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ABSTRACT OF THE DISSERTATION

An Approximation of Wiener Measure on Manifolds with Non-positive
Sectional Curvature

by

Thomas A Laetsch

Doctor of Philosophy in Mathematics

University of California, San Diego, 2012

Professor Bruce K. Driver, Chair

An interpretation is given for the informal path integral expression,

1

Z

∫
σ∈W (M)

f(σ)e−
1
2
E(σ)Dσ,

where Z is a “normalization” constant, W (M) consists of continuous paths σ on M

parametrized on [0, 1], E(σ) is the energy of the path σ, and Dσ is Lebesgue type

measure. Approximating the path space by finite dimensional manifolds HP(M)

consisting of the piecewise geodesic paths adapted to a partition P of [0, 1], it is

proved that when M has non-positive sectional curvature, then as mesh(P)→ 0,

1

ZP
e−1/2E(σ) dVolGP (σ)→ exp

{
−2 +

√
3

20
√

3

∫ 1

0

Scal(σ(s))ds

}
dν(σ).
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Here ZP is a normalization constant, GP is an L2-metric on HP(M), VolGP is

the Riemannian volume measure induced from GP , Scal is the scalar curvature on

M , and ν is the Wiener measure on W (M). This allows one to rigorously inter-

pret the heuristic measure given above by Z−1 exp{−1
2
E(σ)}Dσ as the measure

exp
{
−2+

√
3

20
√

3

∫ 1

0
Scal(σ(s))ds

}
dν(σ).
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Chapter 1

Introduction

The goal of this paper is to give a rigorous interpretation of a Feynman

path integral on a Riemannian manifold (M, g), which is heuristically of the form,

1

Z

∫
W o(M)

f(σ)e−
1
2
E(σ)Dσ. (1.1)

Here W o(M) is the collection of continuous paths σ : [0, 1] → M with σ(0) = o,

E(σ) =
∫ 1

0
|σ′(s)|2ds is the energy of a path σ, Z is a normalization constant,

and Dσ is a Lebesgue type measure on W o(M). Truly this expression is not

rigorous for several reasons: there is no infinite dimensional Lebesgue measure,

Z can be interpreted as 0 or ∞, and ”most” paths σ ∈ W o(M) are nowhere

differentiable, leaving E to be well-defined. Nonetheless, expressions as in Eq.

(1.1) arise frequently in physics literature and can be understood as the prescrip-

tion for the path integral quantization of the Hamiltonian operator as well as the

path integral formula for the heat kernel of the Schrödinger operator. Theorem

1.4 gives a possible realization of the heuristic measure Z−1 exp{−1
2
E(σ)}Dσ on

manifolds with non-positive sectional curvature as exp{−τG
∫ 1

0
Scal(σ(s))ds}dν(σ),

where τG = (2+
√

3)/(20
√

3), Scal is the scalar curvature on M , and ν is the Wiener

measure on W o(M).

Much of the current interest concerning path integrals in physics began with

Feynman in [8] and has since grown deeply. The role of path integrals in quantum

mechanics is surveyed by Gross in [11] and detailed more by Feynman and Hibbs

in [9] as well as Glimm and Jaffe in [10]. Volumes of work have come out to move

1
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these stochastic techniques onto the manifold setting of which [5, 13, 16, 6] have

been invaluable in completing this paper.

It has been asserted that the correct form of the quantization of the Hamil-

tonian 1
2
gijpipj +V is given by −~2(1

2
∇+ τ Scal) +V where ~ is Planck’s constant

and τ ∈ R is a constant which depends on the interpretation of the path integral.

For example, in [1], τ = 0 or τ = 1
6
. Our work gives the value τ = (2+

√
3)/(20

√
3).

However, in [17], Lim derives a form that is dissimilar and does not lend itself to

the Feynman-Kac formula for interpretation of the quantized Hamiltonian.

1.1 The heat semi-group as a path integral.

Given the Laplace-Beltrami operator ∆ on M , the solution to the heat

equation with boundary data f : M → R,
∂
∂t
u(t, x) = 1

2
∆u(t, x) (t, x) ∈ (0,∞)×M

u(0, x) = f(x) x ∈M

will be suggestively written as

u(t, x) =: e
t
2

∆f(x). (1.2)

The fundamental solution to the heat equation will be denoted pt(x, y) and for x

near y we have,

pt(x, y) ≈
(

1

2πt

)d/2
e

dist(x,y)2

2t , (1.3)

where dist(x, y) is the geodesic distance between x and y. With this notation we

have the following representation of the heat semi-group on M ,

e
t
2

∆f(o) =

∫
M

pt(o, y)f(y)dy. (1.4)

Definition 1.1. The Wiener space (W (M), ν) is the probability space consisting

of continuous paths σ : [0, 1] → M such that σ(0) = o. The Wiener measure ν
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associated with M is the unique probability measure on W (M) such that∫
W (M)

f(σ)dν(σ)

=

∫
Mn

F (x1, ..., xn)
n∏
i=1

p∆is(xi−1, xi) dVol(x1) · · · dVol(xn), (1.5)

for all functions of the form f(σ) = F (σ(s1), ..., σ(sn)) with F bounded and con-

tinuous on Mn, P = {0 = s0 < s1 < · · · < sn = 1} is a partition of [0, 1],

∆is = si − si−1, Vol is the Riemannian volume form on M , and x0 := o.

With this description of Wiener measure, setting t = 1, we can rewrite Eq.

(1.4) as the path integral,

e
1
2

∆f(o) =

∫
W (M)

f(σ(1))dν(σ). (1.6)

More generally we have the path integral representation for the heat semi-group,

e
t
2

∆f(o) =

∫
Wt(M)

f(σ(t))dνt(σ) (1.7)

where Wt(M) and νt are defined analogously as above with the parameterization

interval [0, 1] replaced with [0, t].

1.2 “Derivation” of Eq. (1.1).

As before, let (M, g, o) be a Riemannian manifold with metric g and fixed

point o ∈ M . For this endeavor, we will use the following. We now consider the

operator H = −1
2
∆ + MV acting on L2(M,dVol) where MV is multiplication by

the potential V ∈ C(M → R), and Vol is the Riemannian volume form on M .

Motivated by Eq. (1.7), we set out to represent e−tHf by a path integral.

Theorem 1.2 (Trotter’s product formula). If A and B are matrices of the same

dimensions, then

eA+B = lim
n→∞

[
e
A
n e

B
n

]n
. (1.8)
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The necessity of this revolves around the fact that generally eA+B 6= eAeB

since equality depends on the commutativity properties of A and B. There have

been many works to further understand and generalize Trotter’s product formula,

a short list includes [3, 2, 7, 15, 14, 21, 19, 20, 18]. However, this section is solely

for intuition and heuristics, we therefore make no attempt to legitimize our use of

Theorem 1.2 any further.

Once again defining H = −1
2
∆ + MV , using Eqs. (1.4) and (1.3), and

applying Trotter’s product formula with A = t
2
∆ and B = −tMV gives,

e−tHf(o) = lim
n→∞

[
e
t

2n
∆e

t
n
MV

]n
f(o)

= lim
n→∞

{∫
Mn

e−
t
n

∑n
i=1 V (xi)f(xn)

n∏
i=1

pt/n(xi−1, xi) dVol(x)

}

= lim
n→∞

{(
2π

t

n

)−dn/2 ∫
Mn

e
−
∑n
i=1

(
dist(xi,xi−1)2

2t/n
+ t
n
V (xi)

)
f(xn) dVol(x)

}

where we use the convention dVol(x) = dVol(x1) · · · dVol(xn).

If σ : [0, t] → M is defined by σ(si) = xi and is geodesic on all intervals

(si−1, si) for 1 ≤ i ≤ n then,

n∑
i=1

(
dist(xi, xi−1)2

2t/n
+
t

n
V (xi)

)
=

∫ t

0

{
1

2
|σ′(s)|2 + V (σ(s))

}
ds,

where s = si when s ∈ (si−1, si]. We therefore have,

e−tHf(o) = lim
n→∞

{(
2π

t

n

)−dn/2 ∫
HP,t(M)

e−
∫ t
0{ 1

2
|σ′(s)|2+V (σ(s))}dsf(σ(t)) dVol(σ)

}
=

1

Z

∫
Wt(M)

f(σ(t))e−
1
2

∫ 1
0 {|σ′(s)|2+V (σ(s))}dsDσ. (1.9)

Here HP,t(M) is used to represent the collection of paths σ ∈ Wt(M) which are

piecewise geodesic with respect to the partition P . Compared with Eq. (1.1), we

see now that arguing by Trotter’s product formula ”derives” the heuristic expres-

sion.
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1.3 The main theorem

Motivated by the ”derivation” of Eq. (1.1) in Section 1.2, we make the

following definition.

Definition 1.3. Given the partition P = {0 = s0 < s1 < ... < sn = 1} of [0, 1],

the space of continuous piecewise geodesic paths on M with respect to P will be

denoted HP(M). That is,

HP(M) =
{
σ ∈ W (M) : σ|(si−1,si) is a geodesic for 1 ≤ i ≤ n

}
.

The space HP(M) is a finite dimensional subspace of W (M). We make

HP(M) into a Riemannian manifold by defining the metric GP , where if X, Y ∈
TσHP(M),

GP(X, Y ) :=

∫ 1

0

g(X(s), Y (s))ds. (1.10)

Here we are naturally identifying the space TσHP(M) with the continuous piecewise

Jacobi fields along the path σ. In turn this metric induces a Riemannian volume

form VolGP on M and we define the measure νGP on M by,

dνGP =
1

ZGP
e−

1
2
E dVolGP , (1.11)

where E(σ) =
∫ 1

0
|σ′(s)|2ds is the energy of the path and ZGP is a normalization

constant that can be calculated as,

ZGP =

∫
HP (Rd)

e−
1
2
E(ω) dVolGP (ω). (1.12)

That is, ZGP is the normalization constant that for the case M = Rd makes νGP

into a probability measure. We are now are prepared to state the main theorem

proved in this paper.

Theorem 1.4. Let (M, g, o) be a Riemannian manifold with metric g and fixed

point o ∈ M . Assume the curvature and its derivative on M are bounded and the

sectional curvature on M is non-positive. Then given a continuous and bounded

map f : W (M)→ R,

lim
|P|→0

∫
HP (M)

f(σ)dνGP (σ) =

∫
W (M)

f(σ)e−τG
∫ 1
0 Scal(σ(s))dsdν(σ). (1.13)
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Here P = {0, 1/n, 2/n, ..., 1} is the equally spaced partition of [0, 1], τG = 2+
√

3
20
√

3
,

Scal is the scalar curvature of M , νGP is defined in Eq. (1.11), and ν is the Wiener

measure on W (M).

Notice the similarity of the limit on the left hand side of Eq. (1.13) with

that leading to Eq. (1.9). If we take the point of view that Theorem 1.4 is the

prescription for the path integral quantization of the Hamiltonian Ĥ, the Feynman-

Kac formula gives

Ĥ = −1

2
∆2 + V + τG Scal . (1.14)

The measure νGP is considered to be an approximation to the Wiener mea-

sure ν on the space of piecewise geodesic paths, which is an approach that has

been capitalized on before, see for example [1, 17, 22, 4].

1.4 A theorem in the flat case

This section is dedicated to proving a much simplified theorem resembling

that of Theorem 1.4 in the case that M = Rd. In this setting, the curvature term

disappears and, up to a multiplicative constant, all translation invariant measures

are equal. Much of the notation introduced here will be reintroduced in our more

general setting.

Definition 1.5. The symbol µ will be used to denote Wiener measure on W (Rd).

{bs}s∈[0,t] is taken to be an Rd-valued Brownian motion, and given the partition

P = {0 = s0 < s1 < · · · sn = t} of [0, t], set

bPs :=
n∑
i=1

1Ji(s)

[
∆ib

∆is
(s− si−1) + bsi−1

]

=
n∑
i=1

1Ji(s)

[
∆ib

∆is
(s− si−1) +

i−1∑
j=1

∆jb

]
. (1.15)

Here J0 = [0, s1], Ji = (si−1, si] for i ≥ 1, ∆ib := bsi − bsi−1
, ∆is := si − si−1 and∑0

j=1 ∆jb ≡ 0.
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For the following calculations, we are going to define the (linear) parame-

terization ϕ : (Rd)n → HP(Rd) by the very canonical ”connect the dots” mapping

ϕ defined by ϕ(a1, ..., an)(si) = ai for each i = 1, ..., n. Notice that this completely

defines ϕ(a) since it is required to be piecewise linear between the partition points.

Explicitly,

ϕ(x1, ..., xn)(s) =
n∑
i=1

1Ji(s)

[
∆ix

∆is
(s− si−1) + xi−1

]
(1.16)

where the notation is similar to above. Because of future calculations, we make a

couple notes about the map ϕ here. The first is, if we let xi = (x1
i , ..., x

d
i ) ∈ Rd,

gi,a(s) := ∂xai ϕ(x)(s) =

{
1Ji(s)

s− si−1

∆is
+ 1Ji+1

(s)

[
1− s− si

∆i+1s

]}
ea, (1.17)

where {e1, ..., ed} is the standard basis in Rd. The second is that, comparing the

similarities between Equations 1.15 and 1.16,

ϕ(bs1 , ..., bsn) = bP . (1.18)

Proposition 1.6. Define gi,a(s) := ∂xai ϕ(x)(s). Let G be any inner product on

HP(Rd) and VolG be the volume measure associated to G. Define

ZG :=

∫
HP (Rd)

e−
1
2
EdVolG . (1.19)

Then,

ZG =
√

det [G(gi,a, gj,c)]
n∏
i=1

(2π∆is)
d/2, (1.20)

where i, j ∈ {1, ..., n}, a, c ∈ {1, ..., d} and [G(gi,a, gj,c)] represents the n × n block

matrix with d × d blocks where the (a, c)th element of the (i, j)th d × d block is

G(gi,a, gj,c).

Proof. Considering Eq. (1.17), notice that gi,a is independent of x. We also have

dVolG =
√

det [G(gi,a, gj,c)]dx (1.21)
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so that

ZG =

∫
(Rd)n

e−
1
2
E(ϕ(x))

√
det [G(gi,a, gj,c)]dx (1.22)

=
√

det [G(gi,a, gj,c)]

∫
(Rd)n

e−
1
2
E(ϕ(x))dx. (1.23)

Moreover,

E(ϕ(x)) =

∫ t

0

‖ϕ(x)′(s)‖2
ds

=
n∑
i=1

∫ si

si−1

∥∥∥∥∆ix

∆is

∥∥∥∥2

ds

=
n∑
i=1

‖∆ix‖2

∆is

and therefore

e−
1
2
E(ϕ(x)) = e

− 1
2

∑n
i=1

‖∆ix‖
2

∆is . (1.24)

In particular, ∫
Rn
e−

1
2
E(ϕ(x))dx =

∫
Rn
e
− 1

2

∑n
i=1

‖xi−xi−1‖
2

∆is dx1dx2 · · · dxn (1.25)

=
n∏
i=1

(2π∆is)
d/2 (1.26)

and hence

ZG =
√

det [G(gi,a, gj,c)]
n∏
i=1

(2π∆is)
d/2. (1.27)

Proposition 1.7. Let f : W (Rd)→ R be bounded and µ-measurable. Then

1

ZG

∫
HP (Rd)

fe−
1
2
EdVolG = E[f(bP)]. (1.28)

Proof. Continuing with the notation from Proposition 1.6, we have shown that,

ZG =
√

det [G(gi,a, gj,c)]
n∏
i=1

(2π∆is)
d/2.
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Therefore,

1

ZG

∫
HP (Rd)

fe−
1
2
EdVolG =

∫
(Rd)n

f(ϕ(a))

(
n∏
i=1

(2π∆is)
−d/2

)
e
− 1

2

∑n
i=1

‖xi−xi−1‖
2

∆is dx

=

∫
(Rd)n

f(ϕ(a))
n∏
i=1

e
− 1

2

‖ai−ai−1‖
2

∆is

(2π∆is)d/2
da

=

∫
(Rd)n

f(ϕ(a))
n∏
i=1

p∆is(ai−1, ai)da

= E [f(ϕ(bs1 , bs2 , ..., bsn))]

= E
[
f(bP)

]
.

Theorem 1.8. Using the same notation as Proposition 1.7, given a bounded con-

tinuous map f : W (Rd)→ R,

lim
|P|→0

1

ZG

∫
HP (Rd)

fe−
1
2
EdVolG =

∫
W (Rd)

fdµ. (1.29)

Proof. From the result of Proposition 1.7 along with the knowledge that µ is the

law of the Brownian process b·, we only need to show that

E[f(bP)]→ E[f(b·)].

This follows from the dominated convergence theorem and the easily seen fact that

bP → b pointwise.



Chapter 2

Background Material

2.1 The Wiener Space

In Definition 1.1 we defined the Wiener space W (M) and Wiener measure

ν. Intuitively, one might understand the Wiener space as the collection of paths a

particle might make in a given interval of time. That is, if at time 0 we know that

a particle is at point o, then we collect all the possible paths the particle might

travel for the first increment of time. When M = Rd and o = 0 the space W (Rd)

is often called the Classical Wiener Space.

It is well known that the Wiener measure on W (Rd) is the law of a Rd-

valued Brownian motion, and conversely, the evaluation maps bs(ω) = ω(s) are an

Rd-valued Brownian motion under the Wiener measure. The analogous statements

can be said for the Wiener measure on W (M) and an M -valued Brownian motion,

although we do not explore this further in what follows. The interested reader is

referred to [5, 13, 6] for the definition and treatment of a manifold-valued Brownian

motion.

Notation 2.1. We will be frequently moving between the spaces W (Rd) and W (M)

and therefore it is useful to fix the symbol µ as the Wiener measure on W (Rd) and

keep the symbol ν as the Wiener measure on W (M). Also, we will let {bs}s∈[0,1]

represent the evaluation maps on W (Rd), which, as mentioned above, is an Rd-

valued Brownian motion under the measure µ.

10
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2.2 Important subspaces of W (M)

The subspace H(M) ⊂ W (M) defined by

H(M) := {σ ∈ W (M) : σ is absolutely continuous,

∫ 1

0

‖σ′(s)‖2ds <∞} (2.1)

is called the Cameron-Martin space on M . The quantity E(σ) defined for σ ∈
H(M) is given by

E(σ) :=

∫ 1

0

‖σ′(s)‖2ds (2.2)

and is called the energy of σ. Hence, we can describe H(M) as the collection of

absolutely continuous paths in W (M) with finite energies.

If P = {0 = s0 < s1 < · · · < sn = 1} is a partition of [0, 1], then we can

define the finite dimensional submanifold of H(M) by collecting the paths which

are piecewise geodesic between the partition points. That is,

HP(M) := {σ ∈ W (M) :
∇
ds
σ′(s) = 0 for s /∈ P}, (2.3)

where ∇
ds

is the covariant derivative defined in Eq. (2.11). Note that we have

the following containment, HP(M) ⊂ H(M) ⊂ W (M). Intuitively, we consider

HP(M) as the piecewise geodesic approximations to the paths in W (M). In the flat

case, HP(Rd) is the collection of continuous piecewise linear paths parameterized

on [0, 1] approximating those paths in W (Rd), which leads us to create the map

bP : W (Rd)→ HP(Rd) by

bPs :=
n∑
i=1

1Ji(s)

[
∆ib

∆is
(s− si−1) + bsi−1

]
(2.4)

where we are using the notation

Ji =

[0, s1] i = 1

(si−1, si] 1 < i ≤ n
(2.5)

and

∆ib := bsi − bsi−1
(2.6)

∆is := si − si−1. (2.7)
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Explicitly, taking s ∈ [0, 1] with si−1 < s ≤ si, we have that

bPs (ω) =
bsi(ω)− bsi−1

(ω)

si − si−1

(s− si−1) + bsi−1
(ω)

=
ω(si)− ω(si−1)

si − si−1

(s− si−1) + ω(si−1) (2.8)

which is the piecewise linear approximation to ω with respect to the partition P .

Similarly then, we consider bP as the piecewise linear approximation to Brownian

motion b. Something to notice here is that the restriction of bP to HP(Rd) is just

evaluation where if ω ∈ HP(Rd) then bPs (ω) = ω(s) and therefore, on HP(Rd),

bP = b.

Notation 2.2. Since we will frequently use notation such as that in Eq. (2.6) and

Eq. (2.7) let us agree that if f : [0, 1]→ Rd is any map, then

∆if := f(si)− f(si−1). (2.9)

2.3 The tangent space TσHP(M)

Take σ ∈ HP(M). We can form a tangent vector X ∈ TσHP(M) by taking

a smoothly varying one-parameter family {σt}t∈(−ε,ε) ⊂ HP(M) such that σ0 = σ

and setting X = d
dt

∣∣
t=0

σt. Hence, fixing s ∈ [0, 1] we can realize X as a vector field

along σ by X(s) = d
dt

∣∣
t=0

σt(s) ∈ Tσ(s)(M). Moreover, between partition points in

P , σt is a family of geodesic curves passing through the geodesic curve described

by σ, which therefore tells us that X will be a Jacobi field between the partition

points. Thusly, between partition points, X must satisfy Jacobi’s equation,

∇2

ds2
X(s) = R(σ′(s), X(s))σ′(s), (2.10)

where R is the curvature tensor on M . In this way we can (and do!) identify

TσHP(M) with the continuous piecewise Jacobi fields along σ.

A full statement and proof of this fact can be found in [1, Proposition 4.4]

and is restated here for completeness.

Proposition 2.3. Let σ ∈ HP(M), then X ∈ TσHP(M) if and only if X satisfies

Eq. (2.10) on [0, 1]\P.
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2.4 Geometric basics

The pointed d-dimensional Riemannian manifold (M, g, o) with metric g

and fixed point o ∈M will be endowed with the Levi-Civita covariant derivative∇.

If σ : [0, 1]→M is a path with σ(0) = o, we use the symbol //s(σ) : ToM → Tσ(s)M

to represent parallel translation along σ with respect to ∇. For a C1 vector field

X along the path σ, define ∇
ds

by

∇
ds
X(s) := //s(σ)

d

ds

{
//−1

s (σ)X(s)
}
. (2.11)

Equivalently, if X is a curve in TM parameterized on [0, 1] with X(0) ∈ ToM , we

have

∇
ds
X(s) := //s(π(X))

d

ds

{
//−1

s (π(X))X(s)
}

(2.12)

where π : TM →M is the standard projection.

The curvature tensor R is defined by

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (2.13)

for all vector fields X, Y and Z on M . The Ricci tensor is then defined as

Ric(X) :=
d∑
i

R(X, ei)ei (2.14)

for the vector field X on M and orthonormal frame {ei}di=1 and the scalar curvature

on M is given by

Scal :=
d∑
i=1

g(Ric(ei), ei). (2.15)

Notice that for a given p ∈M , Ric |Tp(M) is a linear map Tp(M)→ Tp(M). There-

fore, Scal(p) = tr(Ric |Tp(M)).

We fix an isometry u0 : Rd → To(M) and from henceforth identify To(M)

with Rd. Some of the work of this paper will be translating statements between

the spaces W (M), H(M), and HP(M) and the spaces W (Rd), H(Rd), and HP(Rd).

In doing so many proofs become tractable; however, this does lead us to introduce

the reader to more notation.
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Notation 2.4. If π : TM → M is the projection, f : Rd(= To(M))→ TpM is an

isometry, we define

1. Ωf : Rd × Rd × Rd → Rd by Ωf (a, b)c = f−1R(fa, fb)fc.

2. Ricf : Rd → Rd is the linear map defined by Ricf (v) =
∑d

i=1 Ωf (v, εi)εi where

{εi}di=1 is an orthonormal basis for Rd.

3. Given a curves h : [0, 1]→ Rd and σ : [0, 1]→ M , we define the vector field

Xh
σ along σ by Xh

σ (s) = //s(σ)h(s).

Some basic properties of these objects are listed below, the proofs of which

are straight forward and are postponed until Appendix C.

Proposition 2.5. Using the notation above, we have the following properties

1. For v ∈ ToM we have that Ricf (v) = f−1 Ric(fv).

2. If σ is a curve in H(M) starting at o ∈ M and u(s) := //s(σ), then

tr(Ricu(s)) = Scal(σ(s)).

3. tr(Ωf (v, ·)v) = −〈Ricf v, v〉.

2.5 Cartan’s Development Map

Definition 2.6. Cartan’s Development Map is a diffeomorphism, φ : H(Rd) →
H(M) defined by the functional equation,

σ′(s) = //s(σ)b′(s), σ(0) = o

where σ = φ(b).

By smooth dependence on parameters, φ is smooth, and uniqueness of so-

lutions implies that φ is injective.

Definition 2.7. The Anti-Development Map, φ−1 : H(M)→ H(Rd) is defined by

b = φ−1(σ) where

b(s) =

∫ s

0

//−1
r (σ)σ′(r)dr.
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By similar arguments as above, φ−1 is smooth and injective and shows that

φ : H(Rd) → H(M) is a diffeomorphism, as asserted. To understand intuitively

what φ does, consider N to be a sphere in R3. The map φ : H(R2) → H(N)

imprints a curve drawn on the flat 2-dimensional surface onto N by rolling N

along the curve without sliding or twisting. This is why φ is often referred to as

the Rolling Map.

We also make note of the following important facts,

1. φ is a bijection between HP(Rd) and HP(M), φ(HP(Rd)) = HP(M).

2. This further implies that TσHP(M) is an embedded submanifold of TσH(M),

since TσHP(Rd) is an embedded submanifold of TσH(Rd).

A more detailed account of the developement can be found in [5, 13].

2.6 An Important Previous Result

In Eq. (1.11) we defined the measure νGP on HP(M) which resulted from

our choice of metric on HP(M), GP . In 1999, Andersson and Driver in [1] intro-

duced a similar measure νSP on HP(M) with

νSP =
1

ZSP
e−

1
2
E dVolSP , (2.16)

VolSP is the Riemannian volume form on HP(M) defined by the metric SP given

by,

SP(X, Y ) =
n∑
i=1

g

(
∇
ds
X(si−1+),

∇
ds
Y (si−1+)

)
∆is, (2.17)

and ZSP is the normalization constant defined by

ZSP := (2π)dn/2. (2.18)

Remark 2.8. Similar as to the definition of ZGP in Eq. (1.12), the constant ZSP

can be calculated by,

ZSP =

∫
HP (Rd)

e−
1
2
E dVolSP (2.19)

to arrive at Eq. (2.18).
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With this measure, Andersson and Driver showed the following.

Theorem 2.9 ([1, Theorem 1.8]). Suppose that the curvature and its derivative

are bounded on M . If f : W (M)→ R is bounded and continuous then,

lim
|P|→0

∫
HP (M)

f(σ)dνSP =

∫
W (M)

f(σ)dν. (2.20)

From here our approach is to compare the measure νGP with νSP . Once

again we will find ourselves communicating between the spacesHP(M) andHP(Rd)

and hence it is useful to introduce some notation.

Notation 2.10. When M = Rd we use µSP to represent the measure νSP .

2.7 Important relations between µ, µSP , and νSP .

The following fact that we state as a Theorem is proved in [1, Theorem 4.10

and Corollary 4.13] and left unproved here.

Theorem 2.11. Continuing with the notation introduced above, µSP = Lawµ(bP)

and νSP = Lawµ(φ(bP)). In particular, µSP is the pullback of νSP by φ, µSP =

φ∗νSP ; that is, for any Borel set A ⊂ HP(Rd), µSP (A) = νSP (φ(A)).

The remainder of this section will be spent exploring a couple of the con-

sequences of this theorem. The first corollary is immediate. What follows helps

establish notation that we be used frequently.

Corollary 2.12. Given a partition P = {0 = s0 < s1 < ... < sn = 1} of [0, 1] and

a cylinder function f : W (Rd) → R with f(ω) = F (ω(s0), ω(s1), ..., ω(sn)), where

F : (Rd)n → R is bounded and continuous, then∫
W (Rd)

fdµ =

∫
HP (Rd)

fdµSP =

∫
HP (M)

f(φ−1)dνSP . (2.21)

In particular, νSP is a probability measure on HP(M).

Proof. This is a direct consequence of Theorem 2.11 once we realize that f = f(bP).

For the second claim, set f ≡ 1 and we see that νSP (HP(M)) = µ(W (Rd)) = 1.
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Before establishing the next corollary, we need to agree upon some notation.

We first define the map uPs on W (Rd) by,

uPs := //s(φ(bP)). (2.22)

That is, for ω ∈ W (Rd) and σP := φ(bP(ω)), uPs (ω) : ToM → TσP (s)M is the linear

isometry given by,

uPs (ω) = //s(σ
P). (2.23)

In turn this let us define the random variables RP , SP : W (Rd)→ R by

RP =
n∑
i=1

〈RicuPsi−1
∆ib

P ,∆ib
P〉, (2.24)

SP =
n∑
i=1

Scal(φ(bP)|si−1
)∆is, . (2.25)

Here φ(bP)|si−1
(ω) := φ(bP(ω))(si−1). It is important to note that from Proposition

2.5,

tr(RicuPs ) = Scal(φ(bP)|s) : W (Rd)→ R. (2.26)

Corollary 2.13. Given f : R2 → R continuous, then∫
HP (Rd)

f(RP , SP)dµSP =

∫
W (Rd)

f(RP , SP)dµ. (2.27)

Proof. Again, what we notice is that RP(bP) = RP and SP(bP) = SP so that by

Theorem 2.11,∫
W (Rd)

f(RP , SP)dµ =

∫
W (Rd)

f(RP(bP), SP(bP))dµ =

∫
HP (Rd)

f(RP , SP)dµSP .

We are now in the position to prove a size estimates that will be used

in the proof of the main result. We apply the above Corollary 2.13 by allowing

f(x, y) = ep(x−y) where p ∈ R.
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Lemma 2.14. For p ∈ R there is a constant C depending only on d, p, and the

bound on the curvature of M such that

1 ≤
∫
HP (Rd)

ep(RP−SP )dµSP ≤ eC|P|. (2.28)

Proof. By Corollary 2.13,∫
HP (Rd)

ep(RP−SP )dµSP = E
[
ep(RP−SP )

]
.

The result then follows as a direct application of Corollary F.4 below.

The above result and proof are also given in [1, Proposition 6.4].

Lemma 2.15. For p ∈ R there is a constant C depending only on d, p, and the

bound on the curvature of M such that∫
HP (Rd)

∣∣∣∣exp

{
p(SP(ω)−

∫ 1

0

Scal(φ(ω)(s))ds)

}
− 1

∣∣∣∣ dµSP (ω) ≤ C|P|1/2. (2.29)

Proof. There is a bound Λ = Λ(curvature) <∞ such that for ω ∈ HP(Rd),∣∣∣∣SP(ω)−
∫ 1

0

Scal(φ(ω)(s))ds

∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

∫ si

si−1

{Scal(φ(ω)(s))− Scal(φ(ω)(si−1))} ds

∣∣∣∣∣
≤

n∑
i=1

∫ si

si−1

|Scal(φ(ω)(s))− Scal(φ(ω)(si−1))| ds

≤ Λ
n∑
i=1

∫ si

si−1

‖ω(s)− ω(si−1)‖ ds

= Λ
n∑
i=1

∫ si

si−1

∥∥∥bPs (ω)− bPsi−1
(ω)
∥∥∥ ds

≤ Λ
n∑
i=1

∆is
∥∥∆ib

P∥∥ ,
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where we recall that bP is the identity on HP(Rd). From here,∫
HP (Rd)

∣∣∣∣exp

{
p(SP(ω)−

∫ 1

0

Scal(φ(ω)(s))ds)

}
− 1

∣∣∣∣ dµSP (ω)

≤ pΛ
n∑
i=1

∆is

∫
HP (Rd)

‖∆ib
P‖ exp

{
pΛ

n∑
j=1

∆js‖∆jb
P‖

}
dµSP

= pΛ
n∑
i=1

∆isE

[
‖∆ib‖ exp

{
pΛ

n∑
j=1

∆js‖∆jb‖

}]

= pΛ
n∑
i=1

∆isE
[
‖∆ib‖epΛ∆is‖∆ib‖

]∏
j 6=i

E
[
epΛ∆js‖∆jb‖

]
= pΛ

n∑
i=1

(∆is)
3/2E

[
‖b1‖epΛ(∆is)

3/2‖b1‖
]∏
j 6=i

E
[
epΛ(∆js)

3/2‖b1‖
]

≤ pΛ|P|1/2E
[
‖b1‖epΛ|P|

3/2‖b1‖
] n∏
i=1

(
1 + pΛ(∆is)

3/2E
[
‖b1‖epΛ(∆is)

3/2‖b1‖
])

≤ C|P|1/2.

Here the first inequality comes from |ea − 1| ≤ e|a| − 1 ≤ |a|e|a|, the penultimate

inequality comes from eax ≤ 1 + axeax for a, x ≥ 0, and the final inequality follows

from the fact that

n∏
i=1

(
1 + pΛ(∆is)

3/2E
[
‖b1‖epΛ(∆is)

3/2‖b1‖
])
≤ exp

{
pΛ|P|1/2E

[
‖b1‖epΛ|P|

3/2‖b1‖
]}

.

The final result discussed in this section introduces the maps ρP and ρ̃P

which are a major focus throughout the sequel. Given the measure νGP in Eq.

(1.11), we let ρP : HP(M) → R be the Lebesgue-Radon-Nicodym derivative with

respect to νSP ,

dνGP = ρPdνSP . (2.30)

We then define ρ̃P : W (Rd)→ R as

ρ̃P = ρP(φ(bP)). (2.31)
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Proposition 2.16. Let f : W (M)→ R be bounded and continuous. Then,∫
HP (M)

fdνGP =

∫
HP (Rd)

f(φ)ρ̃PdµSP =

∫
W (Rd)

f(φ(bP))ρ̃Pdµ. (2.32)

Proof. By the definition of ρP ,∫
HP (M)

fdνGP =

∫
HP (M)

fρPdνSP .

By Theorem 2.11, ∫
HP (M)

fρPdνSP =

∫
HP (Rd)

f(φ)ρP(φ)dµSP ,

and we finish by another application of Theorem 2.11 and by noticing that ρP(φ) =

ρ̃P on HP(Rd).



Chapter 3

Setup for the Proof of Theorem

1.4

As previously mentioned, TσHP(M) is naturally identified with continuous

piecewise Jacobi fields along σ with respect to the partition P . Recall that a Jacobi

field X along σ is one which satisfies,

∇2

ds2
X(s) = R(σ′(s), X(s))σ′(s). (3.1)

The following proposition is proved in [1, Proposition 4.4].

Proposition 3.1. For σ ∈ HP(M) and h ∈ H(Rd), define u(s) := //s(σ) and

ω := φ−1(σ) ∈ HP(Rd). Then Xh
σ ∈ TσHP(M) if and only if h satisfies

h′′(s) = Ωu(s)(ω
′(s), h(s))ω′(s) on [0, 1]\P . (3.2)

Following the notation of Proposition 3.1, ω′(s) = ∆iω
∆is

= ∆ib
P (ω)

∆is
when

s ∈ (si−1, si). Moreover, u(s) = //s(φ(ω)) = uPs (ω), where uP is defined in Eq.

(2.22). Hence, for each i ∈ {1, ..., n} and s ∈ (si−1, si), we can rewrite Eq. (3.2)

as,

h′′(s) = ΩuPs (ω)

(
∆ib

P(ω)

∆is
, h(s)

)
∆ib

P(ω)

∆is
. (3.3)

This motivates the definition of the following operators,

APi (s) := ΩuPs+si−1

(
∆ib

P

∆is
, ·
)

∆ib
P

∆is
, . (3.4)

21
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with 1 ≤ i ≤ n and s ∈ (si−1, si). More explicitly, for each ω ∈ W (Rd) and

s ∈ (si−1, si), A
P
i (s)(ω) is the linear operator Rd → Rd defined by,

APi (s)(ω)x = ΩuPs+si−1
(ω)

(
∆ib

P(ω)

∆is
,x

)
∆ib

P(ω)

∆is
. (3.5)

In what follows we typically suppress ω from the notation. It is important to notice

that from Proposition 2.5,

tr(APi (0)) = −
〈

RicuPsi−1

∆ib
P

∆is
,
∆ib

P

∆is

〉
. (3.6)

Moreover, the assumption that the curvature and its derivative are bounded on M

is equivalent to the existence of some κ <∞ such that

sup
s
‖APi (s)‖ ≤ κ

‖∆ib‖2

(∆is)2
(3.7)

sup
s
‖ d
ds
APi (s)‖ ≤ κ

‖∆ib‖3

(∆is)3
. (3.8)

3.1 Defining the basis {fi,a}

From here on, unless mentioned otherwise, we will assume that P = {s0 =

0 < s1 = 1/n < · · · < sn = 1} is the equally spaced partition on [0, 1] and

∆ := 1
n

= |P|. We will also assume that the curvature of M and its derivative are

both bounded and that M has non-positive sectional curvature.

With this in mind, for each s ∈ [0,∆] and i ∈ {1, ..., n}, consider the

differential equation,

d2

ds2
ZPi (s) = APi (s)ZPi (s) (3.9)

with ZPi (s) : Rd → Rd a linear map. Applying existence and uniqueness of ordinary

differential equations, we define the following solutions to Eq. (3.9):

SPi = ZPi with initial conditions SPi (0) = 0,
d

ds
SPi (0) = I (3.10)

CPi = ZPi with initial conditions CPi (0) = I,
d

ds
CPi (0) = 0 (3.11)

V Pi = ZPi with initial conditions V Pi (0) = SPi−1(∆),
d

ds
V Pi (0) = −FPi−1 (3.12)
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where

FPi = SPi+1(∆)−1CPi+1(∆)SPi (∆). (3.13)

With the above definitions,

V Pi+1(s) = CPi+1(s)SPi (∆)− SPi+1(s)FPi . (3.14)

The fact that SPi (∆) has an inverse is not immediate. However, we are guar-

anteed the inverse exists when we restrict ourselves to manifolds of non-positive

sectional curvature (see Section E). Intuitively, one might understand this fact by

realizing that in the case where M has constant negative sectional curvature, SPi

grows like sinh, which remains away from 0 for positive arguments, whereas if

M has constant positive sectional curvature, SPi grows like sine, which frequently

returns to 0 and therefore fails to be invertible.

We now define the basis {fPi,a : 1 ≤ i ≤ n, 1 ≤ a ≤ d} which satisfy Eq.

(3.2) with the boundary conditions

fPi,a(0) = 0 (3.15)

d

ds
fPi,a(sj+) =


ea j = i− 1

−FPi ea j = i

0 otherwise.

(3.16)

Using Eq. (3.10), Eq. (3.11), and Eq. (3.14),

fPi,a(s) = 1Ji(s)S
P
i (s− si−1)ea + 1Ji+1

(s)V Pi+1(s− si)ea (3.17)

where {ea}da=1 is the standard basis for Rd. This set of maps induces a basis

FP :=
{
X
fPi,a
φ(bP )

: 1 ≤ i ≤ n, 1 ≤ a ≤ d
}

(3.18)

of Tφ(bP )HP(M) where the meaning of Xh
σ is established in Notation 2.4.

3.2 The matrix GFP

Define GFPP as the n× n block diagonal matrix with d× d blocks given by

GFPP :=
[
GP

(
X
fPi,a
φ(bP )

, X
fPj,c
φ(bP )

)
: 1 ≤ i, j ≤ n, 1 ≤ a, c ≤ d

]
. (3.19)
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That is, GFPP is the matrix representation of the metric GP under the basis FP in

Eq. (3.18). We write the (i, j)th block of GFPP as[
GFPP

]
i,j

:=
[
GP

(
X
fPi,a
φ(bP )

, X
fPj,c
φ(bP )

)
: 1 ≤ a, c ≤ d

]
(3.20)

and make note that as the mesh of the partition decreases to zero, n goes off to

infinity while d remains constant.

Let i, j ∈ {1, ..., n}, a, c ∈ {1, ..., d}, and define SPn+1 = V Pn+1 ≡ 0,

GP

(
X
fPi,a
φ(bP )

, X
fPj,c
φ(bP )

)
=

∫ 1

0

g
(
X
fPi,a
φ(bP )

(s), X
fPj,c
φ(bP )

(s)
)
ds (3.21)

=

∫ 1

0

〈
fPi,a(s), f

P
j,c(s)

〉
ds (3.22)

where 〈·, ·〉 indicates the inner-product on To(M) = Rd defined by g. Using Eq.

(3.17),∫ 1

0

〈
fPi,a(s), f

P
j,c(s)

〉
ds = δi,j

〈
ea,

[∫ ∆

0

(SPi (s)trSPi (s) + V Pi+1(s)trV Pi+1(s))ds

]
ec

〉
+ δi,j+1

〈
ea,

[∫ ∆

0

SPj+1(s)trV Pj+1(s)ds

]
ec

〉
+ δi+1,j

〈
ea,

[∫ ∆

0

V Pi+1(s)trSPi+1(s)ds

]
ec

〉
, (3.23)

which implies that,

[
GFPP

]
i,j

=



∫ ∆

0
(SPi (s)trSPi (s) + V Pi+1(s)trV Pi+1(s))ds i = j∫ ∆

0
V Pi+1(s)trSPi+1(s)ds i+ 1 = j∫ ∆

0
SPj+1(s)trV Pj+1(s)ds i = j + 1

0 otherwise

(3.24)

Equivalently,

GFPP =


D1 M2 0 0

M tr
2 D2 M3 0

0
. . . . . . Mn

0 0 M tr
n Dn

 (3.25)
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where

Di =


∫ ∆

0

(
SPi (s)trSPi (s) + V Pi+1(s)trV Pi+1(s)

)
ds 1 ≤ i < n∫ ∆

0
SPn (s)trSPn (s)ds i = n

(3.26)

and

Mi =

∫ ∆

0

V Pi (s)trSPi (s)ds 2 ≤ i ≤ n. (3.27)

3.3 G
FP
P in the flat case

In the case that M = Rd, Eq. (3.9) becomes d
ds
ZP(s) = 0 yielding that

ZP(s) = ZP(0) + s
(
d
ds

∣∣
0
ZP(s)

)
. Therefore SPi (s) = sI, CPi (s) = I, and V Pi+1(s) =

(∆− s)I. Particularly,

fi,a =
{

(s− si−1)1Ji(s) + (si+1 − s)1Ji+1
(s)
}
ea. (3.28)

Using Eqs. (3.25), (3.26), and (3.27) we calculate

GFPP (Rd) =
∆3

6


4I I 0 0

I 4I I 0

0
. . . . . . I

0 0 I 2I

 . (3.29)

Since this matrix will prove important to understand throughout the remainder,

we use the notation LP := GFPP (Rd). That is,

LP :=
∆3

6


4I I 0 0

I 4I I 0

0
. . . . . . I

0 0 I 2I

 . (3.30)

Proposition 3.2. The normalization constant ZGP defined in Eq. (1.12) is given

by,

ZGP =

√
(2π)nd

det(LP)

∆nd
. (3.31)
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Proof. In Proposition 1.6, we found that,

ZGP =
√

det(GP(gi,a, gj,c))
n∏
i=1

(2π∆is)
d/2

=
√

(2π∆)nd det(GP(gi,a, gj,c)),

where gi,a were defined in Eq. (1.17). However, comparing Eqs. (1.17) and (3.28),

we notice that, 1
∆
fi,a = gi,a (where we recall that ∆is = ∆ for each i), implying

that,

det(GP(gi,a, gj,c)) =
1

∆2nd
det(GFPP (Rd)) =

1

∆2nd
det(LP).

Therefore,

ZGP =

√
(2π)nd det(LP)

∆nd
.

3.4 A simplified expression for ρ̃P

We now return to the more general manifold M . In Eq. (2.30) we de-

fined the Lebesgue-Radon-Nikodym derivative ρP , which by the definition of the

Riemannian volume form,

ρP(σ) =
ZSP
ZGP

√√√√√det
{
GP(X

hi,a
σ , X

hj,c
σ )

}
det
{
SP(X

hi,a
σ , X

hj,c
σ )

} (3.32)

where the collection {hi,a : 1 ≤ i ≤ n, 1 ≤ a ≤ d} forms a basis of the the space

consisting of continuous maps satisfying Eq. (3.2) with hi,a(0) = 0. If we define

SFPP analogously to GFPP , where SFPP is the matrix representation of the metric SP

using the basis FP , then we have,

ρ̃P = ρP(φ(bP)) =
ZSP
ZGP

√
det
(
GFPP

)
det
(
SFPP

) . (3.33)

Define the remainder of the matrix GFPP by

RP := GFPP − LP . (3.34)
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From Eqs. (2.18) and (3.33) along with Proposition 3.2,

ρ̃P =

√
∆nd det

(
GFPP

)
det(LP) det

(
SFPP

)
=

√
∆nd det (LP +RP)

det (LP) det
(
SFPP

) . (3.35)

One final step in simplifying the form of ρ̃P is aided by the following Proposition,

proved in [17, Theorem 4.7],

Proposition 3.3. Using the notation defined above,

det
(
SFPP

)
= ∆nd. (3.36)

As an immediate corollary of Proposition 3.3 in combination with Eq. (3.35) we

have,

ρ̃P =

√
det (LP +RP)

det (LP)
(3.37)

3.5 Properties of LP
This section is devoted to proving certain properties of LP summarized

below in Theorem 3.4. The proof of the theorem can safely be skipped if the

reader is willing to accept the statement. We use {ea : 1 ≤ a ≤ d} to denote the

standard basis in Rd.

Theorem 3.4. There exists an orthonormal basis of eigenvectors of LP , {uk,a :

1 ≤ k ≤ n, 1 ≤ a ≤ d} with,

uPk,a := βPk


α1
kea

α2
kea
...

αnkea

 . (3.38)

Here, for 1 ≤ k < n, αmk = sin(mθPk ) with {θPk : 1 ≤ k < n} ⊂ (0, π) a monotoni-

cally increasing sequence given by,

θPk =
π(k + rk)

n+ 1
(3.39)
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where

k

2(n+ 1)
≤ rk ≤

(
4k

n+ 1
∧ 1

)
. (3.40)

For k = n, αmn = γmn −γ−mn with γn ∈ (−2,−3/2). If 1 ≤ k < n, the normalization

constants βk are given by

(βPk )2 =
2

n

(
1

1− εk

)
(3.41)

where |εk| = O (1/n) and thusly βPk = O (1/
√
n). For k = n,

(βPn )2 =

(
γ

2(n+1/2)
n − γ−2(n+1/2)

n

γn − γ−1
n

− 2n− 1

)−1

. (3.42)

In particular, for large enough n, βPn < (3/2)−n. Further, if 1 ≤ k < n − 1, then∣∣(βPk+1)2 − (βPk )2
∣∣ = O (1/n2).

The eigenvalues λPk,a, defined so that LPuk,a = λPk,auk,a, are given by λPk,a =

∆3

3

(
2 + cos(θPk )

)
=: λPk for 1 ≤ k < n, and λPn,a = ∆3

6
(4 + γn + γ−1

n ) =: λPn when

k = n, which further implies that

∆3

4
≤ ‖LP‖ ≤ ∆3. (3.43)

Finally, there exists an upper triangular matrix AP such that

LP = APAtrP . (3.44)

Here AP is invertible and

‖[A−1
P ]i,j‖2 ≤


3

∆3

(
1
2

)j−i
j ≥ i

0 j < i
. (3.45)

3.5.1 The Matrix ln

Let ln be the n× n matrix given by

ln =



4 1 0 0 0

1 4 1 0 0

0 1
. . . 1 0

0 0 1 4 1

0 0 0 1 2


. (3.46)
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Our first goal is to find the eigenvalues and eigenvectors of ln. To do so, we write

ln as

ln =



−2 1 0 0 0

1 −2 1 0 0

0 1
. . . 1 0

0 0 1 −2 1

0 0 0 1 −4


+



6 0 0 0 0

0 6 0 0 0

0 0
. . . 0 0

0 0 0 6 0

0 0 0 0 6


=: Dn + 6In.

The usefulness of this is that now Dn looks like the discreetization of the Laplace

operator acting on functions with the boundary conditions f(0) = 0 and f(n+1) =

−2f(n). We know that the eigenvectors of the Laplace operator have the form

f(j) = azj + bz−j. Enforcing the boundary conditions we have that a = −b from

f(0) = 0 and that zn+1 − z−(n+1) = −2(zn − z−n) from f(n + 1) = −2f(n).

Rewriting this last equation yields,

z2(n+1) + 2z2n+1 − 2z − 1 = 0. (3.47)

Before we discuss solutions to the above equation, we first will find the eigenvalues.

With f(j) = a(zj − z−j) for 1 ≤ j ≤ n,

f(j + 1)− 2f(j) + f(j − 1) = a(zj+1 − z−j−1 − 2zj + 2z−j + zj−1 − z−j+1)

= a(zj − z−j)(z + z−1 − 2)

= (z + z−1 − 2)f(j).

Therefore Dnf(j) = (z + z−1 − 2)f(j) and hence lnf(j) = (z + z−1 + 4)f(j). To

summarize these statements,

Proposition 3.5. For any a, z ∈ C with z satisfying equation 3.47, the map

f : {1, 2, ..., n} → C given by f(j) = a(zj − z−j) is an eigenvector of ln with

eigenvalue z + z−1 + 4.

3.5.2 Solving Equation 3.47

Lemma 3.6. There exists γn ∈ R with −2 < γn < −3
2

such that if n ≥ 2 then γn

solves equation 3.47. Moreover as n→∞, γn → −2.
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Proof. If we set gn(z) := z2(n+1)(1+2z−1)−(1+2z), it is easy to see that gn(−2) =

3 and that gn(−3/2) < 0 when n ≥ 2. Moreover, given any x ∈ (−2,−3/2),

limn→∞ gn(x) → −∞. Applying the intermediate value theorem to these facts

finishes the proof.

Proposition 3.7. There exist numbers {θk}n−1
k=1 ⊂ (0, π) with θk <

π(k+1)
n+1

< θk+1

such that eiθk solves equation 3.47. Moreover, there is a strictly increasing function

ϕ ∈ C1([0, π] → [0, π]), independent of n, where ϕ(0) = 0, ϕ(π) = 2π and 1 ≤
ϕ′ ≤ 4 where θk solves

θk −
1

2(n+ 1)
ϕ(θk) =

πk

n+ 1
.

Proof. Suppose that θ ∈ (0, π) and that z = eiθ solve 3.47. By factoring we have

e2(n+1)iθ(1 + 2e−iθ) = (1 + 2eiθ).

Setting ζ = 1 + 2eiθ, we then have

e2(n+1)iθ =
ζ

ζ
.

Now, since |ζ/ζ| = 1, we can find some R-valued map, ϕ(θ), such that

eiϕ(θ) =
ζ

ζ
,

which then implies that

exp

{
2(n+ 1)i

(
θ − 1

2(n+ 1)
ϕ(θ)

)}
= 1

which in turn implies that θ − 1
2(n+1)

ϕ(θ) = πk
n+1

for some k ∈ N.

With ζ = 1+2eiθ, we have ζ/ζ = a {(1 + 4(cos(θ) + cos(2θ)) + i4(sin(θ) + sin(2θ))}
where a is a normalization constant. Hence, if r1 and r2 are the two roots of

1 + 4(cos(x) + cos(2x)) on the interval (0, π) we can define ϕ as

ϕ(θ) :=


tan−1

(
4(sin(θ)+sin(2θ))

1+4(cos(θ)+cos(2θ))

)
θ ∈ [0, r1]

π + tan−1
(

4(sin(θ)+sin(2θ))
1+4(cos(θ)+cos(2θ))

)
θ ∈ (r1, r2]

2π + tan−1
(

4(sin(θ)+sin(2θ))
1+4(cos(θ)+cos(2θ))

)
θ ∈ (r2, π]

(3.48)
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in which case ϕ is strictly increasing and C1 with ϕ(0) = 0 and ϕ(π) = 2π.

Moreover, ϕ′(x) = 4(cos(x)+2)
5+4 cos(x)

and therefore 1 ≤ |ϕ′(x)| ≤ 4.

With this definition of ϕ, for 1 ≤ k ≤ n− 1, define θk by

θk −
1

2(n+ 1)
ϕ(θk) =

πk

n+ 1
. (3.49)

We have left to show that such a θk exists and that θk <
π(k+1)
n+1

< θk+1 for each

1 ≤ k ≤ n − 2. Notice that for any x ∈ (0, π), πk < πk + 1
2
ϕ(x) < π(k + 1), so

therefore if we define

g(x) := x− 1

2(n+ 1)
ϕ(x)− πk

n+ 1

then g(πk/(n + 1)) < 0 and g(π(k + 1)/(n + 1)) > 0 and an application of the

intermediate value theorem finishes the proof.

Corollary 3.8. Defining {θk} as above,

π

2(n+ 1)2
≤
∣∣∣∣θk+1 − (θk +

π

n+ 1
)

∣∣∣∣ ≤ 4π

(n+ 1)2
. (3.50)

Proof. Using proposition 3.7,∣∣∣∣θk+1 − (θk +
π

n+ 1
)

∣∣∣∣ =
1

2(n+ 1)
(ϕ(θk+1)− ϕ(θk)).

Now it’s just a matter of applying the mean value theorem and the bounds on ϕ′,

ϕ(θk+1)− ϕ(θk) ≤ 4(θk+1 − θk)

≤ 4

(
π(k + 2)

n+ 1
− πk

n+ 1

)
=

8π

n+ 1

and

ϕ(θk+1)− ϕ(θk) ≥ θk+1 − θk

≥ π

n+ 1

where the last inequality follows since ϕ is an increasing function and θk+1 − θk =

π
n+1

+ ϕ(θk+1)− ϕ(θk).
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Because of the bounds on θk given in proposition 3.7, we can write

θk =
π(k + rk)

n+ 1
(3.51)

for some rk ∈ (0, 1). Using the previous corollary we can give better bounds on rk,

which will be used in later estimates.

Lemma 3.9. Using the notation in Eq. 3.51,

k

2(n+ 1)
≤ rk ≤

(
4k

n+ 1
∧ 1

)
(3.52)

Proof. rk < 1 by Proposition 3.7. Defining θ0 := 0 and using the recursive rela-

tionship from corollary 3.8

θk +
π

n+ 1
+

π

2(n+ 1)2
≤ θk+1 ≤ θk +

π

n+ 1
+

4π

(n+ 1)2
,

we get

k

(
π

n+ 1
+

π

2(n+ 1)2

)
≤ θk ≤ k

(
π

n+ 1
+

4π

(n+ 1)2

)
(3.53)

which is a quick algebraic rearrangement away from what needed to be shown.

3.5.3 Main Properties of ln

Proposition 3.10. There exists an orthonormal set of eigenvectors of matrix ln

from Equation 3.46. For 1 ≤ k < n, the eigenvectors can be written as

vk = βk


sin(θk)

sin(2θk)
...

sin(nθk)

 (3.54)

and for k = n,

vn = βn


γn + γ−1

n

γ2
n + γ−2

n

...

γnn + γ−nn

 . (3.55)
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Here θk are described in Proposition 3.7 and γn ∈ (−2,−3/2) is described in

Lemma 3.6. For 1 ≤ k < n, the normalization constants βk are given by

β2
k =

2

n

(
1

1− εk

)
(3.56)

where

εk =
1

2n

(
sin((2n+ 1)θk)

sin(θk)
− 1

)
(3.57)

from which |εk| ≤ 4
n

. For k = n,

β2
n =

(
γ

2(n+1/2)
n − γ−2(n+1/2)

n

γn − γ−1
n

− 2n− 1

)−1

. (3.58)

Moreover, lnvk = λkvk where for 1 ≤ k < n, λk = 2(2 + cos(θk)) and for k = n,

λn = 4 + γn + γ−1
n .

Proof. From Proposition 3.5 and Proposition 3.7, for 1 ≤ k < n we have that vk

is an eigenvector of ln with eigenvalue λk. Also taking into consideration Lemma

3.6, vn is an eigenvector of ln with eigenvalue λn. Since ln is symmetric, and the

eigenvalues are distinct, it follows that the {vk} are indeed orthogonal.

To prove the properties of the normalization constants βk, let a, z ∈ C and

set f ∈ Rn with f(j) = a(zj − z−j). Then,

n∑
j=1

f(j)2 = a2

n∑
j=1

(
zj − z−j

)2

= a2

n∑
j=1

(
z2j + z−2j − 2

)
= a2

(
−2n+

j=n∑
j=−n

z2j − 1

)

= a2

(
−2n− 1 +

z2(n+1/2) − z−2(n+1/2)

z − z−1

)
.

Hence for a = 1
2i

and z = eiθ then f(j) = sin(jθk) and,

‖f‖2 =
n∑
j=1

f(j)2 =
n

2
+

1

4

(
1− sin(2(n+ 1/2)θ)

sin(θ)

)
(3.59)
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which proves equations 3.56 and 3.57. Alternatively, if z = γn and a = 1,

‖f‖2 =
n∑
j=1

f(j)2 = −2n− 1 +
γ

2(n+1/2)
n − γ−2(n+1/2)

n

γn − γ−1
n

(3.60)

which proves equation 3.58. For the bound on εk, note that sin(θk) ≥ sin
(
πk
n+1

)
∧

sin
(
π(k+1)
n+1

)
. Also,

sin ((2n+ 1)θk) = sin

(
[2(n+ 1)− 1]

π(k + rk)

n+ 1

)
= sin (2π(k + rk)− θk)

= sin (2π(k + rk)) cos (θk)− cos (2π(k + rk)) sin (θk)

= sin(2πrk) cos(θk)− cos(2π(k + rk)) sin(θk).

Hence ∣∣∣∣sin((2n+ 1)θk)

sin(θk)

∣∣∣∣ =

∣∣∣∣sin(2πrk)

sin(θk)
cos(θk)− cos(2π(k + rk))

∣∣∣∣
≤ 1 +

∣∣∣∣sin(2πrk)

sin(θk)

∣∣∣∣
≤ 1 +

|sin(2πrk)|

sin
(
πk
n+1

)
∧ sin

(
π(k+1)
n+1

)
≤ 1 +

∣∣sin (Sk πk
n+1

)∣∣
sin
(
πk
n+1

)
∧ sin

(
π(k+1)
n+1

)
≤ 1 + Sk

≤ 9.

where Sk ∈ [1, 8] is chosen (using Lemma 3.9) so that

sup
s∈[ 1

2
,4]

∣∣∣∣sin(2π
sk

n+ 1

)∣∣∣∣ =

∣∣∣∣sin(Sk πk

n+ 1

)∣∣∣∣ .
Therefore |εk| ≤ 4

n
.

Corollary 3.11. For n ≥ 5, ∣∣β2
k

∣∣ ≤ 10

n
(3.61)
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and

|β2
k+1 − β2

k| ≤
4

n2
(
1− 4

n

)2 (3.62)

≤ 100

n2
(3.63)

Proof. The first claim is immediate since from Proposition 3.10, β2
k = 2

n
(1− εk)−1

with |εk| ≤ 4/n. For the second claim,

|β2
k+1 − β2

k| =
1

2n

(
|εk − εk+1|

(1− εk)(1− εk+1)

)
≤ 1

2n

(
8
n(

1− 4
n

)2

)
=

4

n2

1(
1− 4

n

)2

and again, the result follows.

We have proved all we need to present the proof of Theorem 3.4. However,

we end this section with a lemma which will not be needed for the main result of

this paper, but is interesting in that it gives an explicit formula for the determinant

of ln.

Lemma 3.12. We can calculate the determinant of ln as

det(ln) =
1

2

{
(2 +

√
3)n + (2−

√
3)n
}

(3.64)

= cosh(n log(2 +
√

3)). (3.65)
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Proof. Set dn = det(ln). Then,

dn = 4

∣∣∣∣∣∣∣∣∣∣∣

4 1 0 0

1
. . . 1 0

0 1 4 1

0 0 1 2

∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0

0 4 1 0

0 1
. . . 1

0 0 1 2

∣∣∣∣∣∣∣∣∣∣∣
= 4

∣∣∣∣∣∣∣∣∣∣∣

4 1 0 0

1
. . . 1 0

0 1 4 1

0 0 1 2

∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
4 1 0

1
. . . 1

0 1 2

∣∣∣∣∣∣∣∣
= 4dn−1 − dn−2.

Therefore, we can write(
dn

dn−1

)
=

(
4 −1

1 0

)(
dn−1

dn−2

)
(

dn

dn−1

)
=: A

(
dn−1

dn−2

)

Now we use elementary linear algebra and find that the eigenvalues of A are λ+ :=

2 +
√

3 and λ− := 2 −
√

3 with eigenvectors v+ :=

(
λ+

1

)
and v− :=

(
λ−

1

)
.

With d1 = 2 and d2 = 7, from here we use this information to diagonalize A and

solve for dn with (
dn

dn−1

)
= An−2

(
d2

d1

)
.

The second equality follows since (2 +
√

3)−1 = 2−
√

3. Therefore,

1

2

{
(2 +

√
3)n + (2−

√
3)n
}

=
1

2

{
(2 +

√
3)n + (2 +

√
3)−n

}
=

1

2

{
en log(2+

√
3) + e−n log(2+

√
3)
}

= cosh(n log(2 +
√

3)).
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Proposition 3.13. As above, let dn = det(ln) with d1 = 2. Define the upper

triangular n× n matrix an by,

an =



√
dn
dn−1

√
dn−2

dn−1
0 0

0
√

dn−1

dn−2

√
dn−3

dn−2
0

0 0
. . .

√
1
d1

0 0 0
√
d1

 . (3.66)

Then

ln = ana
tr
n (3.67)

and

∣∣∣(a−1
n

)
i,j

∣∣∣2 ≤


1
2

(
1
2

)j−i
j ≥ i

0 j < i
. (3.68)

Proof. Define d0 := 1 in which case the diagonal elements can all be written as

(an)i,i =
√
di/di−1 for 1 ≤ i ≤ n and the super diagonal elements are given by

(an)i,i+1 =
√
di−2/di−1 for 2 ≤ i ≤ n. From Lemma 3.12, dn = k1λ

n−1
+ + k1λ

n−1
−

where λ+ = 2 +
√

3 and λ− = 2−
√

3. Note that λ−1
+ = λ− and λ+ + λ− = 4. In

particular, for i ≥ 2,

di + di−2 = k1(λi−1
+ + λi−3

+ ) + k2(λi−1
− + λi−3

− )

= k1λ
i−2
+ (λ+ + λ−1

+ ) + k2λ
i−2
− (λ− + λ−1

− )

= k1λ
i−2
+ (λ+ + λ−) + k2λ

i−2
− (λ− + λ+)

= 4di−1.

Simple matrix multiplication leads to

(ana
tr
n )i,i =

d1 = 2 i = 1

di+di−2

di−1
= 4di−1

di−1
= 4 2 ≤ i ≤ n

and for the super/sub diagonal elements

(ana
tr
n )i,i+1 = (ana

tr
n )i+1,i =

√
di−2

di−1

√
di−1

di−2

= 1.
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With all other elements equal to 0 we conclude that ln = ana
tr
n . To establish the

inequality in Eq. (3.68), for a general matrix of the form

A =


αn βn−1 0 0

0 αn−1 βn−2 0

0 0
. . . β1

0 0 0 α1


the explicit formula for the inverse is,

A−1 =



1
αn
− βn−1

αnαn−1

βn−1βn−2

αnαn−1αn−2
· · ·

∏n−1
i=1 (−βi)∏n
i=1 αi

0 1
αn−1

− βn−2

αn−1αn−2
· · ·

∏n−2
i=1 (−βi)∏n−1
i=1 αi

0 0
. . . . . .

...

0 0 0 1
α2

− β1

α2α1

0 0 0 0 1
α1


.

Therefore, for 1 ≤ i ≤ n and i < j ≤ n,

|(an)i,j|2 =
(dn−i−1/dn−i)(dn−i−2/dn−i−1) · · · (dn−j/dn−j+1)

(dn−i+1/dn−i)(dn−i/dn−i−1) · · · (dn−j+1/dn−j)

=
(dn−j)

2

dn−idn−i+1

<

(
dn−j
dn−i

)2

=

(
1

2 +
√

3

)2(j−i)
(

1 + (2 +
√

3)2(j−n)

1 + (2 +
√

3)2(i−n)

)2

≤ 2

(
1

2 +
√

3

)2(j−i)

= 2

(
1

2

)j−i(
2

2 +
√

3

)j−i(
1

2 +
√

3

)j−i
≤
(

1

2

)j−i(
2

2 +
√

3

)2

<
1

2

(
1

2

)j−i
.

The diagonal elements of a−1
n are all 1

4
with exception of the last diagonal entry,

which is 1
2
. This finishes the proof of Eq. (3.68).
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We now finish this section with the (nearly immediate) proof of Theorem 3.4.

Proof of Theorem 3.4. First note that LP = ∆3

6
ln⊗Id where Id is the d×d identity.

For the assertions concerning the eigenvectors uPk,a, the eigenvalues λPk,a, and the

normalization constants βPk , use Proposition B.9, Proposition 3.10, and Corollary

3.11. For those involving θPk , use Proposition 3.7, Corollary 3.8, and Lemma 3.9.

Finally, for the proofs involving AP , Using Proposition 3.13, LP = APAtrP with

AP =
√

∆3

6
an ⊗ Id and hence A−1

P =
√

6
∆3a

−1
n ⊗ Id.



Chapter 4

Size Estimates and Uniform

Integrability

In Theorem 3.4 we show that there exists an upper triangular block matrix

AP such that

LP = APAtrP . (4.1)

From Eq. (3.37),

ρ̃P =

√
det(LP +RP)

detLP

=
√

det
(
I +A−1

P RP(A−1
P )tr

)
. (4.2)

Moreover, each of the d× d blocks of A−1
P is bounded,

‖[A−1
P ]i,j‖2 ≤


3

∆3

(
1
2

)j−i
j ≥ i

0 j < i
(4.3)

To ease notation for the remainder of this chapter, we also introduce

KPi := sup
0≤s≤∆

‖APi (s)‖ (4.4)

where APi is defined in Eq. (3.4). Using Eq. (3.7),

KPi ≤ κ
‖∆ib‖2

∆2
. (4.5)

40
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4.1 Estimates on the remainder RP
This section is devoted to giving estimates on the non-zero d× d blocks of

the remainder RP , which will in turn be used to estimate the size of ρ̃P sufficient

for proving uniform integrability. From Eq. (3.34) along with the definition of LP
in Eq. (3.30) and the form of GFPP in Eq. (3.26), the non-zero d× d blocks of RP
are of the form

[RP ]i,i =


∫ ∆

0

(
V Pi+1(s)trV Pi+1(s) + SPi (s)trSPi (s)

)
ds− 2∆3

3
I i < n∫ ∆

0

(
SPi (s)trSPi (s)

)
ds− ∆3

3
I i = n

(4.6)

=


∫ ∆

0

{(
V Pi+1(s)trV Pi+1(s)− (∆− s)2I

)
+
(
SPi (s)trSPi (s)− s2I

)}
ds i < n∫ ∆

0

(
SPn (s)trSPn (s)− s2I

)
ds i = n

.

(4.7)

and for 1 ≤ i < n,

[RP ]i,i+1 = [RP ]tri+1,i =

∫ ∆

0

V Pi+1(s)trSPi+1(s)ds− ∆3

6
I (4.8)

=

∫ ∆

0

(V Pi+1(s)trSPi+1(s)− (∆− s)sI)ds (4.9)

Written suggestively in Eqs. (4.7) and (4.9), we set out to estimate ‖V Pi+1(s)trV Pi+1(s)−
(∆− s)2I‖, ‖SPi (s)trSPi (s)− s2I‖, and ‖V Pi+1(s)trSPi+1(s)− (∆− s)sI‖ .

Lemma 4.1. Let s ∈ [0,∆]. The following inequalities hold for SPi , CPi , and FPi

defined in Eqs. (3.10), (3.11), and (3.13).

‖SPi (s)‖ ≤ sinh(
√
KPi s)√

KPi
≤ s cosh(

√
KPi s) (4.10)

‖CPi (s)‖ ≤ cosh(
√
KPi s) (4.11)

‖FPi ‖ ≤ cosh(
√
KPi ∆) cosh(

√
KPi+1∆) (4.12)

Proof. Eqs. (4.10) and (4.11) are direct consequences of Proposition D.1 in com-
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bination with the inequality x−1 sinh(x) ≤ cosh(x). For Eq. (4.12),

‖FPi ‖ = ‖SPi+1(∆)−1CPi+1(∆)SPi (∆)‖

≤
∥∥∥∥CPi+1(∆)

SPi (∆)

∆

∥∥∥∥ from Proposition E.3

≤ cosh(
√
KPi+1∆) cosh(

√
KPi ∆) from Eqs. (4.10) & (4.11).

Lemma 4.2. For s ∈ [0,∆],∥∥SPi (s)− sI
∥∥ ≤ s

(
cosh(

√
KPi ∆)− 1

)
, (4.13)∥∥∥∥V Pi+1(s)− SPi (∆)

∆
(∆− s)

∥∥∥∥ ≤ s

∆
(∆− s) cosh(

√
KPi ∆)

(
cosh(4

√
KPi+1∆)− 1

)
,

(4.14)

and∥∥V Pi+1(s)− (∆− s)I
∥∥ ≤ s

∆
(∆− s)

(
cosh(

√
KPi ∆) cosh(4

√
KPi+1∆)− 1

)
.

(4.15)

Proof. Eq. (4.13) is a direct consequence of Proposition D.1 along with the fact

that cosh is monotonically increasing on [0,∞). For Eq. (4.14) we first apply

Proposition D.2 along with the definition of V Pi+1 in Eq. (3.14) to yield,∥∥∥∥V Pi+1(s)− SPi (∆)

∆
(∆− s)

∥∥∥∥
≤ s

(
1− s

∆

)[
‖SPi (∆)‖KPi+1∆ cosh(

√
KPi+1∆) + ‖FPi ‖

(
cosh(

√
KPi+1∆)− 1

)]
.

Next, use Eqs. (4.10) and (4.12) for ‖SPi (∆)‖ and ‖FPi ‖,

≤ s
(

1− s

∆

)
cosh(

√
KPi ∆) cosh(

√
KPi+1∆)

(
KPi+1∆2 + cosh(

√
KPi+1∆)− 1

)
≤ s

(
1− s

∆

)
cosh(

√
KPi ∆) cosh(

√
KPi+1∆)

((
KPi+1∆2 + 1

)
cosh(

√
KPi+1∆)− 1

)
≤ s

(
1− s

∆

)
cosh(

√
KPi ∆) cosh(

√
KPi+1∆)

(
cosh2(

√
2KPi+1∆)− 1

)
≤ s

(
1− s

∆

)
cosh(

√
KPi ∆)

(
cosh(4

√
KPi+1∆)− 1

)
.
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Here, the final inequality follows from the calculus fact that for a, b ≥ 0, cosh(a) cosh(b) ≤
cosh(a+ b) and cosh(a)(cosh(b)− 1) ≤ cosh(a) cosh(b)− 1.

Finally, for Eq. (4.15) we rewrite V Pi+1(s)− (∆− s)I as

V Pi+1(s)− (∆− s)I

= V Pi+1(s)− (∆− s)I +
SPi (∆)

∆
(∆− s)− SPi (∆)

∆
(∆− s)

=

(
V Pi+1(s)− SPi (∆)

∆
(∆− s)

)
+ (1− s

∆
)
(
SPi (∆)−∆I

)
.

Applying Eqs. (4.13) and (4.14) to the appropriate terms of this sum,∥∥V Pi+1(s)− (∆− s)I
∥∥

≤
∥∥∥∥V Pi+1(s)− SPi (∆)

∆
(∆− s)

∥∥∥∥+ (1− s

∆
)
∥∥SPi (∆)−∆I

∥∥
≤ s

∆
(∆− s)

[
cosh(

√
KPi ∆)

(
cosh(4

√
KPi+1∆)− 1

)
+

(
cosh(

√
KPi ∆)− 1

)]
=

s

∆
(∆− s)

(
cosh(

√
KPi ∆) cosh(4

√
KPi+1∆)− 1

)

We have finally arrived at the point to give estimates for ‖V Pi+1(s)trV Pi+1(s)−
(∆− s)2I‖, ‖SPi (s)trSPi − s2I‖, and ‖V Pi+1(s)trSPi+1(s)− (∆− s)sI‖. To understand

how the previous lemma will be used, we write

V Pi+1(s) =
(
V Pi+1(s)− (∆− s)I

)
+ (∆− s)I

so that,

V Pi+1(s)trV Pi+1(s) =
(
V Pi+1(s)− (∆− s)I

)tr (
V Pi+1(s)− (∆− s)I

)
+ (∆− s)

[(
V Pi+1(s)− (∆− s)I

)tr
+
(
V Pi+1(s)− (∆− s)I

)]
+ (∆− s)2I

and therefore∥∥V Pi+1(s)trV Pi+1(s)− (∆− s)2I
∥∥ ≤∥∥V Pi+1(s)− (∆− s)I

∥∥2

+ 2(∆− s)
∥∥V Pi+1(s)− (∆− s)I

∥∥ . (4.16)
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Conducting the analogous manipulation for SPi (s)trSPi (s)− s2I,∥∥SPi (s)trSPi (s)− s2I
∥∥ ≤∥∥SPi (s)− sI

∥∥2
+ 2s

∥∥SPi (s)− sI
∥∥ . (4.17)

For the final bound,

V Pi+1(s)trSPi+1(s)

= (V Pi+1 − (∆− s)I + (∆− s)I)tr(SPi+1(s)− sI + sI)

= (V Pi+1(s)− (∆− s)I)SPi+1(s) + (∆− s)(SPi+1(s)− sI) + (∆− s)sI.

Therefore,

‖V Pi+1(s)trSPi+1(s)− (∆− s)sI‖

≤ ‖V Pi+1(s)− (∆− s)I‖
(
‖SPi+1(s)− sI‖+ s

)
+ (∆− s)‖SPi+1(s)− sI‖. (4.18)

Proposition 4.3. For s ∈ [0,∆],∥∥V Pi+1(s)trV Pi+1(s)− (∆− s)2I
∥∥

≤
( s

∆

)2

(∆− s)2

(
cosh(2

√
KPi ∆) cosh(8

√
KPi+1∆)− 1

)
+ 2

s

∆
(∆− s)2

(
cosh(

√
KPi ∆) cosh(4

√
KPi+1∆)− 1

)
(4.19)

≤ 3(∆− s)2

(
cosh(2

√
KPi ∆) cosh(8

√
KPi+1∆)− 1

)
, (4.20)

∥∥SPi (s)trSPi (s)− s2I
∥∥ ≤ 3s2

(
cosh(2

√
KPi ∆)− 1

)
(4.21)

and

‖V Pi+1(s)trSPi+1(s)− (∆− s)sI‖

≤ 2
s2

∆
(∆− s)

(
cosh(

√
KPi ∆) cosh(5

√
KPi+1∆)− 1

)
+ (∆− s)s

(
cosh(

√
KPi+1∆)− 1

)
(4.22)

≤ 3s(∆− s)
(

cosh(
√
KPi ∆) cosh(5

√
KPi+1∆)− 1

)
. (4.23)

Proof. We start with the calculus facts that (cosh(a)−1)(cosh(c)−1) ≤ cosh(a) cosh(c)−
1, cosh(a) cosh(c) ≤ cosh(a + c), and cosh(a) ≤ cosh(ra) for any a, c ∈ R and

r ≥ 1. The inequalities then follow by combining Eqs. (4.16), (4.17), and (4.18)

with Lemma 4.2 along with the fact that s/∆ ≤ 1.
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The following theorem is the main result used from this section for the

remainder of this chapter.

Theorem 4.4. For 1 ≤ i ≤ n,∥∥∥[RP ]i,i

∥∥∥ ≤ 2∆3

(
cosh(2

√
KPi ∆) cosh(8

√
KPi+1∆)− 1

)
(4.24)

and for 1 ≤ i < n,∥∥∥[RP ]i,i+1

∥∥∥ =
∥∥∥[RP ]i+1,i

∥∥∥ ≤ ∆3

2

(
cosh(

√
KPi ∆) cosh(5

√
KPi+1∆)− 1

)
. (4.25)

Moreover, this implies that,∥∥∥[A−1
P RP(A−1

P )tr
]
i,i

∥∥∥ ≤ n∑
j=i

λi,j

(
cosh(30

√
KPj ∆) cosh(120

√
KPj+1∆)− 1

)
(4.26)

where λi,j :=
(

1
2

)j−i (∑n
j=i

(
1
2

)j−i)−1

=
(

1
2

)j−i (
2−

(
1
2

)n−i)−1

are chosen so that∑n
j=i λi,j = 1.

Proof. In consideration of Eqs. (4.7) and (4.9), Eqs. (4.24) and (4.25) come from

integrating the bounds given in Proposition 4.3 with respect to s for s ∈ [0,∆].

For Eq. (4.26), recall that AP is upper diagonal, and hence so is A−1
P , and

that RP is tri-diagonal, yielding

[A−1
P RP(A−1

P )tr]i,i =
n∑

j,k=1

[A−1
P ]i,j[RP ]j,k[(A−1

P )tr]k,i

=
n∑
j=i

{
[A−1
P ]i,j[RP ]j,j[(A−1

P )tr]j,i + [A−1
P ]i,j+1[RP ]j+1,j[(A−1

P )tr]j,i

+[A−1
P ]i,j[RP ]j,j+1[(A−1

P )tr]j+1,i

}
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where we keep the convention that for j = n, [·]n,n+1 = [·]n+1,n = 0. Therefore,

‖[A−1
P RP(A−1

P )tr]i,i‖

≤
n∑
j=i

{
‖[A−1

P ]i,j‖2‖[RP ]j,j‖+ 2‖[A−1
P ]i,j+1‖‖[A−1

P ]i,j‖‖[RP ]j+1,j‖
}

≤
n∑
j=i

{
3

(
1

2

)j−i [
2
(

cosh(2
√
KPj ∆) cosh(8

√
KPj+1∆)− 1

)
+

1

2

(
cosh(

√
KPj ∆) cosh(5

√
KPj+1∆)− 1

)]}
≤

n∑
j=i

15

2

(
1

2

)j−i (
cosh(2

√
KPj ∆) cosh(8

√
KPj+1∆)− 1

)
≤

n∑
j=i

15λi,j

(
cosh(2

√
KPj ∆) cosh(8

√
KPj+1∆)− 1

)
≤

n∑
j=i

λi,j

(
cosh(30

√
KPj ∆) cosh(120

√
KPj+1∆)− 1

)
wherein the last inequality we used Proposition A.5 where for α ≥ 1, α(cosh(a) cosh(b)−
1) ≤ cosh(αa) cosh(αb)− 1.

4.2 An Important Lemma

Lemma 4.5. Let p ∈ N and α, β, γ ∈ R with α < 1
4p
, 0 ≤ β, and −1 ≤ γ. Set

Bn := (∆1b, · · · ,∆nb). Then

lim sup
n→∞

E
[(

1 +
β

n

(
eα‖Bn‖

2

+ γ
))np]

<∞. (4.27)

Proof. We define the deterministic functions g(x) := 1 + β
n

(eαx + γ) and f(x) :=

g(x)np = (1+β
n

(eαx + γ))np. We also define the stochastic processQn
t :=

∑n
i=1 ‖bt∧si−

bt∧si−1
‖2. With this notation, Eq. (4.27) becomes

lim sup
n→∞

E[f(Qn
1 )] <∞. (4.28)

We now use Itô’s Lemma to get an estimate on E[f(Qn
t )]. To start, dQn

s = 2‖bs −
bs‖dbs + d ds and d[Qn]s = 4‖bs − bs‖2ds where s = si−1 whenever s ∈ (si−1, si].
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Therefore,

E[f(Qn
t )− f(Qn

0 )] = E
[∫ t

0

f ′(Qn
s )dQn

s +
1

2

∫ t

0

f ′′(Qn
s )d[Qn]s

]
= E

[
d

∫ t

0

f ′(Qn
s )ds+ 4

∫ t

0

f ′′(Qn
s )‖bs − bs‖2ds

]
= d

∫ t

0

E[f ′(Qn
s )]ds+ 4

∫ t

0

E[f ′′(Qn
s )‖bs − bs‖2]ds

where in the second equality we dropped the martingale term. Calculating the

derivatives of f ,

f ′(x) = βαpeαxg(x)np−1

f ′′(x) = β2α2p(p− 1

n
)e2αxg(x)np−2 + βα2peαxg(x)np−1.

This in combination with the fact that g(x) ≥ 1 by our choices of β and γ implies

that there exists a constant C <∞ independent of n such that

E[f(Qn
t )− f(Qn

0 )] ≤ C

∫ t

0

E[e2αQns (1 + ‖bs − bs‖2)g(Qn
s )np−1]ds. (4.29)

From here we want to show that there exists another constant C̃ <∞ independent

of n such that,

E[f(Qn
t )− f(Qn

0 )] ≤ C̃

∫ t

0

E[g(Qn
s )np]ds

= C̃

∫ t

0

E[f(Qn
s )]ds.

Before we do this, let us first understand why this will be enough to finish the

proof. If such a C̃ exists, then we will have

E[f(Qn
t )] ≤ E[f(Qn

0 )] + C̃

∫ t

0

E[f(Qn
s )]ds

=

(
1 +

β

n
(1 + γ)

)np
+ C̃

∫ t

0

E[f(Qn
s )]ds

≤ eβp(1+γ) + C̃

∫ t

0

E[f(Qn
s )]ds.

Applying Gronwall’s inequality to the function t 7→ E[f(Qn
t )],

E[f(Qn
t )] ≤ eβp(1+γ)+C̃t,
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noting the the right hand side is independent of n. In particular, for any t ∈ [0, 1],

lim sup
n→∞

E[f(Qn
t )] ≤ eβp(1+γ)+C̃t <∞, (4.30)

which concludes the proof as soon as the existence of C̃ is established.

From Eq. (4.29), to prove the existence of C̃ it will suffice to show that there

exists a constant Λ independent of n such that E[e2αQns (1+‖bs−bs‖2)g(Qn
s )np−1] ≤

ΛE[g(Qn
s )np]. Using Holder’s inequality,

E[e2αQns (1 + ‖bs − bs‖2)g(Qn
s )np−1] ≤ E[e2αnpQns (1 + ‖bs − bs‖2)np]

1
npE[g(Qn

s )np]
np−1
np

≤ E[e2αnpQns (1 + ‖bs − bs‖2)np]
1
npE[g(Qn

s )np],

where we once again used that g ≥ 1 for the second inequality. Therefore it is

sufficient to find such a Λ with E[e2αnpQns (1 + ‖bs − bs‖2)np]
1
np ≤ Λ. If {Zi}∞i=1 are

i.i.d. Nd(0, 1) random variables and s ∈ (sj−1, sj], then

Qn
s =

j−1∑
i=1

‖∆ib‖2 + ‖bs − bs‖2

d
=

j−1∑
i=1

1

n
‖Zi‖2 + (s− s)‖Zj‖2

and

1 + ‖bs − bs‖2 d
= 1 + (s− s)‖Zj‖2.

Therefore,

E[e2αnpQns (1 + (bs − bs)2)np]
1
np = E[

(
j−1∏
i=1

e2αp‖Zi‖2
)
e2αp‖Zj‖2(1 + (s− s)‖Zj‖2)np]

1
np

=

(
j−1∏
i=1

E[e2αp‖Zi‖2 ]

) 1
np

E[e2αp‖Zj‖2(1 + (s− s)‖Zj‖2)np]
1
np

= E[e2αp‖Z1‖2 ]
j−1
np E[e2αp‖Zj‖2(1 + (s− s)‖Zj‖2)np]

1
np

≤ E[e2αp‖Z1‖2 ]
1
pE[e2αp‖Zj‖2(1 +

1

n
‖Zj‖2)np]

1
np .

With α < 1
4p

, E[e2αp‖Z1‖2 ]
1
p = (1− 4αp)−

1
p . For the second term, find some δ with

α < δ < 1
4p

and set m = inf{l ∈ N : l ≥ δ
δ−α}, the ceiling of δ

δ−α . Again using
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Holder’s inequality,

E[e2αp‖Zj‖2(1 +
1

n
‖Zj‖2)np] ≤ E[e2δp‖Zj‖2 ]

α
δ E[(1 +

1

n
‖Zj‖2)np

δ
δ−α ]

δ−α
δ

≤ (1− 4δp)−
α
δ E[(1 +

1

n
‖Zj‖2)npm]

δ−α
δ

Using the binomial formula,

E[(1 +
1

n
‖Zj‖2)npm] =

npm∑
k=0

(
npm

k

)(
1

n

)k
E[‖Zj‖2k]

=

npm∑
k=0

(
npm

k

)(
1

n

)k
(2k)!

2kk!

≤
npm∑
k=0

(
npm

k

)(
1

n

)k
1

2k
e√
π

(
4

e

)k
kk

≤
npm∑
k=0

(
npm

k

)
e√
π

(
2pm

e

)k
=

e√
π

(
1 +

2pm

e

)npm
.

Here the third line comes from Stirling’s approximation,
√

2πNN+ 1
2 e−N ≤ N ! ≤

eNN+ 1
2 e−N . Putting these pieces together,

E[e2αnpQns (1 + ‖bs − bs‖2)np]
1
np

≤ E[e2αp‖Z1‖2 ]
1
pE[e2αp‖Zj‖2(1 +

1

n
‖Zj‖2)np]

1
np

≤ (1− 4αp)−
1
p

[
(1− 4δp)−

α
δ

(
e√
π

(
1 +

2pm

e

)npm) δ−α
δ

] 1
np

= (1− 4αp)−
1
p

[
(1− 4δp)−

α
δ

(
e√
π

) δ−α
δ

] 1
np (

1 +
2pm

e

)m δ−α
δ

≤ (1− 4αp)−
1
p (1− 4δp)−

α
δ

(
e√
π

) δ−α
δ
(

1 +
2pm

e

)m δ−α
δ

=: Λ <∞

where as desired Λ is independent of n.
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4.3 Bounds on ρ̃P and Uniform Integrability

Lemma 4.6. Let {λi,j : 1 ≤ i ≤ n, i ≤ j ≤ n} be defined as in Theorem 4.4.

Define {pi,j : 1 ≤ i ≤ n, i ≤ j ≤ n} by

pi,j :=


1
2
(λi,j + λi,j−1) j > i

1
2
(λi,i + λi,n) j = i

. (4.31)

Then,

det
(
I +A−1

P RP(AtrP )−1
)
≤

n∏
i=1

(
n∑
j=i

pi,j cosh(240
√
KPj ∆)

)d

. (4.32)

Moreover,
∑n

j=i pi,j = 1 and
∑j

i=1 pi,j < 3

Proof. By Lemma B.8, the matrix I+A−1
P RP(AtrP )−1 is symmetric positive definite,

so we can apply Fischer’s inequalty (see [12, Theorem 7.8.3]),

det(I +A−1
P RP(AtrP )−1) ≤

n∏
i=1

det([I +A−1
P RP(AtrP )−1]i,i)

≤
n∏
i=1

(
1 + ‖[A−1

P RP(AtrP )−1]i,i‖
)d
.

From Theorem 4.4,

≤
n∏
i=1

(
1 +

n∑
j=i

λi,j

(
cosh(30

√
KPj ∆) cosh(120

√
KPj+1∆)− 1

))d

=
n∏
i=1

(
n∑
j=i

λi,j cosh(30
√
KPj ∆) cosh(120

√
KPj+1∆)

)d

Using that xy ≤ 1
2
(x2 + y2),

≤
n∏
i=1

(
n∑
j=i

1

2
(λi,j + λi,j−1) cosh2(120

√
KPj ∆)

)d

≤
n∏
i=1

(
n∑
j=i

pi,j cosh(240
√
KPj ∆)

)d

where we define λi,i−1 := 0 and use the inequality cosh2(x) ≤ cosh(2x).
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We now calculate,

n∑
j=i

pi,j =
1

2

(
λi,i + λi,n +

n∑
j=i+1

(λi,j + λi,j−1)

)

=
1

2

(
2

n∑
j=i

λi,j

)
= 1.

From the definition of λi,j =
(

1
2

)j−i (
2−

(
1
2

)n−i)−1

≤
(

1
2

)j−i
. From here,

pi,j =


1
2
(λi,j + λi,j−1) j > i

1
2
(λi,i + λi,n) j = i

≤


3
2

(
1
2

)j−i
j > i

3
4

j = i

and therefore,

j∑
i=1

pi,j ≤
j∑
i=1

3

2

(
1

2

)j−i
=

3

2

(
1−

(
1
2

)j
1− 1

2

)
< 3.

Proposition 4.7. Let ζ > 0, p ∈ N, and {pi,j : 1 ≤ i ≤ n, i ≤ j ≤ n} be defined

as in Lemma 4.6. Then,

lim sup
n→∞

E

[
n∏
i=1

(
n∑
j=i

pi,j cosh(ζ‖∆jb‖

)p]
<∞. (4.33)

Proof. For convenience define xj := ζ‖∆jb‖. Using the geometric-arithmetic mean
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inequality,

n∏
i=1

(
n∑
j=i

pi,j cosh(xj)

)p

≤

(
n∑
i=1

1

n

(
n∑
j=i

pi,j cosh(xj)

))np

=

(
n∑
i=1

n∑
j=i

pi,j
n

cosh(xj)

)np

=

(
n∑
i=1

n∑
j=i

pi,j
n

+
n∑
i=1

n∑
j=i

pi,j
n

(cosh(xj)− 1)

)np

=

(
1 +

n∑
i=1

n∑
j=i

pi,j
n

(cosh(xj)− 1)

)np

=

(
1 +

n∑
j=1

j∑
i=1

pi,j
n

(cosh(xj)− 1)

)np

<

(
1 +

3

n

n∑
j=1

(cosh(xj)− 1)

)np

Where we used Lemma 4.6 to realize
∑n

i=1

∑n
j=i

pi,j
n

=
∑n

i=1
1
n

= 1 and
∑j

i=1 pi,j <

3. Estimating the sum on the right hand side of the inequality,

n∑
j=1

(cosh(xj)− 1) =
n∑
j=1

∞∑
k=1

x2k
j

(2k)!

=
∞∑
k=1

n∑
j=1

x2k
j

(2k)!

≤
∞∑
k=1

(∑n
j=1 x

2
j

)k
(2k)!

≤
∞∑
k=1

‖x‖2k

(2k)!

= cosh(‖x‖)− 1

where x := (x1, ..., xn). Fix some α ∈ (0, 1
4ζ2p

) and use Lemma A.3 to find some

Cα <∞ such that

cosh(‖x‖)− 1 ≤ Cα(eα‖x‖
2 − 1)

= Cα(eα̃‖Bn‖
2 − 1)
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where Bn := (∆1b, · · · ,∆nb) and α̃ = ζ2α ∈ (0, 1
4p

). Therefore, using the above

inequalities and Lemma 4.5,

lim sup
n→∞

E

[
n∏
i=1

(
n∑
j=i

pi,j cosh(ζ‖∆jb‖

)p]

≤ lim sup
n→∞

E

[(
1 +

3

n

n∑
j=1

(cosh(ζ‖∆jb‖)− 1)

)np]

≤ lim sup
n→∞

E
[(

1 +
3Cα
n

(eα̃‖Bn‖
2 − 1)

)np]
<∞.

The following Theorem is in fact just a corollary of what we’ve shown thus far.

Theorem 4.8. Let P = {0, 1/n, 2/n, ..., 1} be an equally spaced partition of [0, 1].

Then for any p ∈ N,

lim sup
|P|→0

E
[(

det(I +A−1
P RP(AtrP )−1)

)p]
<∞. (4.34)

In particular, given some p ∈ N, there exists N ∈ N and C <∞ such that

sup
n≥N
{E[(ρ̃P)p] : #(P) = n} < C, (4.35)

where {ρ̃P : #(P) = n, n ∈ N} is collection of functions defined in Eq. (3.37).

This further implies that {ρ̃P : #(P) = n, n ∈ N} are uniformly integrable.

Proof. From Lemma 4.6 and Eq. (4.5),

(
det(I +A−1

P RP(AtrP )−1)
)p ≤ n∏

i=1

(
n∑
j=i

pi,j cosh(240
√
KPj ∆)

)dp

≤
n∏
i=1

(
n∑
j=i

pi,j cosh(240
√
κ‖∆jb‖)

)dp

.

Applying Proposition 4.7,

lim sup
|P|→0

E

 n∏
i=1

(
n∑
j=i

pi,j cosh(240
√
κ‖∆jb‖)

)dp
 <∞,
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concluding the proof of Eq. (4.34). From here, Eq. (4.35) is simply a matter

of combining the definitions of ρ̃P and lim sup. Finally, the claim of uniform

integrability follows by applying Proposition A.6 below.



Chapter 5

The L1 Limit

In Section 3.5 we find that the matrix LP is positive definite. This implies

that L1/2
P exists and is invertible, allowing us to write

LP +RP = L1/2
P

(
I + L−1/2

P RPL−1/2
P

)
L1/2
P . (5.1)

In turn, this lets us represent Eq. (3.37) as

ρ̃P =

√
det
(
I + L−1/2

P RPL−1/2
P

)
. (5.2)

5.1 The space Hε
P

Let ε > 0. We are going to restrict the space that we’re working on more

by defining the subspace Hε
P(Rd) ⊂ HP(Rd),

Hε
P(Rd) :=

{
∨ni=1‖∆ib

P‖ < ε
}
. (5.3)

We can alternatively define it in the following equivalent ways

Hε
P(Rd) = ∩ni=1

{
‖∆ib

P‖ < ε
}

(5.4)

=
{
ω ∈ HP(Rd) : ∨ni=1‖∆iω‖ < ε

}
(5.5)

=

{
ω ∈ HP(Rd) : ∨ni=1

∫ si

si−1

‖ω′(s)‖ds < ε

}
. (5.6)

From here we can define Hε
P(M) ⊂ HP(M) by

Hε
P(M) = φ(Hε

P(Rd)) (5.7)

55
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where φ is Cartan’s Development discussed in Section 2.5. It is worth noting here

that if σ = φ(ω), then

‖ω′(s)‖2 = 〈ω′(s), ω′(s)〉

= g(//s(σ)ω′(s), //s(σ)ω′(s))

= g(σ′(s), σ′(s)).

So in consideration of Eq (5.6), we might have also chosen to define Hε
P(M) by

Hε
P(M) =

{
σ ∈ HP(M) : ∨ni=1

∫ si

si−1

‖σ′(s)‖ds < ε

}
. (5.8)

One motivation for defining Hε
P(Rd) is that in calculating the limit of ρ̃P as

|P| → 0, we conduct an expansion of the ρ̃P in powers of the ∆ib
P , which makes

it advantageous to have a size estimate for ‖∆ib
P‖. Moreover, HP(M)\Hε

P(M)

is quite small in a manner that is explored below in the following two lemmas.

Lemma 5.1 is proved in [1, Proposition 5.13] and left unproved here.

Lemma 5.1. For any ε > 0, there is a constant C = C(d) <∞ such that

νSP (HP(M)\Hε
P(M)) ≤ C

ε2
exp

{
− ε2

4|P|

}
. (5.9)

Lemma 5.2. Given an equally spaced partition P with |P| = 1/n, for ε > 0 and

sufficiently small |P|, there exists a C = C(d) <∞ such that

νGP (HP(M)\Hε
P(M)) ≤ C√

|P|ε
exp{− ε2

8|P|
}. (5.10)

Proof. Set Γ = HP(M)\Hε
P(M). Let Bi := {‖∆ib‖ > ε} = {‖∆ib

P‖ > ε},
B := ∪iBi. We have, φ−1(Γ) = HP(Rd)\Hε

P(Rd) = BP∩HP(Rd), and (bP)
−1

(BP∩
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HP(Rd)) = ∪i{‖∆ib
P‖ > ε} = B. Therefore, φ(bP)−1(Γ) = B and

νGP (Γ) =

∫
Γ

dνGP

=

∫
Γ

ρPdνSP

=

∫
B

ρ̃Pdµ

≤
n∑
i=1

∫
Bi

ρ̃Pdµ

≤
n∑
i=1

(E[1Bi ])
1/2 (E[(ρ̃P)2]

)1/2
.

Here the second equality comes from νGP = ρPνSP , the third equality comes from

the fact that νSP is the law of φ(bP) under µ (see Theorem 2.11), and the final

inequality is a simple application of Hölder’s inequality. Applying Theorem 4.8

with n sufficiently large, find a constant C1 <∞ such that

sup{
(
E[(ρ̃P)2]

)1/2
: #(P) = n, n sufficiently large } ≤ C1.

Further, from Lemma A.1 with k = 0 and a = ε/
√
|P|, there is a C2 < ∞ such

that

E[1Bi ] ≤
C2|P|
ε2

exp{− ε2

4|P|
}.

Therefore,

νGP (Γ) ≤
n∑
i=1

(E[1Bi ])
1/2 (E[(ρ̃P)2]

)1/2

≤ C

n∑
i=1

√
|P|
ε

exp{− ε2

8|P|
}

= C

√
|P|
|P|ε

exp{− ε2

8|P|
}

=
C√
|P|ε

exp{− ε2

8|P|
},

where we are certainly using the fact that P is equally spaced and |P| = 1/n.

The way in which we apply Lemmas 5.1 and 5.2 is in the following immediate

corollary.
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Corollary 5.3. Let f : W (M)→ R be bounded and continuous with supx |f(x)| ≤
Λ <∞. Then, ∣∣∣∣∣

∫
HP (M)

fdνSP −
∫
Hε
P (M)

fdνSP

∣∣∣∣∣ ≤ Λ̃

ε2
e−

ε2

4|P| (5.11)

and ∣∣∣∣∣
∫
HP (M)

fdνGP −
∫
Hε
P (M)

fdνGP

∣∣∣∣∣ ≤ Λ̃√
|P|ε

e−
ε2

8|P| (5.12)

where Λ̃ = Λ̃(Λ, d) <∞.

We conclude this section with a few estimates which motivate several of the

bounds that we make in the sequel.

Lemma 5.4. Take c > 0 and p ∈ N with p ≥ 2. For sufficiently small |P|, there

exists a C = C(d, c, p) <∞ such that,∫
W (Rd)

‖∆ib‖p exp

{
c

n∑
i=1

‖∆ib‖2

}
dµ ≤ C∆is|P|

p−2
2 ≤ C|P|

p
2 . (5.13)

In particular, if Γ ⊂ {1, ..., n} with #(Γ) = m,

∑
i∈Γ

∫
W (Rd)

‖∆ib‖p exp

{
c

n∑
j=1

‖∆jb‖2

}
dµ ≤ C

(∑
i∈Γ

∆is

)
|P|

p−2
2 ≤ Cm|P|

p
2 ,

(5.14)

implying,

n∑
i=1

∫
W (Rd)

‖∆ib‖p exp

{
c

n∑
j=1

‖∆jb‖2

}
dµ ≤ C|P|

p−2
2 . (5.15)

Proof. Notice first,∫
W (Rd)

‖∆ib‖p exp

{
c

n∑
i=1

‖∆ib‖2

}
dµ

= E
[
‖∆ib‖p exp

{
c‖∆ib‖2

}]
E

[
exp

{
c
∑
j 6=i

‖∆jb‖2

}]
.
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By Lemma A.2, lim sup|P|→0 E
[
exp

{
c
∑

j 6=i ‖∆jb‖2
}]

= ed c and thus

E
[
‖∆ib‖p exp

{
c‖∆ib‖2

}]
E

[
exp

{
c
∑
j 6=i

‖∆jb‖2

}]
≤ 2ed cE

[
‖∆ib‖p exp

{
c‖∆ib‖2

}]
= 2ced c(∆is)

p/2E
[
‖b1‖3 exp

{
c∆is‖b1‖2

}]
≤ 2c∆ise

d c|P|
p−2

2 E
[
‖b1‖p exp

{
c|P|‖b1‖2

}]
≤ C∆is|P|

p−2
2

where C is as desired.

It’s important to note that the constant C used in Lemma 5.4 only gets

better as c→ 0, which is a fact that will be used in the following corollary.

Corollary 5.5. Take c > 0 and suppose that Y is a random variable on HP(Rd)

such that |Y | ≤ c
∑n

i=1 ‖∆ib
P‖3. For sufficiently small |P| and ε, there exists a

C = C(d, curvature, c) <∞ such that,∫
Hε
P (Rd)

(
eY − 1

)
dµSP ≤ C

√
|P|. (5.16)

Moreover, this implies that for any p ∈ N,∫
Hε
P (Rd)

(
eY − 1

)p
dµSP ≤ C

√
|P| (5.17)

where here C also depends on p.
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Proof. From the inequality |ea − 1| ≤ e|a| − 1 ≤ |a|e|a| for any a ∈ R,∫
Hε
P (M)

∣∣eY − 1
∣∣ dµSP

≤
∫
Hε
P (M)

(
exp

{
c

n∑
i=1

‖∆ib
P‖3

}
− 1

)
dµSP

≤ c

n∑
i=1

∫
Hε
P (Rd)

‖∆ib
P‖3 exp

{
cε

n∑
i=1

‖∆ib
P‖2

}
dµSP

≤ c
n∑
i=1

∫
HP (Rd)

‖∆ib
P‖3 exp

{
cε

n∑
i=1

‖∆ib
P‖2

}
dµSP

≤ c
n∑
i=1

∫
W (Rd)

‖∆ib‖3 exp

{
cε

n∑
i=1

‖∆ib‖2

}
dµ

≤ C
√
|P|

where the last inequality follows from Lemma 5.4 and C is as desired since our

bound only becomes better as ε → 0, as noted in the remark following Lemma

5.4. The last claim is a corollary to the first using Lemma A.4, which tells us

(eY − 1)p ≤ ep|Y | − 1.

Corollary 5.6. Take c > 0 and suppose that Γ ⊂ {1, ..., n} with #(Γ) = m.

Suppose that Y is a random variable on HP(Rd) such that |Y | ≤ c
∑

i∈Γ ‖∆ib‖2.

For sufficiently small |P| and ε, there exists a C = C(d, curvature, c) < ∞ such

that, ∫
Hε
P (Rd)

(eY − 1)dµSP ≤ Cm|P|. (5.18)

Moreover, this implies that for p ∈ N,∫
Hε
P (Rd)

(eY − 1)pdµSP ≤ Cm|P|, (5.19)

where here C also depends on p.

Proof. This proof is nearly identical as that for Corollary 5.5 with

|eY − 1| ≤ c
∑
i∈Γ

‖∆ib‖2ec
∑
j∈Γ ‖∆jb‖2

≤ c
∑
i∈Γ

‖∆ib‖2ec
∑n
j=1 ‖∆jb‖2 .
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The following estimate has a similar form also proved in [1, Proposition

6.4]; however, for our purposes we would like to keep track of ε, forcing us to be

slightly more careful than the aforementioned result.

Proposition 5.7. Define RP and SP as in Eqs. (2.24) and (2.25). With |P| suffi-

ciently small, for any p ∈ R and ε > 0 there exists constants C1 = C1(p, d, curvature)

and C2 = C2(p, d, curvature) such that,

1− C1

ε2
e−C2

ε2

|P| ≤
∫
Hε
P (Rd)

ep(RP−SP )dµSP ≤ eC1|P| +
C1

ε2
e−C2

ε2

|P| . (5.20)

In particular, this implies that∣∣∣∣∣
∫
Hε
P (Rd)

ep(RP−SP )dµSP − 1

∣∣∣∣∣ ≤ eC1|P| − 1 +
C1

ε2
e−C2

ε2

|P| , (5.21)

and hence∣∣∣∣∣
∫
Hε
P (Rd)

(
ep(RP−SP ) − 1

)
dµSP

∣∣∣∣∣ ≤ eC1|P| − 1 +
C1

ε2
e−C2

ε2

|P| +
C1√
|P|ε

e−
ε2

8|P| . (5.22)

Proof. Following the notation in Lemma 5.2 by setting Bi = {‖∆ib‖ > ε}, by

Theorem 2.11,∫
HP (Rd)\Hε

P (Rd)

ep(RP−SP )dµSP =

∫
∪ni=1{∆ib≥ε}

ep(R−S)dµ

≤
n∑
i=1

∫
Bi

ep(R−S)dµ

≤
n∑
i=1

E
[
1Bie

|p|Λ(
∑n
j=1 ‖∆jb‖2+d)

]
=

n∑
i=1

e|p|Λ dE
[
e|p|Λ

∑
j 6=i ‖∆jb‖2

]
E
[
1Bie

|p|Λ‖∆ib‖2
]

where Λ <∞ depends solely on the curvature of the manifold. From Lemma A.1,

for sufficiently small |P|, we can take Λ2 = Λ2(p, d, curvature) with 0 < Λ2 < ∞
such that,

E
[
1Bie

|p|Λ‖∆ib‖2
]
≤ Λ2

(ε/
√
|P|)2

e−Λ2(ε/
√
|P|)2

=
|P|Λ2

ε2
e−Λ2

ε2

|P| .
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Lemma A.2 ensures that for sufficiently small |P| the quantity E
[
e|p|Λ

∑
j 6=i ‖∆jb‖2

]
remains bounded (depending only on d, p, and curvature), which at last yields,

n∑
i=1

e|p|Λ dE
[
e|p|Λ

∑
j 6=i ‖∆jb‖2

]
E
[
1Bie

|p|Λ‖∆ib‖2
]
≤ nC̃1

|P|Λ2

ε2
e−Λ2

ε2

|P|

= C̃1
Λ2

ε2
e−Λ2

ε2

|P|

≤ C1

ε2
e−C2

ε2

|P| .

The first claim follows by applying Lemma 2.14. The second claim is a triviality,

and the third is as well upon realizing that µSP (HP(Rd)) = 1 and by Lemma 5.1,

µSP (HP(Rd)\Hε
P(Rd)) ≤ C1√

|P|ε
e−

ε2

8|P| .

5.2 Taylor Expansions

From Eqs. (3.25), (3.26), and (3.27) it is clear that understanding the

behavior of ρ̃P , we need to understand
∫ ∆

0
{SPi (s)trSPi (s) +V Pi+1(s)trV Pi+1(s)}ds and∫ ∆

0
V Pi+1(s)trSPi+1(s)ds for each i ∈ {1, ..., n} (where, as always, we define V Pn+1 =

SPn+1 ≡ 0). To do this, we Taylor expand each of the SPi , C
P
i , and V Pi+1 in powers of

∆ib
P , where it will be seen that an expansion to degree 3 is sufficient to understand

the behavior of ρ̃P in the limit |P| → 0.

Notation 5.8. If s 7→ A(s) ∈ Hom(Rd) is a curve parameterized on an interval

J and r > 0, then we will write A = O(r) to mean that there exists some constant

c > 0 such that sups∈J ‖A(s)‖ ≤ cr. Alternatively, we will write A(s) = O(r) when

there exists some constant c > 0 such that ‖A(s)‖ ≤ cr. In both cases, c will be

referred to as the bounding constant.

Using the above notation, Eqs. (3.7) and (3.8) can be restated as APi ∆2 =

O(‖∆ib‖2) and ( d
ds
APi )∆3 = O(‖∆ib‖3) with bounding constant κ.
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Lemma 5.9. For sufficiently small ε > 0 and s ∈ (0,∆],

SPi (s) = sI +
s3

6
APi (0) +O(s‖∆ib

P‖3), (5.23)

CPi (s) = I +
s2

2
APi (0) +O(‖∆ib

P‖3), (5.24)[
SPi (s)

s

]−1

= I − s2

6
APi (0) +O(‖∆ib

P‖3), (5.25)

FPi = I +
∆2

6
APi (0) +

∆2

3
APi+1(0) +O(‖∆ib

P‖3 + ‖∆i+1b
P‖3), (5.26)

and

V Pi+1(s) = (∆− s)I +

(
∆3 − s∆2

6

)
APi (0) +

(
3∆s2 − 2∆2s− s3

6

)
APi+1(0)

+O(∆{‖∆ib
P‖3 + ‖∆i+1b

P‖3}) (5.27)

on Hε
P(Rd). Moreover, the bounding constant can be taken independent of i and

further depends only on ε and the curvature of the manifold, and remains bounded

as ε→ 0.

Proof. By Proposition D.1 and Eqs. (3.7) and (3.8),

‖SPi (s)− sI − s3

6
APi (0)‖ ≤ κs

12
‖∆ib

P‖3 +
κs

6

(
∞∑
j=2

κj‖∆ib‖2j

(2j + 1)!

)
(5.28)

≤ κs

12
‖∆ib

P‖3 +
κs

6
‖∆ib

P‖3

(
∞∑
j=2

κjε2j−3

(2j + 1)!

)
(5.29)

≤ c(ε, κ)s‖∆ib
P‖3 (5.30)

and

‖CPi (s)− I − s2

2
APi (0)‖ ≤ 1

6
‖∆ib

P‖3 +
κ

2

(
∞∑
j=2

κj‖∆ib‖2j

(2j)!

)
(5.31)

≤ κ

6
‖∆ib

P‖3 +
κ

2
‖∆ib

P‖3

(
∞∑
j=2

κjε2j−3

(2j)!

)
(5.32)

≤ c(ε, κ)‖∆ib
P‖3. (5.33)
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which concludes the proof of Eqs. (5.23) and (5.24). Notice that we can take

c(ε, κ) to remain bounded as ε→ 0, which implies that for ε small enough,∥∥∥∥SPi (s)

s
− I
∥∥∥∥ ≤ 1

6
‖∆ib

P‖2 + c(ε, κ)‖∆ib
P‖3

≤ ε2 + c(ε, κ)ε3 < 1.

Therefore,[
SPi (s)

s

]−1

=

[
I +

s2

6
APi (0) +

(
SPi (s)

s
− I − s2

6
APi (0)

)]−1

= I − s2

6
APi (0)−

[
SPi (s)

s
− I − s2

6
APi (0)

]
+
∞∑
j=2

(−1)j
(
SPi (s)

s
− I
)j

with ∥∥∥∥∥
∞∑
j=2

(−1)j
(
SPi (s)

s
− I
)j∥∥∥∥∥ ≤

∞∑
j=2

(κ
6
‖∆ib

P‖2 + c(ε, κ)‖∆ib
P‖3
)j

≤
∞∑
j=2

{(κ
6

+ εc(ε, κ)
)j
‖∆ib

P‖2j

}

≤ ‖∆ib
P‖3

∞∑
j=2

{(κ
6

+ εc(ε, κ)
)j
ε2j−3

}
≤ c̃(ε, κ)‖∆ib

P‖3.

Combining this with Eq. (5.23) proves Eq. (5.25). For Eq. (5.26),

FPi =

(
SPi+1(∆)

∆

)−1

CPi+1(∆)

(
SPi (∆)

∆

)
=

(
I − ∆2

6
APi+1(0) +O(‖∆i+1b

P‖3

)(
I +

∆2

2
APi+1(0) +O(‖∆i+1b

P‖3)

)
×
(
I +

∆2

6
APi (0) +O(‖∆ib

P‖3)

)
= I +

∆2

6
APi (0) +

∆2

3
APi+1(0) +O(‖∆ib

P‖3 + ‖∆i+1b
P‖3).
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Finally,

V Pi+1(s) = CPi+1(s)SPi (∆)− SPi+1(s)FPi

=

(
I +

s2

2
APi+1(0) +O(‖∆i+1b

P‖3)

)(
∆I +

∆3

6
APi (0) +O(∆‖∆ib

P‖3)

)
−
(
sI +

s3

6
APi+1(0) +O(s‖∆i+1b

P‖3

)
×
(
I +

∆2

6
APi (0) +

∆2

3
APi+1(0) +O(‖∆ib

P‖3 + ‖∆i+1b
P‖3)

)
= (∆− s)I +

(
∆3 − s∆2

6

)
APi (0) +

(
3∆s2 − 2∆2s− s3

6

)
APi+1(0)

+O(∆{‖∆ib
P‖3 + ‖∆i+1b

P‖3}).

Since the bounding constants for each of Eqs. (5.23), (5.24), and (5.25) is as

claimed, it follows from the above calculations that the same is true for Eqs.

(5.26) and (5.27).

Proposition 5.10. For sufficiently small ε > 0,∫ ∆

0

SPi (s)trSPi (s)ds =
∆3

3
I +

∆5

15
APi (0) +O(∆3‖∆ib

P‖3), (5.34)∫ ∆

0

V Pi+1(s)trV Pi+1(s)ds =
∆3

3
I +

∆5

9
APi (0)− 2∆5

45
APi+1(0)

+O(∆3{‖∆ib
P‖3 + ‖∆i+1b

P‖3}) (5.35)∫ ∆

0

V Pi+1(s)trSPi+1(s)ds =
∆3

6
I +

13∆5

360
APi (0)− 7∆5

360
APi+1(0)

+O(∆3{‖∆ib
P‖3 + ‖∆i+1b

P‖3}) (5.36)

on Hε
P(Rd). Moreover, the bounding constant can be taken independent of i and

further depends only on ε and the curvature of the manifold, and remains bounded

as ε→ 0.

Proof. This follows from multiplying together the appropriate operators using

the estimates from Lemma 5.9 and integrating over [0,∆] keeping in mind that

(APi )tr = APi .

In light of Proposition 5.10, we decompose RP (on Hε
P(Rd)) in the following way,

RP = UP + EP (5.37)
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where UP is defined by

[UP ]i,j =
∆5

360


16(4APi (0)− APi+1(0)) i = j

13APi (0)− 7APi+1(0) i = j + 1, i+ 1 = j

0 otherwise

(5.38)

with APn+1 ≡ 0, and the blocks of EP have size estimates,

[EP ]i,j =

O(∆3{‖∆ib
P‖3 + ‖∆i+1b

P‖3}) i = j, i = j + 1, i+ 1 = j

0 otherwise
(5.39)

where the bounding constant can be taken independent of i and further depends

only on ε and the curvature of the manifold, and remains bounded as ε→ 0.

5.3 Proof of Theorem 1.4

Here we restate the main result of this paper and dedicate the remainder

of this section to the proof.

Theorem 5.11. Let (M, g, o) be a Riemannian manifold with metric g and fixed

pointed o ∈M . Assume the curvature and its derivative on M are bounded and the

sectional curvature on M is non-positive. Then given a continuous and bounded

map f : W (M)→ R,

lim
|P|→0

∫
HP (M)

f(σ)dνGP (σ) =

∫
W (M)

f(σ)e−τG
∫ 1
0 Scal(σ(s))dsdν(σ). (5.40)

Here P = {0, 1/n, 2/n, ..., 1} is the equally spaced partition of [0, 1], τG is defined

in Eq. (5.67), Scal is the scalar curvature of M , νGP is defined in Eq. (1.11), and

ν is the Wiener measure on W (M).

Our first step is to give another representation of ρ̃P . Eq (5.2) implies that

ρ̃P =

√
det
(
I + L−1/2

P RPL−1/2
P

)
(5.41)

=

√
det
(
I + L−1/2

P (UP + EP)L−1/2
P

)
. (5.42)
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On the event A ∩Hε
P(Rd) where A is defined in Proposition 5.14, for small enough

ε and |P|, ‖L−1/2
P (UP + EP)L−1/2

P ‖ < 1 and we can apply Lemma B.7, yielding

ρ̃P = exp
1

2

{
tr(L−1/2

P UPL−1/2
P ) + tr(L−1/2

P EPL−1/2
P ) + Ψ2(L−1/2

P RPL−1/2
P )

}
(5.43)

with ∣∣∣Ψ2(L−1/2
P RPL−1/2

P )
∣∣∣ ≤ ‖L−1/2

P RPL−1/2
P ‖2

2

1− ‖L−1/2
P RPL−1/2

P ‖
. (5.44)

Proposition 5.16 below shows that exp 1
2
{tr(L−1/2

P UPL−1/2
P )} is what contributes in

the limit as |P| → 0, while the other factors vanish. This will then turns our focus

to understanding the behavior of tr(L−1/2
P UPL−1/2

P ).

Lemma 5.12. Let U be an n× n symmetric tri-diagonal block matrix with d× d
blocks. Then,

tr(L−1/2
P UL−1/2

P ) =
n∑

m,k=1

(βPk )2

λPk

[
(αmk )2 tr([U ]m,m) + 2αmk α

m+1
k tr([U ]m,m+1)

]
,

(5.45)

where βPk , λ
P
k , and αmk are as in Theorem 3.4. Moreover, this implies that there

exists constants C = C(d) <∞ and Λ <∞ such that

| tr(L−1/2
P UL−1/2

P )| ≤ Λ

∆3

n∑
m=1

(|tr([U ]m,m)|+ | tr([U ]m,m+1)|) (5.46)

≤ C

∆3

n∑
m=1

(‖[U ]m,m‖+ ‖[U ]m,m+1‖) , (5.47)

where we define [U ]n,n+1 := 0.

Proof. The orthonormal basis of eigenvectors uk,a of LP from Theorem 3.4 are also

eigenvectors for L−1
P with respective eigenvalues 1/λPk . Since tr(AB) = tr(BA),

tr
(
L−1/2
P UL−1/2

P

)
= tr

(
UL−1

P
)

=
n∑
k=1

d∑
a=1

UL−1
P uk,a · uk,a

=
n∑
k=1

d∑
a=1

1

λPk
Uuk,a · uk,a.
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Eq. (5.45) now follows by applying Lemma B.11.

For the size estimate, use Corollary B.5 below to see that | tr([U ]i,j)| ≤
d‖[U ]i,j‖. The estimates for βPk , λ

P
k , and αmk in Theorem 3.4 implies the existence

of Λ = Λ(d, curvature) <∞ such that

n∑
m,k=1

(βPk )2

λPk

[
(αmk )2 tr([U ]m,m) + 2αmk α

m+1
k tr([U ]m,m+1)

]
≤ Λ

∆3

n∑
k,m=1

1

n
(| tr([U ]m,m)|+ | tr([U ]m,m+1)|)

=
Λ

∆3

n∑
m=1

(| tr([U ]m,m)|+ | tr([U ]m,m+1)|) .

Combining these facts gives the necessary size estimate.

Corollary 5.13. Let UP and EP be as in Eqs. (5.38) and (5.39) respectively. Then

there exists some C = C(d, curvature) <∞ such that,

| tr(L−1/2
P UPL−1/2

P )| ≤ C
n∑
i=1

‖∆ib‖2 (5.48)

and

| tr(L−1/2
P EPL−1/2

P )| ≤ C
n∑
i=1

‖∆ib‖3. (5.49)

Proof. Both UP and EP are symmetric, so we can therefore apply Lemma 5.12 to

find some Λ = Λ(d) <∞ with

| tr(L−1/2
P UPL−1/2

P | ≤ Λ

∆3

n∑
i=1

(| tr([UP ]i,i)|+ | tr([UP ]i,i+1)|)

and

| tr(L−1/2
P EPL−1/2

P | ≤ Λ

∆3

n∑
i=1

(‖[EP ]i,i‖+ ‖[EP ]i,i+1‖) .

Eq. (5.39) along with the above estimate is enough to imply Eq. (5.49). To

finish the proof of Eq. (5.48), it is sufficient to show that there is some C̃ =

C̃(d, curvature) < ∞ such that | tr([UP ]m,m)| and | tr([UP ]m,m+1)| are bounded by

C̃(‖∆ib‖2 + ‖∆m+1b‖2). However, the bound on curvature along with Eqs. (3.7)

and (5.38) imply just such a C̃.
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Proposition 5.14. Define the event AP ⊂ W (Rd) by

AP =

{
n∑
i=1

‖∆ib
P‖4 ≤ 1

4

}
.

For sufficiently small ε and |P|, there is a constant C = C(d, curvature) <∞ such

that ∣∣∣tr(L−1/2
P EPL−1/2

P )
∣∣∣+
∣∣∣Ψ2(L−1/2

P RPL−1/2
P )

∣∣∣ ≤ C

d∑
i=1

‖∆ib‖3 (5.50)

on Hε
P(Rd) ∩ AP .

Proof. Focusing on the second term, from Corollary B.4 and Theorem 3.4,

‖L−1/2
P RPL−1/2

P ‖2
2 ≤ ‖L−1

P ‖
2‖RP‖2

2

≤ 16∆−6‖RP‖2
2.

From Theorem 4.4,

‖[RP ]i,i‖ , ‖[RP ]i,i+1‖ , ‖[RP ]i+1,i‖ ≤ 2∆3

(
cosh(2

√
KPi ∆) cosh(6

√
KPi+1∆)− 1

)
≤ 2∆3 (cosh(2κ‖∆ib‖) cosh(6κ‖∆i+1b‖)− 1)

where the second inequality follows from Eq. (4.5). Further, with ‖∆ib‖ ≤ ε for

each i,

(cosh(2κ‖∆ib‖) cosh(6κ‖∆i+1b‖)− 1)

= (cosh(2κ‖∆ib‖)− 1) (cosh(6κ‖∆i+1b‖)− 1) + (cosh(2κ‖∆ib‖)− 1)

+ (cosh(6κ‖∆i+1b‖)− 1)

≤ C̃(ε, κ)(‖∆ib‖2 + ‖∆i+1b‖2).
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For sufficiently small ε we can take C̃2 ≤ (384d)−1. From Lemma B.6,

‖RP‖2
2 ≤ d

n∑
i=1

(
‖[RP ]i,i‖2 + ‖[RP ]i,i+1‖2 + ‖[RP ]i+1,i‖2)

≤ 12 d C̃2∆6

n∑
i=1

(
‖∆ib‖2 + ‖∆i+1b‖2

)2

≤ 24 d C̃2∆6

n∑
i=1

‖∆ib‖4

≤ 1

16
∆6

n∑
i=1

‖∆ib‖4.

Therefore ‖L−1/2
P RPL−1/2

P ‖2
2 ≤

∑n
i=1 ‖∆ib‖4. This further implies,

‖L−1/2
P RPL−1/2

P ‖ ≤ ‖L−1/2
P RPL−1/2

P ‖2

≤

√√√√ n∑
i=1

‖∆ib‖4

≤ 1

2

on AP . Hence, 1− ‖L−1/2
P RPL−1/2

P ‖ ≥ 1
2

and we have∣∣∣Ψ2(L−1/2
P RPL−1/2

P )
∣∣∣ ≤ ‖L−1/2

P RPL−1/2
P ‖2

2

1− ‖L−1/2
P RPL−1/2

P ‖

≤ 2
n∑
i=1

‖∆ib‖4.

Eq. (5.49) in Corollary 5.13 above gives the existence of some Λ < ∞
depending only on curvature and d such that,

| tr(L−1/2
P EPL−1/2

P )| ≤ Λ
n∑
i=1

‖∆ib‖3.

Therefore on AP ,∣∣∣tr(L−1/2
P EPL−1/2

P )
∣∣∣+
∣∣∣Ψ2(L−1/2

P RPL−1/2
P )

∣∣∣ ≤ Λ
n∑
i=1

‖∆ib
P‖3 + 2

n∑
i=1

‖∆ib‖4

≤ (Λ + 2ε)
n∑
i=1

‖∆ib
P‖3

≤ C
n∑
i=1

‖∆ib
P‖3
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which concludes the proof.

Lemma 5.15. For βPk , α
m
k and λPk as in Theorem 3.4,

tr
(
L−1/2
P UPL−1/2

P

)
=

n∑
m,k=1

(βPk )2

λPk

[
(αmk )2 tr([UP ]m,m) + 2αmk α

m+1
k tr([UP ]m,m+1)

]
(5.51)

= −
n∑

m,k=1

(βPk )2

λPk
∆3〈Ricu(sm−1) ∆mb,∆mb〉ξk,m (5.52)

where for 1 < m ≤ n (with αn+1
k := 0),

ξk,m =
2

45

[
4(αmk )2 − (αm−1

k )2
]

+
1

180
αmk
[
13αm+1

k − 7αm−1
k

]
(5.53)

and for m = 1,

ξk,m =
8

45
(αmk )2 +

13

180
αmk α

m+1
k . (5.54)

This further implies that there is some constant C = C(d, curvature) < ∞ such

that, ∣∣∣tr(L−1/2
P UPL−1/2

P

)∣∣∣ ≤ C
n∑

m=1

‖∆mb‖2. (5.55)

Proof. Eq. (5.51) follows by applying Lemma 5.12. Eq. (5.55) is just a restatement

of Eq. (5.48) in Corollary 5.13 above. By the definition of UP in Eq 5.38,

tr ([UP ]m,m) =
2∆5

45
tr(4APm(0)− APm+1(0)) and,

tr ([UP ]m,m+1) =
∆5

360
tr(13APm(0)− 7APm+1(0)).

This implies,

(αmk )2 tr([UP ]m,m) + 2αmk α
m+1
k tr([UP ]m,m+1)

= ∆5

[
tr(APm(0))

(
8

45
(αmk )2 +

13

180
αmk α

m+1
k

)
− tr(APm+1(0))

(
2

45
(αmk )2 +

7

180
αmk α

m+1
k

)]
.
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Hence,

n∑
m=1

(αmk )2 tr([UP ]m,m) + 2αmk α
m+1
k tr([UP ]m,m+1) =

n∑
m=1

∆5 tr(APm(0))ξk,m.

This leads to Eq. (5.52) by Eqs. (3.4) and (3.6).

We now have the necessary bounds to show that in the limit as |P| → 0,

we need only concern ourselves with the tr(L−1/2
P UPL−1/2

P ) term.

Proposition 5.16. Let AP be as in Lemma 5.15. Let XP := 1
2

tr
(
L−1/2
P UPL−1/2

P

)
.

Then for sufficiently small |P| and ε, there exists a C < ∞ depending only on d

and the bound on the curvature of M such that,∫
Hε
P (Rd)

∣∣ρ̃P − eXP ∣∣ dµSP ≤ C|P|1/4. (5.56)

Proof. Let YP := 1
2

(
tr(L−1/2

P EPL−1/2
P ) + Ψ2(L−1/2

P RPL−1/2
P )

)
, so that from Eq.

(5.43), ∣∣ρ̃P − eXP ∣∣ =
∣∣eXP (eYP − 1)

∣∣ .
Given any a > 0, using Eq. (5.55) in Lemma 5.15,∫

HP (Rd)

eaXPdµSP ≤ E
[
eaC

∑n
i=1 ‖∆ib‖2dµ

]
→ edaC <∞, (5.57)

where the right hand side follows from Lemma A.2. By Hölder’s inequality,

∫
Hε
P (Rd)∩AP

∣∣ρ̃P − eXP ∣∣ dµSP ≤
(∫

Hε
P (Rd)∩AP

e2XpdµSP

)1/2(∫
Hε
P (Rd)∩AP

(eYp − 1)2dµSP

)1/2

.

From Eq. (5.55) in Lemma 5.15 and Eq. (5.50) in Proposition 5.14, there is some



73

Λ = Λ(d, curvature) <∞ such that,(∫
Hε
P (Rd)∩AP

e2XpdµSP

)1/2(∫
Hε
P (Rd)∩AP

(eYp − 1)2dµSP

)1/2

≤

(∫
Hε
P (Rd)∩AP

eΛ
∑n
i=1 ‖∆ib

P‖2dµSP

)1/2(∫
Hε
P (Rd)∩AP

(eΛ
∑n
i=1 ‖∆ib

P‖3 − 1)2dµSP

)1/2

≤
(∫

HP (Rd)

eΛ
∑n
i=1 ‖∆ib

P‖2dµSP

)1/2
(∫

Hε
P (Rd)

(eΛ
∑n
i=1 ‖∆ib

P‖3 − 1)2dµSP

)1/2

= E
[
eΛ
∑n
i=1 ‖∆ib‖2dµ

]1/2
(∫

Hε
P (Rd)

(eΛ
∑n
i=1 ‖∆ib

P‖3 − 1)2dµSP

)1/2

.

≤ C|P|1/4

Here the last inequality follows from Corollary 5.5. On the compliment of AP ,∫
AcP

∣∣ρ̃P − eXP ∣∣ dµSP ≤ ∫
AcP

(
|ρ̃P |+

∣∣eXP ∣∣) dµSP
≤
(
E
[
|ρ̃P |2

]1/2
+ E

[
e2XP

]1/2)E [1{∑n
i=1 ‖∆ib‖4>1/4}

]1/2

.

Arguing as above and using Theorem 4.8 ensures that E [|ρ̃P |2]
1/2

+ E
[
e2XP

]1/2
stays bounded for sufficiently small |P|. Noticing that{

n∑
i=1

‖∆ib‖4 >
1

4

}
⊂

n⋃
i=1

{
‖∆ib‖4 >

1

4n

}
d
= ∪ni=1

{
‖Zi‖ >

(n
4

)1/4
}
,

where {Zi} are i.i.d. with Zi
d
= b1. Lemma A.1 gives for sufficiently small |P|,

E
[
1{∑n

i=1 ‖∆ib‖4>1/4}
]
≤

n∑
i=1

C̃√
n
e−
√
n

16

=
√
nC̃e−

√
n

16

=
C̃√
|P|

e
− 1

16
√
|P|

≤ C
√
|P|.

Combining these facts imply the claim.
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An important fact that will be used is that from the definition of αmk in

Theorem 3.4, we have for 1 ≤ m ≤ n− 1

(αmk )2 = sin2(mθPk )

=
1

2

(
1− cos(2mθPk )

)
and if also m+ 1 < n,

αmk α
m+1
k = −1

4
(eimθ

P
k − e−imθPk )(ei(m+1)θPk − e−imθPk )

=
1

4

(
eiθ
P
k + e−iθ

P
k − (ei(2m+1)θPk + e−i(2m+1)θPk )

)
=

1

2

(
cos(θPk )− cos((2m+ 1)θPk )

)
.

Therefore, for 1 < m < n− 1 and ξk,m defined in Lemma 5.15,

ξk,m =
2

45

[
4(αmk )2 − (αm−1

k )2
]

+
1

180
αmk
[
13αm+1

k − 7αm−1
k

]
=

2

45

[
2{1− cos(2mθPk )} − 1

2
{1− cos(2(m− 1)θPk )}

]
+

1

180

[
13

2
{cos(θPk )− cos((2m+ 1)θPk )} − 7

2
{cos(θPk )− cos((2m− 1)θPk )}

]
=

1

15
+

1

60
cos(θPk ) + remk,m (5.58)

where the remainder term is given by,

remk,m = − 13

360
cos((2m+ 1)θPk )− 4

45
cos(2mθPk ) +

7

360
cos((2m− 1)θPk )

+
1

45
cos(2(m− 1)θPk ) (5.59)

= cos(2mθPk )

{
1

45
(cos(2θPk )− 4)− 1

60
cos(θPk )

}
+ sin(2mθPk )

{
1

45
sin(2θPk )− 1

60
sin(θPk )

}
. (5.60)

It’s useful to write ξk,m in this fashion since what follows shows that as |P| → 0,

the terms involving remk,m vanish. Intuitively, one might hope for this to be the

case since as n→∞ and we sum over something of the form f(θPk )e2imθPk , it begins

to look like an application of the Riemann-Lebesgue Lemma. We formalize this

presently.
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Proposition 5.17. Take δ > 0 and define ∂δ = ∂δ(n) := {k ∈ N : πk
n+1
≤

δ or πk
n+1
≥ π − δ} and Ωδ = Ωδ(n) := {k ∈ N : δ < πk

n+1
< π − δ}. Let f :

[0, π] → R be Lipshitz and bounded where we set Λ < ∞ with supx |f(x)| ≤ Λ

and |f(x) − f(y)| ≤ Λ|x − y| for each x, y ∈ [0, π]. Then there exists a constant

C = C(Λ) <∞ such that if j ∈ Ωδ,∣∣∣∣∣
n∑
k=1

(βPk )2f(θPk )ei2jθ
P
k

∣∣∣∣∣ ≤ C

n sin(δ)
. (5.61)

And for any j = 1, 2, ..., n, ∣∣∣∣∣
n∑
k=1

(βPk )2f(θPk )ei2jθ
P
k

∣∣∣∣∣ ≤ C. (5.62)

Proof. For notational convenience, define ζk := θk − πk
n+1

. Using the notation and

results from Theorem 3.4, we start with the following estimates.

|(βPk+1)2 − (βPk )2| = O(
1

n2
),

|θPk+1 − θPk | =
π

n+ 1
|1 + rk+1 − rk| = O(

1

n
),

and

|ζk+1 − ζk| =
π

n+ 1
|rk+1 − rk| = O(

1

n
).

Therefore, there exists a c = c(Λ) <∞ such that∣∣(βPk+1)2f(θPk+1)ei2jζk+1− (βPk )2f(θPk )ei2jζk
∣∣

≤ Λ
∣∣(βPk+1)2 − (βPk )2

∣∣+O(
1

n
)
[∣∣f(θPk+1)− f(θPk )

∣∣+ Λ
∣∣ei2jζk+1 − ei2jζk

∣∣]
≤ c

n2
.

Now, define the partial sum Sm :=
∑m

k=1 e
i2j πk

n+1 and S0 := 0. Using the

fact that Sm is a geometric series,

Sm =
1− ei2j

π(m+1)
n+1

1− ei2j
π
n+1

− 1

=
1

2i

ei2j
π(m+1/2)

n+1 − eij
π
n+1

sin
(
πj
n+1

) − 1
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so that

|Sm| ≤
1

sin(δ)
+ 1.

Applying summation by parts,

n∑
k=1

(βPk )2f(θPk )ei2jθ
P
k = (βPn )2f(θPn )ei2jθ

P
n +

n−1∑
k=1

(βPk )2f(θPk )ei2jζkei2j
πk
n+1

= (βPn )2f(θPn )ei2jθ
P
n +

n−1∑
k=1

(βPk )2f(θPk )ei2jζk(Sk − Sk−1)

= (βPn )2f(θPn )ei2jθ
P
n (1 + ei2j

πn
n+1 )− (βP1 )2f(θP1 )ei2jθ

P
1

+
n−1∑
k=1

(
(βPk+1)2f(θPk+1)ei2jζk+1 − (βPk )2f(θPk )ei2jζk

)
Sk

and now using the above estimates and noting from Theorem 3.4, (βPn )2 < O(1/n),∣∣∣∣∣
n∑
k=1

β2
kf(θk)e

i2jθk

∣∣∣∣∣ ≤ O(
Λ

n
) +

(
1 +

1

sin(δ)

) n−1∑
k=1

c

n2

≤ O(
Λ

n
) +

(
1 +

1

sin δ

)
c

n

≤ C

n sin(δ)
.

The second claim is nearly immediate since from Theorem 3.4, (βPk )2 = O(1/n)

and hence ∣∣∣∣∣
n∑
k=1

β2
kf(θk)e

i2jθk

∣∣∣∣∣ ≤
n∑
k=1

ΛO(
1

n
)

≤ C.

Corollary 5.18. Let δ > 0. Using the notation from Proposition 5.17, there exists

a C = C(curvature) <∞ such that,∣∣∣∣∣
n∑

m,k=1

(βPk )2

λPk
∆3〈Ricu(sm−1) ∆mb,∆mb〉 remk,m

∣∣∣∣∣
≤ C

n sin(δ)

n∑
m=1

‖∆mb‖2 + C
∑
m∈∂δ

‖∆mb‖2. (5.63)
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Proof. Using Proposition 5.17 and Eq. (5.60),∣∣∣∣∣
n∑

m=1

n∑
k=1

(βPk )2

λPk
∆3〈Ricu(sm−1) ∆mb,∆mb〉 remk,m

∣∣∣∣∣
≤

n∑
m=1

∣∣∣∣∣〈Ricu(sm−1) ∆mb,∆mb〉
n∑
k=1

(βPk )2

λPk
∆3 remk,m

∣∣∣∣∣
≤ C

n sin(δ)

∑
m∈Ωδ

‖∆mb‖2 + C
∑
m∈∂δ

‖∆mb‖2

≤ C

n sin(δ)

n∑
m=1

‖∆mb‖2 + C
∑
m∈∂δ

‖∆mb‖2.

From here we are able to show that what actually contributes in the limit

allows us to ignore the remk,m term. Moreover, we will see that those boundary

cases of ξk,m for m = 1, n− 1, n are also negligible and allow us to further simplify

our expression when passing to the limit.

Proposition 5.19. Following the notation in Proposition 5.17, for sufficiently

small |P|, ∫
Hε
P (Rd)

∣∣eXP − eyP ∣∣ dµSP ≤ Cn−1/4 = C|P|1/4 (5.64)

where C = C(d, curvature) <∞,

yP := −1

2

n−2∑
m=2

n∑
k=1

(βPk )2

λPk
∆3

(
1

15
+

1

60
cos(θPk )

)
〈Ricu(sm−1) ∆mb,∆mb〉

and as before XP := 1
2

tr(L−1/2
P UPL−1/2

P ).

Proof. We first write,

|eXP − e−yP | = eyP |eXP−yP − 1|

≤ eyP
(
e∂XP |eZP − 1|+ |e∂XP − 1|

)
= eỹP |eZP − 1|+ eyP |e∂XP − 1|
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where,

∂XP :=
∑

m∈{1,n−1,n}

n∑
k=1

(βPk )2

λPk
∆3〈Ricu(sm−1) ∆mb

P ,∆mb
P〉ξk,m

ỹP := yP + ∂XP ,

and

ZP := (XP − ∂XP)− yP

= −
n−2∑
m=2

n∑
k=1

(βPk )2

λPk
∆3〈Ricu(sm−1) ∆mb

P ,∆mb
P〉 remk,m .

Note that there is some Λ = Λ(curvature) so that we have the following size

estimates,

|∂XP | ≤
n∑
k=1

Λ

n

(
‖∆1b

P‖2 + ‖∆n−1b
P‖2 + ‖∆nb

P‖2
)

≤ Λ
(
‖∆1b

P‖2 + ‖∆n−1b
P‖2 + ‖∆nb

P‖2
)
,

|yP |, |ỹP | ≤ Λ
n∑

m=1

‖∆mb
P‖2,

and from Corollary 5.18, with δ = 1/
√
n,

|ZP | ≤
Λ√
n

n∑
m=1

‖∆mb
P‖2 + Λ

∑
m∈∂δ

‖∆mb
P‖2.

Using Hölder’s inequality with the above estimates and once again making use of

the fact that (ea − 1)2 ≤ 2|a|e2|a|,

∫
Hε
P (Rd)

|eXP − eyP |dµSP ≤

[∫
Hε
P (Rd)

e2ỹdµSP

]1/2 [∫
Hε
P (Rd)

(eZ − 1)2dµSP

]1/2

+

[∫
Hε
P (Rd)

e2ydµSP

]1/2 [∫
Hε
P (Rd)

(e|∂X| − 1)2dµSP

]1/2

where we have simplified notation by dropping the subscript P from y, ỹ, X, and

Z. From Corollary 5.6, for sufficiently small ε and |P| here there is some Λ̃ =
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Λ̃(d, curvature) such that, ∫
Hε
P (Rd)

e2ydµSP ≤ Λ̃,∫
Hε
P (Rd)

e2ỹdµSP ≤ Λ̃,

and ∫
Hε
P (Rd)

(e|∂X| − 1)2dµSP ≤ Λ̃|P|.

For the term involving Z,∫
Hε
P (Rd)

(eZ − 1)2dµSP ≤ 2E
[
|Z|e2|Z|]

≤ E

[(
Λ√
n

n∑
m=1

‖∆mb‖2 + Λ
∑
m∈∂δ

‖∆mb‖2

)
exp

{
Λ

n∑
m=1

‖∆mb‖2

}]1/2

Using Lemma 5.4,

E

[
Λ√
n

n∑
m=1

‖∆mb‖2e2Λ
∑n
m=1 ‖∆mb‖2

]
≤ Λ̃√

n
= Λ̃|P|1/2,

and

E

[
C̃
∑
m∈∂δ

‖∆mb‖2e2C̃
∑n
m=1 ‖∆mb‖2

]
≤ Λ̃δ =

Λ̃√
n

= Λ̃|P|1/2

Here we used E as integration onW (Rd) against Wiener measure. Hence 2E
[
|Z|e2|Z|] ≤

2Λ̃|P|−1/2 = 2Λ̃|P|1/2. Therefore,∫
Hε
P (Rd)

|eXP − eyP |dµSP ≤ Cn−1/4 = C|P|1/4.

which is what we wanted to show.

In Proposition 5.19 we defined the process yP . Rearranging the expression

and using the definition of λPk from Theorem 3.4,

yP = − 1

40

{
n∑
k=1

(βPk )2 4 + cos(θPk )

2 + cos(θPk )

}{
n−2∑
m=2

〈Ricu(sm−1) ∆mb
P ,∆mb

P〉

}
. (5.65)

=: −τP
n−2∑
m=2

〈Ricu(sm−1) ∆mb
P ,∆mb

P〉. (5.66)
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Proposition 5.20 below shows that

τP →
1

20

∫ 1

0

4 + cos(πx)

2 + cos(πx)
dx =

2 +
√

3

20
√

3
= τG. (5.67)

Proposition 5.20. Suppose that 0 ≤ r < s ≤ 1 and f ∈ C1([0, π]→ R). Then,

lim
n→∞

∑
{k:r<k/n<s}

(βPk )2f(θPk ) = 2

∫ s

r

f(πt)dt. (5.68)

Proof. Notice that
∑

2
n
f
(
πk
n

)
is the Riemann sum approximation to 2

∫
f(πt)dt.

Hence it suffices to show that |
∑{

(βPk )2f(θPk )− 2
n
f
(
πk
n

)}
| → 0, which will be

done by showing that the summand (βPk )2f(θPk )− 2
n
f
(
πk
n

)
is O(1/n2). To this end

we write,∣∣∣∣(βPk )2f(θPk )− 2

n
f

(
πk

n

)∣∣∣∣ ≤ ∣∣βPk ∣∣2 ∣∣∣∣f(θPk )− f
(
πk

n

)∣∣∣∣+

∣∣∣∣f (πkn
)∣∣∣∣ ∣∣∣∣(βPk )2 − 2

n

∣∣∣∣ .
From Theorem 3.4,

|βPk |2 = O

(
1

n

)
,∣∣∣∣θPk − πk

n

∣∣∣∣ =

∣∣∣∣πrkn− πkn(n+ 1)

∣∣∣∣ = O

(
1

n

)
,∣∣∣∣(βPk )2 − 2

n

∣∣∣∣ =
2

n

(
εk

1− εk

)
= O

(
1

n2

)
.

Here f ∈ C1([0, π] → R), |f(θPk ) − f(πk/n)| = O(|θPk − πk/n|) = O(1/n) and

|f(πk/n)| = O(1). Therefore, (βPk )2f(θPk )− 2
n
f
(
πk
n

)
= O(1/n2).

Proposition 5.21. Defining RP as in Eq. (2.24), yP and τP as in Eqs. (5.65)

and (5.66), and τG as in Eq. (5.67), there is a constant C = C(d, curvature) <∞
such that, ∫

Hε
P (Rd)

|eyP − e−τGRP |dµSP ≤ C(
√
|τP − τG|+

√
|P|). (5.69)

Proof. Start with

τGRP + yP = (τG − τP)RP + τP∂RP
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where

∂RP := 〈Ricu(s0) ∆1b
P ,∆1b

P〉+ 〈Ricu(sn−2) ∆n−1b
P ,∆n−1b

P〉

+〈Ricu(sn−1) ∆nb
P ,∆nb

P〉.

Hence,

|eyP − e−τGRP | = eyP |e−(τGRP+yP ) − 1|

= eyP |e−(τG−τP )RPe−τP∂RP − 1|

≤ eyP−τP∂RP |e−(τG−τP )RP − 1|+ eyP |e−τP∂RP − 1|.

As usual, we find some constant Λ = Λ(d, curvature) <∞ such that,

|yP |, |yP − τPRP | ≤ Λ
n∑
i=1

‖∆ib‖2,

and

|∂RP | ≤ Λ(‖∆1b
P‖2 + ‖∆n−1b

P‖2 + ‖∆nb
P‖2).

Using Hölder’s inequality, Lemma 5.4, Corollary 5.6, and the fact that Proposition

5.20 implies that τP remains bounded as |P| → 0,∫
Hε
P (Rd)

|eyP − e−τGRP |dµSP

≤

[∫
Hε
P (Rd)

e2yP−2τP∂RPdµSP

]1/2 [
2|τG − τP |

∫
Hε
P (Rd)

|RP | |e2|τG−τP ||RP |dµSP

]1/2

+

[∫
Hε
P (Rd)

e2yPdµSP

]1/2 [∫
Hε
P (Rd)

(e2|τP ||∂RP | − 1)dµSP

]1/2

≤ C
(√
|τP − τG|+

√
|P|
)
.

Proposition 5.20 also implies that |τP − τG| → 0 as P → 0, which is why we

can choose C independent of τP for sufficiently small P (as noted in the remark

following Lemma 5.4).

We are now ready to piece together the proof of the main theorem.
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Proof of Theorem 1.4. Let Λ be the bound on f . In what follows we will liber-

ally use the triangle inequality and Hölder’s inequality without explicit mention.

Defining RP and SP as in Eqs. (2.24) and (2.25) resp.,∣∣∣∣∫
HP (M)

f(σ)dνGP (σ)−
∫
W (M)

f(σ)e−τG
∫ 1
0 Scal(σ(s))dsdν(σ)

∣∣∣∣
≤

∣∣∣∣∣
∫
HP (M)

f(σ)dνGP (σ)−
∫
Hε
P (M)

f(σ)dνGP (σ)

∣∣∣∣∣
+

∣∣∣∣∣
∫
Hε
P (M)

f(σ)dνGP (σ)−
∫
Hε
P (Rd)

f(ω)e−τGRP (ω)dµSP (ω)

∣∣∣∣∣
+

∣∣∣∣∣
∫
Hε
P (Rd)

f(ω)e−τGRP (ω)dµSP (ω)−
∫
Hε
P (Rd)

f(ω)e−τGSP (ω)dµSP (ω)

∣∣∣∣∣
+

∣∣∣∣∣
∫
Hε
P (Rd)

f(ω)e−τGSP (ω)dµSP (ω)−
∫
HP (M)

f(σ)e−τG
∫ 1
0 Scal(σ(s))dsdνSP (σ)

∣∣∣∣∣
+

∣∣∣∣∫
HP (M)

f(σ)e−τG
∫ 1
0 Scal(σ(s))dsdνSP (σ)−

∫
W (M)

f(σ)e−τG
∫ 1
0 Scal(σ(s))dsdν(σ)

∣∣∣∣ .
We have completed most the work to show that each of these differences approaches

0 as |P| → 0. Indeed, fix ε > 0. Corollary 5.3 gives,∣∣∣∣∣
∫
HP (M)

f(σ)dνGP (σ)−
∫
Hε
P (M)

f(σ)dνGP (σ)

∣∣∣∣∣ ≤ C

ε2
e−

ε2

4|P| .

The definition of ρ̃P along with Propositions 5.16, 5.19, and 5.21 implies,∣∣∣∣∣
∫
Hε
P (M)

f(σ)dνGP (σ)−
∫
Hε
P (Rd)

f(ω)e−τGRP (ω)dµSP (ω)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Hε
P (Rd)

f(ω)
(
ρ̃P − e−τGRP (ω)

)
dµSP (ω)

∣∣∣∣∣
≤ Λ

∫
Hε
P (Rd)

∣∣ρ̃P(ω)− e−τGRP (ω)
∣∣ dµSP (ω)

= Λ

∫
Hε
P (Rd)

∣∣(ρ̃P(ω)− eXP ) + (eXP − eyP ) + (eyP − e−τGRP (ω))
∣∣ dµSP (ω)

≤ C
(√
|τP − τG|+ |P|1/4

)
,

where the notation is consistent with that in the aforementioned propositions.
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Using Proposition 5.7,∣∣∣∣∣
∫
Hε
P (Rd)

f(ω)e−τGRP (ω)dµSP (ω)−
∫
Hε
P (Rd)

f(ω)e−τGSP (ω)dµSP (ω)

∣∣∣∣∣
≤ Λ

[∫
Hε
P (Rd)

e−2SPdµSP

]1/2 [∫
Hε
P (Rd)

(
e−(RP−SP ) − 1

)2
dµSP

]1/2

= Λ

[∫
Hε
P (Rd)

e−2SPdµSP

]1/2 [∫
Hε
P (Rd)

{(
e−2(RP−SP ) − 1

)
− 2

(
e−(RP−SP ) − 1

)}
dµSP

]1/2

≤ C

√
eC|P| − 1 +

C

ε2
e−C̃

ε2

|P| +
C√
|P|ε

e−
ε2

8|P| .

Let ZP := τG

(
SP(ω)−

∫ 1

0
Scal(φ(ω)(s))ds

)
. From Theorem 2.11 and Lemma 2.15,∣∣∣∣∣

∫
Hε
P (Rd)

f(ω)e−τGSP (ω)dµSP (ω)−
∫
HP (M)

f(σ)e−τG
∫ 1
0 Scal(σ(s))dsdνSP (σ)

∣∣∣∣∣
≤ Λ

∫
HP (Rd)

eτG
∫ 1
0 | Scal(φ(ω)(s))|ds ∣∣e−ZP − 1

∣∣ dµSP (ω)

≤ ΛE
[
e3τG|b1|

]1/2 [∫
HP (Rd)

∣∣e−ZP − 1
∣∣2 dµSP (ω)

]1/2

= ΛE
[
e3τG|b1|

]1/2 [∫
HP (Rd)

{
(e−2ZP − 1)− 2(e−ZP − 1)

}
dµSP (ω)

]1/2

≤ C|P|1/4.

Therefore all that remains is to show that∣∣∣∣∫
HP (M)

f(σ)e−τG
∫ 1
0 Scal(σ(s))dsdνSP (σ)−

∫
W (M)

f(σ)e−τG
∫ 1
0 Scal(σ(s))dsdν(σ)

∣∣∣∣→ 0

as |P| → 0; however, this is the result of Theorem 2.9 and why we chose to compare

νGP with νSP .



Appendix A

Calculus and Probabilistic

Inequalities

The proof of Eq. (A.1) can be found in [1, Lemma 8.6], but a full proof is

included here.

Lemma A.1. Let Z
d
= Nd(0, 1), k ≥ 0, and a > 0. Then there exists a C < ∞

depending only on k and d such that

E[ek‖Z‖ : ‖Z‖ ≥ a] ≤ C

a2
e−

1
4
a2

. (A.1)

If we further restrict k < 1/2, then we can take C such that

E[ek‖Z‖
2

: ‖Z‖ ≥ a] ≤ C

a2
e−

1−2k
4

a2

. (A.2)

Proof. We can find a Λ = Λ(k, d) < ∞ such that rd−1ekre−r
2/2 ≤ Λe−3r2/8 and

rd−1e−(1−2k)r2/2 ≤ Λe−3(1−2k)r2/8. Now, let ωd−1 be the volume of the unit sphere

in Rd, and for b > 0 we have,

Λωd−1(2π)d/2
∫ ∞
a

e−
3b
8
r2

dr ≤ Λωd−1(2π)d/2
∫ ∞
a

r

a
e−

3b
8
r2

dr

=
8Λωd−1(2π)d/2

6ba
e−

3b
8
a2

≤ C

a2
e−

b
4
a2

.

84
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Here, for example, we can take C =
√

2
e
× 8Λωd−1(2π)d/2

6b
. Realizing that

E[ek‖Z‖ : ‖Z‖ ≥ a] = ωd−1(2π)d/2
∫ ∞
a

rd−1ekre−
1
2
r2

dr

≤ Λωd−1(2π)d/2
∫ ∞
a

e−
3
8
r2

dr

and

E[ek‖Z‖
2

: ‖Z‖ ≥ a] = ωd−1(2π)d/2
∫ ∞
a

rd−1e−
1−2k

2
r2

dr

≤ Λωd−1(2π)d/2
∫ ∞
a

e−
3(1−2k)

8
r2

dr

implies the result.

Lemma A.2. Given any C ≥ 0 and p ∈ [1,∞), if pC∆is < 1 for each i, then

E
[
e
p
2
C
∑n
i=1 ‖∆ib‖2

]
=

n∏
i=1

(1− pC∆is)
−d/2 (A.3)

→ edpC/2 as |P| → 0. (A.4)

Proof. If Z
d
= Nd(0, 1), the E[exp{pC∆is‖Z‖2/2}] = (1 − pC∆is)

−d/2. Therefore

the above equalities are elementary using independent increments and scaling of

Brownian motion.

Lemma A.3. For any α > 0, there exists a Cα <∞ such that

cosh(x)− 1 ≤ Cα(eαx
2 − 1). (A.5)

Proof. If α ≥ 1, this is obvious by taking Cα = 1. For α < 1, expand the

exponential term,

eαx
2 − 1 =

∞∑
k=1

(αx2)k

k!

=
∞∑
k=1

αk
(2k)!

k!

x2k

(2k)!
.
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Define k̃ = inf {k ∈ N : αk ≥ 1}. Stirling’s approximation ensures that (2k)!/k! >

kk, so for any k ≥ k̃ and any l ≤ k, αl (2k)!
k!
≥ 1. Therefore, setting Cα := α−k̃,

Cα(eαx
2 − 1) =

∞∑
k=1

αk−k̃
(2k)!

k!

x2k

(2k)!

≥
∞∑
k=1

x2k

(2k)!

= cosh(x)− 1.

Lemma A.4. For any x ∈ R and p ∈ N,

|ex − 1|p ≤ ep|x| − 1. (A.6)

Proof. A quick look at the Taylor sum of ex assures that |ex − 1| ≤ e|x| − 1, so

it suffices to show the above inequality for x > 0. In that case, when p = 1 this

result is trivial. Suppose that we have that this inequality holds for each k for

1 ≤ k ≤ p, then

(ex − 1)p+1 ≤ (ex − 1)(epx − 1)

= e(p+1)x − ex − epx + 1

≤ e(p+1)x − 1.

By induction we arrive at the desired result.

Proposition A.5. We have the following estimates on the hyperbolic functions

for x, a, b ≥ 0

1) cosh(x)− 1 ≤ min(x sinh(x), sinh(x))

2) sinh(x) ≤ min(x cosh(x), cosh(x))

3) cosh(a) cosh(b) ≤ cosh(a+ b) and in particular, cosh2(a) ≤ cosh(2a)

4) cosh(a)(cosh(b)− 1) ≤ cosh(a) cosh(b)− 1

5) (cosh(a)− 1) (cosh(b)− 1) ≤ cosh(a) cosh(b)− 1
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6) If α ≥ 1 then α(cosh(a) cosh(b)− 1) ≤ (cosh(αa) cosh(αb)− 1).

Proof. 1) By the fundamental theorem of calculus,

cosh(x)− 1 =

∫ x

0

sinh(t)dt

≤ sinh(x)

∫ x

0

dt

= x sinh(x)

and also that sinh(x)− (cosh(x)− 1) = 1− e−x ≥ 0.

2) Similar to the previous inequalities, sinh(x) =
∫ x

0
cosh(t)dt ≤ x cosh(x) and

cosh(x)− sinh(x) = e−x > 0.

3) This is a simple identity expanding cosh in terms of exponentials and noting

that |a− b| ≤ a+ b

cosh(a) cosh(b) =
1

4

(
ea + e−a

) (
eb + e−b

)
=

1

4

(
ea+b + e−(a+b) + ea−b + e−(a−b))

=
1

2
(cosh(a+ b) + cosh(a− b))

≤ 1

2
2 cosh(a+ b)

= cosh(a+ b)

4) With cosh(a) ≥ 1, cosh(a) cosh(b)− cosh(a) ≤ cosh(a) cosh(b)− 1.

5) (cosh(a)− 1)2 = cosh2(a) − 2 cosh(a) + 1 ≤ cosh(2a) − 1 since cosh2(a) ≤
cosh(2a) and 1− 2 cosh(a) ≤ −1.

6) We first establish that f(x) := α(cosh(x)− 1) ≤ f̃(x) := cosh(αx)− 1. With

f(0) = 0 = f̃(0) and f ′(x) = α sinh(x) ≤ α sinh(αx) = f̃ ′(x) for α ≥ 1

and x > 0 the first claim follows. Now, let g(x) = α(cosh(x) cosh(b) −
1) and g̃(x) = cosh(αx) cosh(αb) − 1. Then, by what we just established,

g(0) ≤ g̃(0). Further g′(x) = α sinh(x) cosh(b) ≤ α sinh(αx) cosh(αb) =

g̃′(x). Hence the proof.
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Proposition A.6. Let {Xn : n ∈ N} be a sequence of random variables on the

probability space (Ω,P). If there exists a p > 1 such that

lim sup
n→∞

E [|Xn|p] <∞, (A.7)

then the collection {Xn} is uniformly integrable.

Proof. Since any finite collection of random variables is uniformly integrable, we

may as well assume that supn E[|Xn|] =: K <∞. Let a > 0 and we have

E
[
1{|Xn|≥a}|Xn|

]
≤ E

[
1{|Xn|≥a}

(
|Xn|
a

)p−1

|Xn|

]
≤ 1

ap−1
E [|Xn|p]

≤ K

ap−1
→ 0 as a→∞.



Appendix B

Some Linear Algebra

This chapter is dedicated to establishing some equalities and inequalities

that fall broadly into the category of Linear Algebra. Many have extensions to

bounded, compact, or trace class operators on Hilbert Spaces although for our

purposes we need only consider finite dimensional matrices. The interested reader

is directed to [25, 23] for further investigation.

Notation B.1. We will assume that V is an N-dimensional complex inner-product

space, L(V ) will be the collection of linear operators V → V , and {ei}Ni=1 is an

orthonormal basis. If A ∈ L(V ), then the operator A∗ ∈ L(V ) will denote the

adjoint of A, |A| =
√
A∗A will be the absolute value of A, ‖A‖ = sup{‖Av‖ : ‖v‖ =

1} will denote the operator norm on A, and ‖A‖2 :=
√

tr(A∗A) =
√

tr(|A|2) will

denote the Hilbert-Schmidt norm of A.

For the Hilbert-Schmidt norm, we can also define it so that it appears more

like l2 norm since,

‖A‖2
2 = tr(A∗A) =

N∑
i=1

〈A∗Aei, ei〉 =
N∑
i=1

‖Aei‖2 =
N∑

i,j=1

|〈Aei, ej〉|2

where we recognize that 〈Aei, ej〉 is the (i, j)th entry of the matrix representation

of A under the basis {ei}.
The following theorem generalizes the idea that if z ∈ C, then we can find

some eiθ in the unit circle such that z = |z|eiθ. The proof is given in [25, Theorem

VI.10].

89
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Theorem B.2 (Polar Decomposition). Given A ∈ L(V ), there exists a unique

operator U ∈ L(V ) such that U is an isometry when restricted to (KerU)⊥,

RanU = RanA, and U |A| = A.

As a consequence of Theorem B.2 we have,

Proposition B.3. Let A,B ∈ L(V ). Then,

| tr(AB)| ≤ ‖A‖ tr(|B|). (B.1)

Proof. Since |B| is self-adjoint, there is an orthonormal basis of eigenvectors of

{vi}Ni=1 of |B|. Let {λi}Ni=1 be the respective eigenvalues with |B|vi = λivi. Let

U ∈ L(V ) be chosen as in Theorem B.2 such that U |B| = B. Then,

| tr(AB)| =

∣∣∣∣∣
n∑
i=1

〈ABvi, vi〉

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

〈AU |B|vi, vi〉

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

λi〈AUvi, vi〉

∣∣∣∣∣
≤

n∑
i=1

λi |〈AUvi, vi〉|

≤ ‖U‖‖A‖
n∑
i=1

λi‖vi‖2

= ‖A‖ tr(|B|).

Here the second inequality comes from applying the Cauchy-Schwarz inequality to

|〈AUvi, vi〉|. The last equality comes from the fact that ‖vi‖ = 1.

Corollary B.4. Let A and B be defined as in Proposition B.3 above. Then

‖AB‖2 ≤ ‖A‖‖B‖2. (B.2)

In particular,

‖A‖2 ≤
√
N‖A‖. (B.3)
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Proof. Recall that for C1, C2 ∈ L(V ), tr(C1C2) = tr(C2C1). Therefore,

‖AB‖2
2 = tr(B∗A∗AB)

= tr(BB∗A∗A)

≤ ‖A∗A‖ tr(BB∗) by Proposition B.3

= ‖A‖2 tr(|B|2)

= ‖A‖2‖B‖2
2.

For the second claim, set B = I.

Corollary B.5. Let A ∈ L(V ). Then

| tr(A)| ≤
√
N‖A‖2 ≤ N‖A‖. (B.4)

Proof. Let {λi}Ni=1 be the eigenvalues of |A|. Since | tr(A)| ≤ tr(|A|) by Proposition

B.3 and using the Cauchy-Schwarz inequality,

tr(|A|) =
N∑
i=1

λi

≤

(
N∑
i=1

λ2
i

)1/2√
N

=
√
N
√

tr(|A|2)

=
√
N‖A‖2,

the result follows when combing this with the fact that ‖A‖2 ≤
√
N‖A‖ by Corol-

lary B.4.

Lemma B.6. Suppose that n, d ∈ N and N = nd. Let A ∈ L(V ), where we

consider A to be an n× n block matrix with d× d blocks. If A is block-tridiagonal

then,

‖A‖2
2 ≤ d

n∑
i=1

(
‖[A]i,i‖2 + ‖[A]i+1,i‖2 + ‖[A]i,i+1‖2

)
, (B.5)

where [A]i,j represents the (i, j)th d × d block of A and we define [A]n,n+1 =

[A]n+1,n = 0.
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Proof. Since we can calculate ‖A‖2
2 as the sum of squares of each entry in A,

‖A‖2
2 =

n∑
i,j=1

‖[A]i,j‖2
2

=
n∑
i=1

(
‖[A]i+1,i‖2

2 + ‖[A]i,i‖2
2 + ‖[A]i,i+1‖2

2

)
≤ d

n∑
i=1

(
‖[A]i+1,i‖2 + ‖[A]i,i‖2 + ‖[A]i,i+1‖2

)
.

Here the final inequality comes from Corollary B.4.

Lemma B.7. Let U ∈ L(V ) with ‖U‖ < 1. Define Tk(U) =
∑k

m=1
(−1)m+1

m
tr(Um)

and Ψk+1(U) =
∑∞

m=k+1
(−1)m+1

m
tr(Um). Then,

det(I + U) = exp {Tk(U) + Ψk+1(U)} (B.6)

with

|Ψk+1(U)| ≤ N‖U‖k+1

1− ‖U‖
. (B.7)

If we further assume that U is normal then,

|Ψk+1(U)| ≤ ‖U‖2
2

‖U‖k−1

1− ‖U‖
. (B.8)

Proof. With ‖U‖ < 1, <(det(I +U)) > 0, and hence we have the familiar formula

log(det(I + U)) =
∞∑
m=1

(−1)m+1

m
tr(Um). (B.9)

Eq. (B.6) now results. Eq. (B.7) then comes from estimating the trace as

| tr(Um)| ≤ N‖U‖m which yields,

|Ψk+1(U)| ≤ N
∞∑

m=k+1

‖U‖m

m
≤ N

‖U‖k+1

1− ‖U‖
.

If U is normal then, |U2| = |U |2. Using Proposition B.3, for m ≥ 2,

| tr(Um)| ≤ ‖U‖m−2 tr(|U2|) = ‖U‖m−2 tr(|U |2) = ‖U‖m−2‖U‖2
2.

Thus for k ≥ 1,

|Ψk+1(U)| ≤
∞∑

m=k+1

‖U‖m−2

m
‖U‖2

2 ≤ ‖U‖2
2

‖U‖k−1

1− ‖U‖
.
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Lemma B.8. Suppose that A,B ∈ L(V ) with A invertible. Then ABA∗ is positive

(semi-)definite if and only if B is.

Proof. For any v ∈ V , 〈ABA∗v, v〉 = 〈BA∗v, A∗v〉. This immediately implies that

if B is positive (semi-)definite, then so is ABA∗. However, if we assume that B is

not positive definite, then find w ∈ V such that 〈Bw,w〉 ≤ 0. Set v = (A∗)−1w

to see that ABA∗ cannot be positive definite. A similar calculation holds for the

semi-definite case.

B.1 Kronecker Product Results

Take A and B to be k × m and p × q matrices respectively. Define the

Kronecker product of A with B, denoted A⊗ B, by the k ×m block matrix with

p× q blocks,

A⊗B =


a1,1B a1,2B · · · a1,mB

a2,1B a2,2U2 · · · a2,mB
...

. . . . . .
...

ak,1B ak,2B · · · ak,mB

 , (B.10)

where,

A =


a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

...
. . . . . .

...

ak,1 ak,2 · · · ak,m

 . (B.11)

As notation would suggest, the Kronecker product is related to the tensor product.

Indeed, if A : Rm → Rk is the matrix representation of the linear operator Ã :

V1 → V2 under the bases β1 ⊂ V1 and β2 ⊂ V2, and similarly B : Rq → Rp is

the matrix representation of the linear operator B̃ : W1 → W2 under the bases

Γ1 ⊂ W1 and Γ2 ⊂ W2, then A ⊗ B is the matrix representation of the linear

operator Ã⊗ B̃ : V1⊗W1 → V2⊗W2 under the bases β1⊗ Γ1 and β2⊗ Γ2. Under

this identification of the tensor product, the vector v ⊗ w, where v ∈ Rm and
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w ∈ Rq is the given by,

v ⊗ w =


v1w

v2w
...

vmw

 (B.12)

where v = (v1, ..., vm)tr. This differs from the more common identification of

v ⊗ w with the matrix vwtr; however, this ambiguity does not alter the results

needed. In particular, it is easy to check that A⊗B(v ⊗w) = (Av)⊗ (Bw), from

which it also follows that if A1, A2, B1, and B2 are matrices such that A1A2 and

B1B2 exist, then (A1 ⊗ B1)(A2 ⊗ B2) = (A1A2) ⊗ (B1B2). This implies that for

invertible A and B, (A ⊗ B)−1 = A−1 ⊗ B−1, and for vectors v1, v2, w1, and w2,

〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉〈w1, w2〉 where 〈v, u〉 := vtru.

Proposition B.9. Suppose A is an n× n square matrix with eigenvalues {λAi }ni=1

and B is a d× d square matrix with eigenvalues {λBj }dj=1. Then A⊗B has eigen-

values {λAi λBj : 1 ≤ i ≤ n, 1 ≤ j ≤ d}. Moreover, if u is an eigenvector of A with

eigenvector λA and v is an eigenvector of B with eigenvalue λB, then u⊗ v is an

eigenvector of A⊗B with eigenvalue λAλB.

Proof. This result is immediate in the case that A and B are upper triangular

matrices. Now if P and Q are such that PAP−1 is upper triangular and QBQ−1

is upper triangular, then by the comments above, (P ⊗ Q)(A ⊗ B)(P ⊗ Q)−1 =

(PAP−1) ⊗ (QBQ−1) is upper triangular and similar to A ⊗ B. Since similar

matrices share eigenvalues, this is enough to conclude the first claim. For the

second, we calculate A⊗B(u⊗ v) = (Au)⊗ (Bv) = λAλB(u⊗ v).

The following corollary is immediate as a special case of the above comments

and proposition. It is given special attention here because it is the case that

manifests itself within this paper.

Corollary B.10. If {ui}ni=1 is a basis of eigenvectors of A with respective eigen-

values {λi}ni=1, then {ui ⊗ ea : 1 ≤ i ≤ n, 1 ≤ a ≤ d} is a basis of eigenvectors of

A⊗Id with A⊗Id(ui⊗ej) = λi(ui⊗ej). Here Id is the d×d identity matrix. If the
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collection {ui} is orthonormal, then so are {ui⊗ ej}. Moreover, the eigenvalues of

A⊗ Id are again given by {λi} with each λi repeated d times.

Lemma B.11. Let U be an n×n tri-diagonal block matrix with d×d blocks given

by

U =



U1,1 U1,2 0 0 0

U2,1 U2,2 U2,3 0 0

0 U3,2 U3,3 U3,4 0

0 0
. . . . . . Un−1,n

0 0 0 Un,n−1 Un,n


.

Let {ea}da=1 be the standard basis for Rd and for 1 ≤ k ≤ n, uk = (c1
k, ..., c

n
k)tr ∈ Rn.

Set {wk,a : 1 ≤ a ≤ d, 1 ≤ k ≤ n} ⊂ Rnd with

wk,j :=


c1
kej

c2
kej
...

cnkej

 = uk ⊗ ej.

Then,

d∑
a=1

Uwk,a · wk,a =
n∑
i=1

[
(cik)

2 tr(Ui,i) + cikc
i+1
k (tr(Ui,i+1) + tr(Ui+1,i))

]
(B.13)

where we set cn+1
k = tr(Un+1,n) = tr(Un,n+1) = 0. In particular, if U is symmetric

so that Ui,i+1 = U tr
i+1,i then

d∑
a=1

Uwk,a · wk,a =
n∑
i=1

[
(cik)

2 tr(Ui,i) + 2cikc
i+1
k tr(Ui,i+1)

]
. (B.14)
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Proof. For simplicity, let us agree that U1,0 = 0. We then have,

d∑
a=1

Uwk,a · wk,a =
d∑
a=1

n∑
i=1

n∑
j=1

Ui,jw
j
k,a · w

i
k,a

=
d∑
a=1

n∑
i=1

(
Ui,i−1w

i−1
k,a + Ui,iw

i
k,a + Ui,i+1w

i+1
k,a

)
· wik,a

=
d∑
a=1

n∑
i=1

(
ci−1
k cikUi,i−1ea + (cik)

2Ui,iea + ci+1
k cikUi,i+1ea

)
· ea

=
n∑
i=1

(
ci−1
k cik tr(Ui,i−1) + (cik)

2 tr(Ui,iea) + ci+1
k cik tr(Ui,i+1)

)
=

n∑
i=1

[
(cik)

2 tr(Ui,i) + cikc
i+1
k (tr(Ui,i+1) + tr(Ui+1,i))

]
.

which proves the first claim. The second follows since tr(A) = tr(Atr).



Appendix C

Some Geometry

Notation C.1. If π : TM →M is the projection, f : ToM → TpM is an isometry,

recall the following

1. Ωf : ToM × ToM × ToM → ToM is defined by Ωf (a, b)c = f−1R(fa, fb)fc.

2. Ric : TπM → TπM is the linear map defined by Ric(v) =
∑d

i=1 R(v, ei)ei

where {ei}di=1 is an orthonormal basis for Tπ(v)M .

3. Ricf : ToM → ToM is the linear map defined by Ricf (v) =
∑d

i=1 Ωf (v, ei)ei

where here {ei}di=1 is an orthonormal basis for ToM .

4. Scal : M → R is the defined by Scal(p) = tr(Ric |TpM). That is Scal(p) gives

the trace of the linear operator Ric on the tangent space TpM .

Proposition C.2. Using the notation above, we have the following properties

1. For v ∈ ToM we have that Ricf (v) = f−1 Ric(fv).

2. If σ is a curve in M starting at o ∈M and u(s) := //s(σ), then tr(Ricu(s)) =

Scal(σ(s)).

3. tr(Ωf (v, ·)v) = −〈Ricf v, v〉.
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Proof. Let {ei}di=1 be an orthonormal basis for ToM

1. Note that if Ei := fei, the {Ei} forms an orthonormal basis for TpM since f

is an isometry. Hence, following our nose from the definition

Ricf (v) =
d∑
i=1

Ωf (v, ei)ei

=
d∑
i=1

f−1R(fv, fei)fei

= f−1

(
d∑
i=1

R(fv, Ei)Ei

)
= f−1 Ric(fv)

2. Using that {//s(σ)ei} forms an orthonormal basis for Tσ(s)M and that //s(σ)−1

is an isometry,

tr(Ricu(s)) =
d∑
i=1

〈Ricu(s) ei, ei〉

=
d∑
i=1

〈//s(σ)−1 Ric(//s(σ)ei), ei〉 from (1.)

=
d∑
i=1

〈//s(σ)−1 Ric(//s(σ)ei), //s(σ)−1(//s(σ)ei)〉

=
d∑
i=1

〈Ric(//s(σ)ei), //s(σ)ei〉

= Scal(σ(s)).

3. Recall the Bianchi identity 〈R(a, b)c, d〉 = −〈R(a, b)d, c〉. Hence,

〈Ωf (v, ei)v, ei〉 = 〈f−1R(fv, fei)fv, ei〉

= 〈f−1R(fv, fei)fv, f
−1fei〉

= 〈R(fv, fei)fv, fei〉

= −〈R(fv, fei)fei, fv〉

= 〈Ωf (v, ei)ei, v〉.
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Therefore, by summing over i and using the definition of Ricf , the result

follows.



Appendix D

ODE Estimates

Proposition D.1. Let s > 0 and J be an interval of R containing [0, s]. Sup-

pose that z : J → Hom(RN → RN) satisfies z′′(r) = A(r)z(r) where A ∈
C1(J → Hom(RN → RN)). We also suppose that there exist K0, K1 > 0 such

that supr∈[0,s] ‖A(r)‖ ≤ K0 and supr∈[0,s] ‖A′(r)‖ ≤ K1. Then,

‖z(s)− z(0)− sz′(0)‖ ≤ ‖z(0)‖(cosh(
√
K0s)− 1) + ‖z′(0)‖s

(
sinh(

√
K0s)√

K0s
− 1

)
.

(D.1)

If we assume that z(0) = 0 and z′(0) = I, then

‖z(s)− sI − s3

6
A(0)‖ ≤ s4

12
K1 +

s

6

(
sinh(

√
K0s)√

K0s
− 1− 1

6
K0s

2

)
. (D.2)

If instead we assume that z(0) = I and z′(0) = 0, then

‖z(s)− I − s2

2
A(0)‖ ≤ s3

6
K1 +

1

2

(
cosh(

√
K0s)− 1− 1

2
K0s

2

)
. (D.3)

Proof. Start with the following calculus facts,∫ s

0

∫ sj−1

0

· · ·
∫ s2

0

(s− sj)(sj − sj−1) · · · (s2 − s1)ds1 · · · dsj =
s2j

(2j)!
(D.4)

and∫ s

0

∫ sj−1

0

· · ·
∫ s2

0

(s− sj)(sj − sj−1) · · · (s2 − s1)s1ds1 · · · dsj =
s2j+1

(2j + 1)!
. (D.5)
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By Taylor’s theorem with integral remainder,

z(s) = z(0) + sz′(0) +

∫ s

0

(s− r)z′′(r)dr

= z(0) + sz′(0) +

∫ s

0

(s− r)A(r)z(r)dr.

From here, iterating Talyor’s theorem,

z(s)− z(0)− sz′(0)

=

∫ s

0

(s− r)A(r)z(r)dr

=

∫ s

0

(s− r)A(r)

{
z(0) + rz′(0) +

∫ r

0

(r − t)A(t)z(t)dt

}
dr

· · ·

=


I︷ ︸︸ ︷

m∑
j=1

∫
0<s1<···<sj<s

(s− sj) · · · (s2 − s1)A(sj) · · ·A(s1)ds1 · · · dsj

 z(0)

+


II︷ ︸︸ ︷

m∑
j=1

∫
0<s1<···<sj<s

(s− sj) · · · (s2 − s1)s1A(sj) · · ·A(s1)ds1 · · · dsj

 z′(0)

+

III︷ ︸︸ ︷∫
0<s1<···<sm+1<s

(s− sm+1) · · · (s2 − s1)A(sm+1) · · ·A(s1)z(s1)ds1 · · · dsm+1 .

Therefore by using Eqs. (D.4) and (D.5) and the bound on A,

‖I‖ ≤
m∑
j=1

s2jKj
0

(2j)!
≤ cosh(

√
K0s)− 1 (D.6)

‖II‖ ≤
m∑
j=1

s2j+1Kj
0

(2j + 1)!
≤ sinh(

√
K0s)√

K0

− s (D.7)

and

‖III‖ ≤ sup
r∈[0,s]

‖z(r)‖ s2(m+1)

[2(m+ 1)]!
. (D.8)

Taking m→∞ completes the proof of Eq. (D.1).
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If z(0) = 0 and z′(0) = I, then

‖z(r)‖ ≤ sinh(
√
K0r)√

K0

.

Again iterating Taylor’s theorem,

z(s) = sI +

∫ s

0

(s− r)A(r)

{
rI +

∫ r

0

(r − t)A(t)z(t)dt

}
dr

= sI +

∫ s

0

(s− r)rA(0)dr +

∫ s

0

∫ r

0

(s− r)rA′(t)dtdr

+

∫ s

0

∫ r

0

(s− r)(r − t)A(r)A(t)z(t)dtdr

= sI +
s3

6
A(0) +

∫ s

0

∫ r

0

(s− r)rA′(t)dtdr

+

∫ s

0

∫ r

0

(s− r)(r − t)A(r)A(t)z(t)dtdr

where the second equality came from A(r) = A(0) +
∫ r

0
A′(t)dt. Hence

‖z(s)− sI − s3

6
A(0)‖ ≤ s4

12
K1 +K2

0

∫ s

0

∫ r

0

(s− r)(r − t)sinh(
√
K0t)√

K0

dtdr

=
s4

12
K1 +

s

6

(
sinh(

√
K0s)√

K0s
− 1− 1

6
K0s

2

)
.

If z(0) = I and z′(0) = 0, then ‖z(r)‖ ≤ cosh(
√
K0r), a similar expansion as above

shows

z(s) = I +

∫ s

0

(s− r)A(0)dr +

∫ s

0

∫ r

0

(s− r)A′(t)dtdr

+

∫ s

0

∫ r

0

(s− r)(r − t)A(r)A(t)z(t)dtdr

= I +
s2

2
A(0) +

∫ s

0

∫ r

0

(s− r)A′(t)dtdr

+

∫ s

0

∫ r

0

(s− r)(r − t)A(r)A(t)z(t)dtdr.

Therefore,

‖z(s)− I − s2

2
A(0)‖ ≤ s3

6
K1 +K2

0

∫ s

0

∫ r

0

(s− r)(r − t) cosh(
√
K0t)dtdr

=
s3

6
K1 +

1

2

(
cosh(

√
K0s)− 1− 1

2
K0s

2

)
.
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Proposition D.2. Let z(s) be as in Proposition D.1 and f(s) := z(∆)−z(0)
∆

s+z(0).

Then,

||z(s)− f(s)|| ≤ s
(

1− s

∆

)(
||z(0)||K∆ cosh(

√
K∆)

+ ||z′(0)||
(

cosh(
√
K∆)− 1

))
(D.9)

Proof. Let G(s, t) be the Green’s function for s, t ∈ [0,∆],

G(s, t) := t
(

1− s

∆

)
1[0,s) + s

(
1− t

∆

)
1[s,∆]

so that we have

z(s)− f(s) =

∫ ∆

0

G(s, t)(z′′(t) + f ′′(t))dt

=

∫ ∆

0

G(s, t)z′′(t)dt

=

∫ ∆

0

G(s, t)A(t)z(t)dt.

Therefore, using the fact that 0 ≤ G(s, t) ≤ s
(
1− s

∆

)
and the estimate from

proposition D.1 , we have

||z(s)− f(s)|| ≤ s
(

1− s

∆

)
K

∫ ∆

0

(
||z(0)|| cosh(

√
Kt) + ||z′(0)||sinh(

√
Kt)√

K

)
dt

= s
(

1− s

∆

)
K

(
||z(0)||sinh(

√
K∆)√
K

+ ||z′(0)||cosh(
√
K∆)− 1

K

)
≤ s

(
1− s

∆

)(
||z(0)||K∆ cosh(

√
K∆) + ||z′(0)||

(
cosh(

√
K∆)− 1

))
.



Appendix E

Existence and Bound of Si(∆)−1

on Manifolds with Non-Positive

Sectional Curvature

Lemma E.1. Let t 7→ ξ(t) ∈ RN for t ≥ 0 be a smooth map with ˙ξ(0) 6= 0 and set

x(t) := ‖ξ(t)‖. If ξ(0) = 0 then

lim
t→0

ẋ(t) = ‖ξ̇(0)‖. (E.1)

In particular, by defining ẋ(0) = ‖ξ̇(0)‖, ẋ is smooth for t > 0 and continuous for

t ≥ 0.

Proof. By Taylor’s theorem we can write ξ(t) = tξ̇(0)+O(t2) and ξ̇(t) = ξ̇(0)+O(t).

Hence,

〈ξ(t), ξ̇(t)〉 = t‖ξ̇(0)‖2 +O(t2)

and

‖ξ(t)‖ =
(
t2‖ξ̇(0)‖2 +O(t3)

)1/2

= t‖ξ̇(0)‖
(
1 +O(t3)

)1/2
.
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Therefore,

lim
t→0

ẋ(t) = lim
t→0

〈ξ(t), ξ̇(t)〉
‖ξ(t)‖

= lim
t→0

t‖ξ̇(0)‖2 +O(t2)

t‖ξ̇(0)‖ (1 +O(t3))1/2

= ‖ξ̇(0)‖.

Proposition E.2. Suppose that t 7→ A(t) is a smooth map where A(t) is an N×N
positive semi-definite matrix. Let t 7→ ξ(t) ∈ RN for t ≥ 0 be a smooth map with

ξ̈(t) = A(t)ξ(t), ξ(0) = 0, and ξ̇(0) 6= 0. Then,

‖ξ(t)‖ ≥ t‖ξ̇(0)‖. (E.2)

Proof. If x(t) := ‖ξ(t)‖, what we want to show is that x(t) ≥ t‖ξ̇(0)‖ which, in

consideration of the previous Lemma E.1, is equivalent to showing x(t) ≥ tẋ(0).

Therefore, it suffices to show that ẍ(t) ≥ 0 for all t so that ẋ is increasing and

hence x(t) =
∫ t

0
ẋ(s)ds ≥ tẋ(0). By assumption ẋ(0) > 0 and since x(0) = 0, there

exists some ε > 0 with x(t) > 0 for all t ∈ (0, ε). For t ∈ (0, ε), we calculate,

ẍ(t) =
〈ξ̈(t), ξ(t)〉+ ‖ξ̇(t)‖2

‖ξ(t)‖
− 〈ξ(t), ξ̇(t)〉

2

‖ξ(t)‖3

=
〈A(t)ξ(t), ξ(t)〉
‖ξ(t)‖

+
‖ξ̇(t)‖2‖ξ(t)‖2 − 〈ξ(t), ξ̇(t)〉2

‖ξ(t)‖3

≥ 0

where the last inequality comes from the positivity of A(t) and the Cauchy-Schwarz

inequality. Now, suppose we set τ = sup{ε > 0 : x(t) > 0 for all t ∈ (0, ε)}.
Then a continuity argument reveals that if τ < ∞, x(τ) ≥ τ ẋ(0) > 0, but by

the definition of τ , x(τ) = 0, a contradiction. Therefore τ = ∞ and the above

argument shows that ẍ(t) ≥ 0 for all t ∈ (0,∞).

Proposition E.3. Let M be a manifold with non-positive sectional curvature. For

1 ≤ i ≤ n, let APi be as defined in Eq. (3.4) and SPi be as in Eq. (3.10). Then,

with ∆ ∈ (0, 1], SPi (∆)−1 exists and further ‖SPi (∆)−1‖ ≤ 1
∆

.
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Proof. Since we are assuming that M has non-positive sectional curvature, this

therefore implies that APi is positive semi-definite. Let v ∈ Rd and define ξ(t) =

SPi (t)v. Then, ξ(0) = 0 and ξ̈(t) = APi (t)ξ(t). Using Proposition E.2 along with

the fact that ṠPi (0) = I, we have

‖ξ(∆)‖ ≥ ∆‖ξ̇(0)‖

= ∆‖ṠPi (0)v‖

= ∆‖v‖.

That is

‖SPi (∆)v‖ ≥ ∆‖v‖

which shows that SPi (∆) : Rd → Rd is injective and hence invertible and also that

the spectrum of SPi (∆) is bounded below by ∆ in magnitude, which implies that

‖SPi (∆)−1‖ ≤ 1
∆

.



Appendix F

Stochastic Notions

Throughout this section, we let {bs : s ∈ [0, 1]} be an Rd-valued Brownian

motion and Ft := σ{bs : 0 ≤ s ≤ t}.

Lemma F.1. Let R be a d× d random symmetric matrix which is Fsi−1
-measurable.

Then,

〈R(∆ib),∆ib〉 = 2

∫ si

si−1

〈R(bs − bsi−1
), dbs〉+ tr(R)∆is. (F.1)

Therefore,

〈R(∆ib),∆ib〉 − tr(R)∆is = Mi(∆is) (F.2)

where Mi is the square-integrable martingale given by

Mi(t) = 2

∫ si−1+t

si−1

〈R(bs − bsi−1
), dbs〉 (F.3)

and, in particular,

E [〈R(∆ib),∆ib〉] = tr(R)∆is. (F.4)

Proof. It suffices to assume that R is a constant matrix. In this case, let f : Rd → R
be defined by f(x) = 〈Rx, x〉. Then,

∂

∂xi
f(x) =

d

dt

∣∣∣∣
0

〈R(x+ tei), x+ tei〉

= 2〈Rx, ei〉

107



108

and (
∂

∂xi

)2

f(x) = 2
d

dt

∣∣∣∣
0

〈R(x+ tei), ei〉

= 2〈Rei, ei〉.

In particular, ∇f(x) = Rx and ∆f(x) = 2 tr(R). Therefore, by Ito’s lemma,

f(bsi)− f(bsi−1
) =

∫ si

si−1

〈∇f(bs), dbs〉+
1

2

∫ si

si−1

∆f(bs)ds

= 2

∫ si

si−1

〈Rbs, dbs〉+ tr(R)∆is,

and hence,

〈R(∆ib),∆ib〉 = 〈Rbsi , bsi〉+ 〈Rbsi−1
, bsi−1

〉 − 2〈Rbsi−1
, bsi〉

= f(bsi)− f(bsi−1
) + 2

{
〈Rbsi−1

, bsi−1
〉 − 〈Rbsi−1

, bsi〉
}

= f(bsi)− f(bsi−1
)− 2

∫ si

si−1

〈Rbsi−1
, dbs〉

= 2

∫ si

si−1

〈R(bs − bsi−1
), dbs〉+ tr(R)∆is.

Corollary F.2. If {Ri}ni=1 is a collection of random d× d symmetric matrices

such that Ri is Fsi−1
-measurable then,

n∑
i=1

(〈Ri(∆ib),∆ib〉 − tr(Ri)∆is) = M1 (F.5)

where M1 is the square integrable martingale given by

Mt = 2

∫ t

0

〈Rs(bs − bs), dbs〉 (F.6)

with Rs = Ri when s ∈ (si−1, si] and, as usual, s = si−1 whenever s ∈ (si−1, si].

Proof. Apply Lemma F.1 for each i and sum.

Lemma F.3. Let {Xs : s ∈ [0, 1]} be an Rd-valued process adapted to {Fs : s ∈
[0, 1]}. Define the square-integrable martingale Yt by

Yt =

∫ t

0

〈Xs, dbs〉.
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Suppose that for each p ∈ R, E
[
e
p2

2
〈Y 〉1
]

= Sp <∞. Then,

1 ≤ E
[
eY1
]
≤
√
S2p. (F.7)

Proof. From [24, Chapter VIII, Proposition 1.15], Z
(p)
t := epYt−

p2

2
〈Y 〉t is a (uni-

formly integrable) martingale and particularly E[Zt] = 1 for all t ∈ [0, 1]. There-

fore,

1 = E
[
eYt−

1
2
〈Y 〉t
]
≤ E

[
eYt−

1
2
〈Y 〉te

1
2
〈Y 〉t
]

= E
[
eY1
]

= E
[
eYt−〈Y 〉te〈Y 〉t

]
≤
√

E [e2Yt−2〈Y 〉t ]E [e2〈Y 〉t ]

=

√
E
[
Z

(2)
1

]
E [e2〈Y 〉t ]

=
√
S2p.

The proof of the following Corollary follows that of [1, Proposition 8.8].

Corollary F.4. Suppose that there is some K < ∞ with ‖Ri‖ ≤ K for all i.

Given any p ∈ R,

1 ≤ E

[
exp{p

n∑
i=1

(〈Ri∆ib,∆ib〉 − tr(Ri))}

]
≤ e2 d p2K2|P|. (F.8)

Proof. Defining Mt as in Corollary F.2, the quadratic variation is given by,

〈M〉t = 4

∫ t

0

|Rs(bs − bs)|2ds ≤ 4K2

∫ t

0

|bs − bs|2ds.

Therefore,

E[e
p2

2
〈M〉1 ] ≤ E

[
exp{2p2K2

∫ 1

0

|bs − bs|2ds}
]

=
n∏
i=1

E
[
exp{2p2K2(∆is)

2

∫ 1

0

|bs|2ds}
]
.

An application of Fernique’s Theorem tells us that

E
[
exp{2p2K2(∆is)

2

∫ 1

0

|bs|2ds}
]
≤ exp

{
2dp2K2(∆is)

2
}
,
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which together with the above inequalities implies that

E[e
p2

2
〈M〉1 ] ≤ exp

{
2dp2K2|P|

}
.

Therefore, we can apply Lemma F.3 yielding,

1 ≤ E

[
exp{p

n∑
i=1

(〈Ri∆ib,∆ib〉 − tr(Ri))}

]
≤ e2 d p2K2|P|.
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