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Absolute Continuity of Heat Kernel Measure with Pinned WienerMeasure on Loop groups

By Bruce K. Driver2 and Vikram K. Srimurthy3University of California, San Diego and First Union Bank, BostonLet t > 0; K be a connected compact Lie group equipped with anAdK -invariant inner product on the Lie Algebra of K. Associated to thisdata are two measures �0t and �0t on L(K) { the space of continuousloops based at e 2 K: The measure �0t is pinned Wiener measure with\variance t" while the measure �0t is a \heat kernel measure" on L(K):The measure �0t is constructed using a K { valued Brownian motion whilethe measure �0t is constructed using a L(K) { valued Brownian motion.In this paper we show that �0t is absolutely continuous with respect to �0tand the Radon-Nikodym derivative d�0t =d�0t is bounded.
1. Introduction LetK be a connected compact Lie group, k � TeK be the Liealgebra of K, and h�; �i = h�; �ik be an AdK-invariant inner product on k. To simplifynotation later we will assume that K is a matrix group. (Since K is compact, thisis no restriction, see for example Theorem 4.1 on p. 136 in [8].)
Example 1.1. As an example, let K = SO(3) be the group of 3 � 3 real or-thogonal matrices with determinant 1: The Lie algebra of K is k = so(3); the set of3 � 3 real skew symmetric matrices, and the inner product hA;Bik := �tr(AB) isan example of an AdK { invariant inner product on k:
Elements A 2 k will be identi�ed with the unique left invariant vector �eld on Kagreeing with A at the identity in K; i.e. if f 2 C1(K) then

Af(x) = ddt j0f(xetA):The path and loop groups on K are de�ned by
W (K) � f� 2 C ([0; 1]! K) j� (0) = eg(1.1)

and
L (K) � f� 2W (K) j� (1) = eg(1.2)

respectively.
Notation 1.2. The constant path at e will be denote by e; i.e. e(s) = e fors 2 [0; 1]:
1Received2This research was partially supported by NSF Grants DMS 96-12651 and DMS 99-71036.3This research was partially supported by NSF Grant DMS 96-12651.AMS 1991 subject classi�cations. Primary: 60H07, 58D30 Secondary 58D20Key words and phrases. Loop groups, heat kernel measures, absolute continuity1
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Pinned Wiener measure (�0t ) on such a \loop group" (see [21], [24],[4], [17] andDe�nition 2.11 below) is the law of a K-valued Brownian motion starting at e 2 Kand conditioned to end at e 2 K: Heat kernel measure (�0t ) on L(K) (see [18],[14], and Carson [9, 10] and De�nition 2.14 below) is the end point distribution ofa \L(K) { valued Brownian motion." The main theorem (Theorem 2.16) in thispaper asserts that �0t is absolutely continuous with respect to �0t and the Radon-Nikodym derivative d�0t =d�0t is bounded. The proof of this theorem heavily relieson a theorem of Airault and Malliavin (Theorem 2.18 below) which shows that �0tsolves a heat equation with a potential. A new proof of Theorem 2.18 will be givenin Section 6.One of our motivations for investigating Theorem 2.16 is L. Gross' logarithmicSobolev inequality on (L(K); �0t ): To state the inequality, let

kgradfk2 = X
h2S0 (@hf)2 ;

where S0 is an orthonormal basis for H0 (H0 is the k { valued Cameron -Martinspace in De�nitions 3.1) and @h is a left invariant vector �eld on L(K) de�ned inDe�nition 3.4. Also let us introduce the following notation. If � is a measure onsome measurable space 
 and f : 
! R is a measurable function, let
�(f) = Z
 fd�:(1.3)

L. Gross proves in [20] that there is a constant C <1 such thatZ
L(K) f2 log f2�0t (f2)d�0t � C ZL(K)

nkgradfk2 + V f2o d�0t(1.4)
where V is essentially the same potential that appears in the Airault { MalliavinTheorem 2.18 below. It is still an open question as to whether the potential termV f2 in Eq. (1.4) is necessary or not.On the other hand, it was shown in Driver and Lohrenz [18] that if �0t is replacedby �0t ; the potential term V is not needed, i.e. there is a constant C <1 such thatZ

L(K) f2 log f2�0t (f2)d�0t � C ZL(K) kgradfk2 d�0t :(1.5)
Now Theorem 2.16 below shows that Zt := d�0t =d�0t is bounded. If one could showthat Z�1t were also bounded, then the Holley { Stroock lemma (see [22] and Remark1.20 in [11]) along with Eq. (1.5) would imply that Eq. (1.4) holds without the V f2term. It is almost certainly seems too much to expect that Zt is bounded frombelow in general. (It is not even known if Zt > 0; �0t - a.s., when K is non-abelian.)So the authors do not expect this line of reasoning to work without modi�cation.Nevertheless, better knowledge of the density Zt may be useful in determining ifpotential is needed in Eq. (1.4).
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1.1. Conjecture on equivalence Let us end this introduction with the followingconjecture.Conjecture.4If K is simply connected (so that L(K) has only one connected com-ponent) then Zt > 0; �0t - a.s. That is to say �0t is absolutely continuous relative to�0t : If K is not simply connected, then we expect that �0t is absolutely continuousrelative to a sum of left translates of �0t by �nite energy loops from each homotopyclass.The explicit calculations in Section 7 shows that the conjecture is true for K =

Rd and K = S1; see Lemma 7.1 and Proposition 7.5. Moreover, the results inSrimurthy [32] also support the conjecture. Let F� be the � { algebra consistingof the measurable sets in W (K) depending only on the portion of the paths inW (K) over the interval [0; �]; see De�nition 2.5 below. Srimurthy proves that �0tand �0t are equivalent on F� for any � < 1: Of course these � { algebras are notable to detect the homotopy classes in L(K) and it is certainly not true that �0tis absolutely continuous with respect to �0t if K is not simply connected. This isbecause pinned Wiener measure �0t charges all of the homotopy classes of K whilethe heat kernel measure �0t only charges the trivial homotopy class.
2. Notation and Statements of Results
2.1. Brownian Sheets
Definition 2.1 (K { valued Brownian Sheet). Let f�(t; s)g0�s�1;0�t<1be a k { valued Brownian sheet and f�(t; s)g0�s�1;0�t<1 be a k { valued Brow-nian bridge sheet de�ned on some probability space (
;G; P ) : To be more pre-cise, let s ^ � � min(s; �); G0 (s; �) = s ^ � � �s; �A(t; s) = hA; �(t; s)i and�A(t; s) = hA;�(t; s)i: Then we are assuming the � and � are centered Gaussianrandom �elds with covariance functions

E[�A(t; s)�B(�; �)] = hA;Bi(t ^ �)(s ^ �)(2.1)
for all s; �; t; � 2 [0;1) and A;B 2 k and

E[�A(t; s)�B(�; �)] = hA;Bi(t ^ �)G0 (s; �)(2.2)
for all s; � 2 [0; 1]; t; � 2 [0;1) and A;B 2 k: (Here and in the sequel we will use Eto denote the expectation relative to the measure P:)

It is well known that �(t; s) and �(t; s) may be chosen to have continuous samplepaths, see for example the discussion after the proof of Corollary 1.3 in [34]. Thisfact may also be proved by abstract Wiener space considerations, see Remark 3.3in [15]. So in the sequel we will assume that (t; s)! �(t; s) and (t; s)! �(t; s) arecontinuous processes.
4Note added in proof. This conjecture is now known to be true, see Aida and Driver [1]. Theproof is a combination of the results of this paper, Gross' ergodicity result in [21] and Malliavin's[23] quasi-invariance theorem for pinned Wiener measure on loop groups. However, the results in[1] still do not give any lower bound estimates for Zt.
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Definition 2.2. A k { valued process fBsg is said to be a Brownian motionwith variance t if 1ptBs is a standard k { valued Brownian motion. Alternatively,B may be described using L�evy's characterization (see for example Theorem 39 onp.80 in [28]) of Brownian motion, by requiring fBsg to be a mean zero martingalewith quadratic co-variations given by dBCs dBDs = thC;Dids for all C;D 2 k:
Remark 2.3. Notice that for �xed s; t ! �(t; s) and t ! �(t; s) are k { val-ued Brownian motions with variance s and G0(s; s) respectively. This follows by theindependent increments of these processes in the t variable, Lemma 8.1 of the Ap-pendix, and De�nition 2.2. Similarly for �xed t; s! �(s; t) is a k { valued Brownianmotion with variance t: The process s! �(t; s) is a Brownian Bridge for 0 � s � 1with quadratic co-variation given by �A(t; ds)�B(t; ds) = thA;Bids; see Remark2.12 below.
Definition 2.4 (Cylinder Functions). For 0 � s � 1; let �s : W (K)! Kbe the projection map �s(�) = �(s): More generally if

P = f0 = s0 < s1 < s2 < : : : < sn < 1g(2.3)
is a partition of [0; 1]; let sn+1 = 1 by convention and let �P :W (K)! Kn be givenby

�P(�) = (�(s1); �(s2); : : : ; �(sn)):(2.4)
A cylinder function f on W (K) or L(K) is a function of the form f = F � �P forsome partition P and some measurable function F : Kn ! R: The function f is saidto be bounded (smooth) provided that F is bounded (smooth).
Definition 2.5. For s 2 [0; 1]; let Fs denote the � { algebra onW (K) generatedby the smooth cylinder functions of the form f = F � �P where P runs throughpartitions as in Eq. (2.3) with sn � s: We will write F for F1.
The � { algebra, F ; is the same as the Borel � { algebra on W (K); where W (K)is equipped with topology of uniform convergence relative to a metric on K derivedfrom a Riemannian metric on TK:
Remark 2.6. For notational simplicity when working on L(K); we have de�ned�P as in Eq. (2.4) rather than by �P(�) = (�(s1); �(s2); : : : ; �(sn); �(sn+1)) whichwould be more natural on W (K): This results in a slightly smaller class of cylinderfunctions, but this is of no signi�cance for our purposes.
The next result is well known, but we include it for the reader's convenience.
Lemma 2.7. Suppose that Q is a �nite measure on (W (K);F) and 1 � p <1:Then the smooth cylinder functions are dense in Lp(W (K);F ; Q):
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Proof of Lemma 2.7. Let M denote the smooth cylinder functions and Hdenote those functions in the Lp(W (K);F ; Q) { closure of M which are alsobounded. Then H is a vector space containing the constant functions and whichclearly satis�es the property; if ffng1n=1 is a sequence of functions in H such that0 � f1 � f2 � f3 � : : : ; and f := limn!1 fn is bounded, then f 2 H: SinceM is closed under multiplication, we may apply the monotone class theorem (seeTheorem 8 on p. 7 in [28]) to conclude H contains all bounded F = �(M) { mea-surable functions. Since (by the dominated convergence theorem) H is dense inLp(W (K);F ; Q); we are done.
2.2. K{ valued Brownian motion and Wiener measures
Definition 2.8 (Wiener Measure on W (K)). Fix t > 0; let fgsgs2[0;1] de-note the solution to the stochastic di�erential equation

dgs = gs�(t; �s) with g0 = e 2 K;(2.5)
where �(t; �s) denotes the Stratonovich di�erential of the Brownian motion s !�(t; s): The Wiener measure with variance t on F is �t := Law(g�):

Let k0 � k be an orthonormal basis for k; and �K be the second order ellipticoperator,
�K = X

A2k0A2:(2.6)
Since K is compact and hence uni-modular, �K is the Laplace Beltrami operatorfor the left invariant Riemannian metric on K determined by h�; �i on k =TeK; seefor example Remark 2.2 in [16]. Using Itô's lemma, one easily shows that fgsgs2[0;1]is a di�usion process on K with generator 12 t�K : Such a K { valued process willbe called a Brownian motion on K with variance t:
Definition 2.9 (Heat Kernel on K). Let pKt denote the smooth function ofK such that Law(g1) = pKt (x)dx; where dx denotes normalized Haar measure onK:
The function pKt is the convolution kernel for the heat operator et�K=2: In par-ticular, (t; x) ! pKt (x) is a smooth positive function such that for any f 2 C(K);the function u de�ned by

u (t; x) � ZK f (y) pKt �x�1y� dy for (t; x) 2 (0;1)�K
satis�es the heat equation

@tu = 124Ku with limt!0u(t; x) = f(x)
where @t = @=@t:
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Remark 2.10. It is well known that pKt (x) = pKt �x�1� for all x 2 K; see forexample Item 2 of Proposition 3.1 in [16]. It also well known that pKt is a classfunction, i.e.

pKt (xy) = pKt (yx) for all x; y 2 K:(2.7)
This is a consequence of the fact that �K is a bi-invariant di�erential operatorbecause of the AdK { invariance of h�; �i: Thus for all bounded measurable functionsf on K;Z
K f(y)pKt �x�1y� dy = ZK f(xy)pKt (y) dy

= �et�K=2f � Lx� (e) = �et�K=2f� (x) = �et�K=2f �Rx� (e)
= ZK f(yx)pKt (y) dy = ZK f(y)pKt �yx�1� dy;

where Lx and Rx denote left and right multiplication by x 2 K respectively. The lastdisplayed equation implies Eq. (2.7).
By the Markov property of g� and the previous comments, if f is a boundedcylinder function of the form f (�) = F � �P where P is as in Eq. (2.3), then

�t(f) � ZKn
F (x1; � � � ; xn) nY

i=1 pKt�is �x�1i�1xi� dx1dx2 : : : dxn;(2.8)
where x0 := e and �is = si � si�1:
Definition 2.11 (Doob's Construction of Pinned Wiener Measure).Pinned Wiener measure, �0t ; on W (K) with variance t, is the unique measure on Fsuch that if f is a bounded F� measurable function for some � 2 (0; 1); then

�0t (f) � 1pKt (e)�t(fpKt(1��)(��)):In particular if f is a bounded cylinder function f of the form f (�) = F � �P where
P is as in Eq. (2.3), then

�0t (f) � ZKn
F (x)�P(t; x)dx;(2.9)

where x = (x1; � � � ; xn) ; dx = dx1dx2 : : : dxn is normalized Haar measure on Knand
�P(t; x) := 1pKt (e)

n+1Y
i=1 pKt(si�si�1) �x�1i�1xi�(2.10)

where by convention x0 = xn+1 = e:
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The existence of the probability measure �0t and the fact that �0t (L(K)) = 1is well known. A proof may be found, for example, in Theorem 2.3 in [12]. Toapply this theorem, the reader should take the covariant derivative r appearing inTheorem 2.3 in [12] to be the unique one for which left invariant vector �elds on Kare covariantly constant.
Remark 2.12. In Remark 2.3 it was asserted that the process s ! �(t; s)is a Brownian bridge with quadratic co-variation given by �A(t; ds)�C(t; ds) =thA;Cids; that is to say Law(�(t; �)) is pinned Wiener measure on L(k) with vari-ance t: To check this let pt(x) = (2�t)� dim k=2e�jxj2k=2t be the Euclidean heat kernelon k: Then for a cylinder function f on L(k) based on a partition P = f0 = s0 <s1 < s2 < : : : < sn < 1g; we must show that

Ef(�(t; �)) = E
�f(B)pt(1��)(B�)pt(0)

� ;(2.11)
where Bs = �(t; s) { a k { valued Brownian motion with variance t.
Proof of Remark 2.12. To prove Eq. (2.11), let Zs = pt(0)�1pt(1�s)(�(t; s))for 0 � s < 1; then by Itô's lemma and the fact that@@spt(1�s)(x) = �12 t�kpt(1�s)(x) and r log pt(1�s)(x) = � 1t(1� s)xwe have

dZs = �Zs 1t(1� s) hBs; dBsi with Z0 = 1:
By Girsanov's theorem (see for example Theorem 20 on p.109 in [28])

Ms := Bs � Z s
0 1Zr dZrdBr = Bs + Z s

0 1(1� r)Brdr(2.12)
is a martingale on [0; �] relative to the measure Z�P: Since M has the samequadratic variation as �(t; �); by L�evy's criteria,M is a k { valued Brownian motionwith variance t under the measure Z�P: Interpreting (2.12) as stochastic di�erentialequation for B;

dB = dM � 1(1� s)Bsds with B0 = 0;
we �nd by variation of parameters that

Bs = Z s
0 e� R sr 1(1��)d�dMr = Z s

0 1� s1� r dMr:
This shows that, under Z�P; fBsg0�s�� is still a Gaussian process. Moreover, for0 � � � s � �;

E[BCs BDr Z�] = E[�Z s
0 1� s1� r dMCr ��Z �

0 1� �1� r dMDr �Z�]
= t(1� s)(1� �)hC;Di Z �

0 1(1� r)2 dr
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= t(1� s)(1� �)�1� 11� �

� hC;Di
= t�(1� s) = tG0(�; s)hC;Di

which is the same covariance function as �(t; �): Therefore fBsg0�s�� under themeasure Z�P has the same law as f�(t; s)g0�s�� under the measure P: This is theassertion in Eq. (2.11).
2.3. Heat kernel measure on W (K) and L(K) In this section we are going tode�ne heat kernel measures on W (K) and L(K) by formally replacing K from theprevious section byW (K) and L(K) respectively. Following Malliavin [25], we havethe following theorem.
Theorem 2.13 (Brownian Motion on W (K) and L(K)). There arejointly continuous solutions �(t; s) and �0(t; s) to the stochastic di�erential equa-tions:

�(�t; s) = �(t; s)�(�t; s) with �(0; s) = e 8s 2 [0;1);(2.13)
and

�0(�t; s) = �0(t; s)�(�t; s) with �(0; s) = e 8s 2 [0; 1]:(2.14)
As before �(�t; s) denotes the Stratonovich di�erentials of the processes t ! �(t; s)and similarly for �(�t; s); �0(�t; s); and �(�t; s).
Proof of Theorem 2.13. Such results may be found in Baxendale, [5], Malli-avin [25], or in Theorem 3.8 in Driver [14]. The last two references cover the L(K)case, however the proof of theW (K) case is the same, just replace G0(s; �) by s^�throughout.
Definition 2.14 (Heat Kernel Measures on W (K) and L(K)). Themeasures �t = Law(�(t; �) and �0t = Law(�0(t; �)) are called heat kernel measureson W (K) and L(K) respectively. So �t and �0t are determined by

�t(f) = Ef(�(t; �)) and �0t (f) = Ef(�0(t; �))(2.15)
for all bounded F { measurable f: Notice that �0t (L(K)) = 1 because �0(t; 0) =�0(t; 1) = e; P { almost surely.

Corollary 3.10 below justi�es calling �t and �0t heat kernel measures.
2.4. Statement of Results The following theorem is Lemma 1 in Airault andMalliavin [2].
Theorem 2.15. Let t > 0; then �t = �t on W (K); i.e. heat kernel measure attime t and Wiener measure with variance t are the same on W (K):
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This theorem is also proved in Lemma 3.3 of Srimurthy [32]. Since this theoremis crucial to the rest of the paper, we will give a proof in Section 4 below. Thefollowing theorem is the main result of the paper.
Theorem 2.16. Let t > 0; then �0t � �0t ; i.e. heat kernel measure at time t isabsolutely continuous relative to pinned Wiener measure with variance t: Moreover,the Radon-Nikodym derivative, d�0t =d�0t ; satis�es the boundd�0td�0t � eCt

where Ct � log h(2�t) 12 dim kpKt (e)i :(2.16)
(Standard heat kernel asymptotics shows that limt!0 Ct = 0; see Lemma 6.1 below.)

The proof of this theorem (given in Section 6) will be a combination of themaximum principle along with a theorem of Airault and Malliavin [3]. In orderto state the Airault-Malliavin theorem, let us recall that the coordinate process�s : L(K)! K (see De�nition 2.4) is a semi-martingale relative to pinned Wienermeasure, �0t , see for example Bismut [7] or Theorem 2.3 in [13]. Hence we mayde�ne the k { valued semi-martingalefbsg0�s�1 by
bs := Z s

0 ��1r ��r:(2.17)
Remarks 2.17. i) Technically speaking the stochastic integral in Eq. (2.17)depends on the measure �0t and in particular on t > 0: So a more appropriatenotation would be to display this t dependence and write bts for the �0t { a.e. de�nedstochastic integral R s0 ��1r ��r: Since we will only need the process bs for one �xedvalue of t; we will stick with the notation in Eq. (2.17).ii) Gross shows (see Lemma 4.8 and Remark 4.9 in [20]) that b1 2 Lp(L(K); �0t )and that bs ! b1 in Lp(L(K); �0t ) as s! 1 for all 1 � p <1:
Theorem 2.18 (Airault & Malliavin). Let Vt : L(K) ! R be the \poten-tial,"

Vt = 12t2 jb1j2k � ct(2.18)
where b1 is de�ned in Eq. (2.17) and

ct � dCtdt = dim k2t + @t log pKt (e) :(2.19)
Then for any smooth cylindrical function f : L (K)! R (see De�nition 2.4)

@t�0t (f) = �0t ��124L(K) + Vt� f� ;(2.20)
where 4L(K) is the generator of the process �0(t; �); see De�nition 3.6 and Proposi-tion 3.9 below.
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We will give a simpli�ed (in our view) proof of this theorem in Section 5. Theproof relies on Theorem 2.15 and integration by parts on (W (K); �t):
3. Generators of �(t; �) and �0(t; �) Much of the material in this sectionmay be found in [18] and [14]. Nevertheless, in order to introduce the notation andfor the readers convenience we will summarize some of the results in these papers.
3.1. Cameron-Martin spaces
Definition 3.1. Given a continuous function h : [0; 1]! k de�ne

(h; h)H = �R 10 jh0 (s)j2 ds if h is absolutely continuous1 otherwise.The Cameron{Martin space of k is
H � fh 2 C([0; 1]! k)jh (0) = 0 and (h; h) <1g

which we equip with the inner product
(h; k) = Z 1

0 hh0 (s) ; k0(s)ids:The pinned Cameron{Martin space is
H0 � fh 2 H (k) jh (1) = 0g

which is a closed subspace of H: (The Hilbert spaces H and H0 are to be thought ofas the \Lie algebras" to the groups W (K) and L (K).)
Notation 3.2. Let S � H and S0 � H0 be orthonormal bases for H and H0respectively.
Lemma 3.3. Let k0 � k be an orthonormal basis for k; G(s; t) = s ^ t andG0(s; t) � s ^ t� st for all s; t 2 [0; 1]: ThenX

h2S h(s)
 h(t) = G(s; t) XA2k0A
A 2 k
 k:(3.1)
X
h2S0 h(s)
 h(t) = G0(s; t) XA2k0A
A 2 k
 k:(3.2)

Proof of Lemma 3.3. Let A;B 2 k: Since G(t; �)B and G(s; �)A are in H;
(G(t; �)B;G(s; �)A) =Xh2S(G(t; �)B; h)(h;G(s; �)A)(3.3)

where the sum is absolutely convergent. By the fundamental theorem of calculus,G satis�es the reproducing property,Z 1
0 @sG(t; s)h0(s)ds = h(t) for all h 2 H:
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Combined this equation with Eq. (3.3) shows that

G(s; t)hB;Ai =Xh2ShB; h(t)ihh(s); Ai
which implies Eq. (3.1) since A and B are arbitrary. Equation (3.2) is proved simi-larly, see Lemma 3.8 in [18] for more details.

3.2. Derivatives and Laplacians on L(K) and W (K)
Definition 3.4 (Left invariant derivatives). Given h 2 H (or H0) andf :W (K)! R (or f : L(K)! R) a smooth cylinder function, de�ne

(@hf) (�) := ddt j0f(�eth) for all � 2W (K) (� 2 L(K))
where �eth 2 W (K) (�eth 2 L(K)) is de�ned by ��eth� (s) := �(s)eth(s) for s 2[0; 1]:
Remark 3.5. Suppose that f = F � �P where P = f0 = s0 < s1 < s2 < : : : <sn < 1g is a partition of [0; 1] and F : Kn ! R is a smooth function. For A 2 k andi 2 f1; 2; : : : ; ng; let

A(i)F (x1; x2; : : : ; xn) = ddt j0F (x1; x2; : : : ; xi�1; xietA; xi+1; : : : ; xn);
so that A(i) is the action of A on the ith variable of F: Then for h 2 H (or h 2 H0);

@hf = nX
i=1
�h(si)(i)F� � �P:(3.4)

In particular @hf is still a smooth cylinder function. Therefore the operator @2hf iswell de�ned and is given by
@2hf = nX

i;j=1
�h(sj)(j)h(si)(i)F� � �P:(3.5)

Definition 3.6. Again suppose that f = F � �P is a smooth cylinder functionas in De�nition 2.4. De�ne the Laplacians on W (K) and L (K)) by
4W (K)f �Xh2S @2hf and
4L(K)f � X

h2S0 @2hf
respectively.
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Remark 3.7. Combining Eqs. (3.1), (3.2) and (3.5) we �nd

4W (K)f =Xh2S
nX

i;j=1
�h(sj)(j)h(si)(i)F� � �P

= X
A2k0

nX
i;j=1G(si; sj)

�A(j)A(i)F� � �P(3.6)
and

4L(K)f = X
h2S0

nX
i;j=1

�h(sj)(j)h(si)(i)F� � �P
= X

A2k0
nX

i;j=1G0(si; sj)�A(j)A(i)F� � �P:(3.7)
Notation 3.8. Given, P = f0 = s0 < s1 < s2 < : : : < sn < 1g; a partition of[0; 1] and F 2 C1(Kn); let

LPF = X
A2k0

nX
i;j=1G(si; sj)A(j)A(i)F(3.8)

and
L0PF = X

A2k0
nX

i;j=1G0(si; sj)A(j)A(i)F:(3.9)
With this notation we may write Eqs. (3.6) and (3.7) as

4W (K)(F � �P) = (LPF ) � �P and 4L(K)(F � �P) = �L0PF � � �P:(3.10)
3.3. Heat equations
Proposition 3.9. The processes �(t; �) and �0(t; �) are di�usion processes with4W (K) and4L(K) as generators. More precisely, if f = F ��P is a cylinder functionas above, then

Mft = f(�(t; �))� f(e)� 12
Z t
0 ��W (K)f� (�(�; �))d�(3.11)

and
Nft = f(�0(t; �))� f(e)� 12

Z t
0 ��L(K)f� (�0(�; �))d�(3.12)

are martingales.
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Proof of Proposition 3.9. We will only prove Eq. (3.11) since the proofof Eq. (3.12) is completely analogous. Let �P(t) := �P(�(t; �)) 2 Kn and BP(t) =(�(t; s1); : : : ; �(t; sn)) ; then f(�(t; �)) = F (�P(t)) and by Itô's Lemma we have that

df(�(t; �)) = dF (�P(t))
= nX

i=1
X
A2k0A(i)F (�P(t))�A(�t; si)

= nX
i=1

X
A2k0A(i)F (�P(t))�A(dt; si)

+12
nX

i;j=1
X

A;B2k0B(j)A(i)F (�P(t))�A(dt; si)�B(dt; sj)
= nX

i=1
X
A2k0A(i)F (�P(t))�A(dt; si)

+12
nX

i;j=1
X
A2k0G(si; sj)A(j)A(i)F (�P(t))dt

= nX
i=1

X
A2k0A(i)F (�P(t))�A(dt; si) + 12 ��W (K)f� (�(t; �))dt:

This shows that Mft is the martingale;
Mft = nX

i=1
X
A2k0

Z t
0 A(i)F (�P(�))�A(d�; si):

Corollary 3.10. The measures �t and �0t satisfy the heat equations on W (K)and L(K) in the following weak sense. If f : W (K) ! R is a smooth cylinderfunction then
@t�t(f) = 12�t(�W (K)f)(3.13)

and
@t�0t (f) = 12�0t (�L(K)f):(3.14)

Proof of Corollary 3.10. Taking expectations of Eq. (3.11) shows that
0 = EMft = Ef(�(t; �))� f(e)� 12

Z t
0 E

��W (K)f� (�(�; �))d�
= �t(f)� f(e)� 12

Z t
0 �� ��W (K)f� d�:

Di�erentiating this equation in t proves Eq. (3.13). Eq. (3.14) is proved analogously.
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Corollary 3.11 (Heat solution). Suppose that u : L(K) ! R is a smoothcylinder function and let

H(t; �) = ZL(K) u(�
�1)d�0t (
);(3.15)
then

@tH(t; �) = 124L(K)H(t; �) and limt!0H(t; �) = u(�)(3.16)
Proof of Corollary 3.11. For � 2 L(K); let u� : L(K) ! R be the cylin-der function de�ned by u�(
) = u(�
�1): Notice that for h 2 H;

(@hu�) (
) = dd� j0u�(
e�h) = dd� j0u(�e��h
�1) = �@h(� ! u�(
))
and therefore ��L(K)u�� (
) = �L(K)(� ! u�(
)):Thus by Corollary 3.10,

@tH(t; �) = 12
Z
L(K) �4L(K)u�� (
)d�0t (
)

= 12
Z
L(K)�L(K)(� ! u�(
))d�0t (
)

= 12�L(K)
 � ! Z

L(K) u�(
)d�0t (
)
!

= 124L(K)H(t; �):
Working with the explicitly representation of u as a cylinder function and using Eq.(3.10), it is easy to justify the interchange of �L(K) with the integral in the thirdequality. This proves the �rst assertion in Eq. (3.16). The second follows from thedominated convergence theorem and the identity,

H(t; �) = E
�u(��0(t; �)�1)� ;

where �0(t; s) is the process de�ned in Eq. (2.14) of Theorem 2.13.
4. The path group case In the next subsection we will give a proof of The-orem 2.15. However, before doing this let us record the following trivial Corollaryof Theorem 2.15 and Corollary 3.10 above. This corollary will be key to our proofof the Airault Malliavin theorem in Section 5.
Corollary 4.1. The Wiener measure �t with variance t satis�es (weakly) theheat equation on W (K); i.e. if f :W (K)! R is a smooth cylinder function then

@t�t(f) = 12�t(�W (K)f):(4.1)
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4.1. Proof of Theorem 2.15
Proof of Theorem 2.15. As mentioned in Section 2, the reader may �ndthis theorem in Lemma 1 of Airault and Malliavin [2] or Lemma 3.3 of Srimurthy[32]. It would also be possible to give a proof using two parameter stochastic calculusas developed in Norris [27]. Rather than introduce this machinery, we will give amore pedestrian but perhaps less illuminating proof. Our proof is similar to that in[32].Let � denote the process de�ned in Theorem 2.13 and P = f0 = s0 < s1 < s2 <: : : < sn < 1g be a partition of [0; 1]: Let

Ui(t) := �(t; si)�(t; si�1)�1(4.2)
and

Bi(t) := Z t
0 Ad�(�;si�1) (�(��; si)� �(��; si�1))(4.3)

for i = 1; 2; : : : ; n: By Eq. (2.13) and Itô's Lemma,
�t�(t; s)�1 = ��(�t; s)�(t; s)�1

and therefore
�Ui(t) = �(t; si) (�(�t; si)� �(�t; si�1)) �(t; si�1)�1= Ui(t)Ad�(t;si�1) (�(�t; si)� �(�t; si�1))= Ui(t)�Bi(t):(4.4)

Because, t ! �(t; si�1) and t ! �(t; si) � �(t; si�1) are independent Brownianmotions on k;
Ad�(t;si�1) (�(�t; si)� �(�t; si�1))= Ad�(t;si�1) (�(dt; si)� �(dt; si�1))

+12Ad�(t;si�1)[�(dt; si�1); (�(dt; si)� �(dt; si�1))]k
= Ad�(t;si�1) (�(dt; si)� �(dt; si�1)) :Therefore the Stratonovich di�erentials in Eq. (4.3) may be replaced by Itô di�er-entials to learn that Bi(t) is the martingale

Bi(t) := Z t
0 Ad�(�;si�1) (�(d�; si)� �(d�; si�1)) :

Claim. The processes B1; B2; : : : Bn are independent k { valued Brownian motionswith variances �is := si � si�1 for i = 1; 2; : : : ; n:To prove this claim, let C;D 2 k; and let BCi (t) = hBi(t); Ci; BDj (t) = hBj(t); Diand �i�(t) := �(t; si)� �(t; si�1): Then because h�; �i is AdK { invariant,
dBCi (t) = hAd�(t;si�1)d�i�(t); Ci = hd�i�(t); Ad�1�(t;si�1)Ci:



16 BRUCE K. DRIVER AND VIKRAM K. SRIMURTHY
Thus the di�erential of the quadratic co-variation of BCi and BDj is given by,

dBCi (t)dBDj (t) = hd�i�(t); Ad�1�(t;si�1)Cihd�j�(t); Ad�1�(t;sj�1)Di= X
A2k0hA;Ad�1�(t;si�1)CihA;Ad�1�(t;sj�1)Di d�i�A(t) d�j�A(t)

= �ij XA2k0hA;Ad�1�(t;si�1)CihA;Ad�1�(t;si�1)Di�isdt
= �ijhAd�1�(t;si�1)C;Ad�1�(t;si�1)Di�isdt= �ijhC;Di�isdt;(4.5)

wherein the third equality we have used: i) �i�A(�) = �A(�; si) � �A(�; si�1) and�j�A(�) = �A(�; sj) � �A(�; sj�1) are independent if i 6= j and �i�A(�) is a k {valued Brownian motion with variance �is: In the last equality we again have usedthe AdK { invariance of h�; �i: Eq. (4.5) along with L�evy's criteria proves the claim.Since the Ui's in Eq. (4.2) satisfy Eq. (4.4), the claim implies thatU1(t); U2(t); : : : ; Un(t) are independent K { valued Brownian motion with variance�1s;�2s; : : : ;�ns respectively. Suppose that f = F � �P is a bounded cylinderfunction on W (K): De�ne ~F : Kn ! R so that
F (x1; x2; x3; : : : ; xn) = ~F (x1; x2x�11 ; x3x�12 : : : ; xnx�1n�1)for all xi 2 K: Then

f(�(t; �)) = ~F (U1(t); U2(t); : : : ; Un(t))and therefore
�t(f) = Ef(�(t; �)) = E ~F (U1(t); U2(t); : : : ; Un(t))

= ZKn
~F (x1; � � � ; xn) nY

i=n pKt�is(xi)dxi:(4.6)
Let x0 := e: Using the invariance of Haar measure, make the translations

x2 ! x2x�11 thenx3 ! x3x�12 then...xn ! xnx�1n�1in the last integral of Eq. (4.6) to �nd
�t(f) = ZKn

~F (x1; x2x�11 � � � ; xnx�1n�1) nY
i=n pK�ist(xix�1i�1)dxi

= ZKn
F (x1; x2; x3; : : : ; xn) nY

i=n pK�ist(xix�1i�1)dxi
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= ZKn

F (x1; x2; x3; : : : ; xn) nY
i=n pK�ist(x�1i�1xi)dxi(4.7)

wherein the last equality we have use the fact that pKt (�) is a class function, seeRemark 2.10.Comparing Eq. (4.7) with Eq. (2.8), shows that �t(f) = �t(f) for all boundedcylinder functions f on W (K) which implies that �t = �t by Lemma 2.7.
5. Proof of the Airault-Malliavin Theorem 2.18 This subsection is de-voted to the proof of Theorem 2.18. We will need some, mostly well known, prelim-inary results regarding integration by parts on (W (K); �t): These results will begathered in the next subsection.
5.1. Integration by parts and strong di�erentiability The key result here for theremainder of the paper is Corollary 5.6. The reader may skip this subsection ifshe/he is willing to accept Corollary 5.6 below.
Definition 5.1. Let L1�(W (K); �t) = \1�p<1Lp(W (K); �t) and h 2 H: Afunction f 2 L1�(W (K); �t) is said to be strongly h di�erentiable provided thereis a function g 2 L1�(W (K); �t) such that

g = Lp(�t){ lim�!0 f(�e�h)� f(�)�for all 1 � p <1: We will denote the function g, if it exists, by @hf:
Cylinder functions are strongly h { di�erentiable for all h 2 H and @hf is givenby Eq. (3.4). Another example is given in Lemma 5.5 below.
Definition 5.2. An element k 2W (K) is a �nite energy path if

k0 (s) exists ds-a.s. and Z 1
0 ��k�1(s)k0(s)��2k ds <1:

Letting k 2W (K) be a �nite energy path and bs being as in Eq. (2.17), then for�t { a.e. � 2W (K);
bs(�k) = Z s

0 (�(r)k(r))�1 � (�k) (r)
= Z s

0 k�1(r)��1(r)[��(r)k(r) + �(r)k0(r) dr]
= Z s

0 Adk�1(r)dbr(�) + Z s
0 k�1(r)k0(r) dr:(5.1)

Since Adk�1(r) is orthogonal on k; L�evy's characterization of Brownian motion showsthat Bs := R s0 Adk�1(r)dbr on (W (K); �t) is still a Brownian motion with variancet: This observation and the Cameron-Martin theorem is essentially the proof of thefollowing quasi invariance theorem of Albeverio and Hoegh-Krohn, see [4], [30], and[29].
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Theorem 5.3 (Albeverio & Hoegh-Krohn). Let k be a �nite-energy pathon K and f :W (K)! R be a bounded measurable function. ThenZ

W (K) f(�)d�t(�) =
Z
W (K) f(�k)Jk(�)d�t(�);(5.2)

where
Jk := exp��1t

Z 1
0 hk0(s)k�1(s); dbsi � 12t

Z 1
0 ��k0(s)k�1(s)��2 ds

� :(5.3)
Proof of Theorem 5.3. Let h(s) := R s0 k�1(r)k0(r) dr; Bs :=R s0 Adk�1(r)dbr; and ~f be a measurable function on C([0; 1] ! k) such that~f(b�(�)) = f(�) for �t { a.e. �: Using the AdK { invariance of the inner prod-uct h�; �i on k; we haveZ 1

0 ��k0(r)k�1(r)��2 dr =
Z 1
0 ��k�1(r)k0(r)��2 drand Z 1

0 hk0(r)k�1(r); dbri =
Z 1
0 hk0(r)k�1(r); Adk(r)dBri

= Z 1
0 hAdk�1(r)k0(r)k�1(r); dBri

= Z 1
0 hk�1(r)k0(r); dBri:

Combining these equations show that Jk may be written as
Jk := exp��1t

Z 1
0 hh0; dBri � 12t

Z 1
0 jh0(r)j2 dr� :(5.4)

By Eq. (5.1),Z
W (K) f(�k)Jk(�)d�t(�) =

Z
W (K) ~f(b�(�k))Jk(�)d�t(�)

= ZW (K) ~f(B�(�) + h)Jk(�)d�t(�)
= ZW (K) ~f(B�(�))d�t(�)(5.5)

wherein the last equality we have used the Cameron-Martin (or Girsanov's) theo-rem. Since B and b have the same laws, being k { valued Brownian motions withvariance t;Z
W (K) ~f(B�(�))d�t(�) =

Z
W (K) ~f(b�(�))d�t(�) =

Z
W (K) f(�)d�t(�):(5.6)

Combining Eqs. (5.4), (5.5) and (5.6) proves the theorem.
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Corollary 5.4. Let h 2 H (k) and suppose that f and g are strongly h {di�erentiable, then

�t(g@hf) = �t((�@hg + jhg)f)(5.7)
where

jh := 1t
Z 1
0 hh0 (s) ; dbsi :(5.8)

This corollary has been proved in the more general context of Wiener measureon a Riemannian manifold in Driver [12].
Proof of Corollary 5.4. Let k = e�h and replace f by fg in Eq. (5.2) ofTheorem 5.3 to �nd

�t(fg) = ZW (K) f(�e�h)g(�e�h)Je�h(�)d�t(�):Di�erentiate this equation in � implies
0 = �t�@hf � g + f@hg + fg dd� j0Je�h

�
which proves the corollary provided thatdd� j0Je�h = �jh in Lp(�t) for all p 2 [1;1):
We will not carry out the convergence details here which are fairly routine. Theinterested reader may refer to Gross [21] or Section 9 in [12]. However, let us check\algebraically" that the formula in Eq. (5.8) is correct. Computing dd� j0Je�h gives
dd� j0Je�h = dd� j0 exp

 �1t
Z 1
0 h( ddr e�h(r))e��h(r); dbri � 12t

Z 1
0
����( ddr e�h(r))e�h(r)

����2 dr
!

= �1t dd� j0
"Z 1

0 h( ddr e�h(r))e��h(r); dbri � 12t
Z 1
0
����( ddr e�h(r))e�h(r)

����2 dr
#

= �1t
Z 1
0 hh0(r); dbri:because dd� j0( ddr e�h(r))e��h(r) = h0(r)

and dd� j0
����( ddr e�h(r))e�h(r)

����2 = 2�( ddr e�h(r))e�h(r)j�=0; dd� j0( ddr e�h(r))e�h(r)
�

= 2�0; dd� j0( ddr e�h(r))e�h(r)
� = 0:
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Lemma 5.5. For each h 2 H; the function jh is strongly h di�erentiable and

@hjh = 1t
Z 1
0 
adh(r)h0(r); dbr(�)�+ 1t

Z 1
0 jh0(r)j2dr:(5.9)

Proof of Lemma 5.5. According to Eq. (5.1),
jh(�e�h) = 1t

Z 1
0
�h0(r); Ade��h(r)dbr(�) + e��h(r) ddr e�h(r) dr

�
= 1t

Z 1
0 hAde�h(r)h0(r); dbr(�)i+ 1t

Z 1
0
�h0(r); e��h(r) ddr e�h(r) dr

� :
Therefore, again ignoring convergence questions,

@hjh(�) = dd� j0jh(�e�h) = 1t
Z 1
0 
adh(r)h0(r); dbr(�)�+ 1t

Z 1
0 jh0(r)j2dr:

Here the convergence questions are even easier since we only have jointly Gaus-sian random variables to contend with and L2 { convergence of Gaussian randomvariables implies Lp convergence for p < 1: The reader may �nd more details inSection 4 in Gross [20].
The following Corollary is a key ingredient in our proof of the Airault { MalliavinTheorem 2.18.
Corollary 5.6. Let f be a smooth cylinder function (see De�nition 2.4) andh 2 H (k) such that the Lie bracket [h (s) ; h0 (s)] = 0 for a:e: s: Then

�t(@2hf) = �t��j2h � 1t
Z 1
0 jh0(r)j2dr� f� ;

where jh; is as in Eq. (5.8).
Proof of Corollary 5.6. Two applications of Corollary 5.4 gives�t(@2hf) = �t(jh@hf) = �t(��@hjh + j2h� f)which combined with Eq. (5.9) of Lemma 5.5 proves the Corollary.
5.2. Proof of Theorem 2.18
Proof of Theorem 2.18. Let f = F � �P be a cylinder function on L(K)(see De�nition 2.4) and let � 2 (sn; 1): (We will eventually let � ! 1:) Recall thede�nition of pinned Wiener measure �0t (see De�nition 2.11) says that �0t (f) =�t(f�t) where �t := pKt(1��)(��)=pKt (e): Therefore, by Corollary 4.1,

@t�0t (f) = @t�t (f�t)
= �t (f@t�t) + 12�t �4W (K) (f�t)�
= I� + J�:(5.10)
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Now I� = �t(f@t�t)

= 12pKt (e) (1� �)�t �f�KpKt(1��)(��)�� @t ln pKt (e)�0t (f):(5.11)
By Eq. (2.8),

�t(f�KpKt(1��)(��)) = ZK G(�; x)�KpKt(1��)(x)dx
= ZK �KG(�; x)pKt(1��)(x)dx

where
G(�; x) := ZKn

F (x1; � � � ; xn) pKt(��sn)(x�1n x) nY
i=1 pKt4is �x�1i�1xi� dxi:

From this expression we see that �KG(�; x) remains bounded as � ! 1; so thatletting �! 1 in Eq. (5.11) giveslim�!1 I� = ��0t (f@t log pKt (e)):(5.12)
We proceed to work on the second term, J�; in Eq. (5.10). Let P� be the partitionof [0; 1];

P� = f0 = s0 < s1 < s2 < : : : < sn < � < 1g;and set sn+1 = �: De�ne G�0 (s; t) = (s ^ t� ��1st) so thatG(s; t) = s ^ t = G�0 (s; t) + ��1st:Let ~�t(x1; x2; : : : ; xn+1) = pKt(1��)(xn+1)=pKt (e) and by abuse of notation use Fagain to denote the function (x1; x2; : : : ; xn+1) 2 Kn+1 ! F (x1; x2; : : : ; xn): Thenby Eqs. (3.10) and (3.8) applied to the partition P�,�W (K)(f�t) = LP�(F ~�t) � �P�
= n+1X

i;j=1
X
A2k0G�0 (si; sj)A(i)A(j)(F ~�t) � �P�

+ n+1X
i;j=1

X
A2k0 ��1sisjA(i)A(j)(F ~�t) � �P�

= S� + T�:(5.13)Now for A 2 k; let h�A(s) := ��1=2(s ^ �)A:Then by Eq. (3.5),
T� = X

A2k0 @2h�A(f�t):(5.14)



22 BRUCE K. DRIVER AND VIKRAM K. SRIMURTHY
For the S� term in Eq. (5.13), notice that by construction G�0 (s; t) = 0 if s or t isin f0; �g: Therefore G�0 (si; sj) = 0 if i or j = n+ 1 (i.e. si or sj is �) so that

S� = nX
i;j=1

X
A2k0G�0 (si; sj)A(i)A(j)(F ~�t) � �P�

= ~�t � �P� � nX
i;j=1

X
A2k0G�0 (si; sj) (A(i)A(j)F ) � �P:(5.15)

Taking the �t expectation of Eq. (5.13) and making use of Eq. (5.14) and (5.15)shows that J� from Eq. (5.10) satis�es
J� = 12�0t

0@ nX
i;j=1

X
A2k0G�0 (si; sj) (A(i)A(j)F ) � �P

1A
+12�t

 X
A2k0 @2h�A(f�t)

!

= J (1)� + J (2)� :
Since G�0 ! G0 as �! 1;

lim�!1 J (1)� = 12�0t
0@ nX
i;j=1

X
A2k0G0 (si; sj) (A(i)A(j)F ) � �P

1A
= 12�0t

0@ n+1X
i;j=1

X
A2k0G0 (si; sj) (A(i)A(j)F ) � �P

1A
= 12�0t ��L(K)f� ;(5.16)

where we have used Eq. (3.10) for the last equality.By Corollary 5.6,
2J (2)� = X

A2k0 �t
��j2h�A � 1t

Z 1
0 j ddrh�A(r)j2dr

� f�t�

= X
A2k0 �0t

��j2h�A � 1t
Z 1
0 j ddrh�A(r)j2dr

� f� ;
where (by Eq. (5.8))

jh�A = 1p�t
Z �
0 hA; dbsi = 1p�t

Z �
0 hA; dbsi = 1p�t hA; b�i:Using these facts andZ 1

0 j ddrh�A(r)j2dr = 1�
Z �
0 jAj2dr = jAj2:



HEAT KERNEL VS. PINNED WIENER MEASURE 23
we see that

J (2)� = 12�0t
� 1�t2 jb�j2 � 1t dim k�

and hence by Remark 2.17,
lim�!1 J (2)� = 12�0t

� 1t2 jb1j2 � 1t dim k� :(5.17)
Assembling Eqs. (5.16) and (5.17) shows that

lim�!1 J� = 12�0t
��L(K)f + � 1t2 jb1j2 � 1t dim k� f� :(5.18)

Combining Eqs. (5.10), (5.12) and (5.18) proves the Theorem.
Corollary 5.7. Suppose that u : L(K)! R is a smooth cylinder function andlet

G(t; �) = ZL(K) u(�
�1)d�0t (
);(5.19)
then

@tG(t; �) = 124L(K)G(t; �) + ZL(K) Vt(
)u(�
�1)d�0t (
):(5.20)
Proof of Corollary 5.7. As in the proof of Corollary 3.11, let u� : L(K)!

R be the cylinder function de�ned by u�(
) = u(�
�1): By the Airault MalliavinTheorem 2.18,
@tG(t; �) = ZL(K)

�12 �4L(K)u�� (
) + Vt(
)u�(
)� d�0t (
):
Using the same method of proof used for Corollary 3.11, we see that this equationis the same as Eq. (5.20).
6. Absolute continuity of heat kernel with respect to pinned Wienermeasure In this section we will prove the main Theorem 2.16. We will �rst needa couple of preliminary results.
Lemma 6.1 (Asymptotic properties of heat Kernels on K). The heatkernel, pKt ; on K has the following properties:
1. limt!0(2�t) 12 dim kpKt (e) = 1:
2. For every T <1; there is a constant MT <1 such that

pKt (x) �MT t� dim k=2e� 14td2(e;x) for all x 2 K and 0 < t � T
where d(x; y) is the distance associated to the bi-invariant Riemannian metricon K which agrees with h�; �ik at e 2 K:
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Proof of Lemma 6.1. These are standard properties of heat kernels. For item1., see Theorem 2.30 of [6]. See also [26]. For the second item see, for example,Theorem IX.1.2 in [33]. To apply this theorem, use the fact that K is compactso the modular function is constant. It is also necessary to note that the timeparameter in [33] is twice our time parameter t:
Lemma 6.2 (�0t ! �e as t! 0). Let f : L(K) ! R be a continuous cylinderfunction, then limt!0+�0t (f) = f(e);(6.1)

where e denotes the identity loop in L(K); see Notation 1.2.
Proof of Lemma 6.2. This result can be proved in a number of ways. Forexample one could use the Kolmogorov's continuity criteria to show that �0t con-centrates near the identity loop as t! 0: See the argument in the proof of Item 1of Theorem 2.3 in [13]. Rather than carry this out in full detail, we will only provewhat we need.Let P be a partition of [0; 1] as in Eq. (2.3), f = F � �P and �P : (0;1)�Kn !(0;1) be as in Eq. (2.10). By Lemma 6.1, there is a constant M <1 such that

�P(t; x) �Mt 12 dim k n+1Yi=1(t�is)� dim k=2 exp�� 14t�isd2(e; x�1i�1xi)
� for all t 2 (0; 1];

where x = (x1; � � � ; xn); �is = si � si�1; and x0 = xn+1 = e 2 K: By the leftinvariance of the Riemannian metric on K; d(x; y) = d(e; x�1y); so the previousinequality may be written as
�P(t; x) �MPt�n2 dim k exp � 14t

n+1X
i=1

d2(xi�1; xi)�is
!(6.2)

where MP := MQn+1i=1 (�is)� dim k=2: Now let � > 0 be given, and suppose thatd(e; xi) � � for some i 2 f1; 2; : : : ; ng; then by the triangle inequality and theCauchy-Schwarz inequality,
�2 � d2(e; xi) �

0@ iX
j=1 d(xj�1; xj)

1A2

�  n+1X
i=1

d(xj�1; xj)p�js p�js
!2 � n+1X

i=1 �is � n+1Xi=1
d2(xi�1; xi)�is

= n+1X
i=1

d2(xi�1; xi)�isCombining this estimate with Eq. (6.2) implies
�P(t; x) �MPt�n2 dim k exp�� 14t jxj2

�(6.3)
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where jxj := maxfd(e; xi) : i = 1; 2; : : : ; dg:Therefore �P(t; �) satis�es:

1. �P(t; x) > 0:
2. RKn �P(t; x)dx = 1 where dx is Haar measure on Kn:
3. For any � > 0; �P(t; x)! 0 uniformly in x 2 Kn with jxj � �:
It is now routine to show, using these three properties, that

limt!0
Z
Kn

F (x)�P(t; x)dx = F (e; e; : : : ; e)
which is equivalent to Eq. (6.1).

6.1. Proof of Theorem 2.16
Proof of Theorem 2.16. Let u be a smooth non-negative cylinder functionon L (K) and let Ct be as in Eq. (2.16). Notice that ddtCt = ct (ct is de�ned inEq. (2.19) of the Airault { Malliavin Theorem 2.18) and because of Lemma 6.1,limt!0 Ct = 0: De�ne

H(t; �) = ZL(K) u(�
�1)d�0t (
); and
F (t; �) = eCt ZL(K) u ��
�1� d�0t (
) ;then by Corollary 3.11

@tH(t; �) = 124L(K)H(t; �) and limt!0H(t; �) = u(�)(6.4)
and by Corollary 5.7

@tF (t; �) = 124L(K)F (t; �) + eCt ZL(K) (Vt(
) + ct)u(�
�1)d�0t (
)
= 124L(K)F (t; �) + eCt ZL(K) 12t2 jb1(
)j2k u(�
�1)d�0t (
)
� 124L(K)F (t; �):Combining this with Lemma 6.2, shows that

@tF (t; �) � 124L(K)F (t; �) and limt!0F (t; �) = u(�):(6.5)
The idea now is to use Eqs. (6.4), (6.5) and the maximum principle to concludethat F (t; �) � H(t; �) for all 0 � t <1 and � 2 L(K):(6.6)
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We will postpone the full justi�cation of Eq. (6.6) to Lemma 6.3 below.Writing out Eq. (6.6) when � is the constant loop e; shows thatZ

L(K) u(
�1)d�0t (
) � eCt ZL(K) u �
�1� d�0t (
)for all non-negative smooth cylinder functions u: Replacing u by the cylinder func-tion ~u(
) = u(
�1) then implies thatZ
L(K) u(
)d�0t (
) � eCt ZL(K) u (
) d�0t (
)(6.7)

for all non-negative smooth cylinder functions u:Since, by Lemma 2.7, bounded smooth cylinder functions are dense inL2(L(K);F ; �0t + �0t );by passing to the limit, we may conclude that Eq. (6.7) is valid for all bounded non-negative F { measurable functions u: By taking u to be characteristic functionsand using the Radon-Nikodym theorem, Eq. (6.7) implies that �0t is absolutelycontinuous relative to �0t : Letting Zt := d�0t =d�0t we may conclude from Eq. (6.7)that Z
L(K) u � �Zt � eCt� d�0t � 0

for all bounded measurable functions u and hence that Zt � eCt � 0:
Lemma 6.3. Keeping the same notation as above, Eq. (6.6) is valid.
Proof of Lemma 6.3. In order to justify the use of the maximum principleto prove Eq. (6.6), write u = U � �P; where P is a partition as in Eq. (2.3) andU : Kn ! [0;1) is a smooth function. Then

H(t; �) = ZL(K) u(�
�1)d�0t (
) =
Z
L(K) U(�P(�)�P(
)�1)d�0t (
)= HP(t; �P(�));(6.8)where for x 2 Kn

HP(t; x) = ZL(K) U(x�P(
)�1)d�0t (
)
= ZKn

U(xy�1)pPt (y)dy;(6.9)
and pPt (y)dy = Law(�P(�(t; �)): By the proof of Proposition 3.9, �P(�(t; �) is adi�usion on Kn with elliptic generator L0P de�ned in Eq. (3.9). Thus pPt (y) is thesmooth heat kernel for the operator etL0

P=2: This shows that HP(t; x) is smooth on(0;1)�Kn:Using this information, Eq. (6.4) may be recast as the �nite dimensionalstatement
@tHP(t; x) = 12L0PHP(t; x) and limt!0HP(t; x) = U(x):(6.10)
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Similarly
F (t; �) = eCt ZL(K) u ��
�1� d�0t (
) = eCt ZL(K) U(�P(�)�P(
)�1)d�0t (
)= FP(t; �P(�));

where for x 2 Kn
FP(t; x) = eCt ZL(K) U(x�P(
)�1)d�0t (
)

= eCt ZKn
U(xy�1)�P(t; y)dy

where �P : (0;1) � Kn ! (0;1) is the smooth function de�ned in Eq. (2.10)of De�nition 2.11. This shows that FP(t; x) is smooth on (0;1) �Kn: Using thisinformation, Eq. (6.4) may be recast as the �nite dimensional statement
@tFP(t; x) � 12L0PFP(t; x) and limt!0FP(t; x) = U(x):(6.11)

Now there is no problem in applying the maximum principle on Kn, using Eqs.(6.10) and (6.11), to conclude that
FP(t; x) � HP(t; x) for all 0 � t <1 and x 2 Kn:

This �nishes the proof since this last assertion is equivalent (6.6).
7. The K = Rd and S1 cases In this section, we will work out the explicitrelationship between �0t and �0t in the case that K is the abelian Lie group Rd orS1:
7.1. The K = Rd case Let K be the Lie group Rd with group operation beingaddition. The Lie algebra of Rd is k =Rd with the trivial lie bracket, [a; b] = 0 forall a; b 2 Rd: Although Rd is not compact and is not being represented as a matrixgroup, the theory above easily extends to this case. There is one notational pointto take care of now. Namely, the matrix expression of the form g�1�g must nowbe interpreted as Lg�1��g = �g: We will assume that ha; bi = a � b is the usual dotproduct, although any inner product would work.
Lemma 7.1. On the loop space of Rd; L(Rd); the heat kernel measures �0t andthe pinned Wiener measures, �0t ; are the same.
Proof of Lemma 7.1. The process �0(t; s) in Theorem 2.13 and the process gin Eq. (2.5) of De�nition 2.8 are explicitly given by �0(t; s) = �(t; s) and gs = �(t; s)respectively. Since gs = �(t; s) is a standard Brownian motion with variance t; thepinned Wiener measure �0t = Law(g�jg1 = 0) is the law of an Rd { valued Brownianbridge with variance t: But s ! �(t; s) is a Brownian bridge with variance t (seeRemark 2.12), so that �0t = Law(�(t; �)) = Law(�0(t; �)) = �0t :
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7.2. The K = S1 case Let K = S1 = fz 2 C : jzj = 1g: The Lie algebra of Kis k = iR with the trivial Lie bracket. We will identify with k = iR with R; puttingin the i explicitly when needed. Let ha; bi = ab for a; b 2 R �=iR =k:
Remark 7.2. Let pt(x) = pRt (x) = (2�t)�1=2 exp �� 12tx2� be the heat kernel on

R; and qt(z) = 12�pS1t (z) denote the heat kernel on S1 relative to the un-normalizedHaar measure \d�;" i.e. for f : S1 ! R;Z
S1 fd� :=

Z 2�
0 f(ei�)d�:

The well know relationship between qt and pt is
qt(ei�) = 1X

n=�1 pt(� � 2�n) for � 2 R:(7.1)
To check Eq. (7.1), suppose that f0 : S1 ! R is a continuous function. Then

f(t; z) = Z 2�
0 f0(ze�i�)qt(ei�)d�

solves the heat equation on S1 which is equivalent to saying that F (t; �) := f(t; ei�)solves the heat equation on R: Since F is a bounded solution to the heat equationit is given byZ 2�
0 f0(ze�i�)qt(ei�)d� = F (t; �) = Z 1

�1 F (0; � � �)pt(�)d�
= Z 1

�1 f0(ze�i�)pt(�)d�
= 1X

n=�1
Z 2�
0 f0(ze�i(��2�n))pt(�� 2�n)d�

= 1X
n=�1

Z 2�
0 f0(ze�i�)pt(�� 2�n)d�

where z = ei�: This equation, holding for all continuous f0 : S1 ! R; proves Eq.(7.1).
Definition 7.3. For n 2 Z; let hn(s) := 2�ns;

zn(s) = ei2�ns = eihn(s)
and let �nt be the left translation of �0t by zn; i.e. �nt is the probability measure onL(S1) such that Z

L(S1) f(�)d�nt (�) =
Z
L(S1) f(zn�)d�0t (�):Also let Ln(S1) denote those � 2 L(S1) which are homotopic to zn:
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Remark 7.4. The loops fzng1n=�1 are representatives from each of the homo-topy classes of L(S1); i.e. L(S1) is the disjoint union of �Ln(S1)	1n=�1 : By theconstruction of �0t in Theorem 2.13, the measure �0t is concentrated on L0(S1) andtherefore �nt is concentrated on Ln(S1); i.e. �nt (Lm(S1)) = �mn.
Proposition 7.5. The relationship between pinned Wiener measure �0t andheat kernel measure �0t on L(S1) is

�0t = 1qt(1)
1X

n=�1 pt(2�n)�nt :
In particular

�0t jL0(S1) = 1qt(1)pt(0)�0t =
 1X
n=�1 e� 12t (2�n)2!�1 �0t :(7.2)

Proof of Proposition 7.5. To simplify notation, let Bs = �(t; s): UsingItô's formula, one easily shows that the process �0(t; s) in Theorem 2.13 andthe process g in Eq. (2.5) of De�nition 2.8 are given by �0(t; s) = ei�(t;s) andgs = ei�(t;s) = eiBs respectively. Suppose that f : L(S1)! R is a cylinder functionas in De�nition 2.4. then for � 2 (sn; 1);
�0t (f) = E

�f(g)qt(1��)(g�)qt(1)
�

= E
"f(eiB�)qt(1��)(eiB�)qt(1)

# = 1qt(1)E
"f(eiB�) 1X

n=�1 pt(1��)(B� � 2�n)#

= 1qt(1)
1X

n=�1E
�f(eiB�)pt(1��)(B� � 2�n)� :(7.3)

Let hn(s) := 2�ns; h�n(s) = 2�n (s ^ �) ; and F (B) = f(eiB�), so that F is abounded cylinder function W (R): By the Cameron-Martin theorem (making thetranslation B� ! B� + h�n);
E[F (B)pt(1��)(B� � 2�n)] = E

hF (B + h�n)pt(1��)(B� � 2�n(1� �))
� exp��1t

Z �
0 2�n dBs � 12t

Z �
0 (2�n)2ds�i

= E
hF (B + hn)pt(1��)(B� � 2�n(1� �))
� exp��2�nt B� � 12t�(2�n)2

�i:(7.4)
By direct computation,

pt(1��)(x� y(1� �)) = pt(1��)(x) � exp�1t xy � 12t (1� �)y2�
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and thus taking x = B� and y = 2�n;

pt(1��)(B� �2�n(1� �)) � exp��2�nt B� � 12t�(2�n)2
�

= pt(1��)(B�) � exp�� 12t (2�n)2
� :(7.5)

Combining Eqs. (7.4) and (7.5) shows that
E[F (B) pt(1��)(B� � 2�n)]

= (2�t)�1=2 exp�� 12t (2�n)2
�
E
�F (B + hn)pt(1��)(B�)pt(0)

�
= pt(2�n)E [F (�(t; �) + hn)]wherein the second equality we have used Eq. (2.11) of Remark 2.12. Using thisequation, with F (B) = f(eiB); in Eq. (7.3) gives
�0t (f) = 1qt(1)

1X
n=�1 pt(2�n)E hf(ei(�(t;�)+hn))i

= 1qt(1)
1X

n=�1 pt(2�n)E hf(znei�(t;�))i

= 1qt(1)
1X

n=�1 pt(2�n)�nt (f):
8. Appendix (Quadratic variations)
Lemma 8.1. As above, for A 2 k let �A(t; s) = h�(t; s); Aik and �A(t; s) =h�(t; s); Aik . Let A;B 2 k and s; � 2 [0; 1]; then�A(dt; s)�B(dt; �) = hA;BikG (s; �) dt;�A(dt; s)�B(dt; �) = hA;BikG0 (s; �) dtand for t; � 2 [0;1); �A(t; ds)�B(�; ds) = hA;BikG(t; �)ds:
Proof of Lemma 8.1. Let fGtg be an abstract �ltration (satisfying the\usual hypothesis") and suppose that Mt and Nt are two continuous fGtg adaptedprocesses such that (Mt � Ms; Nt � Ns) is independent of Gs for all t > s and

EMt = ENt = 0 for all t � 0: Then clearly M and N are fGtg { martingales. Wenow also assert that MtNt � E [MtNt] is a martingale(8.1)Assuming Eq. (8.1) for the moment, we may conclude the di�erential MdtNdt ofthe quadratic co-variation of M and N is given byMdtNdt = dtE[MtNt]:(8.2)
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The lemma then follows from repeated application of Eq. (8.2). For example, takingMt = �A(t; s) and Nt = �B(t; �); we learn that�A(dt; s)�B(dt; �) = dtE ��A(t; s)�B(t; �)� = hA;BikG (s; �) dt:To prove Eq. (8.1), let t > s; �M =Mt�Ms; �N = Nt�Ns and Es = E(�jGs):Then using the martingale properties of M and N and the independent incrementassumption we �nd

Es [MtNt �MsNs] = Es [(Ms +�M)(Ns +�N)�MsNs] = Es [�M�N ]= E[(Mt �Ms) (Nt �Ns)] = E[(Mt �Ms) (Nt +Ns)]= E[MtNt]� E[MsNs]:Rearranging the terms of the result of this computation shows that
Es [MtNt � E[MtNt]] =MsNs � E[MsNs]as desired.
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