS0 = e−2(c−µ)S0/σ2
.
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20.1 A Polya Urn Model

Suppose that an urn contains r red balls and g green balls. At each time we
draw a ball out, then replace it and add c more balls of the color drawn. Let
(rn, gn) be the number of red and green balls in the earn at time n. Then we
have

P ((rn+1, gn) = (r + c, g) | (rn, gn) = (r, g)) =
r

r + g
and

P ((rn+1, gn) = (r, g + c) | (rn, gn) = (r, g)) =
g

r + g
.

Let us observe that rn + gn = r0 + g0 + nc and hence

Xn :=
gn

rn + gn
=

gn

r0 + g0 + nc
.

We now claim that {Xn}∞n=0 is a martingale. Indeed,

E [Xn+1|Xn] =
rn

rn + gn
· gn

rn + gn + c
+

gn

rn + gn
· gn + c

rn + gn + c

=
gn

rn + gn
· rn + gn + c

rn + gn + c
= Xn.

Since Xn ≥ 0, we know that X∞ := limn→∞Xn exists a.s. Our next goal is
to prove the following theorem.

Theorem 20.1. Let γ := g/c and ρ := r/c and P ◦ X−1
∞ be the law of X∞.

Then X∞ is distributed according to the beta distribution on [0, 1] with
parameters, γ, ρ, i.e.

d
(
P ◦X−1

∞
)
(dx) =

Γ (ρ+ γ)
Γ (ρ)Γ (γ)

xγ−1 (1− x)ρ−1
dx for x ∈ [0, 1] .

Proof. We will begin by computing the distribution of Xn. As an example,
the probability of drawing 3 greens and then 2 reds is

g

r + g
· g + c

r + g + c
· g + 2c
r + g + 2c

· r

r + g + 3c
· r + c

r + g + 4c
.

More generally, the probability of first drawing m greens and then n−m reds
is

g · (g + c) · · · · · (g + (n− 1) c) · r · (r + c) · · · · · (r + (n−m− 1) c)
(r + g) · (r + g + c) · · · · · (r + g + (n− 1) c)

.

Since this is the same probability for any on of the
(

n
m

)
– ways of drawing m

greens and n−m reds in n draws we have
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P (Draw m – greens)

=
(
n

m

)
g · (g + c) · · · · · (g + (m− 1) c) · r · (r + c) · · · · · (r + (n−m− 1) c)

(r + g) · (r + g + c) · · · · · (r + g + (n− 1) c)

=
(
n

m

)
γ · (γ + 1) · · · · · (γ + (m− 1)) · ρ · (ρ+ 1) · · · · · (ρ+ (n−m− 1))

(ρ+ γ) · (ρ+ γ + 1) · · · · · (ρ+ γ + (n− 1))
.

(20.1)

Before going to the general case let us warm up with the special case, g = r =
c = 1. In this case Eq. (20.1) becomes,

P (Draw m – greens) =
(
n

m

)
1 · 2 · · · · ·m · 1 · 2 · · · · · (n−m)

2 · 3 · · · · · (n+ 1)
=

1
n+ 1

.

On the set, {Draw m – greens} , we have Xn = 1+m
2+n and hence it follows that

E [f (Xn)] =
n∑

m=0

f

(
1 +m

2 + n

)
P (Draw m – greens)

=
n∑

m=0

f

(
1 +m

2 + n

)
1

n+ 1
→
∫ 1

0

f (x) dx

from which it follows that X∞ has the uniform distribution on [0, 1] .
For the general case, recall from Example 8.39 that n! = Γ (n+ 1) where

Γ (t) :=
∫

[0,∞)

xt−1e−xdx for t > 0.

Moreover we have

Γ (t+ 1) =
∫

[0,∞)

e−xxtdx = −
∫

[0,∞)

d

dx
e−x · xtdx =

∫
[0,∞)

e−x · d
dx
xtdx

= t

∫
[0,∞)

e−x · xt−1dx = tΓ (t)

and therefore for m ∈ N,

Γ (x+m) = (x+m− 1) (x+m− 2) . . . (x+ 1)xΓ (x) . (20.2)

Another key fact about the Γ function is Sterling’s formula which states

Γ (x) =
√

2πxx−1/2e−x [1 + r (x)] (20.3)

where |r (x)| → 0 as x→∞.
On the set, {Draw m – greens} , we have

Xn =
g +mc

r + g + nc
=

γ +m

ρ+ γ + n
=: xm,
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where ρ := r/c and γ := g/c. For later notice that ∆mx = γ
ρ+γ+n .

Using this notation we may rewrite Eq. (20.1) as

P (Draw m – greens)

=
(
n

m

) Γ (γ+m)
Γ (γ) · Γ (ρ+n−m)

Γ (ρ)

Γ (ρ+γ+n)
Γ (ρ+γ)

=
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

· Γ (n+ 1)
Γ (m+ 1)Γ (n−m+ 1)

Γ (γ +m)Γ (ρ+ n−m)
Γ (ρ+ γ + n)

. (20.4)

Now by Stirling’s formula,

Γ (γ +m)
Γ (m+ 1)

=
(γ +m)γ+m−1/2

e−(γ+m) [1 + r (γ +m)]

(1 +m)m+1−1/2
e−(m+1) [1 + r (1 +m)]

= (γ +m)γ−1 ·
(
γ +m

m+ 1

)m+1/2

e−(γ−1) 1 + r (γ +m)
1 + r (m+ 1)

.

= (γ +m)γ−1 ·
(

1 + γ/m

1 + 1/m

)m+1/2

e−(γ−1) 1 + r (γ +m)
1 + r (m+ 1)

We will keep m fairly large, so that(
1 + γ/m

1 + 1/m

)m+1/2

= exp
(

(m+ 1/2) ln
(

1 + γ/m

1 + 1/m

))
∼= exp ((m+ 1/2) (γ/m− 1/m)) ∼= eγ−1.

Hence we have
Γ (γ +m)
Γ (m+ 1)

� (γ +m)γ−1
.

Similarly, keeping n−m fairly large, we also have

Γ (ρ+ n−m)
Γ (n−m+ 1)

� (ρ+ n−m)ρ−1 and

Γ (ρ+ γ + n)
Γ (n+ 1)

� (ρ+ γ + n)ρ+γ−1
.

Combining these estimates with Eq. (20.4) gives,

P (Draw m – greens)

� Γ (ρ+ γ)
Γ (ρ)Γ (γ)

· (γ +m)γ−1 · (ρ+ n−m)ρ−1

(ρ+ γ + n)ρ+γ−1

=
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

·

(
γ+m

ρ+γ+n

)γ−1

·
(

ρ+n−m
ρ+γ+n

)ρ−1

(ρ+ γ + n)ρ+γ−1

=
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

· (xm)γ−1 · (1− xm)ρ−1
∆mx.
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Therefore it follows that

E [f (X∞)] = lim
n→∞

E [f (Xn)]

= lim
n→∞

n∑
m=0

f (xm)
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

· (xm)γ−1 · (1− xm)ρ−1
∆mx

=
∫ 1

0

f (x)µ (x) dx

where

µ (x) :=
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

xγ−1 (1− x)ρ−1
.

20.2 Galton Watson Branching Process

See p. 245 –249 in Durrett.
Let {ξn

i : i, n ≥ 0} be a sequence of i.i.d. non-negative integer valued ran-
dom variables. Suppose that Zn is the number of people in the nth – generation
and ξn+1

1 , . . . , ξn+1
Zn

are the number of off spring of the Zn people of generation
n. Then

Zn+1 = ξn+1
1 + · · ·+ ξn+1

Zn

represents the number of people present in generation, n + 1. We complete
the description of the process, Zn by setting Z0 = 1 and Zn+1 = 0 if Zn = 0,
i.e. once the population dies out it remains extinct forever after. The process
{Zn}n≥0 is called a Galton-Watson process.

Let ξ d= ξm
i , pk := P (ξ = k) be the off-spring distribution,

µ := Eξ =
∞∑

k=0

kpk,

and
Bn := σ (ξm

i : i ≥ 1 and 1 ≤ m ≤ n) .

On the set {Zn = k} , Zn+1 = ξn+1
1 +· · ·+ξn+1

k and therefore, on {Zn = k} ,

E [Zn+1|Bn] = E
[
ξn+1
1 + · · ·+ ξn+1

k |Bn

]
= E

[
ξn+1
1 + · · ·+ ξn+1

k

]
= µk = µZn.

Since this is true for all k, it follows that

E [Zn+1|Bn] = µZn a.s. (20.5)

So we have shown, Mn := Zn/µ
n is a martingale in the extended sense. From

this observation it follows that
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1 = EM0 = EMn =
EZn

µn
,

i.e. EZn = µn <∞.

Theorem 20.2. If µ < 1, then, almost surely, Zn = 0 a.a.

Proof. When µ < 1, we have

E
∞∑

n=0

Zn =
∞∑

n=0

µn =
1

1− µ
<∞

and therefore that
∞∑

n=0

Zn <∞ a.s.

But this can only happen if Zn = 0 a.a.

Theorem 20.3. If µ = 1 and P (ξm
i = 1) < 1, then again, almost surely,

Zn = 0 a.a.

Proof. In this case {Zn}∞n=1 is a martingale which, being positive, is L1 –
bounded. Therefore, limn→∞ Zn =: Z∞ exists. Because Zn is integer valued,
it must happen that Zn = Z∞ a.a. If k ∈ N, Since

{Z∞ = k} = {Zn = k a.s.} = ∪∞N=1 {Zn = k for all n ≥ N} ,

we have
P (Z∞ = k) = lim

N→∞
P (Zn = k for all n ≥ N) .

However,

P (Zn = k for all n ≥ N) = P (ξn
1 + · · ·+ ξn

k = k for all n ≥ N)
= [P (ξn

1 + · · ·+ ξn
k = k)]∞ = 0,

because,
P (ξn

1 + · · ·+ ξn
k = k) < 1.

(Note that the only way P (ξn
1 + · · ·+ ξn

k = k) = 1 would be for P (ξn
i = 1) ,

but we assumed P (ξn
i = 1) < 1.) Therefore we have shown P (Z∞ = k) = 0

for all k > 0 and therefore, Z∞ = 0 a.s. and hence almost surely, Zn = 0 for
a.a. n.

Remark 20.4. By the way, the branching process, {Zn}∞n=0 with µ = 1 and
P (ξ = 1) < 1 gives a nice example of a non regular martingale. Indeed, if Z
were regular, we would have

Zn = E
[

lim
m→∞

Zm|Bn

]
= E [0|Bn] = 0

which is clearly false.
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We now wish to consider the case where µ := E [ξm
i ] > 1. Let ξ d= ξm

i and
for s ∈ (−1,∞), let

ϕ (s) := E
[
sξ
]

=
∑
k≥0

pks
k.

Then if |s| < 1, we have

ϕ′ (s) =
∑
k≥0

kpks
k−1 and ϕ′′ (s) =

∑
k≥0

k (k − 1) pks
k−2

with

lim
s↑1

ϕ′ (s) =
∑
k≥0

kpk = E [ξ] =: µ and

lim
s↑1

ϕ′′ (s) =
∑
k≥0

k (k − 1) pk = E [ξ (ξ − 1)] .

Lemma 20.5. If µ = ϕ′ (1) > 1, there exists a unique ρ < 1 so that ϕ (ρ) = ρ.

Proof. See Figure 20.1 below.

Fig. 20.1. Figure associated to ϕ (s) = 1
8

�
1 + 3s + 3s2 + s3

�
which is relevant for

Exercise 3.13 of Durrett on p. 249. In this case ρ ∼= 0.236 07.

Theorem 20.6 (See Durrett, p. 247-248.). If µ > 1, then

P ({Zn = 0 for some n}) = ρ.

Proof. Since {Zm = 0} ⊂ {Zm+1 = 0} , it follows that {Zm = 0} ↑
{Zn = 0 for some n} and therefore if
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θm := P (Zm = 0) ,

then
P ({Zn = 0 for some n}) = lim

m→∞
θm.

We now show; θm = ϕ (θm−1) . To see this, conditioned on the set {Z1 = k} ,
Zm = 0 iff all k – families die out in the remaining m−1 time units. Since each
family evolves independently, the probability1 of this event is θk

m−1. Combin-
ing this with, P ({Z1 = k}) = P

(
ξ11 = k

)
= pk, allows us to conclude,

θm = P (Zm = 0) =
∞∑

k=0

P (Zm = 0, Z1 = k)

=
∞∑

k=0

P (Zm = 0|Z1 = k)P (Z1 = k) =
∞∑

k=0

pkθ
k
m−1 = ϕ (θm−1) .

It is now easy to see that θm ↑ ρ as m ↑ ∞, again see Figure 20.2.

Fig. 20.2. The graphical interpretation of θm = ϕ (θm−1) starting with θ0 = 0.

20.3 Kakutani’s Theorem

Proposition 20.7. Suppose that µ and ν are σ – finite positive measures on
(X,M), ν = νa + νs is the Lebesgue decomposition of ν relative to µ, and
1 The argument could use a little shoring up here.
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ρ : X → [0,∞) is a measurable function such that dνa = ρdµ so that

dν = dνa + dνs = ρdµ+ dνs.

If g : X → [0,∞) is another measurable function such that gdµ ≤ dν, (i.e.∫
B
gdµ ≤ ν (B) for all B ∈M), then g ≤ ρ, µ – a.e.

Proof. Let A ∈ M be chosen so that µ (Ac) = 0 and νs (A) = 0. Then,
for all B ∈M,∫

B

gdµ =
∫

B∩A

gdµ ≤ ν (B ∩A) =
∫

B∩A

ρdµ =
∫

B

ρdµ.

So by the comparison Lemma 18.2, g ≤ ρ.

Example 20.8. This example generalizes Example 19.8. Suppose (Ω,B, {Bn}∞n=0 , P )
is a filtered probability space and Q is any another probability measure on
(Ω,B) . By the Raydon-Nikodym Theorem 17.8, for each n ∈ N̄ we may write

dQ|Bn = XndP |Bn + dRn

where Rn is a measure on (Ω,Bn) which is singular relative to P |Bn and
0 ≤ Xn ∈ L1 (Ω,Bn, P ) . In this case the most we can say in general is that
X := {Xn}n≤∞ is a positive supermartingale. To verify this assertion, for
B ∈ Bn and n ≤ m ≤ ∞, we have

Q (B) = E [Xm : B] +Rm (B) ≥ E [Xm : B] = E [EBn
(Xm) : B]

from which it follows that EBn
(Xm) · dP |Bn

≤ dQ|Bn
. So according to Propo-

sition 20.7,

EBn
(Xm) ≤ Xn (P – a.s.) for all n ≤ m ≤ ∞. (20.6)

Proposition 20.9. Keeping the assumptions and notation used in Example
20.8, then limn→∞Xn = X∞ a.s. and in particular the Lebesgue decomposi-
tion of Q|B∞ relative to P |B∞ may be written as

dQ|B∞ =
(

lim
n→∞

Xn

)
· dP |B∞ + dR∞. (20.7)

Proof. By Example 20.8, we know that {Xn}∞n=1 is a positive supermartin-
gale and by letting m = ∞ in Eq. (20.6), we know

EBn
X∞ ≤ Xn a.s. (20.8)

By the supermartingale convergence Corollary 19.54 or by the submartingale
convergence Corollary 19.46 applied to −Xn we know that X0 := limn→∞Xn

exists almost surely. From the regular martingale convergence Theorem 19.56
we also know that limn→∞ EBn

X∞ = X∞ a.s. as well. So passing to the limit
in Eq. (20.8) implies X∞ ≤ X0 a.s.
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To prove the reverse inequality, X0 ≤ X∞ a.s., let B ∈ Bm and n ≥ m.
Then

Q (B) = E [Xn : B] +Rn (B) ≥ E [Xn : B]

and so by Fatou’s lemma,

E [X0 : B] = E
[
lim inf
n→∞

Xn : B
]
≤ lim inf

n→∞
E [Xn : B] ≤ Q (B) . (20.9)

Since m ∈ N was arbitrary, we have proved E [X0 : B] ≤ Q (B) for all B in
the algebra, A := ∪m∈NBm. As a consequence of the regularity Theorem 5.10
or of the monotone class Lemma 7.11, or of Theorem2 5.19, it follows that
E [X0 : B] ≤ Q (B) for all B ∈ σ (A) = B∞. An application of Proposition
20.7 then implies X0 ≤ X∞ a.s.

Theorem 20.10. Let (Ω,B, {Bn}∞n=0 , P ) be a filtered probability space and
Q be a probability measure on (Ω,B) such that Q|Bn

� P |Bn
for all n ∈ N.

Let Mn := dQ|Bn

dP |Bn
be a version of the Raydon-Nikodym derivative of Q|Bn

relative to P |Bn , see Theorem 17.8. Recall from Example 19.8 that {Mn}∞n=1

is a positive martingale and let M∞ = limn→∞Mn which exists a.s. Then the
following are equivalent;

1. Q|B∞ � P |B∞,

2. EPM∞ = 1,
3. Mn →M∞ in L1 (P ) , and
4. {Mn}∞n=1 is uniformly integrable.

Proof. Recall from Proposition 20.9 (whereXn is nowMn) that in general,

dQ|B∞ = M∞ · dP |B∞ + dR∞ (20.10)

where R∞ is singular relative to P |B∞ . Therefore, Q|B∞ � P |B∞ iff R∞ = 0
which happens iff R∞ (Ω) = 0, i.e. iff

1 = Q (Ω) =
∫

Ω

M∞ · dP |B∞ = EPM∞.

This proves the equivalence of items 1. and 2. If item 2. holds, then Mn →M∞
by the DCT, Corollary 11.8, with gn = fn = Mn and g = f = M∞ and so
item 3. holds. The implication of 3. =⇒ 2. is easy and the equivalence of
items 3. and 4. follows from Theorem 11.31.
2 This theorem implies that for B ∈ B,

E [X0 : B] = inf {E [X0 : A] : A ∈ Aσ} and

Q (B) = inf {Q (A) : A ∈ Aσ}

and since, by MCT, E [X0 : A] ≤ Q (A) for all A ∈ Aσ it follows that Eq. (20.9)
holds for all B ∈ B.
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Remark 20.11. Recall from Exercise 7.4, that if 0 < an ≤ 1,
∏∞

n=1 an > 0 iff∑∞
n=1 (1− an) <∞. Indeed,

∏∞
n=1 an > 0 iff

−∞ < ln

( ∞∏
n=1

an

)
=
∞∑

n=1

ln an =
∞∑

n=1

ln (1− (1− an))

and
∑∞

n=1 ln (1− (1− an)) > −∞ iff
∑∞

n=1 (1− an) < ∞. Recall that
ln (1− (1− an)) ∼= (1− an) for an near 1.

Theorem 20.12 (Kakutani’s Theorem). Let {Xn}∞n=1 be independent
non-negative random variables with EXn = 1 for all n. Further, let M0 = 1
and Mn := X1 · X2 · · · · · Xn – a martingale relative to the filtration,
Bn := σ (X1, . . . , Xn) as was shown in Example 19.12. According to Corollary
19.54, M∞ := limn→∞Mn exists a.s. and EM∞ ≤ 1. The following state-
ments are equivalent;

1. EM∞ = 1,
2. Mn →M∞ in L1 (Ω,B, P ) ,
3. {Mn}∞n=1 is uniformly integrable,
4.
∏∞

n=1 E
(√
Xn

)
> 0,

5.
∑∞

n=1

(
1− E

(√
Xn

))
<∞.

Moreover, if any one, and hence all of the above statements, fails to hold,
then P (M∞ = 0) = 1.

Proof. If an := E
(√
Xn

)
, then 0 < an and a2

n ≤ EXn = 1 with equality
iff Xn = 1 a.s. So Remark 20.11 gives the equivalence of items 4. and 5.

The equivalence of items 1., 2. and 3. follow by the same techniques used
in the proof of Theorem 20.10 above. We will now complete the proof by
showing 4. =⇒ 3. and not(4.) =⇒ P (M∞ = 0) = 1 which clearly implies
not(1.) . For both pars of the argument, let N0 = 1 and Nn be the martingale
(again see Example 19.12) defined by

Nn :=
n∏

k=1

√
Xk

ak
=

√
Mn∏n

k=1 ak
. (20.11)

Further observe that, in all cases, N∞ = limn→∞Nn exists in [0,∞) µ – a.s.,
see Corollary 19.46 or Corollary 19.54.

4. =⇒ 3. Since

N2
n =

n∏
k=1

Xk

a2
k

=
Mn

(
∏n

k=1 ak)2
,

E
[
N2

n

]
=

EMn

(
∏n

k=1 ak)2
=

1

(
∏n

k=1 ak)2
≤ 1

(
∏∞

k=1 ak)2
<∞,

and hence {Nn}∞n=1 is bounded in L2. Therefore, using
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Mn =

(
n∏

k=1

ak

)2

N2
n ≤ N2

n (20.12)

and Doob’s inequality in Corollary 19.43, we find

E
[
sup

n
Mn

]
= E

[
sup

n
N2

n

]
≤ 4 sup

n
E
[
N2

n

]
<∞. (20.13)

Equation Eq. (20.13) certainly implies {Mn}∞n=1 is uniformly integrable, see
Proposition 11.29.

Not(4.) =⇒ P (M∞ = 0) = 1. If

∞∏
n=1

E
(√

Xn

)
= lim

n→∞

n∏
k=1

ak = 0,

we may pass to the limit in Eq. (20.12) to find

M∞ = lim
n→∞

Mn = lim
n→∞

( n∏
k=1

ak

)2

·N2
n

 = 0 ·
(

lim
n→∞

Nn

)2

= 0 a.s..

Definition 20.13. Two probability measures, µ and ν on a measure space,
(Ω,B) are said to be equivalent (written µ ∼ ν) if µ � ν and ν � µ, i.e.
if µ and ν are absolutely continuous relative to one another. The Hellinger
integral of µ and ν is defined as

H (µ, ν) :=
∫

Ω

√
dµ

dλ
· dν
dλ
dλ = “

∫
Ω

√
dµ · dν” (20.14)

where λ is any measure (for example λ = 1
2 (µ+ ν) would work) on (Ω,B)

such that there exists, dµ
dλ and dν

dλ in L1 (Ω,B, λ) such that dµ = dµ
dλdλ and

dν = dν
dλdλ.

Proposition 20.14. The Hellinger integral, H (µ, ν) , of two probability mea-
sures, µ and ν, is well defined. Moreover H (µ, ν) satisfies;

1. 0 ≤ H (µ, ν) ≤ 1,
2. H (µ, ν) = 1 iff µ = ν,
3. H (µ, ν) = 0 iff µ ⊥ ν, and
4. If µ ∼ ν or more generally if ν � µ, then H (µ, ν) > 0.

Furthermore3,

H (µ, ν) = inf

{
n∑

i=1

√
µ (Ai) ν (Ai) : Ω =

n∑
i=1

Ai and n ∈ N

}
. (20.15)

3 This statement and its proof may be safely omitted.
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Proof. Let λ′ be another measure such that µ, ν � λ′ and let γ := λ′+λ.
Then λ′, λ � γ and therefore, dλ = ρdγ for some ρ ≥ 0. Moreover, dµ =
dµ
dλdλ = dµ

dλρdγ and dν = dv
dλdλ = dv

dλρdγ and hence∫
Ω

√
dµ

dγ
· dν
dγ
dγ =

∫
Ω

√
dµ

dλ
ρ · dv

dλ
ρdγ =

∫
Ω

√
dµ

dλ
· dv
dλ
ρdγ

=
∫

Ω

√
dµ

dλ
· dv
dλ
dλ.

By symmetry we also have∫
Ω

√
dµ

dλ′
· dv
dλ′

dλ′ =
∫

Ω

√
dµ

dγ
· dν
dγ
dγ =

∫
Ω

√
dµ

dλ
· dv
dλ
dλ

which shows H (µ, ν) is well defined.
Items 1. and 2. are both an easy consequence of the Schwarz inequality and

its converse. For item 3., if H (µ, ν) = 0, then dµ
dλ ·

dv
dλ = 0, λ – a.e.. Therefore,

if we let

A :=
{
dµ

dλ
6= 0
}
,

then dµ
dλ = 1A

dµ
dλ – λ –a.e. and dv

dλ1Ac = dv
dλ – λ – a.e. Hence it follows that

µ (Ac) = 0 and ν (A) = 0 and hence µ ⊥ ν.
If ν ∼ µ and in particular, v � µ, then

H (µ, ν) =
∫

Ω

√
dν

dµ

dµ

dµ
dµ =

∫
Ω

√
dν

dµ
dµ.

For sake of contradiction, if H (µ, ν) = 0 then
√

dν
dµ = 0 and hence dν

dµ = 0, µ –
a.e. The later would imply ν = 0 which is impossible. Therefore, H (µ, ν) > 0
if ν � µ. The last statement is left to the reader as Exercise 20.3.

Exercise 20.2. Find a counter example to the statement that H (µ, ν) > 0
implies ν � µ.

Exercise 20.3. Prove Eq. (20.15).

Corollary 20.15 (Kakutani [6]). Let Ω = RN, Yn (ω) = ωn for all ω ∈ Ω
and n ∈ N, and B := B∞ = σ (Yn : n ∈ N) be the product σ – algebra on Ω.
Further, let µ := ⊗∞n=1µn and ν := ⊗∞n=1νn be product measures on (Ω,B∞)
associated to two sequences of probability measures, {µn}∞n=1 and {νn}∞n=1

on (R,BR) , see Theorem 7.27 (take µ := P ◦ (Y1, Y2, . . . )
−1). Let us further

assume that νn � µn for all n so that

0 < H (µn, νn) =
∫

R

√
dνn

dµm
dµn ≤ 1.

Then precisely one of the two cases below hold;
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1.
∑∞

n=1 (1−H (µn, νn)) <∞ which happens iff
∏∞

n=1H (µn, νn) > 0 which
happens iff ν � µ
or

2.
∑∞

n=1 (1−H (µn, νn)) = ∞ which happens iff
∏∞

n=1H (µn, νn) = 0 which
happens iff µ ⊥ ν.

In case 1. where ν � µ we have

dν

dµ
=
∞∏

n=1

dνn

dµn
(Yn) µ-a.s. (20.16)

and in all cases we have

H (µ, ν) =
∞∏

n=1

H (µn, νn) .

Proof. Let P = µ, Q = ν, Bn := σ (Y1, . . . , Yn) , Xn := dνn

dµn
(Yn) , and

Mn := X1 . . . Xn =
dν1
dµ1

(Y1) . . .
dνn

dµn
(Yn) .

If f : Rn → R is a bounded measurable function, then

Eν (f (Y1, . . . , Yn)) =
∫

Rn

f (y1, . . . , yn) dν1 (y1) . . . dνn (yn)

=
∫

Rn

f (y1, . . . , yn)
dν1
dµ1

(y1) . . .
dνn

dµn
(yn) dµ1 (y1) . . . dµn (yn)

= Eµ

[
f (Y1, . . . , Yn)

dν1
dµ1

(Y1) . . .
dνn

dµn
(Yn)

]
= Eµ [f (Y1, . . . , Yn)Mn]

from which it follows that

dν|Bn
= Mndµ|Bn

.

Hence by Theorem 20.10, M∞ := limn→∞Mn exists a.s. and the Lebesgue
decomposition of ν is given by

dν = M∞dµ+ dR∞

where R∞ ⊥ µ. Moreover ν � µ iff R∞ = 0 which happens iff EM∞ = 1 and
ν ⊥ µ iff R∞ = 0 which happens iff M∞ = 0. From Theorem 20.12,

EµM∞ = 1 iff 0 <
∞∏

n=1

Eµ

(√
Xn

)
=
∞∏

n=1

∫
R

√
dνn

dµn
dµn =

∞∏
n=1

H (µn, νn)

and in this case



20.3 Kakutani’s Theorem 445

dν = M∞dµ =

( ∞∏
k=1

Xk

)
· dµ =

( ∞∏
n=1

dνn

dµn
(Yn)

)
· dµ.

On the other hand, if

∞∏
n=1

Eµ

(√
Xn

)
=
∞∏

n=1

H (µn, νn) = 0,

Theorem 20.12 implies M∞ = 0, µ – a.s. in which case Theorem 20.10 implies
ν ⊥ µ.

(The rest of the argument may be safely omitted.) For the last assertion,
if
∏∞

n=1H (µn, νn) = 0 then µ ⊥ ν and hence H (µ, ν) = 0. Conversely if∏∞
n=1H (µn, νn) > 0, then Mn →M∞ in L1 (µ) and therefore

Eµ

[∣∣∣√Mn −
√
M∞

∣∣∣2] ≤ Eµ

[∣∣∣√Mn −
√
M∞

∣∣∣ · ∣∣∣√Mn +
√
M∞

∣∣∣]
= Eµ [|Mn −M∞|] → 0 as n→∞.

Since dν = M∞dµ in this case, it follows that

H (µ, ν) = Eµ

[√
M∞

]
= lim

n→∞
Eµ

[√
Mn

]
= lim

n→∞

n∏
k=1

H (µk, νk) =
∞∏

k=1

H (µk, νk) .

Example 20.16. Suppose that νn = δ1 for all n and µn =
(
1− p2

n

)
δ0 + p2

nδ1
with pn ∈ (0, 1) . Then νn � µn with

dνn

dµn
= 1{1}p−2

n

and
H (µn, νn) =

∫
R

√
1{1}p−2

n dµn =
√
p−2

n · p2
n = pn.

So in this case ν � µ iff
∑∞

n=1 (1− pn) < ∞. Observe that µ is never abso-
lutely continuous relative to ν.

On the other hand; if we further assume in Corollary 20.15 that µn ∼ νn,
then either; µ ∼ ν or µ ⊥ ν depending on whether

∏∞
n=1H (µn, νn) > 0 or∏∞

n=1H (µn, νn) = 0 respectively.
For broad generalizations of the results in this section, see Chapter IV

of [4] or [5]. In the next group of problems you will be given probability
measures, µn and νn on R and you will be asked to decide if µ := ⊗∞n=1µn

and ν := ⊗∞n=1νn are equivalent. For the solutions of these problems you will
want to make use of the following Gaussian integral formula;
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R

exp
(
−a

2
x2 + bx

)
dx =

∫
R

exp

(
−a

2

(
x− b

a

)2

+
b2

2a

)
dx

= e
b2
2a

∫
R

exp
(
−a

2
x2
)
dx =

√
2π
a
e

b2
2a

which is valide for all a > 0 and b ∈ R.

Exercise 20.4 (A Discrete Cameron-Martin Theorem). Suppose t > 0,
{an} ⊂ R, dµn (x) = 1√

2πt
e−x2/2tdx and dνn (x) = 1√

2πt
e−(x+an)2/2tdx . Show

µ ∼ ν iff
∑∞

k=1 a
2
k <∞.

Exercise 20.5. Suppose s, t > 0, {an} ⊂ R, dµn (x) = 1√
2πt

e−x2/2tdx and

dνn (x) = 1√
2πs

e−(x+an)2/2sdx. Show µ ⊥ ν if s 6= t.

Exercise 20.6. Suppose {tn} ⊂ (0,∞) , dµn (x) = 1√
2π
e−x2/2dx and

dνn (x) = 1√
2πtn

e−x2/2tndx. If
∑∞

n=1 (tn − 1)2 <∞ then µ ∼ ν.

20.3.1 For the Future

1. See Section 15 on p.153 of Williams for more applications.
2. Exchangeable Random Variables, see Durrett and Fitzsimmons notes.
3. Kolmogorov’s 0-1 law, see p. 148 of Roger and Williams, Volume I.
4. Relationships to Markov’ chains.
5. Random walk applications in Resnick
6. Option Pricing schemes.
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Gaussian Random Vectors

Definition 21.1. A random variable, Y : Ω → R is said to be Gaussian if

EeiλY = exp
(
−1

2
λ2 Var (Y ) + iλEY

)
for all λ ∈ R.

Definition 21.2. A random vector, X : Ω → RN , is said to be Gaussian
if λ · X is a Gaussian random variable for all λ ∈ RN . Equivalently put,
X : Ω → RN is Gaussian provided

E
[
eiλ·X] = exp

(
−1

2
Var (λ ·X) + iE (λ ·X)

)
∀ λ ∈ RN . (21.1)

Definition 21.3. The mean and the covariance matrix

c =

 c1...
cN

 and Q :=

 Q11 . . . Q1N

...
. . .

...
QN1 . . . QNN


of a random vector, X : Ω → RN , are defined by

ci := E [Xi] and Qij := Cov (Xi, Xj) = E [(Xi − ci) (Xj − cj)] . (21.2)

We will abbreviate Eq. (21.2) by writing,

c := EX and Q = E
[
(X − c) (X − c)tr

]
, (21.3)

where [EA]ij := EAij , when A : Ω → Rm×n is a random matrix. With this
notation we have

Var (λ ·X) = E
[
(λ · (X − c))2

]
= E

[
λ · (X − c) (X − c)tr λ

]
= λ ·Qλ

or alternatively, if you prefer,

Var (λ ·X) = Cov

 n∑
i=1

λiXi,
n∑

j=1

λjXj

 =
n∑

i,j=1

λiλj Cov (Xi, Xj) = Qλ · λ.

Therefore Eq. (21.1) becomes,

Eeiλ·X = exp
(
−1

2
Qλ · λ+ iλ · c

)
. (21.4)
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Definition 21.4. Given a Gaussian random vector, X, we call the pair,
(Q, c) = (cov. matrix, mean) , the characteristics of X. We will also ab-
breviate this by writing X d= N (Q, c) .

Example 21.5. Suppose {Xi}N
i=1 are i.i.d. standard normal random variables,

then X := (X1, . . . , XN )tr is Gaussian with characteristics, (I, 0) . Indeed,

E
[
eiλ·X] =

N∏
j=1

E
[
eiλjXj

]
=

N∏
j=1

e−
1
2 λ2

j = exp
(
−1

2
λ · λ

)
.

Lemma 21.6. If X ∈ RN is a Gaussian random vector with characteristics,
(Q, c) , A : RN → RM is a linear transformation (i.e. a M ×N matrix), and
b ∈ RM then AX+b is a Gaussian random vector in RM with characteristics,
(AQAtr, b+Ac) , i.e. if X d= N (Q, c) then AX + b

d= N (AQAtr, b+Ac) . In
particular if X d= N (I, 0) , then AX + b

d= N (AAtr, b) .

Proof. The result is a consequence of the following computation;

E
[
eiλ·(AX+b)

]
= eiλ·bE

[
eiAtrλ·X

]
= eiλ·b exp

(
−1

2
QAtrλ ·Atrλ+ iAtrλ · c

)
= exp

(
−1

2
AQAtrλ · λ+ iλ ·Ac+ iλ · b

)
.

Remark 21.7. Recall that if Q is a real symmetric N × N matrix, then the
spectral theorem asserts there exists an orthonormal basis, {u}N

j=1 , such that
Quj = λjuj for some λj ∈ R. Moreover, λj ≥ 0 for all j is equivalent to
Q being non-negative. Hence if Q ≥ 0 and f : {λj : j = 1, 2, . . . , N} → R,
we may define f (Q) to be the unique linear transformation on RN such that
f (Q)uj = λjuj .

Example 21.8. When Q ≥ 0 and f (x) :=
√
x, we write Q1/2 or

√
Q for f (Q) .

Notice that Q1/2 ≥ 0 and Q = Q1/2Q1/2.

Example 21.9. When Q is symmetric and

f (x) =
{

1/x if x 6= 0
0 if x = 0

we will denote f (Q) by Q−1. As the notation suggests, f (Q) is the inverse
of Q when Q is invertible which happens iff λi 6= 0 for all i. When Q is not
invertible,

Q−1 := f (Q) = Q|−1
Ran(Q)P, (21.5)

where P : RN → RN be orthogonal projection onto the Ran (Q) . Observe
that P = g (Q) where g (x) = 1x6=0.
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Lemma 21.10. For any Q ≥ 0 we can find a matrix, A, such that Q = AAtr.
In fact it suffices to take A = Q1/2.

Corollary 21.11. Given a N ×N symmetric non-negative matrix, Q, and a
point, c ∈ RN , there exists a Gaussian random vector, X, with characteristics,
(Q, c) . In particular, the laws of Gaussian random vectors (called Gaussian
measures) are in one to one correspondence with pairs, (Q, c) , where Q ≥ 0
and c ∈ RN .

Proof. By Example 21.5, there exists a Gaussian random vector, Y : Ω →
RN such that Y d= N (I, 0) . Then according to Lemma 21.6 we may take

X = Q1/2Y + c. (21.6)

Proposition 21.12. Suppose X d= N (Q, c) where c ∈ RN and Q is a N ×N
symmetric positive definite matrix. If µ = µ(Q,c) = P ◦X−1 then

dµ (x) :=
1√

det (2πQ)
exp

(
−1

2
Q−1 (x− c) · (x− c)

)
dx. (21.7)

Proof. If f : RN → R be a bounded measurable function and Y
d=

N (I, 0) , then according to Example 21.5 and Eq. (21.6),∫
RN

f (x) dµ (x) = E [f (X)] = E
[
f
(
Q1/2Y + c

)]
=
∫

RN

f
(
Q1/2y + c

)( 1
2π

)N/2

e−
1
2 |y|

2
dy.

Making the change of variables, x = Q1/2y + c, using

dx = detQ1/2dy =
√

detQdy,

we conclude∫
RN

f (x) dµ (x) =
∫

RN

f (x)
(

1
2π

)N/2

e−
1
2 |Q−1/2(x−c)|2 dx√

detQ

=
∫

RN

f (x)
1√

det (2πQ)
exp

(
−1

2
Q−1 (x− c) · (x− c)

)
dx

which gives Eq. (21.7).
We can find a similar formula for P ◦X−1 when Q is degenerate. In order

to do this, let k := dim Ran (Q) and U : Rk → RN be a linear transforma-
tion such that Ran (U) = Ran (Q) and U : Rk → Ran (Q) is an isometric
isomorphism. Letting A := Q1/2U, we again have
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AAtr = Q1/2UU trQ1/2 = Q1/2PRan(Q)Q
1/2 = Q.

Therefore, if Y = N (Ik×k, 0) , then X = AY + c
d= N (Q, c) . Observe that

X − c = Q1/2UY takes values in Ran (Q) and hence the Law of (X − c) is
a probability measure on RN which is concentrated on Ran (Q) . From this
it follows that P ◦X−1 is a probability measure on measure on RN which is
concentrated on the affine space, c+ Ran (Q) .

Proposition 21.13. Suppose X = N (Q, c) with k = dim Ran (Q) . If µ =
µ(Q,c) = P ◦X−1, then∫

RN

f (x) dµ (x) =
∫

c+Ran(Q)

f (x) exp
(
−1

2
Q−1 (x− c) · (x− c)

)
dx

where dx is now “Lebesgue measure” on c+ Ran (Q) .

Proof. Proceeding as in the proof of Proposition 21.12,∫
RN

f (x) dµ (x) =
∫

Rk

f (Ay + c)
(

1
2π

)k/2

e−
1
2 |y|

2
dy

=
∫

Rk

f
(
Q1/2Uy + c

)( 1
2π

)k/2

e−
1
2 |y|

2
dy.

Since
Q1/2Uy + c = UU trQ1/2Uy + c,

we may make the change of variables, z = U trQ1/2Uy, using

dz =
√

detQ|Ran(Q)dy =
√ ∏

i:λi 6=0

λidy

and

|y|2 =
∣∣∣∣(U trQ1/2U

)−1

z

∣∣∣∣2 =
∣∣∣U trQ−1/2Uz

∣∣∣2 =
(
Q−1/2Uz,Q−1/2Uz

)
RN

=
(
Q−1Uz,Uz

)
RN ,

to find∫
RN

f (x) dµ (x) =
∫

Rk

f (Uz + c)
(

1
2π

)k/2

e
− 1

2

���(UtrQ1/2U)−1
z
���2
dz

=
∫

Rk

f (Uz + c)
(

1
2π

)k/2 1√
detQ|Ran(Q)

e−
1
2 (Q−1Uz,Uz)RN dz

=
∫

Rk

f (Uz + c)
1√

det
(
2πQ|Ran(Q)

)e− 1
2 (Q−1Uz,Uz)RN dz

=
∫

Rk

f (Uz + c)
1√

det
(
2πQ|Ran(Q)

)e− 1
2 (Q−1(Uz+c−c),(Uz+c−c))RN dz.
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This completes the proof, since x = Uz + c ∈ c + Ran (Q) is by definition
distributed as Lebesgue measure on c + Ran (Q) when z is distributed as
Lebesgue measure on Rk.

Lemma 21.14. Suppose that Z = (X,Y )tr is a Gaussian random vector with
X ∈ Rk and Y ∈ Rl. Then X is independent of Y iff Cov (Xi, Yj) = 0 for all
i ≤ k and j ≤ l.

Proof. We know in general that if Xi and Yj are independent, then
Cov (Xi, Yj) = 0. For the converse direction, if Cov (Xi, Yj) = 0 for all i ≤ k
and j ≤ l and x ∈ Rk and y ∈ Rl, then

Var (x ·X + y · Y ) = Var (x ·X) + Var (y · Y ) + 2 Cov (x ·X, y · Y )
= Var (x ·X) + Var (y · Y ) .

Therefore,

E
[
eix·Xeiy·Y ] = E

[
ei(x·X+y·Y )

]
= exp

(
−1

2
Var (x ·X + y · Y ) + E (x ·X + y · Y )

)
= exp

(
−1

2
Var (x ·X) + iE (x ·X)− 1

2
Var (y · Y ) + iE (y · Y )

)
= E

[
eix·X] · E [eiy·Y ] ,

and because x and y were arbitrary, we may conclude from this that X and
Y are independent.

Theorem 21.15. Suppose that Z = (X,Y )tr is a mean zero Gaussian random
vector with X ∈ Rk and Y ∈ Rl. Let Q = QX := E [XXtr] and then let

W := Y − E
[
Y Xtr

]
Q−1X

where Q−1 is as in Example 21.9. Then (X,W )tr is again a Gaussian random
vector and moreover W is independent of X. The covariance matrix for W is

E
[
WW tr

]
= E

[
Y Y tr

]
− E

[
Y Xtr

]
Q−1E

[
XY tr

]
. (21.8)

Proof. Let Λ be any k × l matrix and let W := Y − ΛX. Since(
X
W

)
=
(

I 0
−Λ I

)(
X
Y

)
,

according to Lemma 21.6 (X,W )tr is still Gaussian. So in order to make W
independent of X it suffices to choose Λ so that W and X are uncorrelated,
i.e.
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0 = Cov (Wj , Xi) = Cov

(
Yj −

∑
k

ΛjkXk, Xi

)
= E [YjXi]−

∑
k

ΛjkE (XkXi)

or in matrix notation, we want to choose Λ so that

E
[
Y Xtr

]
= ΛE

[
XXtr

]
. (21.9)

In the case Q := E [XXtr] is non-degenerate, we see that Λ := E [Y Xtr]Q−1

is the desired solution. In fact this works for general Q where Q−1 is defined
in Example 21.9. To see this is correct, recall

v ·Qv = v · E
[
XXtrv

]
= E

[
(v ·X)2

]
from which it follows that

Nul (Q) =
{
v ∈ Rk : v ·X = 0

}
.

Hence it follows that

E
[
Y Xtr

]
v = ΛE

[
XXtr

]
v for all v ∈ Nul (Q)

no matter how Λ is chosen. On the other hand if v ∈ Ran (Q) = Nul (Q)⊥ ,

ΛE
[
XXtr

]
v = E

[
Y Xtr

]
Q−1Qv = E

[
Y Xtr

]
v

as desired.
To prove Eq. (21.8) let B := E [Y Xtr] so that

W := Y −BQ−1X.

We then have

E
[
WW tr

]
= E

[(
Y −BQ−1X

) (
Y −BQ−1X

)tr]
= E

[(
Y −BQ−1X

) (
Y tr −XtrQ−1Btr

)]
= E

[
Y Y tr − Y XtrQ−1Btr −BQ−1XY tr +BQ−1XXtrQ−1Btr

]
= E

[
Y Y tr

]
−BQ−1Btr −BQ−1Btr +BQ−1QQ−1Btr

= E
[
Y Y tr

]
−BQ−1Btr

= E
[
Y Y tr

]
− E

[
Y Xtr

]
Q−1E

[
XY tr

]
.

Corollary 21.16. Suppose that Z = (X,Y )tr is a mean zero Gaussian ran-
dom vector with X ∈ Rk and Y ∈ Rl,
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A := E
[
Y Xtr

]
Q−1,

QW := E
[
Y Y tr

]
− E

[
Y Xtr

]
Q−1E

[
XY tr

]
,

and suppose W d= N (QW , 0) . If f : Rk × Rl → R is a bounded measurable
function, then

E [f (X,Y ) |X] = E [f (x,Ax+W )] |x=X .

As an important special case, if x ∈ Rk and y ∈ Rl, then

E
[
ei(x·X+y·Y )|X

]
= ei(x·X+y·AX)e−

1
2 Var(y·W ) = ei(x·X+y·AX)e−

1
2 QW y·y.

(21.10)

Proof. Using the notation in Theorem 21.15,

E [f (X,Y ) |X] = E [f (X,AX +W ) |X]

where W d= N (QW , 0) and W is independent of X. The result now follows
by an application of Exercise 18.4. Let us now specialize to the case where
f (X,Y ) = ei(x·X+y·Y ) in which case

E
[
ei(x·X+y·Y )|X

]
= E

[
ei(x·x′+y·(Ax′+W))|X

]
|x′=X = ei(x·X+y·AX)E

[
eiy·W ]

= ei(x·X+y·AX)e−
1
2 Var(y·W ) = ei(x·X+y·AX)e−

1
2 QW y·y.

Exercise 21.1. Suppose now that (X,Y, Z)tr is a mean zero Gaussian random
vector with X ∈ Rk, Y ∈ Rl, and Z ∈ Rm. Show for all y ∈ Rl and z ∈ Rm

that

E [exp (i (y · Y + z · Z)) |X]
= exp (−Cov (y ·W1, z ·W2)) · E [exp (iy · Y ) |X] · E [exp (iz · Z) |X] .

In performing these computations please use the following definitions,

Q := QX := E
[
XXtr

]
,

A := E
[[
Y
Z

]
Xtr

]
Q−1 =

[
E [Y Xtr]Q−1

E [ZXtr]Q−1

]
=:
[
A1

A2

]
,

and

W :=
[
W1

W2

]
=
[
Y
Z

]
−AX =

[
Y −A1X
Z −A2X

]
.

Definition 21.17 (Conditional Independence). Let (Ω,B, P ) be a proba-
bility space and Bi ⊂ B be a sub-sigma algebra of B for i = 1, 2, 3. We say that

B1 is independent of B3 conditioned on B2 (written B1

B2

⊥⊥ B3) provided,
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P (A ∩B|B2) = P (A|B2) · P (B|B2) a.s.

for all A ∈ B1 and B ∈ B3. This can be equivalently stated as

E (f · g|B2) = E (f |B2) · E (g|B2) a.s.

for all f ∈ (B1)b and g ∈ (B3)b , where Bb denotes the bounded B – mea-
surable functions. If X,Y, Z are measurable functions on (Ω,B) , we say

that X is independent of Z conditioned on Y (written as X
Y

⊥⊥ Z) provided

σ (X)
σ(Y )

⊥⊥ σ (Z) .

Exercise 21.2. Suppose Mi ⊂ (Bi)b for i = 1 and i = 3 are multiplicative

systems such that Bi = σ (Mi) . Show B1

B2

⊥⊥ B3 iff

E (f · g|B2) = E (f |B2) · E (g|B2) a.s. ∀ f ∈ M1 and g ∈ M3. (21.11)

Hint: Do this by two applications of the functional form of the multiplica-
tive systems theorem, see Theorems 9.3 and 9.14 of Chapter 9. For the first
application, fix an f ∈ M1 and let

H := {g ∈ (B3)b : E (f · g|B2) = E (f |B2) · E (g|B2) a.s.} .

Exercise 21.3. Keeping the same notation as in Exercise 21.1, show Y
X

⊥⊥ Z
iff

E
[
Y Ztr

]
= E

[
Y Xtr

]
Q−1E

[
XZtr

]
.

where
Q = QX := E

[
XXtr

]
.

Definition 21.18. Let T be a set. A Gaussian random field indexed by T is
a collection of random variables, {Xt}t∈T on some probability space (Ω,B, P )
such that for any finite subset, Λ ⊂f T, {Xt : t ∈ Λ} is a Gaussian random
vector.

Associated to a Gaussian random field, {Xt}t∈T , are the two functions,

c : T → R and Q : T × T → R

defined by c (t) := EXt and Q (s, t) := Cov (Xs, Xt) . By the previous results,
the functions (Q, c) uniquely determine the finite dimensional distributions
{Xt : t ∈ T} , i.e. the joint distribution of the random variables, {Xt : t ∈ Λ} ,
for all Λ ⊂f T.

Definition 21.19. Suppose T is a set and {Xt : t ∈ T} is a random field. For
any Λ ⊂ T, let BΛ := σ (Xt : t ∈ Λ) .

Exercise 21.4. Suppose T = [0,∞) and {Xt : t ∈ T} is a mean zero Gaussian

random field (process). Show that B[0,σ]

Xσ

⊥⊥ B[σ,∞) for all 0 ≤ σ <∞ iff

Q (s, σ)Q (σ, t) = Q (σ, σ)Q (s, t) ∀ 0 ≤ s ≤ σ ≤ t <∞. (21.12)
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Kolmolgorov’s Theorems

Theorem 22.1 (Inner-Outer Regularity). Suppose µ is a probability mea-
sure on

(
RN ,BRN

)
, then for all B ∈ BRN we have

µ (B) = inf {µ (V ) : B ⊂ V and V is open} (22.1)

and
µ (B) = sup {µ (K) : K ⊂ B with K compact} . (22.2)

Proof. In this proof, C, and Ci will always denote a closed subset of RN

and V, Vi will always be open subsets of RN . Let F be the collection of sets,
A ∈ B, such that for all ε > 0 there exists an open set V and a closed set,
C, such that C ⊂ A ⊂ V and µ (V \ C) < ε. The key point of the proof is to
show F = B for this certainly implies Equation (22.1) and also that

µ (B) = sup {µ (C) : C ⊂ B with C closed} . (22.3)

Moreover, by MCT, we know that if C is closed and Kn := C ∩{
x ∈ RN : |x| ≤ n

}
, then µ (Kn) ↑ µ (C) . This observation along with Eq.

(22.3) shows Eq. (22.2) is valid as well.
To prove F = B, it suffices to show F is a σ – algebra which contains all

closed subsets of RN . To the prove the latter assertion, given a closed subset,
C ⊂ RN , and ε > 0, let

Cε := ∪x∈CB (x, ε)

where B (x, ε) :=
{
y ∈ RN : |y − x| < ε

}
. Then Cε is an open set and Cε ↓ C

as ε ↓ 0. (You prove.) Hence by the DCT, we know that µ (Cε \ C) ↓ 0 form
which it follows that C ∈ F .

We will now show that F is an algebra. Clearly F contains the empty set
and if A ∈ F with C ⊂ A ⊂ V and µ (V \ C) < ε, then V c ⊂ Ac ⊂ Cc with
µ (Cc \ V c) = µ (V \ C) < ε. This shows Ac ∈ F . Similarly if Ai ∈ F for
i = 1, 2 and Ci ⊂ Ai ⊂ Vi with µ (Vi \ Ci) < ε, then

C := C1 ∪ C2 ⊂ A1 ∪A2 ⊂ V1 ∪ V2 =: V

and

µ (V \ C) ≤ µ (V1 \ C) + µ (V2 \ C)
≤ µ (V1 \ C1) + µ (V2 \ C2) < 2ε.
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This implies that A1 ∪A2 ∈ F and we have shown F is an algebra.
We now show that F is a σ – algebra. To do this it suffices to show

A :=
∑∞

n=1An ∈ F if An ∈ F with An∩Am = ∅ form 6= n. Let Cn ⊂ An ⊂ Vn

with µ (Vn \ Cn) < ε2−n for all n and let CN := ∪n≤NCn and V := ∪∞n=1Vn.
Then CN ⊂ A ⊂ V and

µ
(
V \ CN

)
≤
∞∑

n=0

µ
(
Vn \ CN

)
≤

N∑
n=0

µ (Vn \ Cn) +
∞∑

n=N+1

µ (Vn)

≤
N∑

n=0

ε2−n +
∞∑

n=N+1

[
µ (An) + ε2−n

]
= ε+

∞∑
n=N+1

µ (An) .

The last term is less that 2ε for N sufficiently large because
∑∞

n=1 µ (An) =
µ (A) <∞.

Notation 22.2 Let I := [0, 1] , Q = IN, πj : Q → I be the projec-
tion map, πj (x) = xj (where x = (x1, x2, . . . , xj , . . . ) for all j ∈ N, and
BQ := σ (πj : j ∈ N) be the product σ – algebra on Q. Let us further say that
a sequence {x (m)}∞m=1 ⊂ Q, where x (m) = (x1 (m) , x2 (m) , . . . ) , converges
to x ∈ Q iff limm→∞ xj (m) = xj for all j ∈ N. (This is just pointwise con-
vergence.)

Lemma 22.3 (Baby Tychonoff’s Theorem). The infinite dimensional
cube, Q, is compact, i.e. every sequence {x (m)}∞m=1 ⊂ Q has a convergent
subsequence,{x (mk)}∞k=1 .

Proof. Since I is compact, it follows that for each j ∈ N, {xj (m)}∞m=1 has
a convergent subsequence. It now follow by Cantor’s diagonalization method,
that there is a subsequence, {mk}∞k=1 , of N such that limk→∞ xj (mk) ∈ I
exists for all j ∈ N.

Corollary 22.4 (Finite Intersection Property). Suppose that Km ⊂ Q
are sets which are, (i) closed under taking sequential limits1, and (ii) have
the finite intersection property, (i.e. ∩n

m=1Km 6= ∅ for all m ∈ N), then
∩∞m=1Km 6= ∅.

Proof. By assumption, for each m ∈ N, there exists x (m) ∈ ∩n
m=1Km.

Hence by Lemma 22.3 there exists a subsequence, x (mk) , such that x :=
limk→∞ x (mk) exists in Q. Since x (mk) ∈ ∩n

m=1Km for all k large, and each
Km is closed under sequential limits, it follows that x ∈ Km for all m. Thus
we have shown, x ∈ ∩∞m=1Km and hence ∩∞m=1Km 6= ∅.
1 For example, if Km = K′

m ×Q with K′
m being a closed subset of Im, then Km is

closed under sequential limits.
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22.1 Kolmogorov’s Extension Theorems

Theorem 22.5 (Kolmogorov’s Extension Theorem). Let I := [0, 1] .
For each n ∈ N, let µn be a probability measure on (In,BIn) such that
µn+1 (A× I) = µn (A) . Then there exists a unique measure, P on (Q,BQ)
such that

P (A×Q) = µn (A) (22.4)

for all A ∈ BIn and n ∈ N.

Proof. Let A := ∪Bn where Bn := {A×Q : A ∈ BIn} = σ (π1, . . . , πn) ,
where πi (x) = xi if x = (x1, x2, . . . ) ∈ Q. Then define P on A by Eq.
(22.4) which is easily seen (Exercise 22.1) to be a well defined finitely additive
measure onA. So to finish the proof it suffices to show ifBn ∈ A is a decreasing
sequence such that

inf
n
P (Bn) = lim

n→∞
P (Bn) = ε > 0,

then B := ∩Bn 6= ∅.
To simplify notation, we may reduce to the case where Bn ∈ Bn for all

n. To see this is permissible, Let us choose 1 ≤ n1 < n2 < n3 < . . . . such
that Bk ∈ Bnk

for all k. (This is possible since Bn is increasing in n.) We now

define a new decreasing sequence of sets,
{
B̃k

}∞
k=1

as follows,

(
B̃1, B̃2, . . .

)
=

n1−1 times︷ ︸︸ ︷
Q, . . . , Q,

n2−n1 times︷ ︸︸ ︷
B1, . . . , B1 ,

n3−n2 times︷ ︸︸ ︷
B2, . . . , B2 ,

n4−n3 times︷ ︸︸ ︷
B3, . . . , B3, . . .

 .

We then have B̃n ∈ Bn for all n, limn→∞ P
(
B̃n

)
= ε > 0, and B = ∩∞n=1B̃n.

Hence we may replace Bn by B̃n if necessary so as to have Bn ∈ Bn for all n.
Since Bn ∈ Bn, there exists B′n ∈ BIn such that Bn = B′n × Q for all n.

Using the regularity Theorem 22.1, there are compact sets, K ′n ⊂ B′n ⊂ In,
such that µn (B′n \K ′n) ≤ ε2−n−1 for all n ∈ N. Let Kn := K ′n × Q, then
P (Bn \Kn) ≤ ε2−n−1 for all n. Moreover,

P (Bn \ [∩n
m=1Km]) = P (∪n

m=1 [Bn \Km]) ≤
n∑

m=1

P (Bn \Km)

≤
n∑

m=1

P (Bm \Km) ≤
n∑

m=1

ε2−m−1 ≤ ε/2.

So, for all n ∈ N,

P (∩n
m=1Km) = P (Bn)− P (Bn \ [∩n

m=1Km]) ≥ ε− ε/2 = ε/2,

and in particular, ∩n
m=1Km 6= ∅. An application of Corollary 22.4 now implies,

∅ 6= ∩nKn ⊂ ∩nBn.
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Exercise 22.1. Show that Eq. (22.4) defines a well defined finitely additive
measure on A := ∪Bn.

The next result is an easy corollary of Theorem 22.5.

Theorem 22.6. Suppose {(Xn,Mn)}n∈N are standard Borel spaces, X :=∏
n∈N

Xn, πn : X → Xn be the nth – projection map, Bn := σ (πk : k ≤ n) ,

B = σ(πn : n ∈ N), and Tn := Xn+1 ×Xn+2 × . . . . Further suppose that for
each n ∈ N we are given a probability measure, µn on M1 ⊗ · · · ⊗Mn such
that

µn+1 (A×Xn+1) = µn (A) for all n ∈ N and A ∈M1 ⊗ · · · ⊗Mn.

Then there exists a unique probability measure, P, on (X,B) such that
P (A× Tn) = µn (A) for all A ∈M1 ⊗ · · · ⊗Mn.

Proof. Since each (Xn,Mn) is measure theoretic isomorphic to a Borel
subset of I, we may assume that Xn ∈ BI and Mn = (BI)Xn

for all n. Given
A ∈ BIn , let µ̄n (A) := µn (A ∩ [X1 × · · · ×Xn]) – a probability measure on
BIn . Furthermore,

µ̄n+1 (A× I) = µn+1 ([A× I] ∩ [X1 × · · · ×Xn+1])
= µn+1 ((A ∩ [X1 × · · · ×Xn])×Xn+1)
= µn ((A ∩ [X1 × · · · ×Xn])) = µ̄n (A) .

Hence by Theorem 22.5, there is a unique probability measure, P̄ , on IN such
that

P̄
(
A× IN) = µ̄n (A) for all n ∈ N and A ∈ BIn .

We will now check that P := P̄ |⊗∞n=1Mn
is the desired measure. First off

we have

P̄ (X) = lim
n→∞

P̄
(
X1 × · · · ×Xn × IN) = lim

n→∞
µ̄n (X1 × · · · ×Xn)

= lim
n→∞

µn (X1 × · · · ×Xn) = 1.

Secondly, if A ∈M1 ⊗ · · · ⊗Mn, we have

P (A× Tn) = P̄ (A× Tn) = P̄
((
A× IN) ∩X)

= P̄
(
A× IN) = µ̄n (A) = µn (A) .
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22.1.1 A little Markov Chain Theory

Lemma 22.7. Suppose that (X,M) , (Y,F) , and (Z,B) are measurable
spaces and Q : X × F → [0, 1] and R : Y × B → [0, 1] are probability kernels.
Then for every bounded measurable function, F : (Y × Z,F ⊗ B) → (R,BR) ,
the map

y →
∫

Z

R (y; dz)F (y, z)

is measurable. Moreover, if we define P (x;A) for A ∈ F ⊗ B and x ∈ X by

P (x,A) =
∫

Y

Q (x; dy)
∫

Z

R (y; dz) 1A (y, z) ,

then P : X ×F ⊗ B → [0, 1] is a probability kernel such that

P (x, F ) =
∫

Y

Q (x; dy)
∫

Z

R (y; dz)F (y, z)

for all bounded measurable functions, F : (Y × Z,F ⊗ B) → (R,BR) . We will
denote the kernel P by QR and write

(QR) (x; dy, dz) = Q (x; dy)R (y; dz) .

Proof. A routine exercise in using the multiplicative systems theorem.

Example 22.8. Let (S,S) be a standard Borel space, Ω := SN0 , for all n ∈ N0,
let

Xn (ω) = Xn (ω0, ω1, . . . , ωn, . . . ) = ωn

and Bn := σ (X0, . . . , Xn) . Further let, B := B∞ := σ (Xn : n ∈ N0) and
suppose qn : S × S → [0, 1] is a probability kernel for each n ∈ N0. Then to
each probability measure, ν, on (S,S) there exists (by Theorem 22.5) a unique
probability measure, Pν , on

(
Ω := SN0 ,B

)
satisfying

EPν
[f (X0, . . . , Xn)]

=
∫

Sn+1
f (x0, . . . , xn) dν (x0) q1 (x0, dx1) q2 (x1, dx2) . . . qn (xn−1, dxn) .

which is supposed to hold for all n ∈ N and all bounded measurable functions,
f : Sn+1 → R. That is the finite dimensional distributions of Pν are the
measure,

dµn (x0, . . . , xn) := dν (x0) q1 (x0, dx1) q2 (x1, dx2) . . . qn (xn−1, dxn) , (22.5)

i.e. µn = νq1q2 . . . qn.
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Notation 22.9 When x ∈ S and ν := δx we abbreviated, Pδx
simply by Px.

So for x ∈ X,

EPx
[f (X0, . . . , Xn)]

=
∫

Sn

f (x, x1, . . . , xn) q1 (x, dx1) q2 (x1, dx2) . . . qn (xn−1, dxn) .

Exercise 22.2 (Markov Property I). Keeping then notation in Example
22.8 and letting Eν denote the expectation relative to Pν . Show {Xn}∞n=0 has
the Markov property, i.e. if f : S → R is a bounded measurable function, then

Eν [f (Xn+1) |Bn] = qn+1 (Xn, f) = Eν [f (Xn+1) |Xn] Pν – a.s.,

where
qn+1 (x, f) :=

∫
S

f (y) qn+1 (x, dy) .

In the next exercise, we will continue the notation of Example 22.8 but we
will further assume that there is a fixed probability kernel, q : S × S → [0, 1]
such that qn = q for all n. This is the so called time homogeneous case.
Let us also now define, for all n ∈ N0, the shift operator, θn : Ω → Ω, by

θn (ω0, ω1, . . . , ωn, ωn+1, . . . ) = (ωn, ωn+1, . . . ) .

Since
Xk (θn (ω)) = [θn (ω)]k = ωk+n = Xk+n (ω) ,

it follows that Xk ◦ θn = Xn+k.

Exercise 22.3 (Markov Property II). For each bounded measurable func-
tion, F : Ω → R, show

Eν [F ◦ θn|Bn] = [ExF ] |x=Xn
=: EXn

F a.s. (22.6)

Hint: First prove Eq. (22.6) when F = f (X0, . . . , Xm) for some bounded
measurable function, f : Sm+1 → R.

Exercise 22.4 (The Strong Markov Property). Continue the notation
and assumptions in Exercise 22.3. Suppose τ : Ω → [0,∞] is a stopping time
as in Definition 19.20, Bτ is the stopped σ – algebra as in 19.26, and F : Ω → R
is a bounded measurable function. Show

Eν [F ◦ θτ |Bτ ] =: EXτ
F, Pν a.s. on {τ <∞} . (22.7)

More precisely you are to show

Eν [F ◦ θτ |Bτ ] 1τ<∞ =: 1τ<∞ · EXτF , Pν a.s.

Hint: Use Lemma 19.29.
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22.1.2 Kolmogorov’s extension theorem in continuous time.

Theorem 22.6 also extends easily to the case where N is replaced by an arbi-
trary index set, T. Let us set up the notation for this theorem. Let T be an
arbitrary index set, {(Xt,Mt)}t∈T be a collection of standard Borel spaces,
X =

∏
t∈T Xt,M := ⊗t∈TMt, and for Λ ⊂ T let(

XΛ :=
∏
t∈Λ

Xt,MΛ := ⊗t∈ΛMt

)

and πΛ : X → XΛ be the projection map, πΛ (x) := x|Λ. If Λ ⊂ Λ′ ⊂ T, also
let πΛ,Λ′ : XΛ′ → XΛ be the projection map, πΛ,Λ′ (x) := x|Λ for all x ∈ XΛ′ .

Theorem 22.10 (Kolmogorov). For each Λ ⊂f T (i.e. Λ ⊂ T and
# (Λ) < ∞), let µΛ be a probability measure on (XΛ,MΛ) . We further sup-
pose {µΛ}Λ⊂f T satisfy the following compatibility relations;

µΛ′ ◦ π−1
Λ,Λ′ = µΛ for all Λ ⊂ Λ′ ⊂f T. (22.8)

Then there exists a unique probability measure, P, on (X,M) such that P ◦
π−1

Λ = µΛ for all Λ ⊂f T.

Proof. (For slight variation on the proof of this theorem given here, see
Exercise 22.6.) Let

A := ∪Λ⊂f Tπ
−1
Λ (MΛ)

and for A = π−1
Λ (A′) ∈ A, let P (A) := µΛ (A′) . The compatibility conditions

in Eq. (22.8) imply P is a well defined finitely additive measure on the algebra,
A – Exercise 22.5. We now complete the proof by showing P is continuous on
A.

To this end, suppose An := π−1
Λn

(A′n) ∈ A with An ↓ ∅ as n→∞. Let Λ :=
∪∞n=1Λn – a countable subset of T. Owing to Theorem 22.6, there is a unique
probability measure, PΛ, on (XΛ,MΛ) such that PΛ

(
π−1

Γ (A)
)

= µΓ (A) for
all Γ ⊂f Λ and A ∈MΓ . Hence if we let Ãn := π−1

Λ,Λn
(An) , we then have

P (An) = µΛn (A′n) = PΛ

(
Ãn

)
with Ãn ↓ ∅ as n→∞. Since PΛ is a measure, we may conclude

lim
n→∞

P (An) = lim
n→∞

PΛ

(
Ãn

)
= 0.

Exercise 22.5. Let us write Λ ⊂c T to mean Λ ⊂ T and Λ is at most count-
able. Show

M = ∪Λ⊂cTπ
−1
Λ (MΛ) . (22.9)

Hint: Verify Eq. (22.9) by showing M0 := ∪Λ⊂cTπ
−1
Λ (MΛ) is a σ – algebra.
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Exercise 22.6. For each Λ ⊂ T, let M′
Λ := π−1

Λ (MΛ) = σ (πi : i ∈ Λ) ⊂M.
Show;

1. if U, V ⊂ T then M′
U ∩M′

V = M′
U∩V .

2. By Theorem 22.6, if U, V ⊂c T, there exists unique probability measures,
PU and PV on M′

U and M′
V respectively such that PU ◦ π−1

Λ = µΛ for all
Λ ⊂f U and PV ◦π−1

Λ = µΛ for all Λ ⊂f V. Show PU = PV on M′
U ∩M′

V .
Hence for any A ∈M we may define P (A) := PU (A) provided A ∈M′

U .
3. Show P defined in the previous item is a countably additive measure on
M.

Corollary 22.11. Suppose T is a set and c : T → R and Q : T × T → R
are given functions such that Q (s, t) = Q (t, s) for all s, t ∈ T and for each
Λ ⊂f T ∑

s,t∈Λ

Q (s, t)λ (s)λ (t) ≥ 0 for all λ : Λ→ R.

Then there exists a probability space, (Ω,B, P ) , and random variables, Xt :
Ω → R for each t ∈ T such that {Xt}t∈T is a Gaussian random process with

E [Xs] = c (s) and Cov (Xs, Xt) = Q (s, t) (22.10)

for all s, t ∈ T.

Proof. Since we will construct (Ω,B, P ) by Kolmogorov’s theorem, let
Ω := RT , B = BRT , and Xt (ω) = ωt for all t ∈ T and ω ∈ Ω. Given Λ ⊂f T,
let µΛ be the unique Gaussian measure on

(
RΛ,BΛ := BRΛ

)
such that∫

RΛ

ei
P

t∈Λ λ(t)x(t)dµΛ (x)

= exp

−1
2

∑
s,t∈Λ

Q (s, t)λ (s)λ (t) + i
∑
s∈Λ

c (s)λ (s)

 .

The main point now is to show
{(

RΛ,BΛ, µΛ

)}
Λ⊂f T

is a consistent family of

measures. For this, suppose Λ ⊂ Γ ⊂f T and π : RΓ → RΛ is the projection
map, π (x) = x|Λ. For any λ ∈ RΛ, let λ̃ ∈ RΓ be defined so that λ̃ = λ on Λ
and λ̃ = 0 on Γ \ Λ. We then have,



22.2 Kolmogorov’s Continuity Criterion 465∫
RΛ

ei
P

t∈Λ λ(t)x(t)d
(
µΓ ◦ π−1

)
(x)

=
∫

RΓ

ei
P

t∈Λ λ(t)π(x)(t)dµΓ (x)

=
∫

RΓ

ei
P

t∈Γ λ̃(t)x(t)dµΓ (x)

= exp

−1
2

∑
s,t∈Γ

Q (s, t) λ̃ (s) λ̃ (t) + i
∑
s∈Γ

c (s) λ̃ (s)


= exp

−1
2

∑
s,t∈Λ

Q (s, t)λ (s)λ (t) + i
∑
s∈Λ

c (s)λ (s)


=
∫

RΛ

ei
P

t∈Λ λ(t)x(t)dµΛ (x) .

Since this is valid for all λ ∈ RΛ, it follows that µΓ ◦ π−1 = µΛ as desired.
Hence by Kolmogorov’s theorem, there exists a unique probability measure,
P on (Ω,B) such that∫

Ω

f (ω|Λ) dP (ω) =
∫

RΛ

f (x) dµΛ (x)

for all Λ ⊂f T and all bounded measurable functions, f : RΛ → R. In partic-
ular, it follows that

E
[
ei
P

t∈Λ λ(t)Xt

]
=
∫

Ω

ei
P

t∈Λ λ(t)ω(t)dP (ω)

= exp

−1
2

∑
s,t∈Λ

Q (s, t)λ (s)λ (t) + i
∑
s∈Λ

c (s)λ (s)


for all λ ∈ RΛ. From this it follows that {Xt}t∈T is a Gaussian random field
satisfying Eq. (22.10).

The path space, RT , is very large when T is uncountable. In many cases,
this is problematic and we would like to put the measure P on some smaller
space, for example continuous functions when T is a topological space. This
is problematic since the set of continuous functions in RT need not be a
measurable set. The next section is one way to address this issue.

22.2 Kolmogorov’s Continuity Criterion

For this section, let T ∈ N and D = [0, T ] ⊂ R,

D =
{
i

2n
: i, n ∈ N0

}
– the Dyadic Rationals in [0,∞),
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and (E, ρ) be a complete metric space. Suppose γ ∈ (0, 1) and x : D → E is
a γ – Hölder continuous function, i.e. there exists K <∞ such that

ρ(x(t), x(s)) ≤ K |t− s|γ for all s, t ∈ D.

Then for any α ∈ (0, γ) and n ≥ ν := n ≥ (log2K) / (γ − α) we have,

ρ

(
x

(
i+ 1
2n

)
, x

(
i

2n

))
≤ K2−nγ = K2−n(γ−α)2−nα ≤ 2−nα

provided i
2n < T.

Lemma 22.12. Suppose that x : D ∩ D → E is a given function. Assume
there exists ν ∈ N such that

ρ

(
x

(
i+ 1
2n

)
, x

(
i

2n

))
≤ 2−nα for all n ≥ ν (22.11)

provided i
2n < T. Then,

ρ (x (s) , x (t)) ≤ C |t− s|α ∀ s, t ∈ D ∩ D with |t− s| ≤ 2−ν , (22.12)

where
C = C(α) =

1 + 2α

1− 2−α
.

In particular x uniquely extends to a continuous function on D which is α–
Hölder continuous. Moreover, the extension, x, satisfies the Hölder estimate,

ρ (x (s) , x (t)) ≤ C1 (α, T ) 2ν(1−α) |t− s|α for all s, t ∈ D (22.13)

where
C1 (α, T ) := 2C (α)T 1−α. (22.14)

Proof. Let n ≥ ν and s ∈ D ∩D and express s as,

s =
i

2n
+
∞∑

k=1

ak

2n+k

where i = in (s) ∈ N0 is chosen so that i2−n ≤ s < (i+ 1) 2−n, and ak = 0 or
1 with ak = 0 for almost all k. Set

sm =
i

2n
+

m∑
k=1

ak

2n+k

and notice that s0 = i
2n and sm = s for all m sufficiently large. Therefore

with m0 sufficiently large, we have
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ρ

(
x(s), x

(
i

2n

))
= ρ (x(sm0), x(s0)) ≤

m0−1∑
k=0

ρ (x (sk+1) , x (sk)) .

Since sk+1 − sk = ak+1
2n+k+1 ≤ 2−ν , it follows from Eq. (22.11) that

ρ

(
x(s), x

(
i

2n

))
≤
∞∑

k=0

(
1

2n+1+k

)α

= 2−α(n+1) 1
1− 2−α

=
2−α

1− 2−α
2−αn.

If 0 < t − s ≤ 2−ν , let n ≥ ν be chosen so that 2−(n+1) < t − s ≤ 2−n.
For this choice of n, if i = in (s) then j = in (t) ∈ {i, i+ 1} , see Figure 22.1.
Therefore

Fig. 22.1. The geometry of s and t with 2−(n+1) < t− s ≤ 2−n.

ρ (x (s) , x (t)) ≤ ρ(x(s), x(i2−n)) + ρ(x(i2−n), x(j2−n)) + ρ(x(j2−n), x(t))

≤ 2−α

1− 2−α
2−αn + 2−nα +

2−α

1− 2−α
2−αn = 2−nα 1 + 2−α

1− 2−α
.

Since
2−nα = 2α · 2−(n+1)α < 2α (t− s)α

,

we may conclude that

ρ (x (s) , x (t)) ≤ (t− s)α 1 + 2−α

1− 2−α
2α = C (α) |t− s|α .

From this estimate it follows that x has an α–Hölder continuous extension to
D. We will continue to denote this extension by x.

If s, t ∈ D ∩ D with t− s > 2−ν , choose k ∈ N such that t− s = k2−ν + δ
with 0 ≤ δ < 2−ν . It then follows that

ρ (x (s) , x (t)) = ρ
(
x (s) , x

(
s+ k2−ν + δ

))
≤

k∑
j=1

ρ
(
x
(
s+ (j − 1) 2−ν

)
, x
(
s+ j2−ν

))
+ ρ

(
x
(
s+ k2−ν

)
, x
(
s+ k2−ν + δ

))
≤ C (α)

(
k2−να + δα

)
≤ 2C (α) k2−να.
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Since
k ≤ 2ν (t− s) ≤ 2ν (t− s)α

T 1−α,

we may conclude

ρ (x (s) , x (t)) ≤ 2C (α) 2−να2νT 1−α |t− s|α = C1 (α, T ) 2ν(1−α) |t− s|α

where C1 (α, T ) is given as in Eq. (22.14). As x is continuous and D ∩ D is
dense in D, the above estimate extends to all s, t ∈ D.

Definition 22.13 (Versions). Suppose, Xt : Ω → E and X̃t : Ω → E are
two processes defined on D. We say that X̃ is a version or a modification
of X provided, for each t ∈ D, Xt = X̃t a.e.. (Notice that the null set may
depend on the parameter t in the uncountable set, D.)

Exercise 22.7. Suppose {Yt}t≥0 is a version of a process, {Xt}t≥0 . Further
suppose that t → Yt (ω) and t → Xt (ω) are both right continuous almost
surely. Show

P (Y· 6= X·) = 0,

i.e. if

E = {ω ∈ Ω : Yt (ω) 6= Xt (ω) for some t ∈ [0,∞)}
= ∪t∈[0,∞) {ω ∈ Ω : Yt (ω) 6= Xt (ω)}

then P (E) = 0.

Theorem 22.14 (Kolmogorov’s Continuity Criteria). Suppose that Xt :
Ω → E is a process for t ∈ D. Assume there exists positive constants, ε, β,
and C, such that

E[ρ(Xt, Xs)ε] ≤ C |t− s|1+β (22.15)

for all s, t ∈ D. Then for any α ∈ (0, β/ε) there is a modification, X̃, of X
which is α–Hölder continuous. Moreover, there is a random variable Kα such
that,

ρ(X̃t, X̃s) ≤ Kα |t− s|α for all s, t ∈ D (22.16)

and EKp
α <∞ for all p < β−αε

1−α .

Proof. Using Chebyshev’s inequality,

P

(
ρ

(
X

(
i+ 1
2n

)
, X

(
i

2n

))
≥ 2−nα

)
= P

(
ρ

(
X

(
i+ 1
2n

)
, X

(
i

2n

))ε

≥ 2−nαε

)
≤ 2nαεE

[
ρ

(
X

(
i+ 1
2n

)
, X

(
i

2n

))ε]
≤ C2−n(1+β−αε). (22.17)
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Letting

An =
{

max
0≤i≤T2n−1

ρ

(
X

(
i+ 1
2n

)
, X

(
i

2n

))
≥ 2−nα

}
= ∪0≤i≤T2n−1

{
ρ

(
X

(
i+ 1
2n

)
, X

(
i

2n

))
≥ 2−nα

}
,

it follows from Eq. (22.17), that

P (An) ≤
∑

0≤i≤T2n−1

P

(
ρ

(
X

(
i+ 1
2n

)
, X

(
i

2n

))
≥ 2−nα

)
≤ T2nC2−n(1+β−αε) = CT2−n(β−αε). (22.18)

Since,
∞∑

n=0

P (An) ≤ CT
1

1− 2−(β−αε)
<∞,

it follows by the first Borel Cantelli lemma that P (An i.o.) = 0 or equivalently
put, if

Ω0 := {Ac
n a.a.} =

{
max

0≤i≤T2n−1
ρ

(
X

(
i+ 1
2n

)
, X

(
i

2n

))
< 2−nα a.a.

}
,

then P (Ω0) = 1.
For ω ∈ Ω0, let

ν (ω) = min {n : ω ∈ Ac
m for all m ≥ n} <∞.

On Ω0, we know that

max
0≤i≤T2n−1

ρ

(
X

(
i+ 1
2n

)
, X

(
i

2n

))
< 2−nα for all n ≥ ν

and hence by Lemma 22.12,

ρ(Xt, Xs) ≤ |t− s|α when |t− s| ≤ 2−ν . (22.19)

Hence on Ω0, if we define X̃t := limτ∈D∩D; τ→tXt, the resulting process, X̃t,

will be α – Hölder continuous on D. To complete the definition of X̃t, fix a
point y ∈ E and set X̃t (ω) = y for all t ∈ D and ω /∈ Ω0.

For t ∈ D and s ∈ D ∩ D, we have that

ρ(X̃t, Xt) ≤ ρ(X̃t, X̃s) + ρ(X̃s, Xs) + ρ(Xs, Xt) = ρ(X̃t, X̃s) + ρ(Xs, Xt) a.e.

By continuity, lims→t X̃s = X̃t and by Eq. (22.15) it follows that lims→tXs =
Xt in measure and hence we may conclude that ρ(X̃t, Xt) = 0 a.s., i.e.Xt = X̃t

a.e. and X̃ is a version of X.
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It is only left to prove the quantitative estimate in Eq. (22.16). Because of
Eq. (22.13) we have the following estimate:

ρ(X̃t, X̃s) ≤ Kα |t− s|α for all s, t ∈ D, (22.20)

where
Kα := 1Ω0 · C1 (α, T ) 2ν(1−α).

Since {ν > N} = ∪∞m=NAn, it follows from Eq. (22.18), that

P (ν > N) ≤
∑

m≥N

P (Am) ≤
∑

m≥N

C2−m(β−αε) ≤ C
2−N(β−αε)

1− 2−(β−αε)
. (22.21)

Using this estimate we find

EKp
α = C1 (α, T )p E

[
2ν(1−α)p

]
= C1 (α, T )p ·

∞∑
n=0

2n(1−α)pP (ν = n)

≤ C1 (α, T )p ·

(
1 +

∞∑
n=1

2n(1−α)pP (ν > n− 1))

)

≤ C1 (α, T )p ·

(
1 +

C

1− 2−(β−αε)

∞∑
n=1

2n(1−α)p2−(n−1)(β−αε)

)

which is finite provided that (1− α)p− (β − αε) < 0.
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Heuristics of Wiener Measure and the
Feynman-Kac Formula

Our next major theme is the study of “Brownian motion” or equivalently
“Wiener measure.” To motivate the definition of these objects we are going
to informally derive a probabilistic representation for solutions to the heat
equation. In the process of making this formula rigorous, we will be lead to
the notion of Brownian motion. The resulting probabilistic representation of
the solution to the heat equation will be the so called Feynman-Kac formula.
We begin with the heat equation.

23.1 The Heat Equation

Suppose that Ω ⊂ Rd is a region of space filled with a material, ρ(x) is the
density of the material at x ∈ Ω and c(x) is the heat capacity. Let u(x, t)
denote the temperature at time t ∈ [0,∞) at the spatial point x ∈ Ω. Now
suppose that B ⊂ Rd is a subregion in Ω, ∂B is the boundary of B, and EB(t)
is the heat energy contained in the volume B at time t. Then

EB(t) =
∫

B

ρ(x)c(x)u(t, x)dx.

So on one hand (writing ḟ (t) for ∂f(t)
∂t ),

ĖB(t) :=
d

dt
EB (t) =

∫
B

ρ(x)c(x)u̇(t, x)dx (23.1)

while on the other hand,

ĖB(t) =
∫

∂B

〈G(x)∇u(t, x), n(x)〉dσ(x), (23.2)

where G(x) is a n × n–positive definite matrix representing the conduction
properties of the material, n(x) is the outward pointing normal to B at x ∈
∂B, and dσ denotes surface measure on ∂B. (We are using 〈·, ·〉 to denote the

standard dot product on Rd and ∇u (x, t) =
(

∂u(x,t)
∂x1

, . . . ∂u(x,t)
∂xn

)tr

.)
In order to see that we have the sign correct in Eq. (23.2), suppose that

x ∈ ∂B and

〈G(x)∇u(t, x), n(x)〉 = 〈∇u(t, x), G(x)n(x)〉 > 0.
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Fig. 23.1. The geometry of the test region, B ⊂ Ω.

In this case temperature is increasing as one move from x in the direction of
G (x)n (x) and since 〈n (x) , G(x)n(x)〉 > 0, G (x)n (x) is outward pointing to
B. Thus if 〈G(x)∇u(t, x), n(x)〉 > 0, near x, it is hotter outside B then inside
and hence heat energy is flowing into B in a neighborhood of the ∂B near x,
see Figure 23.1.

Comparing Eqs. (23.1) to (23.2) after an application of the divergence
theorem shows that∫

B

ρ(x)c(x)u̇(t, x)dx =
∫

B

∇ · (G(·)∇u(t, ·))(x) dx. (23.3)

Since this holds for all nice volumes B ⊂ Ω, we conclude that the temperature
functions should satisfy the following partial differential equation.

ρ(x)c(x)u̇(t, x) = ∇ · (G(·)∇u(t, ·))(x) . (23.4)

or equivalently that

u̇(t, x) =
1

ρ(x)c(x)
∇ · (G(x)∇u(t, x)). (23.5)

Setting gij(x) ≡ Gij(x)/(ρ(x)c(x)) and

zj(x) ≡
n∑

i=1

∂(Gij(x)/(ρ(x)c(x)))/∂xi

the above equation may be written as:

u̇(t, x) = Lu(t, x), (23.6)
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where

(Lf)(x) =
∑
i,j

gij(x)
∂2

∂xi∂xj
f(x) +

∑
j

zj(x)
∂

∂xj
f(x). (23.7)

The operator L is a prototypical example of a second order “elliptic” differ-
ential operator. In the next section we will consider the special case of the
standard Laplacian, ∆, on Rd, i.e. zj ≡ 0 and gij = δij so that

∆ :=
n∑

i=1

∂2

(∂xi)2
. (23.8)

23.2 Solving the heat equation on Rn.

Let

f̂(k) = (Ff) (k) =
(

1
2π

)n ∫
Rd

f(x)e−ik·xdx

be the Fourier transform of f and

f∨(x) =
(
F−1f

)
(x) =

∫
Rd

f(k)eik·xdk

be the inverse Fourier transform. For f nice enough (or in the sense of tem-
pered distributions), we know that

f(x) =
∫

Rd

f̂(k)eik·xdk =
(
F−1f̂

)
(x).

Also recall that the Fourier transform and the convolution operation are re-
lated by;

f̂ ∗ g(k) =
(

1
2π

)n ∫
Rd×Rd

f(x− y)g(y)e−ik·xdx dy

=
(

1
2π

)n ∫
Rd×Rd

f(x)g(y)e−ik·(x+y)dx dy = (2π)nf̂(k)ĝ(k).

Inverting this relation gives the relation,

F−1
(
f̂ · ĝ

)
(x) =

(
1
2π

)n

(f ∗ g)(x).

The heat equation for a function u : R+×Rn → C is the partial differential
equation (

∂t −
1
2
∆x

)
u (t, x) = 0 with u(0, x) = f(x), (23.9)
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where f is a given function on Rn. By Fourier transforming Eq. (23.9) in the x
– variables only, one finds (after some integration by parts) that (23.9) implies
that (

∂t +
1
2
|k|2
)
û(t, k) = 0 with û(0, k) = f̂(k). (23.10)

Solving for û (t, k) gives

û(t, k) = e−t|k|2/2f̂(k).

Inverting the Fourier transform then shows that

u(t, x) = F−1
(
e−t|k|2/2f̂(k)

)
(x) =

(
1
2π

)n (
F−1

(
e−t|k|2/2

)
∗ f
)

(x).

(23.11)
Let

g (x) :=
(
F−1e−

t
2 |k|

2
)

(x) =
∫

Rd

e−
t
2 |k|

2
eik·xdk.

Making the change of variables, k → k/t1/2 and using a standard Gaussian
integral formula gives

g (x) =
(

1
t

)n/2 ∫
Rd

e−
1
2 |k|

2
eik·x/

√
tdk

=
(

2π
t

)n/2( 1
2π

)n/2 ∫
Rd

e−
1
2 |k|

2
eik·x/

√
tdk

=
(

2π
t

)n/2

exp

(
−1

2

∣∣∣∣ x√t
∣∣∣∣2
)

=
(

2π
t

)n/2

exp
(
− 1

2t
|x|2
)
. (23.12)

Using this result in Eq. (23.11) implies

u(t, x) =
∫

Rn

pt(x− y)f(y)dy

where

pt(x) :=
(

1
2πt

)n/2

exp
(
− 1

2t
|x|2
)
. (23.13)

This suggests the following theorem.

Theorem 23.1. Let pt (x) be the heat kernel on Rn defined in Eq. (23.13).
Then (

∂t −
1
2
∆x

)
pt(x− y) = 0 and lim

t↓0
pt(x− y) = δx(y), (23.14)

where δx is the δ – function at x in Rn. More precisely, if f is a bounded
continuous function on Rn, then
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u(t, x) =
∫

Rn

pt(x− y)f(y)dy (23.15)

is a solution to Eq. (23.9) and limt↓0 u(t, x) = f (x) uniformly for x ∈ K,
where K is any compact subset of Rn.

Proof. Direct computations show that
(
∂t − 1

2∆x

)
pt(x − y) = 0 which

coupled with a few applications of Corollary 8.38 shows
(
∂t − 1

2∆x

)
u (t, x) = 0

for t > 0.After a making the changes of variables, y → x−y and then y →
√
ty,

Eq. (23.15) may be written as

u(t, x) =
∫

Rn

pt(y)f(x− y)dy =
∫

Rn

p1(y)f(x−
√
ty)dy

and therefore,

|u (t, x)− f (x)| =
∣∣∣∣∫

Rn

p1(y)
[
f(x−

√
ty)− f (x)

]
dy

∣∣∣∣
≤
∫

Rn

p1(y)
∣∣∣f(x−

√
ty)− f (x)

∣∣∣ dy. (23.16)

For R > 0,

sup
x∈K

∫
|y|≤R

p1(y)
∣∣∣f(x−

√
ty)− f (x)

∣∣∣ dy ≤ sup
x∈K

sup
|y|≤R

∣∣∣f(x−
√
ty)− f (x)

∣∣∣→ 0

as t ↓ 0 by the uniform continuity of f on compact sets. If M =
supx∈Rn |f (x)| , then by Chebyschev’s inequality,∫

|y|>R

p1(y)
∣∣∣f(x−

√
ty)− f (x)

∣∣∣ dy ≤ 2M
∫
|y|>R

p1(y)dy ≤ C
2M
R

where C :=
∫

Rn |y| p1(y)dy. Hence we have shown,

lim sup
t↓0

sup
x∈K

|u (t, x)− f (x)| ≤ C
2M
R

→ 0 as R→∞.

This shows that limt↓0 u(t, x) = f(x) uniformly on compact subsets of Rn.

Notation 23.2 We will let
(
et∆/2f

)
(x) be defined by(

et∆/2f
)

(x) =
∫

Rn

pt(x− y)f(y)dy = (pt ∗ f) (x) .

Hence for nice enough f (for example when f is bounded and continuous),
u (t, x) :=

(
et∆/2f

)
(x) solves the heat equation in Eq. (23.9).
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Exercise 23.1 (Semigroup Property). Verify the semi-group identity for
pt;

pt+s = ps ∗ pt for all s, t > 0. (23.17)

Proposition 23.3 (Properties of et∆/2). Let t ∈ (0,∞) , then;

1. for f ∈ Lp(Rn, dx) with 1 ≤ p ≤ ∞, the function(
et∆/2f

)
(x) =

∫
Rn

f(y)
e−

1
2t |x−y|2

(2πt)n/2
dy

is smooth1 in (t, x) for t > 0 and x ∈ Rn.
2. et∆/2 acts as a contraction on Lp(Rn, dx) for all p ∈ [0,∞] and t > 0.
3. For p ∈ [0,∞), et∆/2f = pt ∗ f → f in Lp(Rn, dx) as t→ 0.

Proof. Item 1. follows by multiple applications of Corollary 8.38.
Item 2.

|(pt ∗ f)(x)| ≤
∫

Rn

|f(y)|pt(x− y)dy

and hence with the aid of Jensen’s inequality we have,

‖pt ∗ f‖p
Lp ≤

∫
Rn

∫
Rn

|f(y)|ppt(x− y)dydx = ‖f‖p
Lp

So pt is a contraction ∀t > 0.
Item 3. First, let us suppose that f ∈ Cc (Rn) . From Eq. (23.16) along

with Jensen’s inequality, we find∫
Rn

|(pt ∗ f)(x)− f (x)|p dx ≤
∫

Rn

dx

∫
Rn

p1(y)
∣∣∣f(x−

√
ty)− f (x)

∣∣∣p dy
=
∫

Rn

dy p1(y)
∫

Rn

dx
∣∣∣f(x−

√
ty)− f (x)

∣∣∣p .
(23.18)

Since

g (t, y) :=
∫

Rn

∣∣∣f(x−
√
ty)− f (x)

∣∣∣p dx ≤ 2p(p−1)−1
∫

Rn

|f (x)|p dx

and limt↓0 g (t, y) = 0, we may pass to the limit (using the DCT) in Eq. (23.18)
to find limt↓0 ‖pt ∗ f − f‖ = 0.

Now suppose g ∈ Lp (Rn) and f ∈ Cc (Rn) , then

‖pt ∗ g − g‖p ≤ ‖pt ∗ g − pt ∗ f‖p + ‖pt ∗ f − f‖p + ‖f − g‖p

≤ 2 ‖f − g‖p + ‖pt ∗ f − f‖p

1 In fact, u (t, x) is real analytic for x ∈ Rn and t > 0. One just notices that
pt(x− y) analytically continues to Re t > 0 and x ∈ Cn and then shows that it is
permissible to differentiate under the integral.
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and therefore,
lim sup

t↓0
‖pt ∗ g − g‖p ≤ 2 ‖f − g‖p .

Since this inequality is valid for all f ∈ Cc (Rn) and, by Theorem 9.8, Cc (Rn)
is dense in Lp (Rn) , we may conclude that lim supt↓0 ‖pt ∗ g − g‖p = 0.

Theorem 23.4 (Forced Heat Equation). Suppose g ∈ Cb(Rd) and f ∈
C1,2

b ([0,∞)× Rd) then

u(t, x) := pt ∗ g(x) +
∫ t

0

pt−τ ∗ f(τ, x)dτ

solves
∂u

∂t
=

1
2
4u+ f with u(0, ·) = g.

Proof. Because of Theorem 23.1, we may without loss of generality assume
g = 0 in which case

u(t, x) =
∫ t

0

pt ∗ f(t− τ, x)dτ.

Therefore

∂u

∂t
(t, x) = pt ∗ f(0, x) +

∫ t

0

pτ ∗
∂

∂t
f(t− τ, x)dτ

= pt ∗ f0(x)−
∫ t

0

pτ ∗
∂

∂τ
f(t− τ, x)dτ

and
4
2
u(t, x) =

∫ t

0

pt ∗
4
2
f(t− τ, x)dτ.

Hence we find, using integration by parts and approximate δ – function argu-
ments, that(

∂

∂t
− 4

2

)
u(t, x) = pt ∗ f0(x) +

∫ t

0

pτ ∗
(
− ∂

∂τ
− 1

2
4
)
f(t− τ, x)dτ

= pt ∗ f0(x)

+ lim
ε↓0

∫ t

ε

pτ ∗
(
− ∂

∂τ
− 1

2
4
)
f(t− τ, x)dτ

= pt ∗ f0(x)− lim
ε↓0

pτ ∗ f(t− τ, x)
∣∣t
ε

+ lim
ε↓0

∫ t

ε

(
∂

∂τ
− 1

2
4
)
pτ ∗ f(t− τ, x)dτ

= pt ∗ f0(x)− pt ∗ f0(x) + lim
ε↓0

pε ∗ f(t− ε, x)

= f(t, x).
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23.2.1 Extensions of Theorem 23.1

Proposition 23.5. Suppose f : Rd → R is a measurable function and there
exists constants c, C <∞ such that

|f(x)| ≤ Ce
c
2 |x|

2
.

Then u(t, x) := pt ∗ f(x) is smooth for (t, x) ∈ (0, c−1)×Rd and for all k ∈ N
and all multi-indices α,

Dα

(
∂

∂t

)k

u(t, x) =

(
Dα

(
∂

∂t

)k

pt

)
∗ f(x). (23.19)

In particular u satisfies the heat equation ut = ∆u/2 on (0, c−1)× Rd.

Proof. The reader may check that

Dα

(
∂

∂t

)k

pt(x) = q(t−1, x)pt(x)

where q is a polynomial in its variables. Let x0 ∈ Rd and ε > 0 be small, then
for x ∈ B(x0, ε) and any β > 0,

|x− y|2 = |x|2 − 2 |x| |y|+ |y|2 ≥ |y|2 + |x|2 −
(
β−2 |x|2 + β2 |y|2

)
≥
(
1− β2

)
|y|2 −

(
β−2 − 1

) (
|x0|2 + ε

)
.

Hence

g(y) := sup

{∣∣∣∣∣Dα

(
∂

∂t

)k

pt(x− y)f(y)

∣∣∣∣∣ : ε ≤ t ≤ c− ε & x ∈ B(x0, ε)

}

≤ sup

{∣∣∣∣∣q(t−1, x− y)
e−

1
2t |x−y|2

(2πt)n/2
Ce

c
2 |y|

2

∣∣∣∣∣ : ε ≤ t ≤ c− ε & x ∈ B(x0, ε)

}

≤ C(β, x0, ε) sup

{∣∣∣∣∣q(t−1, x− y)
e[−

1
2t (1−β2)+ c

2 ]|y|2

(2πt)n/2

∣∣∣∣∣ : ε ≤ t ≤ c− ε and
x ∈ B(x0, ε)

}
.

By choosing β close to 0, the reader should check using the above expression
that for any 0 < δ < (1/t− c) /2 there is a C̃ <∞ such that g(y) ≤ C̃e−δ|y|2 .
In particular g ∈ L1

(
Rd
)
. Hence one is justified in differentiating past the

integrals in pt ∗ f and this proves Eq. (23.19).

Lemma 23.6. There exists a polynomial qn(x) such that for any β > 0 and
δ > 0, ∫

Rd

1|y|≥δe
−β|y|2dy ≤ δnqn

(
1
βδ2

)
e−βδ2
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Proof. Making the change of variables y → δy and then passing to polar
coordinates shows∫

Rd

1|y|≥δe
−β|y|2dy = δn

∫
Rd

1|y|≥1e
−βδ2|y|2dy = σ

(
Sn−1

)
δn

∫ ∞
1

e−βδ2r2
rn−1dr.

Letting λ = βδ2 and φn(λ) :=
∫∞

r=1
e−λr2

rndr, integration by parts shows

φn(λ) =
∫ ∞

r=1

rn−1d

(
e−λr2

−2λ

)
=

1
2λ
e−λ +

1
2

∫ ∞
r=1

(n− 1)r(n−2) e
−λr2

λ
dr

=
1
2λ
e−λ +

n− 1
2λ

φn−2(λ).

Iterating this equation implies

φn(λ) =
1
2λ
e−λ +

n− 1
2λ

(
1
2λ
e−λ +

n− 3
2λ

φn−4(λ)
)

and continuing in this way shows

φn(λ) = e−λrn(λ−1) +
(n− 1)!!

2δλδ
φi(λ)

where δ is the integer part of n/2, i = 0 if n is even and i = 1 if n is odd and
rn is a polynomial. Since

φ0(λ) =
∫ ∞

r=1

e−λr2
dr ≤ φ1(λ) =

∫ ∞
r=1

re−λr2
dr =

e−λ

2λ
,

it follows that
φn(λ) ≤ e−λqn(λ−1)

for some polynomial qn.

Proposition 23.7. Suppose f ∈ C(Rd,R) such that |f(x)| ≤ Ce
c
2 |x|

2
then

pt ∗ f → f uniformly on compact subsets as t ↓ 0. In particular in view of
Proposition 23.5, u(t, x) := pt ∗ f(x) is a solution to the heat equation with
u(0, x) = f(x).

Proof. Let M > 0 be fixed and assume |x| ≤M throughout. By uniform
continuity of f on compact set, given ε > 0 there exists δ = δ(t) > 0 such
that |f(x)− f(y)| ≤ ε if |x− y| ≤ δ and |x| ≤M. Therefore, choosing a > c/2
sufficiently small,

|pt ∗ f(x)− f(x)| =
∣∣∣∣∫ pt(y) [f(x− y)− f(x)] dy

∣∣∣∣
≤
∫
pt(y) |f(x− y)− f(x)| dy

≤ ε

∫
|y|≤δ

pt(y)dy +
C

(2πt)n/2

∫
|y|≥δ

[e
c
2 |x−y|2 + e

c
2 |x|

2
]e−

1
2t |y|

2
dy

≤ ε+ C̃ (2πt)−n/2
∫
|y|≥δ

e−( 1
2t−a)|y|2dy.



480 23 Heuristics of Wiener Measure and the Feynman-Kac Formula

So by Lemma 23.6, it follows that

|pt ∗ f(x)− f(x)| ≤ ε+ C̃ (2πt)−n/2
δnqn

(
1

β
(

1
2t − a

)2
)
e−( 1

2t−a)δ2

and therefore

lim sup
t↓0

sup
|x|≤M

|pt ∗ f(x)− f(x)| ≤ ε→ 0 as ε ↓ 0.

Lemma 23.8. If q(x) is a polynomial on Rd, then∫
Rd

pt(x− y)q(y)dy =
∞∑

n=0

tn

n!
∆n

2n
q(x).

Proof. Since

f(t, x) :=
∫

Rd

pt(x− y)q(y)dy =
∫

Rd

pt(y)
∑

aαβx
αyβdy =

∑
Cα(t)xα,

f(t, x) is a polynomial in x of degree no larger than that of q. Moreover
f(t, x) solves the heat equation and f(t, x) → q(x) as t ↓ 0. Since g(t, x) :=∑∞

n=0
tn

n!
∆n

2n q(x) has the same properties of f and ∆ is a bounded operator
when acting on polynomials of a fixed degree we conclude f(t, x) = g(t, x).

Example 23.9. Suppose q(x) = x1x2 + x4
3, then

et∆/2q(x) = x1x2 + x4
3 +

t

2
∆
(
x1x2 + x4

3

)
+

t2

2! · 4
∆2
(
x1x2 + x4

3

)
= x1x2 + x4

3 +
t

2
12x2

3 +
t2

2! · 4
4!

= x1x2 + x4
3 + 6tx2

3 + 3t2.

Proposition 23.10. Suppose f ∈ C∞(Rd) and there exists a constant C <∞
such that ∑

|α|=2N+2

|Dαf(x)| ≤ CeC|x|2 ,

then

(pt ∗ f)(x) = “et∆/2f(x)” =
N∑

k=0

tk

k!
∆kf(x) +O(tN+1) as t ↓ 0

Proof. Fix x ∈ Rd and let

fN (y) :=
∑

|α|≤2N+1

1
α!
Dαf(x)yα.
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Then by Taylor’s theorem with remainder

|f(x+ y)− fN (y)| ≤ C |y|2N+2 sup
t∈[0,1]

eC|x+ty|2

≤ C |y|2N+2
e2C[|x|2+|y|2] ≤ C̃ |y|2N+2

e2C|y|2

and thus ∣∣∣∣∫
Rd

pt(y)f(x+ y)dy −
∫

Rd

pt(y)fN (y)dy
∣∣∣∣

≤ C̃

∫
Rd

pt(y) |y|2N+2
e2C|y|2dy

= C̃tN+1

∫
Rd

p1(y) |y|2N+2
e2t2C|y|2dy = O(tN+1).

Since f(x+y) and fN (y) agree to order 2N +1 for y near zero, it follows that∫
Rd

pt(y)fN (y)dy =
N∑

k=0

tk

k!
∆kfN (0) =

N∑
k=0

tk

k!
∆k

yf(x+ y)|y=0

=
N∑

k=0

tk

k!
∆kf(x)

which completes the proof.

23.3 Wiener Measure Heuristics and the Feynman-Kac
formula

Theorem 23.11 (Trotter Product Formula). Let A and B be d× d ma-

trices. Then e(A+B) = lim
n→∞

(
e

A
n e

B
n

)n

.

Proof. By the chain rule,

d

dε
|0 log(eεAeεB) = A+B.

Hence by Taylor’s theorem with remainder,

log(eεAeεB) = ε (A+B) +O
(
ε2
)

which is equivalent to

eεAeεB = eε(A+B)+O(ε2).

Taking ε = 1/n and raising the result to the nth – power gives
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(en−1Aen−1B)n =
[
en−1(A+B)+O(n−2)

]n
= eA+B+O(n−1) → e(A+B) as n→∞.

Fact 23.12 (Trotter product formula) For “nice enough” V,

eT (∆/2−V ) = strong– lim
n→∞

[e
T
2n ∆e−

T
n V ]n. (23.20)

Lemma 23.13. Let V : Rd → R be a continuous function which is bounded
from below, then((

e
T
n ∆/2e−

T
n V
)n

f
)

(x0)

=
∫

Rdn

pT
n
(x0, x1)e−

T
n V (x1) . . . pT

n
(xn−1, xn)e−

T
n V (xn)f(xn)dx1 . . . dxn

=

 1√
2π T

n

dn ∫
(Rd)n

e
− n

2T

nP
i=1
|xi−xi−1|2−T

n

nP
i=1

V (xi)
f(xn)dx1 . . . dxn. (23.21)

Notation 23.14 Given T > 0, and n ∈ N, let Wn,T denote the set of piece-
wise C1 – paths, ω : [0, T ] → Rd such that ω (0) = 0 and ω′′ (τ) = 0 if
τ /∈

{
i
nT
}n

i=0
=: Pn (T ) – see Figure 23.2. Further let dmn denote the unique

translation invariant measure on Wn,T which is well defined up to a multi-
plicative constant.

Fig. 23.2. A typical path in Wm,T .

With this notation we may rewrite Lemma 23.13 as follows.

Theorem 23.15. Let T > 0 and n ∈ N be given. For τ ∈ [0, T ] , let τ+ = i
nT

if τ ∈ ( i−1
n T, i

nT ]. Then Eq. (23.21) may be written as,
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e

T
n ∆/2e−

T
n V
)n

f
)

(x0)

=
1

Zn (T )

∫
Wn,T

e
−
R T
0

h
1
2 |ω′(τ)|2+V (x0+ω(τ+))

i
dτ
f (x0 + ω (T )) dmn (ω)

where
Zn (T ) :=

∫
Wn,T

e−
1
2

R T
0 |ω′(τ)|2dτdmn (ω) .

Moreover, by Trotter’s product formula,

eT (∆/2−V )f (x0)

= lim
n→∞

1
Zn (T )

∫
Wn,T

e
−
R T
0

h
1
2 |ω′(τ)|2+V (x0+ω(τ+))

i
dτ
f (x0 + ω (T )) dmn (ω) .

(23.22)

Following Feynman, at an informal level (see Figure 23.3), Wn,T → WT

as n→∞, where

WT :=
{
ω ∈ C

(
[0, T ] → Rd

)
: ω (0) = 0

}
.

Moreover, formally passing to the limit in Eq. (23.22) leads us to the following

Fig. 23.3. A typical path in WT may be approximated better and better by paths
in Wm,T as m →∞.

heuristic expression for
(
eT (∆/2−V )f

)
(x0) ;
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eT (∆/2−V )f

)
(x0) = “

1
Z (T )

∫
WT

e
−
R T
0

h
1
2 |ω′(τ)|2+V (x0+ω(τ))

i
dτ
f (x0 + ω (T ))Dω”

(23.23)
where Dω is the non-existent Lebesgue measure on WT , and Z (T ) is the
“normalization” constant (or partition function) given by

Z (T ) = “
∫

WT

e−
1
2

R T
0 |ω′(τ)|2dτDω.”

This expression may also be written in the Feynman – Kac form as

eT (∆/2−V )f (x0) =
∫

WT

e−
R T
0 V (x0+ω(τ))dτf (x0 + ω (T )) dµ (ω) ,

where
dµ (ω) = “

1
Z (T )

e−
1
2

R T
0 |ω′(τ)|2dτDω” (23.24)

is the informal expression for Wiener measure on WT . Thus our immediate
goal is to make sense out of Eq. (23.24).

Let

HT :=

{
h ∈WT :

∫ T

0

|h′ (τ)|2 dτ <∞

}
with the convention that

∫ T

0
|h′ (τ)|2 dτ := ∞ if h is not absolutely continuous.

Further let

〈h, k〉T :=
∫ T

0

h′ (τ) · k′ (τ) dτ for all h, k ∈ HT

and Xh (ω) := 〈h, ω〉T for h ∈ HT . Since

dµ (ω) = “
1

Z (T )
e
− 1

2‖ω‖
2
HT Dω, ” (23.25)

dµ (ω) should be a Gaussian measure on HT and hence we expect,

Eµ [XhXk] = 〈h, k〉T for all h, k ∈ HT . (23.26)

According to Corollary 22.11, there exists a Gaussian random filed,
{Xh}h∈HT

, on some probability space, (Ω,B, P ) , such that Eq. (23.26) holds.
We are applying this corollary with T → HT , and Q (h, k) := 〈h, k〉T . Notice
that if Λ ⊂f HT and λ : Λ→ R is a function, then

∑
h,k∈Λ

Q (h, k)λ (h)λ (k) =

∥∥∥∥∥∑
h∈Λ

λ (h)h

∥∥∥∥∥
2

T

≥ 0.

Heuristically, we are thinking that Ω should be the Hilbert space, HT , and P
should be the “measure” in Eq. (23.25). In this hypothetical setting, we could
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define, Bt : HT → Rd to be the projection, Bt (ω) = ω (t) for t ∈ [0, T ] . Hence
for a ∈ Rd,

a ·Bt (ω) = a · ω (t) =
∫ T

0

a1[0,t] (τ) ω̇ (τ) dτ = 〈ha,t, ω〉T = Xha,t
(ω)

where
ha,t (τ) :=

∫ τ

0

a1[0,t] (u) du = a (t ∧ τ) .

with and Bj
· are independent process with Hence it follows from Eq. (23.26)

that

Eµ [(a ·Bt) (b ·Bs)] = 〈ha,t, hb,s〉T =
∫ T

0

a · b1[0,t] (τ) 1[0,s] (τ) dτ

= a · b (s ∧ t) . (23.27)

With this as motivation, let Bt =
(
B1

t , . . . , B
d
t

)tr : Ω → Rd be defined by,
Bj

t := Xhej,t , where ej is the jth standard basis vector on Rd. Then {Bt}t≥0

is a mean zero Gaussian process with values in Rd such that

E
[
Bi

tB
j
s

]
= δijs ∧ t.

Observe that
{
Bi
·
}d

i=1
are i.i.d. mean zero Gaussian random fields such that

E
[
Bi

tB
i
s

]
= s ∧ t for all i.
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Brownian Motion

Definition 24.1 (Pre-Brownian Motion). Let (Ω,B, P ) be a probability
space. A pre-Brownian motion

{
B̃t

}
t≥0

is a mean zero Gaussian random

process such that
E
[
B̃tB̃s

]
= t ∧ s for all s, t ≥ 0. (24.1)

We have already demonstrated the existence of a pre-Brownian motion
above. Nevertheless, let us emphasize this point again. The main point is
to observe that Q (s, t) := s ∧ t is a positive semi-definite. To see this, let
ht (τ) := t ∧ τ be as above, Λ ⊂f R+ and λ : Λ→ R be a function. Then

∑
s,t∈Λ

(s ∧ t)λsλt =
∑

s,t∈Λ

〈ht, hs〉T λsλt =

∥∥∥∥∥∑
t∈Λ

λtht

∥∥∥∥∥
2

T

≥ 0

which shows Q is positive semi-definite. So according to Corollary 22.11, we
may take Ω = R[0,∞) and B̃t (ω) = ω (t) . The situation is not completely
satisfactory at this point, since, for fixed ω ∈ Ω, the map t → B̃t (ω) has
no a priori regularity properties. Because of this we refine our definition of
Brownian motion as follows.

Definition 24.2 (Brownian Motion). A Brownian motion {Bt}t≥0 is
a mean zero Gaussian random process on some probability space, (Ω,B, P ) ,
satisfying; 1) for each ω ∈ Ω, t→ Bt (ω) is continuous, and 2)

E [BtBs] = t ∧ s for all s, t ≥ 0. (24.2)

Theorem 24.3 (Wiener 1923). Brownian motions exists. Moreover for any
α ∈ (0, 1/2) , t→ Bt is α – Hölder continuous almost surely.

Proof. For 0 ≤ s < t < ∞, B̃t − B̃s is a mean zero Gaussian random
variable with

E
[(
B̃t − B̃s

)2
]

= E
[
B̃2

t + B̃2
s − 2BsB̃t

]
= t+ s− 2s = t− s.

Hence if N is a standard normal random variable, then B̃t − B̃s
d=
√
t− sN

and therefore, for any p ∈ [1,∞),
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E
∣∣∣B̃t − B̃s

∣∣∣p = (t− s)p/2 E |N |p . (24.3)

Hence an application of Theorem 22.14 shows, with ε = p > 2, β = p/2 − 1,
α ∈

(
0, p/2−1

p

)
=
(
0, 1

2 − 1/p
)
, there exists a modification, B of B̃ such that

|Bt −Bs| ≤ Cα,T |t− s|α for s, t ∈ [0, T ).

By applying this result with T = N ∈ N, we find there exists a continuous
version, B, of B̃ for all t ∈ [0,∞) and this version is locally Hölder continuous
with Hölder constant α < 1/2.

For the rest of this section, we will assume that {Bt}t≥0 is a Brownian
motion on some probability space, (Ω,B, P ) .

Notation 24.4 (Partitions) Given P := {0 = t0 < t1 < · · · < tn = T} , a
partition of [0, T ] , let

∆iB := Bti
−Bti−1 , and ∆it := ti − ti−1

for all i = 1, 2, . . . , n. Further let mesh(P) := maxi |∆it| denote the mesh of
the partition, P.

Exercise 24.1 (Independent increments). Let

P := {0 = t0 < t1 < · · · < tn = T}

be a partition of [0, T ] . Show {∆iB}n
i=1 are independent mean zero normal

random variables with Var (∆iB) = ∆it.

Exercise 24.2 (Markov Property). Let Bt := σ (Bs : s ≤ t) . Show Bt −
Bs is independent of Bs for all t ≥ s. Use this to show, for any bounded
measurable function, f : R → R that

E [f (Bt) |Bs] = E [f (Bt) |Bs] = (pt−s ∗ f) (Bs) =:
(
et∆/2f

)
(Bs) .

This problem verifies that {Bt}t≥0 is a “Markov process” and shows that
1
2∆ = 1

2
d2

dx2 is its “infinitesimal generator.”

Exercise 24.3 (Finite Dimensional Distributions). Let

P := {0 = t0 < t1 < · · · < tn = T}

and f : Rn → R be a bounded measurable function. Show

E [f (Bt1 , . . . , Btn
)] =

∫
Rn

f (x1, . . . , xn) qP (x) dx

where
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qP (x) := pt1 (x1) pt2−t1 (x2 − x1) . . . ptn−tn−1 (xn − xn−1) .

Hint: Either use Exercise 24.1 by writing

f (x1, . . . , xn) = g (x1, x2 − x1, x3 − x2, . . . , xn − xn−1)

for some function, g or use Exercise 24.2 first for functions, f of the form,

f (x1, . . . , xn) =
n∏

j=1

ϕj (xj) .

Better yet, do it by both methods!

Exercise 24.4 (Quadratic Variation). Let

Pm :=
{
0 = tm0 < tm1 < · · · < tmnm

= T
}

be a sequence of partitions such that mesh (Pm) → 0 as m→∞. Further let

Qm :=
nm∑
i=1

(∆m
i B)2 :=

nm∑
i=1

(
Btm

i
−Btm

i−1

)2

. (24.4)

Show
lim

m→∞
E
[
(Qm − T )2

]
= 0

and limm→∞Qm = T a.s. if
∑∞

m=1 mesh (Pm) < ∞. This result is often
abbreviated by the writing, dB2

t = dt. Hint: it is useful to observe; 1)

Qm − T =
nm∑
i=1

[
(∆m

i B)2 −∆it
]

and 2) using Eq. (24.3) there is a constant, c <∞ such that

E
[
(∆m

i B)2 −∆it
]2

= c (∆it)
2
.

Corollary 24.5 (Roughness of Brownian Paths). A Brownian motion,
{Bt}t≥0 , is not almost surely α – Hölder continuous for any α > 1/2.

Proof. According to Exercise 24.4, we may choose partition, Pm, such
that mesh (Pm) → 0 and Qm → T a.s. If B were α – Hölder continuous for
some α > 1/2, then

Qm =
nm∑
i=1

(∆m
i B)2 ≤ C

nm∑
i=1

(∆m
i t)

2α ≤ Cmax
(
[∆it]

2α−1
) nm∑

i=1

∆m
i t

≤ C [mesh (Pm)]2α−1
T → 0 as m→∞

which contradicts the fact that Qm → T as m→∞.
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Proposition 24.6. Suppose that {Pm}∞m=1 is a sequence of partitions of [0, T ]
such that Pm ⊂ Pm+1 for all m and mesh (Pm) → 0 as m → ∞. Then
Qm → T a.s. where Qm is defined as in Eq. (24.4).

Proof. It is always possible to find another sequence of partitions,
{P ′n}

∞
n=1 , of [0, T ] such that P ′n ⊂ P ′n+1, mesh (P ′n) → 0 as n → ∞,

#
(
P ′n+1

)
= # (P ′n) + 1, and Pm = P ′nm

where {nm}∞m=1 is a subsequence
of N. If we let Q′n denote the quadratic variations associated to P ′n and we
can shown Q′n → T a.s. then we will also have Qm = Q′nm

→ T a.s. as well.
So with these comments we may now assume that # (Pn+1) = # (Pn) + 1.

We already know form Exercise 24.4 that Qm → T in L2 (P ) . So it suffices
to show Qm is almost surely convergent. We will do this by showing {Qm}∞m=1

is a backwards martingale relative to the filtration,

Fm := σ (Qm, Qm+1, . . . ) .

To do this, suppose that Pm+1 = Pm ∪ {v} and u = ti−1, v = ti+1 ∈ Pm such
that u < v < w. Let X := Bv −Bw and Y := Bw −Bu. Then

Qm = Qm+1 − (Bv −Bw)2 − (Bw −Bu)2 + (Bv −Bu)2

= Qm+1 −X2 − Y 2 + (X + Y )2

= Qm+1 + 2XY

therefore,
E [Qm|Fm+1] = Qm+1 + 2E [XY |Fm+1] .

So to finish the proof it suffices to show E [XY |Fm+1] = 0 a.s.
To do this let

bt :=
{

Bt if t ≤ v
Bv − (Bt −Bv) if t ≥ v,

that is after t = v, the increments of b are the reflections of the increments
of B. Clearly bt is still a continuous process and it is easily verified that
E [btbs] = s∧t. Thus {bt}t≥0 is still a Brownian motion. Moreover, if Qm+n (b)
is the quadratic variation of b relative to Pm+n, then

Qm+n (b) = Qm+n = Qm+n (B) for all n ∈ N.

On the other hand, under this transformation, X → X and Y → −Y. Since
(X,Y,Qm+1, Qm+2, . . . ) and (−X,Y,Qm+1, Qm+2, . . . ) have the same distri-
bution, if we write

E [XY |Fm+1] = f (Qm+1, Qm+2, . . . ) a.s., (24.5)

then it follows from Exercise 18.5, that

E [−XY |Fm+1] = f (Qm+1, Qm+2, . . . ) a.s. (24.6)
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Hence we may conclude,

E [XY |Fm+1] = E [−XY |Fm+1] = −E [XY |Fm+1] ,

and thus E [XY |Fm+1] = 0 a.s.

Lemma 24.7. For any α > 1/2, lim supt↓0 |Bt| /tα = ∞ a.s.

Proof. If lim supt↓0 |ωt| /tα <∞ then there would exists C <∞ such that
|ωt| ≤ Ctα for all t ≤ 1 and in particular,

∣∣ω1/n

∣∣ ≤ Cn−α for all n ∈ N. Hence
we have shown{

lim sup
t↓0

|Bt| /tα <∞

}
⊂ ∪C∈N ∩n∈N

{∣∣B1/n

∣∣ ≤ Cn−α
}
.

This completes the proof because,

P
(
∩n∈N

{∣∣B1/n

∣∣ ≤ Cn−α
})
≤ lim sup

n→∞
P
(∣∣B1/n

∣∣ ≤ Cn−α
)

= lim sup
n→∞

P

(
1√
n
|B1| ≤ Cn−α

)
= lim sup

n→∞
P
(
|B1| ≤ Cn1/2−α

)
= P (|B1| = 0) = 0

if α > 1/2.

Theorem 24.8 (Nowhere differentiability). Let W := {ω ∈ C ([0,∞) → R) : ω (0) = 0} ,
B denote the σ - filed on W generated by the projection maps, bt (ω) = ω (t)
for all t ∈ [0,∞), and µ be Wiener measure on (W,B) , i.e. µ is the Law
of a Brownian motion. For α > 1/2 and Eα denote the set of ω ∈ W :=
{ω : [0,∞) → R : ω (0) = 0} such that ω is α–Hölder continuous at some point
t = tω ∈ [0, 1]. when µ∗(Eα) = 0, i.e. there exists as set Ẽα ∈ B such that

Eα =
{

inf
0≤t≤1

lim sup
h→0

|ω (t+ h)− ω (t)|
|h|α

<∞
}
⊂ Ẽα

and µ
(
Ẽα

)
= 0. In particular, µ is concentrated on Ẽc

α which is a subset of
the collection paths which are nowhere differentiable on [0, 1] .

Proof. Let α ∈ (0, 1) and ν ∈ N – to be chosen more specifically later. If
ω ∈ Eα, then there exists, t ∈ [0, 1], C <∞, such that

|ω(t)− ω(s)| ≤ C |t− s|α for all |s| ≤ ν + 1.

For all n ∈ N we may choose i ≥ 0 so that
∣∣t− i

n

∣∣ < 1
n . By the triangle

inequality, for all j = 1, 2, . . . , ν, we have
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n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ ∣∣∣∣ω( i+ j

n

)
− ω (t)

∣∣∣∣+ ∣∣∣∣ω (t)− ω

(
i+ j − 1

n

)∣∣∣∣
≤ C

[∣∣∣∣ i+ j

n
− t

∣∣∣∣α +
∣∣∣∣ i+ j − 1

n
− t

∣∣∣∣α]
≤ Cn−α [|ν + 1|α + |ν|α] =: Dn−α.

Therefore, ω ∈ Eα implies there exists D ∈ N such that for all n ∈ N there
exists i ≤ n such that∣∣∣∣ω( i+ j

n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ Dn−α ∀ j = 1, 2, . . . , ν.

Letting

AD := ∩∞n=1 ∪i≤n ∩ν
j=1

{
ω :
∣∣∣∣ω( i+ j

n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ Dn−α

}
,

we have shown that Eα ⊂ ∪D∈NAD. We now complete the proof by showing
P (AD) = 0. To do this, we compute,

P (AD) ≤ lim sup
n→∞

P

(
∪i≤n ∩ν

j=1

{
ω :
∣∣∣∣ω( i+ j

n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ Dn−α

})
≤ lim sup

n→∞

∑
i≤n

ν∏
j=1

P

(
ω :
∣∣∣∣ω( i+ j

n

)
− ω

(
i+ j − 1

n

)∣∣∣∣ ≤ Dn−α

)

= lim sup
n→∞

n

[
P

(
1√
n
|N | ≤ Dn−α

)]ν

= lim sup
n→∞

n
[
P
(
|N | ≤ Dn

1
2−α

)]ν
≤ lim sup

n→∞
n
[
Cn

1
2−α

]ν
= Cν lim sup

n→∞
n1+( 1

2−α)ν . (24.7)

wherein we have used

µ (|N | ≤ δ) =
1√
2π

∫
|x|≤δ

e−
1
2 x2

dx ≤ 1√
2π

2δ.

The last limit in Eq. (24.7) is zero provided we choose α > 1
2 and ν

(
α− 1

2

)
>

1.

24.1 Scaling Properties of B. M.

Theorem 24.9 (Transformations preserving B. M.). Let {Bt}t≥0 be a
Brownian motion and Bt := σ (Bs : s ≤ t) . Then;

1. bt = −Bt is again a Brownian motion.
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2. if c > 0 and bt := c−1/2Bct is again a Brownian motion.
3. bt := tB1/t for t > 0 and b0 = 0 is a Brownian motion. In particular,

limt↓0 tB1/t = 0 a.s.
4. for all T ∈ (0,∞) , bt := Bt+T −BT for t ≥ 0 is again a Brownian motion

which is independent of BT .
5. for all T ∈ (0,∞) , bt := BT−t − BT for 0 ≤ t ≤ T is again a Brownian

motion on [0, T ] .

Proof. It is clear that in each of the four cases above {bt}t≥0 is still a
Gaussian process. Hence to finish the proof it suffices to verify, E [btbs] = s∧ t
which is routine in all cases. Let us work out item 3. in detail to illustrate the
method. For 0 < s < t,

E [bsbt] = stE [Bs−1Bt−1 ] = st
(
s−1 ∧ t−1

)
= st · t−1 = s.

Notice that t→ bt is continuous for t > 0, so to finish the proof we must show
that limt↓0 bt = 0 a.s. However, this follows from Kolmogorov’s continuity
criteria. Since {bt}t≥0 is a pre-Brownian motion, we know there is a version,
b̃ which is a.s. continuous for t ∈ [0,∞). By exercise 22.7, we know that

E :=
{
ω ∈ Ω : bt (ω) 6= b̃t (ω) for some t > 0

}
is a null set. Hence ω /∈ E it follows that

lim
t↓0

bt (ω) = lim
t↓0

b̃t (ω) = 0.

Corollary 24.10 (B. M. Law of Large Numbers). Suppose {Bt}t≥0 is a
Brownian motion, then almost surely, for each β > 1/2,

lim sup
t→∞

|Bt|
tβ

=
{

0 if β > 1/2
∞ if β ∈ (0, 1/2) . (24.8)

Proof. Since bt := tB1/t for t > 0 and b0 = 0 is a Brownian motion, we
know that for all α < 1/2 there exists, Cα (ω) <∞ such that, almost surely,

t
∣∣B1/t

∣∣ = ∣∣tB1/t

∣∣ = |bt| ≤ Cα |t|α for all t ≤ 1.

Replacing t by 1/t in this inequality implies, almost surely, that

1
t
|Bt| ≤

Cα

|t|α
for all t ≥ 1.

or equivalently that
|Bt| ≤ Cαt

1−α for all t ≥ 1. (24.9)

Hence if β > 1/2, let α < 1/2 such that β < 1 − α. Then Eq. (24.8) follows
from Eq. (24.9).
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On the other hand, taking α > 1/2, we know by Lemma 24.7 (or Theorem
24.8) that

lim sup
t↓0

t
∣∣B1/t

∣∣
tα

= lim sup
t↓0

|bt|
tα

= ∞ a.s.

This may be expressed as saying

∞ = lim sup
t→∞

t−1 |Bt|
t−α

= lim sup
t→∞

|Bt|
t1−α

a.s.

Since β := 1− α is any number less that 1/2, the proof is complete.

24.2 Markov Property for B. M.

Notation 24.11 In what follows, let Ω := C (R+,R) and let θt : Ω → Ω and
Bt : Ω → R be defined by,

θt (ω) = ω (·+ t) and
Bt (ω) := ω (t)

respectively. Further let Bt := σ (Bs : s ≤ t) and B := σ (Bs : s <∞) =
∨t<∞Bt.

Definition 24.12. Let {Xt}t≥0 be a Brownian motion on some probability
space, (Y,M, ν) . For x ∈ R, let ϕx : Y → Ω be defined by,

ϕx (y) := ([0,∞) 3 t→ x+Xt (y)) ∈ Ω.

Then ϕx is a measurable map and we let Px := ν ◦ ϕ−1
x for all x ∈ R. When

x = 0, measure, P0, is called Wiener measure on (Ω,B) .

Definition 24.13. A function, F : Ω → R is said to be a cylinder function
if there exists times,

0 = t0 < t1 < t2 < · · · < tn <∞,

and a measurable function, f : Rn+1 → R such that

F = f (Bt0 , . . . , Btn
) . (24.10)

In what follows we will often write pt (x, y) , for pt (y − x) so that

pt (x, y) = pt (y − x) =
1√
2πt

exp
(
− 1

2t
|y − x|2

)
. (24.11)

Lemma 24.14. Suppose that F : Ω → R is a bounded measurable function,
then R 3x→ Px (F ) ∈ R is a bounded measurable function, where

Px (F ) :=
∫

Ω

F (ω) dPx (ω) .
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Proof. Let H denote the collection of bounded measurable functions, F :
Ω → R, such that x → Px (F ) is measurable. It is easily checked that H
is a linear space containing 1 which is closed under bounded convergence.
Furthermore if F is a cylinder function as in Eq. (24.10) with f being bounded,
then by Exercise 24.3 we know

Px (F ) = Eν [f (x+Bt0 , x+Bt1 , . . . , x+Btn
)]

= Eν [f (x, x+Bt1 , . . . , x+Btn
)]

=
∫

Rn

f (x, x+ x1, . . . , x+ xn) q̃ (dx1, . . . , dxn) (24.12)

where

q̃ (dx1, . . . , dxn) = pt1−t0 (0, x1) dx1 · · · · · ptn−tn−1 (xn−1, xn) dxn.

Making the change of variables, xi → xi − x for all i in the above integral
allows us to write Px (F ) as

Px (F ) =
∫

Rn

f (x, x1, . . . , xn) q (x; dx1, . . . , dxn) (24.13)

where now

q (x; dx1, . . . , dxn) = pt1−t0 (x, x1) dx1 · · · · · ptn−tn−1 (xn−1, xn) dxn. (24.14)

So in this case, it follows by Fubini’s theorem that x→ Px (F ) is measurable
and therefore H contains all bounded cylinder functions. Since the bounded
cylinder functions is a multiplicative class which generates, B, it follows that
H consists of all bounded B – measurable functions, see Theorem 9.3.

Notation 24.15 Suppose that µ is a measure on R, let Pµ :=
∫

R dµ (x)Px,
i.e. if A ∈ B = BΩ ,

Pµ (A) :=
∫

R
Px (A) dµ (x) . (24.15)

Because of Lemma 24.14, Pµ is well defined and it is an easy exercise to
check that Pµ is a measure on B. In these notes we will mostly restrict our
attention to the case where µ is a probability measure on R.

Theorem 24.16 (Markov Property). Let µ be a probability measure on R
and F ∈ bB (the space of bounded B – measurable functions), then Pµ – a.s.,

Eµ [F ◦ θt|Bt] = EBt [F ] .

To be precise, for ω ∈ Ω,

(EBt [F ]) (ω) := Ex [F ] |x=Bt(ω) =
∫

Ω

F (ω′)PBt(ω) (dω′) .
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Proof. Let F be a bounded cylinder function of the form, F =
f (Bt0 , . . . , Btn

) , and G be a bounded cylinder function of the form, G =
g (Bs0 , . . . , Bsm

) where

0 = s0 < s1 < · · · < sm = t.

Then
F ◦ θt = f (Bt+t0 , . . . , Bt+tn

)

and

Eµ [F ◦ θt ·G] =
∫

Rm+n+1
g (x) f (xm, y) q (dx) q′ (xm; dy) (24.16)

where x ∈ Rm+1, y ∈ Rn,

q (dx) = µ (dx0) ps1−s0 (x0, x1) dx1 · · · · · psm−sm−1 (xm−1, xm) dxm,

and

q′ (xm; dy) = pt1−t0 (xm, y1) dy1 · · · · · ptn−tn−1 (yn−1, yn) dyn. (24.17)

According to Eq. (24.13),∫
Rn

f (xm, y) q′ (xm; dy) = Exm
[F ]

we may rewrite Eq. (24.16) as,

Eµ [F ◦ θt ·G] =
∫

Rm+1
g (x) Exm

[F ] q (dx)

= Eµ

[
g (Bs0 , . . . , Bsm

) EBsm
[F ]
]

= Eµ [G · EBt
[F ]] . (24.18)

An application of the multiplicative systems Theorem 9.3 completes the proof
by showing Eq. (24.18) holds for all F ∈ bB and G ∈ bBt.

Definition 24.17. For d ∈ N, we say a Rd – valued process,
{
Bt =

(
B1

t , . . . , B
d
t

)tr}
t≥0

is a d – dimensional Brownian motion provided
{
Bi
·
}d

i=1
is an indepen-

dent collection of one dimensional Brownian motions.

Remark 24.18. Most everything we have done for 1 dimensional Brownian
motion goes over to d - dimensional Brownian motion with no essential change
other than to interpret, pt (x, y) as

pt (x, y) :=
(

1
2πt

)d/2

exp
(
− 1

2t
|x− y|2

)
where |x|2 =

∑d
i=1 x

2
i .
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24.3 Measurability Issues

Before going on let us pause to say a few words about measurability issues
which will arise in this continuous time setting.

Exercise 24.5. Suppose (Ω,F) is a measurable space, (S, ρ) is a separable
metric space, and S is the Borel σ – algebra on S. If Xn : Ω → S is a sequence
of F/S – measurable maps such that X (ω) := limn→∞Xn (ω) exists in S for
all ω ∈ Ω, then the limiting function, X, is F/S – measurable as well.

Solution to Exercise (24.5). Let a ∈ S and ε > 0 be given and let

B (a, ε) := {s ∈ S : ρ (s, a) < ε} and
C (a, ε) := {s ∈ S : ρ (s, a) ≤ ε} .

Then X (ω) ∈ B (a, ε) iff for all δ < ε there exists and N ∈ N such that
Xn (ω) ∈ C (a, δ) for all n ≥ N. If we we take δ to be of the form, δ = 1/m
for some m ∈ N with m > 1/ε, we have shown

X−1 (B (a, ε)) = ∩m>ε−1 ∪N∈N ∩n≥NX
−1
n (C (a, 1/m)) ∈ F .

Since S is separable, any open subset, V ⊂ S, may be written as a countable
union of open balls, and hence we may conclude that X−1 (V ) ∈ F . Since
S := σ (open sets) , this shows that X is F/S – measurable.

Lemma 24.19. Suppose S is a separable metric space, S be the Borel σ –
algebra on S, and (Ω,Ft,F) is a filtered measurable space. Further suppose
that Xt : Ω → S for t ∈ [0,∞) is an adapted right continuous process, i.e.
Xt is Ft /S– measurable for all t ∈ [0,∞) and t→ Xt (ω) is right continuous
for all ω ∈ Ω. Then the map, ϕ : [0,∞)×Ω → S defined by ϕ (t, ω) = Xt (ω)
is
[
B[0,∞) ⊗F

]
/S – measurable. Moreover the process X is progressively

measurable, i.e. for every T ∈ [0,∞), the map ϕT : [0, T ] × Ω → S defined
by ϕT (t, ω) := Xt (ω) is B[0,T ] ⊗FT /S – measurable.

Proof. To each n ∈ N, let ϕn : [0,∞)×Ω → S be defined by; ϕn (0, ω) =
X0 (ω) and

ϕn (t, ω) := X k
2n

(ω) if
(k − 1)

2n
< t ≤ k

2n
for k ∈ N.

Given, A ∈ S, we have

ϕ−1
n (A) =

[
{0} ×X−1

0 (A)
]
∪∞k=1

[(
(k − 1)

2n
,
k

2n

]
×X−1

k2−n (A)
]
∈ B[0,∞) ⊗F

for all n ∈ N. Therefore, ϕn is
[
B[0,∞) ⊗F

]
/S – measurable. By the right

continuity of t→ Xt, it follows that ϕn (t, ω) → ϕ (t, ω) as n→∞ and hence
by Exercise 24.5, ϕ is also

[
B[0,∞) ⊗F

]
/S – measurable.
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The second assertion is proved similarly. In this case we let ϕn (0, ω) =
X0 (ω) and

ϕn (t, ω) := X kT
2n

(ω) if
(k − 1)T

2n
< t ≤ kT

2n
for k ∈ {1, 2, . . . , 2n} .

In this case

ϕ−1
n (A) =

[
{0} ×X−1

0 (A)
]
∪∞k=1

[(
(k − 1)T

2n
,
kT

2n

]
×X−1

Tk2−n (A)
]
∈ B[0,T ]⊗FT

and therefore ϕn is
[
B[0,T ] ⊗FT

]
/S and so is ϕT = limn→∞ ϕn by Exercise

24.5.

Lemma 24.20. Suppose that T ∈ (0,∞) , ΩT := C ([0, T ] ,R) , and FT =
σ
(
BT

t : t ≤ T
)
, where BT

t (ω) = ω (t) for all t ∈ [0, T ] and ω ∈ ΩT . Then;

1. The map, π : Ω → ΩT defined by π (ω) := ω|[0,T ] is BT /FT – measurable.
2. A function, F : Ω → R is BT – measurable iff there exists a function,
f : ΩT → R which is FT – measurable such that F = f ◦ π.

3. Let ‖ω‖T := maxt∈[0,T ] |ω (t)| so that (ΩT , ‖·‖T ) is a Banach space. The
Borel σ – algebra, BΩT

on ΩT is the same as FT .
4. If F = f ◦ π where f : ΩT → R is a ‖·‖T – continuous function, then F

is BT – measurable.

Proof. 1. Since BT
t ◦π = Bt is BT – measurable for all t ∈ [0, T ] , it follows

that π is measurable.
2. Clearly if f : ΩT → R being FT – measurable, then F = f ◦ π : Ω → R

is BT – measurable. For the converse assertion, let H denote the bounded BT

– measurable functions of the form F = f ◦ π with f : ΩT → R being FT –
measurable. It is a simple matter to check that H is a vector space which is
closed under bounded convergence and contains all cylinder functions of the
form, G (Bt1 , . . . Btn

) = G
(
BT

t1 , . . . B
T
tn

)
◦ π with {ti}n

i=1 ⊂ [0, T ] . The latter
set of functions generates the σ – algebra, BT , and so by the multiplicative
systems theorem, H contains all bounded BT – measurable functions. For a
general BT – measurable function, F : Ω → R, the truncation by N ∈ N,
FN = −N ∨ (F ∧N) , is of the form FN = fN ◦ π for some FT – measurable
function, fN : ΩT → R. Since every ω ∈ ΩT extends to an element of ω̃ ∈ Ω,
it follows that limN→∞ fN (ω) = limN→∞ FN (ω̃) = F (ω̃) exists. Hence if we
let f := limN→∞ fN , we will have F = f ◦ π with f being a FT – measurable
function.

3. Recall that BΩT
= σ (open sets) . Since Bs : Ω → R is continuous for

all s, it follows that σ
(
BT

s

)
⊂ BΩT

for all s and hence FT ⊂ BΩT
. Conversely,

since
‖ω‖ := sup

t∈Q∩[0,T ]

|ω (t)| = sup
t∈Q∩[0,T ]

∣∣BT
t (ω)

∣∣ ,
it follows that ‖· − ω0‖ = supt∈Q∩[0,T ]

∣∣BT
t − ω0 (t)

∣∣ is FT – measurable
for every ω0 ∈ Ω. From this we conclude that the balls, B (ω0, r) :=
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{ω ∈ Ω : ‖ω − ω0‖ < r} are FT – measurable, i.e. FT contains all open balls.
Since, by the classical Weierstrass approximation theorem, Ω is separable, it
follows that FT contains all open subsets of Ω and hence BΩT

⊂ FT .
4. Any continuous function, f : Ω → R is BΩT

= FT – measurable and
therefore, F = f ◦ π is BT – measurable since it is the composition of two
measurable functions.

24.4 Feynman Kac Formula Revisited

Suppose that V : Rd → R is a smooth function such that k := infx∈Rd V (x) >
−∞ and for f ≥ 0 or f bounded and measurable, let1

Ttf (x) := Ex

[
e−

R t
0 V (Bτ )dτf (Bt)

]
= E0

[
e−

R t
0 V (x+Bτ )dτf (x+Bt)

]
.

Let us observe that for f ≥ 0 and p, q ∈ (1,∞) such that p−1 + q−1 = 1

|(Ttf) (x)| ≤ e−ktEx [f (Bt)] = e−kt

∫
Rd

|f (y)| pt (x, y) dy

≤ e−kt ‖f‖p · ‖pt (x, ·)‖q (24.19)

where

‖f‖p :=
(∫

Rd

|f (y)|p dy
)1/p

.

In particular if f = 0, m – a.e., then Ttf (x) = 0 and we can use this to see
that (Ttf) (x) is well defined for all f ∈ Lp. Since

‖pt (x, ·)‖q
q =

∫
Rd

pt (y − x)q
dy =

∫
Rd

pt (y)q
dy

=
1

(2πt)dq/2

∫
Rd

e−
1

2(t/q) |y|
2

dy =
1

(2πt)dq/2

(
2πt
q

)d/2

= q−d/2 1

(2πt)d(q−1)/2
,

Eq. (24.19) gives the quantitative estimate;

|Ttf (x)| ≤ C (p, t) ‖f‖Lp(Rd) , (24.20)

where
C (p, t) := q−

d
2q (2πt)−

d
2p e−kt. (24.21)

Theorem 24.21 (Feynman-Kac Formula). Suppose f ∈ L2
(
Rd,m

)
and

t ≥ 0. Then;
1 In what follows, the reader feeling queasy about measurability issues should refer

back to Lemma 24.20.
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1. Tt is a bounded linear operator on L2
(
Rd
)

with ‖Tt‖op ≤ e−kt, i.e.

‖Ttf‖2 ≤ e−kt ‖f‖2 for all f ∈ L2
(
Rd,m

)
.

2. Tt is self-adjoint, i.e. (Ttf, g) = (f, Ttg) for all f, g ∈ L2
(
Rd,m

)
where

(f, g) :=
∫

Rd

f (x) ḡ (x) dm (x) .

3. {Tt}t≥0 is a semi-group, i.e. Tt+s = TtTs for all t, s ≥ 0.
4. Tt is strongly continuous, i.e.

lim
t↓0

‖Ttf − f‖L2 = 0 for all f ∈ L2
(
Rd,m

)
.

5. Let
Af :=

d

dt
|0+ (Ttf) := L2– lim

t↓0

Ttf − f

t

for those f for which the limit exists. Then Af =
(

1
2∆− V

)
f for all

f ∈ C2
c

(
Rd
)
. The operator A with its natural domain2 is called the in-

finitesimal generator of {Tt}t≥0 .

Remark 24.22. Some functional analysis along with basic “elliptic regularity”
shows, that u (t, x) = Ttf (x) solves the heat equation,

ut (t, x) =
1
2
∆u (t, x)− V (x)u (t, x) with lim

t↓0
u (t, ·) = f (·) in L2.

Proof. To simplify notation a bit we will assume d = 1 in the proof below
and let ‖f‖ := ‖f‖L2(R,m) .

1. By Fubini’s theorem and simple estimates,

‖Ttf‖2 =
∫

R
dx
∣∣∣E0

[
e−

R t
0 V (x+Bτ )dτf (x+Bt)

]∣∣∣2
≤
∫

R
E0

∣∣∣e− R t
0 V (x+Bτ )dτf (x+Bt)

∣∣∣2 dx
≤ e−2ktE0

∫
R
|f (x+Bt)|2 dx = e−2kt ‖f‖22 .

2. We have
2 The domain, D (A) , of A consists of those f ∈ L2

�
Rd, m

�
such that the limit

defining Af exists in the L2
�
Rd, m

�
sense. So we are asserting that C2

c

�
Rd
�
⊂

D (A) and Af =
�

1
2
∆− V

�
f for all f ∈ C2

c

�
Rd
�
.
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(Ttf, g) =
∫

R
E0

[
e−

R t
0 V (x+Bτ )dτf (x+Bt)

]
g (x) dx

= E0

∫
R
e−

R t
0 V (x+Bτ )dτf (x+Bt) g (x) dx

= E0

∫
R
e−

R t
0 V (x−Bt+Bτ )dτf (x) g (x−Bt) dx.

Now let bτ := Bt−τ − Bt so that bτ is another Brownian motion on [0, t]
and observe that bt = −Bt. Hence we have

(Ttf, g) = E0

∫
R
e−

R t
0 V (x+bt−τ )dτf (x) g (x+ bt) dx

= E0

∫
R
e−

R t
0 V (x+bτ )dτf (x) g (x+ bt) dx

= E0

∫
R
e−

R t
0 V (x+Bτ )dτg (x+Bt) f (x) dx

=
∫

R
E0

[
e−

R t
0 V (x+Bτ )dτg (x+Bt)

]
f (x) dx

= (f, Ttg) .

3. Using the Markov property in Theorem 24.16 we find,

(Tt+sf) (x) = Ex

[
e−

R t+s
0 V (Bτ )dτf (Bt+s)

]
= Ex

[
e−

R t
0 V (Bτ )dτe−

R t+s
s

V (Bτ )dτf (Bt+s)
]

= Ex

[
e−

R t
0 V (Bτ )dτ

[
e−

R s
0 V (Bτ )dτf (Bs)

]
◦ θt

]
= Ex

[
e−

R t
0 V (Bτ )dτEBt

[
e−

R s
0 V (Bτ )dτf (Bs)

]]
= Ex

[
e−

R t
0 V (Bτ )dτ (Tsf) (Bt)

]
= (TtTsf) (x) .

4. From the estimate,

‖Ttf − f‖2 =
∫

R
dx
∣∣∣E0

[
e−

R t
0 V (x+Bτ )dτf (x+Bt)− f (x)

]∣∣∣2
≤
∫

R
E0

∣∣∣e− R t
0 V (x+Bτ )dτf (x+Bt)− f (x)

∣∣∣2 dx
=
∫

R
E0

∣∣∣(e− R t
0 V (x+Bτ )dτ − 1

)
f (x+Bt) + f (x+Bt)− f (x)

∣∣∣2 dx,
it follows that

lim sup
t↓0

‖Ttf − f‖2 ≤ lim sup
t↓0

Dt + lim sup
t↓0

Et

where
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Dt = 2
∫

R
E0

∣∣∣(e− R t
0 V (x+Bτ )dτ − 1

)
f (x+Bt)

∣∣∣2 dx
and

Et := 2E0

∫
R
|f (x+Bt)− f (x)|2 dx.

Let us now assume for the moment that f ∈ Cc (R) . In this case, using
DCT twice, we learn that

∫
R |f (x+Bt)− f (x)|2 dx → 0 boundedly and

hence that lim supt↓0Et = 0. Similarly, if M is a bound on |f | , then

Dt ≤ 2
∫

R
E0

∣∣∣e− R t
0 V (x+Bτ )dτ − 1

∣∣∣2 dx→ 0 as t ↓ 0.

So in this special case we have shown limt↓0 ‖Ttf − f‖ = 0.
For general f ∈ L2 and g ∈ Cc (R) we have

lim sup
t↓0

‖Ttf − f‖ ≤ lim sup
t↓0

[‖Ttf − Ttg‖+ ‖Ttg − g‖+ ‖g − f‖]

≤ lim sup
t↓0

‖Ttg − g‖+
(
1 + e−kt

)
‖g − f‖

≤
(
1 + e−kt

)
‖g − f‖ .

This completes the proof because Cc (R) is dense in L2 (R,m) (see Exam-
ple 9.9) and hence we may make ‖f − g‖ as small as we please.

5. Finally we sketch the computation of the infinitesimal generator, A, on
C2

c (R) . By the chain rule,

d

dt
|0+Ttf (x) =

d

dt
|0+Ex

[
e−

R t
0 V (Bτ )dτf (Bt)

]
=

d

dt
|0+Ex

[
e−

R t
0 V (Bτ )dτf (B0)

]
+
d

dt
|0+Ex [f (Bt)]

= Ex [−V (B0) f (B0)] +
d

dt
|0+ (pt ∗ f) (x)

= −V (x) f (x) +
1
2
∆f (x) .

Exercise 24.6 (Ultracontractivity of Tt). LetBC
(
Rd
)

denote the bounded
continuous functions on Rd and define

‖g‖∞ = sup
x∈Rd

|g (x)|

for g ∈ BC
(
Rd
)
. Suppose 1 < p < ∞ and f ∈ Lp

(
Rd,m

)
. Show u (t, x) :=

(Ttf) (x) is continuous for (t, x) ∈ (0,∞) × Rd and is bounded in x for fixed
t > 0. In particular, for any t > 0, show Tt maps Lp

(
Rd,m

)
into BC

(
Rd
)

and
‖Ttf‖∞ ≤ C (p, t) ‖f‖Lp(Rd) ,

where C (p, t) is define as in Eq. (24.21). Hint: first verify the continuity of
u (t, x) under the additional assumption that f ∈ Cc

(
Rd
)
.



24.5 A stronger Markov Property 503

24.5 A stronger Markov Property

Definition 24.23. Given a filtration, {Bt}t≥0 on some set, Ω, let B+
t :=

Bt+ := ∩s>tBs. So Bt+ peaks infinitesimally into the future.

Theorem 24.24 (Markov Property II). If F ∈ bB, then

Eν [F ◦ θt|Bt+] = EBt
[F ] = Eν [F ◦ θt|Bt] Pν – a.s.

Proof. Let F be a bounded cylinder function of the form, F =
f (Bt0 , . . . , Btn) , where f : Rn+1 → R is a bounded continuous function.
Then

t→ F ◦ θt (ω) = f (ω (t+ t0) , . . . , ω (tn + t))

is continuous in t ≥ 0 for all ω ∈ Ω. Since

ExF =
∫

Rn+1
f (x, y1, . . . , yn) q′ (x; dy)

where

q′ (x; dy) = pt1−t0 (x, y1) dy1 · · · · · ptn−tn−1 (yn−1, yn) dyn,

we also see, by DCT, that x→ ExF is continuous as well.
If G ∈ bBt+, then by the DCT,

Eν [F ◦ θt ·G] = lim
τ↓t

Eν [F ◦ θτ ·G] .

By Theorem 24.16, for τ > t,

Eν [F ◦ θτ ·G] = Eν [Eν [F ◦ θτ |Bτ ] ·G] = Eν [EBτ
[F ] ·G] .

Therefore, by another application of the DCT,

Eν [F ◦ θt ·G] = lim
τ↓t

Eν [EBτ [F ] ·G] = Eν [EBt [F ] ·G] .

It now follows by an application of the multiplicative systems Theorem 9.3
that

Eν [F ◦ θt ·G] = Eν [EBt [F ] ·G]

for all F ∈ bB which completes the proof.

Corollary 24.25. For all Z ∈ bB, and t ≥ 0,

Eν [Z|Bt+] = Eν [Z|Bt] , Pν – a.s. (24.22)

(More precisely, if U is any version of Eν [Z|Bt+] and V is any version of
Eν [Z|Bt] , then U = V, Pν – a.s.) Moreover, to every A ∈ Bt+, there exists
Ã ∈ Bt such that Pν

(
A4 Ã

)
= 0.
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Proof. First suppose that Z = G · F ◦ θt with F ∈ bB and G ∈ bBt. In
this case, according to Theorem 24.24, Pν – a.s.,

Eν [Z|Bt+] = Eν [G · F ◦ θt|Bt+] = G · Eν [F ◦ θt|Bt+]
= G · EBt

[F ] = G · Eν [F ◦ θt|Bt]
= Eν [G · F ◦ θt|Bt] = Eν [Z|Bt] .

Another application of the multiplicative systems Theorem 9.3 then shows this
identity remains valid for all Z ∈ bB. (Along the way in applying Theorem
9.3 you may want to make use of the conditional version of the DCT.)

Consequently, if Z ∈ bBt+, then

Z = Eν [Z|Bt+] = Eν [Z|Bt] , Pν – a.s.

and letting Z̃ ∈ bBt be a version of Eν [Z|Bt] , we see that Z = Z̃ ∈ bBt, Pν

– a.s. Applying this to Z = 1A with A ∈ Bt+ implies 1A = Z̃, Pµ – a.s. If we

let Ã :=
{
Z̃ 6= 0

}
∈ Bt, then

Ã4A =
[{
Z̃ 6= 0

}
∩Ac

]
∪
[
A ∩

{
Z̃ = 0

}]
and 1A = Z̃, Pµ – a.s. implies

Pµ

(
A ∩

{
Z̃ = 0

})
= 0 and Pµ

({
Z̃ 6= 0

}
∩Ac

)
= 0,

that is Pµ

(
Ã4A

)
= 0.

Theorem 24.26 (Blumenthal 0−1 Law). The σ – field, B0+ is Px – trivial
for all x ∈ R.

Proof. If A ∈ B0+, then

Ex [1A|B0+] = Ex [1A|B0] = Ex1A = Px (A) , Px – a.s.

Therefore,

Px (A) = Ex [1A · 1A] = Ex [1A · Ex [1A|B0+]] = Ex [1A · Px (A)] = [Px (A)]2 .

Corollary 24.27 (Rapid oscillation of B. M.). Let T+ := inf {t > 0 : Bt > 0} ,
T− := inf {t > 0 : Bt < 0} , and T0 := inf {t > 0 : Bt = 0} . Then

P0 (T± = 0) = 1 = P (T0 = 0) .



24.6 The Strong Markov Property 505

Proof. We first claim that the sets, {T± = 0} , are in B0+. For example,
for any m ∈ N,

{T+ = 0} = ∩n≥m ∪r∈Q∩(0,1/n] {Br > 0} ∈ B1/m.

Since m is arbitrary, it follows that {T+ = 0} ∈ ∩∞m=1B1/m = B0+.

Since B d= −B under P0, it follows that P0 (T+ = 0) = P0 (T− = 0) = λ.
Moreover, if T+ > 0, then T− = 0, so

Ω = {T+ = 0} ∪ {T+ > 0} = {T+ = 0} ∪ {T− > 0}

from which it follows that 1 = P0 (Ω) ≤ 2λ and hence λ ≥ 1/2. Be-
cause {T+ = 0} ∈ B0+,we may apply Blumenthal’s 0-1 law to learn λ =
P0 (T+ = 0) ∈ {0, 1} and since λ ≥ 1/2, we conclude that P0 (T− = 0) =
P0 (T+ = 0) = 1.

Finally, if T+ (ω) = 0 and T− (ω) = 0, it follows by the intermediate value
theorem that T0 (ω) = 0. Thus {T+ = 0}∩{T− = 0} ⊂ {T0 = 0} and therefore
P (T0 = 0) = 1 as well provided we can show {T0 = 0} is measurable. We take
care of this detail now.

If s ∈ (0,∞) , then T0 (ω) > s iff ωt > 0 or ωt < 0 for t ∈ (0, s]. The first
case happens iff for all ε ∈ (0, s) , there exits δ > 0 such that ωt ≥ δ for all
t ∈ [ε, s] . From this we learn that

{Bt > 0 for t ∈ (0, s]} = ∩n>1/s ∪∞m=1 ∩t∈Q∩[ 1
n ,s] {Bt ≥ 1/m} ∈ Bs.

Similarly we show {Bt < 0 for t ∈ (0, s]} ∈ Bs and therefore

{T0 > s} = {Bt > 0 for t ∈ (0, s]} ∪ {Bt < 0 for t ∈ (0, s]} ∈ Bs.

Hence
{T0 = 0} = ∩∞n=1 {T0 ≤ 1/n} ∈ B0+.

24.6 The Strong Markov Property

To Be Continued
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