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Newtonian Mechanics on Rd

Given a potential energy function V : Rd → R we look to solve

mq̈ (t) = −∇V (q (t)) for q (t) ∈ Rd

that is
Force = mass · acceleration

Recall that p = mq̇ and

H (q, p) =
1

2m
p · p + V (q)

= Conserved Energy

= E (q, q̇) :=
1

2
m |q̇|2 + V (q)
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Q.M. and Canonical Quantization on Rd

We want to find
ψ (t, x) =

(
e
t
ihĤψ0

)
(x)

i.e. solve the Schrödinger equation

i~∂ψ
∂t

= Ĥψ (t) for ψ (t) ∈ L2
(
Rd
)

with ψ (0, x) = ψ0 (x)

where by “Canonical Quantization,”

q q̂ = Mq, p p̂ =
~
i
∇ =

~
i

∂

∂q
and

H (q, p) H (q̂, p̂) = − ~2

2m
∇2 + MV (q).
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Feynman Path Integral

Feynman explained that the solution to the Schrödinger equation should be given by(
e
T
i~Ĥψ0

)
(x) =

1

Z (T )

∫
Wx,T (R3)

e
i
h

∫ T
0

(K.E. - P.E.)(t)dtψ0 (ω (T )) d vol (ω) (1)

where ψ0 (x) is the initial wave function,

(K.E. - P.E.) (t) =
m

2
|ω̇ (t)|2 − V (ω (t)) ,

and

Z (T ) =

∫
Wx0,T

(R3)

e
i
h

∫ T
0

(K.E.)(t)dtd vol (ω) .

x

ω(T )

ω

Figure 1: Wx,T

(
Rd
)

= the paths in Rd starting at x which are parametrized by [0, T ].
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The Path Integral Prescription on Rd

Theorem 1 (Meta-Theorem – Feynman (Kac) Quantization). Let V : Rd → R be a nice
function and

W
(
Rd;x, T

)
:=
{
ω ∈ C

(
[0, T ]→ Rd

)
: ω (0) = x

}
.

Then (
e−TĤf

)
(x) = “

1

ZT

∫
W(Rd;x,T)

e−
∫ T
0
E(ω(t),ω̇(t))dtf (ω(T ))Dω” (2)

where E (x, v) = 1
2m |v|

2 + V (x) is the classical energy and

“ZT :=

∫
W(Rd;x,T)

e−
1
2

∫ T
0
|ω̇(t)|2dtDω”.
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Proof of the Path Integral Prescription

Theorem 2 (Trotter Product Formula). Let A and B be n× n matrices. Then

e(A+B) = lim
n→∞

(
e
A
ne

B
n

)n
.

Proof: Since
d

dε
|0 log(eεAeεB) = A + B,

log(eεAeεB) = ε (A + B) + O
(
ε2
)
,

i.e.
eεAeεB = eε(A+B)+O(ε2)

and therefore

(en
−1Aen

−1B)n =
[
en
−1A+n−1B+O(n−2)

]n
= eA+B+O(n−1) → e(A+B) as n→∞.
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• Let A := 1
2∆; (

et∆/2f
)

(x) =

∫
Rd

pt(x, y)f (y)dy

where

pt (x, y) =

(
1

2πt

)d/2

exp

(
1

2t
|x− y|2

)
• Let B = −MV – multiplication by V ; e−tMV = Me−tV

• By Trotter (x0 := x),((
e
T
n∆/2e−

T
nV
)n
f
)

(x)

=

∫
(Rd)

n

pT
n
(x0, x1)e−

T
nV (x1) . . . pT

n
(xn−1, xn)e−

T
nV (xn)f (xn)dx1 . . . dxn

=
1

Zn (T )

∫
(Rd)n

e
− n

2T

n∑
i=1

|xi−xi−1|2−Tn
n∑
i=1

V (xi)
f (xn)dx1 . . . dxn

=
1

Zn (T )

∫
Hn

e−
∫ T
0 [12|ω′(s)|

2+V (ω(s+))]dsf (ω (T ))dmHn (ω) (3)
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where Zn (T ) := (2πT/n)dn/2, Pn =
{
k
nT
}n
k=0

, and

Hn =
{
ω ∈ W

(
Rd;x, T

)
: ω′′ (s) = 0 for s /∈ Pn

}
.

Q.E.D.
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Euclidean Path Integral Quantization on Rd

Theorem 3 (Meta-Theorem – Path integral quantization). We can define Ĥ by;(
e−TĤψ0

)
(x)“ = ”

1

ZT

∫
ω(0)=x

e−
∫ T
0
E(ω(t),ω̇(t))dtψ0(ω(T ))Dω (4)

where

“ZT :=

∫
ω(0)=0

e−
1
2

∫ T
0
|ω̇(t)|2dtDω”.

and
Dω = “Infinite Dimensional Lebesgue Measure.”

• Question: what does this formula really mean?

1. Problems, ZT = limn→∞Zn (T ) = 0.

2. There is not Lebesgue measure in infinite dimensions.

3. The paths ω appearing in Eq. (4) are very rough and in fact nowhere differentiable.
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Summary of Flat Results

• Let P := {0 = t0 < t1 < · · · < tn = T} be a partition of [0, T ] .

• Let HP
(
Rd
)

:=
{
ω : [0, T ]→ Rd : ω (0) = 0 and ω̈ (t) = 0 ∀ t /∈ P

}
• λP be Lebesgue measure on HP

(
Rd
)

• ZP :=
∫
HP(Rd) exp

(
−1

2

∫ T
0
|ω̇ (t)|2 dt

)
dλP (ω)

• dµP := 1
ZP

exp
(
−1

2

∫ T
0
|ω̇ (t)|2 dt

)
dλP (ω)

Theorem 4 (Wiener 1923). There exist a measure µ on W
(
[0, T ] ,Rd

)
such that

µP =⇒ µ as |P| → 0.
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Theorem 5 (Feynman Kac). If E (x, v) = 1
2 |v|

2 + V (x) where V is a nice potential, then

1

ZP
exp

(
−
∫ T

0

E (ω (t) , ω̇ (t)) dt

)
dλP (ω) =⇒ e−

∫ T
0
V (ω(s))dsdµ (ω)

and morever,(
e−tĤf

)
(0) = lim

|P|→0

1

ZP

∫
HP(Rd)

exp

(
−
∫ T

0

E (ω (t) , ω̇ (t)) dt

)
f (ω (T )) dλP (ω)

=

∫
W([0,T ],Rd)

e−
∫ T
0
V (ω(s))dsf (ω (T )) dµ (ω) .
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Norbert Wiener

Figure 2: Norbert Wiener (November 26, 1894 – March 18, 1964). Graduated High School
at 11, BA at Tufts College at the age of 14, and got his Ph.D. from Harvard at 18.
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Classical Mechanics on a Manifold

• Let (M, g) be a Riemannian manifold.

• Newton’s Equations of motion

m
∇σ̇ (t)

dt
= −∇V (q(t)), (5)

i.e.
Force = mass · tangential acceleration

• In local coordinates (q1, . . . , qd);

H (q, p) =
1

2m
gij (q) pipj + V (q) where

ds2 = gij (q) dqidqj
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(Not) Canonical Quantization on M

H(q, p) =
1

2
gij(q)pipj + V (q)

=
1

2

1
√
g
pi
√
ggij(q)pj + V (q).

• To quantize H(q, p), let

qi q̂i := Mqi, pi p̂i :=
1

i

∂

∂qi
, and H (q, p)

?
 H (q̂, p̂) .

• Is

Ĥ = −1

2
gij(q)

∂2

∂qi∂qj
+ V (q)

• or is it

Ĥ = −1

2

1
√
g

∂

∂qi
√
ggij(q)

∂

∂qj
+ V (q) = −1

2
∆M + MV ,

• or something else?
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Path Integral Quantization of Ĥ

The previous formulas on Rd suggest we can define Ĥ in the manifold setting by;(
e−TĤψ0

)
(x0) =

1

ZT

∫
σ(0)=x0

e−
∫ T
0
E(σ(t),σ̇(t))dtψ0(σ(T ))Dσ (6)

where

E(x, v) =
1

2
g(v, v) + V (x)

is the classical energy.

• Formally, there no longer seems to be any ambiguity as there was with canonical
quantization.

• On the other hand what does Eq. (6) actually mean?
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Back to Curved Space Path Integrals

• Recall we now wish to mathematically interpret the expression;

dν(σ)“ = ”
1

Z (T )
e−
∫ T
0 [12|σ̇(t)|2+V (σ(t))]dtDσ.

o

σ(T )

σ

Figure 3: A path in Wo,T (M) .

• To simplify life (and w.o.l.o.g.) set V = 0, T = 1 so that we will now consider,

1

Z

∫
Wo(M)

e−
1
2

∫ 1
0
|σ̇(t)|2dtψ0 (σ (1))Dσ.

• We need introduce (recall) six geometric ingredients.
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I. Geometric Wiener Measure (ν) over M

Fact (Cartan’s Rolling Map). Relying on Itô to handle the technical (non-differentiability)
difficulties, we may transfer Wiener’s measure, µ, on W0,T

(
Rd
)

to a measure, ν, on
Wo,T (M) .

Figure 4: Cartan’s rolling map gives a one to one correspondance between, W0,T

(
Rd
)

and Wo,T (M) .

Bruce Driver 17



II. Riemannian Volume Measures

• On any finite dimensional Riemannian manifold (M, g) there is an associated
volume measure,

dVolg =

√
det

(
g

(
∂Σ

∂ti
,
∂Σ

∂tj

))
dt1 . . . dtn (7)

where Rn 3 (t1, . . . , tn)→ Σ (t1, . . . , tn) ∈M is a (local) parametrization of M.

Example 1. Suppose M is 2 dimensional surface, then we teach,

dS = ‖∂t1Σ (t1, t2)× ∂t2Σ (t1, t2)‖ dt1dt2. (8)

Combining this with the identity,

‖a× b‖2 = ‖a‖2 ‖b‖2 − (a · b)2

= det

[
a · a a · b
a · b b · b

]
shows,

dS =

√
det

[
∂t1Σ · ∂t1Σ ∂t1Σ · ∂t2Σ
∂t1Σ · ∂t2Σ ∂t2Σ · ∂t2Σ

]
dt1dt2

that is Eq. (7) reduces to Eq. (8) for surfaces in R3.
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III. Scalar Curvature

• On any finite dimensional Riemannian manifold (M, g) there is an associated
function called scalar curvatue,

Scal : M → R
such that at a point m ∈M,

Volg(Bε(m)) =
∣∣∣BRd

ε (0)
∣∣∣(1− ε2

6(d + 2)
Scal(m) + O(ε3)

)
for ε ∼ 0,

where
∣∣∣BRd

ε (0)
∣∣∣ is the volume of a ε – Euclidean ball in Rd.
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IV. Tangent Vectors in Path Spaces

• The space

H (M) =

{
σ ∈ Wo (M) : E (σ) :=

∫ 1

0

|σ̇ (t)|2 dt <∞
}

is an infinite dimensional Hilbert manifold.

• The tangent space to σ ∈ H (M) is

TσH (M) =

{
X : [0, 1]→ TM : X (t) ∈ Tσ(t)M and

G1 (X,X) :=
∫ 1

0
g
(
∇X(t)
dt , ∇X(t)

dt

)
dt <∞

}
.
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o

σ(t)

σ

X(t)

Figure 5: A tangent vector at σ ∈ H (M) .
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V. Piecewise Geodesics Approximations

• Given a partition P of [0, 1] the space

HP (M) =

{
σ ∈ Wo (M) :

∇
dt
σ̇ (t) = 0 for t /∈ P

}
is a smooth finite dimensional embedded sub-manifold of H (M) .
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VI. Four Riemannian Metrics on HP (M)

Let σ ∈ HP(M), and X, Y ∈ TσHP(M). Metrics:

• H0–Metric on H(M)

G0(X,X) :=

∫ 1

0

〈X(s), X(s)〉 ds,

• H1–Metric on H(M)

G1(X,X) :=

∫ 1

0

〈
∇X(s)

ds
,
∇X(s)

ds

〉
ds,

• H1–Metric on HP(M) (Riemannian Sum Approximation)

G1
P(X, Y ) :=

n∑
i=1

〈∇X(si−1+)

ds
,
∇Y (si−1+)

ds
〉∆is,

• H0–“Metric” on HP(M) (Riemannian Sum Approximation)

G0
P(X, Y ) :=

n∑
i=1

〈X(si), Y (si)〉∆is.
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Riemann Sum Metric Results

Theorem 6 (Andersson and D. JFA 1999.). Suppose that f : W (M)→ R is a bounded
and continuous and

dν∗P (σ) =
1

ZP
e−

1
2

∫ 1
0
|σ̇(t)|2dtd volG∗P (σ) for ∗ ∈ {0, 1} .

Then

lim
|P|→0

∫
HP(M)

f (σ)dν1
P(σ) =

∫
W(M)

f (σ)dν(σ)

=⇒ Ĥ = −1

2
∆M = −1

2
∆M +

1

∞
Scal.

and

lim
|P|→0

∫
HP(M)

f (σ)dν0
P(σ)

=

∫
W(M)

f (σ)e−
1
6

∫ 1
0

Scal(σ(s))dsdν(σ)

=⇒ Ĥ = −1

2
∆M +

1

6
Scal.
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Some Other (Markovian) Results

If Ĥ is “defined” by

e−TĤf (x0) =
1

ZT

∫
σ(0)=x0

e−
∫ T
0
E(σ(t),σ̇(t))dtf (σ(T ))Dσ (9)

then

Ĥ = −1

2
∆ +

1

κ
S

where

• S is the scalar curvature of M, and

• κ ∈ {6, 8, 12,∞} .

• κ = 6 Cheng 72.

• κ = 12, De Witt 1957, Um 73, Atsuchi & Maeda 85, and Darling 85. Geometric
Quantization. (AIDA says to check these names: Atsuchi & Maeda as at least one is
a given name rather than the family name.)

• κ = 8 Marinov 1980 and De Witt 1992.
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• Inahama (2005) Osaka J. Math.

• Semi-group proofs and extensions of AD1999;

- Butko (2006)

- O. G. Smolyanov, Weizsäcker, Wittich, Potential Anal. 26 (2007).

- Bär and Frank Pfäffle, Crelle 2008.

• Fine and Sawin CMP (2008) – supersymmetic version.

• In the real Feynman case see for example S. Albeverio and R. Hoegh-Krohn (1976),
Lapidus and Johnson, etc. etc.
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Continuum H1 – Metric Result

Now let

dν1
P(σ) =

1

ZP
e−

1
2

∫ 1
0
|σ̇(t)|2dtd volG1|HP (M)

(σ) .

Theorem 7 (Adrian Lim 2006). ( Reviews in Mathematical Physics 19 (2007), no. 9,
967–1044.) Assume (M, g) satisfies,

0 ≤ Sectional-Curvatures ≤ 1

2d
.

If f : W (M)→ R is a bounded and continuous function, then

lim
|P|→0

∫
HP(M)

f (σ) dν1
P(σ)

=

∫
W (M)

f (σ)e−
1
6

∫ 1
0

Scal(σ(s)) ds

√
det
(
I +

1

12
Kσ

)
dν(σ).

where, for σ ∈ H (M) , Kσ is a certain integral operator acting on L2([0, 1];Rd).
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• Kσ is defined by

(Kσf )(s) =

∫ 1

0

(s ∧ t) Γσ(t)f (t) dt

where

Γm =

d∑
i,j=1

(
Rm (ei, Rm(ei, ·)ej) ej + Rm (ei, Rm(ej, ·)ei) ej

+Rm (ei, Rm(ej, ·)ej) ei

)
.

Here Rm is the curvature tensor at m ∈M and {ei}i=1,2,...,d is any orthonormal basis
in Tm(M).

• Adrian Lim’s limiting measure has lost the Markov property and no nice Ĥ in this
case. See “Fredholm Determinant of an Integral Operator driven by a Diffusion
Process,” Journal of Applied Mathematics and Stochastic Analysis, Vol. 2008, Article
ID 130940.
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Continuum H0 – Metric Result

Theorem 8 (Tom Laetsch: JFA 2013). If

dν0
P(σ) =

1

ZP
e−

1
2

∫ 1
0
|σ̇(t)|2dtd volG0|HP (M)

(σ) ,

then

lim
|P|→0

∫
HP(M)

f (σ) dν0
P(σ) =

∫
W (M)

f (σ)e
−2+

√
3

20
√
3

∫ 1
0

Scal(σ(s)) ds
dν(σ).

• The quantization implication of this result is that we should take

Ĥ = −1

2
∆M +

2 +
√

3

20
√

3
Scal.
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Summary: Quantization of Free Hamiltonian

Ĥ = −1

2
∆M +

1

κ
Scal.

• κ ∈ {8, 12} ∪ {∞, 6, ∅, 10} .

Non Intrinsic Considerations

• Sidorova, Smolyanov, Weizsäcker, and Olaf Wittich, JFA2004, consider squeezing a
ambient Brownian motion onto an embedded submanifold. This then result in

Ĥ = −1

2
∆M −

1

4
S + VSF

where VSF is a potential depending on the embedding through the second
fundamental form.
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Applications

Corollary 9 (Trotter Product Formula for et∆/2). For s > 0 let Qs be the symmetric
integral operator on L2(M,dx) defined by the kernel

Qs(x, y) = (2πs)−d/2 exp

(
− 1

2s
d2(x, y) +

s

12
S(x) +

s

12
S(y)

)
for all x, y ∈M. Then for all continuous functions F : M → R and x ∈M,

(e
s
2∆F )(x) = lim

n→∞
(Qn

s/nF )(x).

See also Chorin, McCracken, Huges, Marsden (78) and Wu (98).

Proof. This is a special case of the L2 – limit theorem. The main points are:

• ν0
P is essentially product measure on Mn.

• From this one shows that

(Qn
s/nF )(x) ∼=

∫
HP(M)

e
1
6

∫ 1
0

S(σ(s))dsF (σ (s)) dν0
P(σ)
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Corollary 2: Integration by Parts for ν on W (M)

See Bismut, Driver, Enchev, Elworthy, Hsu, Li, Lyons, Norris, Stroock, Taniguchi,
...............

Let k ∈ PC1, and z solve:

z′(s) +
1

2
Ric//̃s(σ)z(s) = k′(s), z(0) = 0.

and f be a cylinder function on W(M). Then∫
W(M)

Xzf dν =

∫
W(M)

f

∫ 1

0

〈k′, db̃〉 dν, where

(Xzf )(σ) =

n∑
i=1

〈∇if )(σ), Xz
si

(σ)〉

=

n∑
i=1

〈∇if )(σ), //̃si(σ)z(si, σ)〉

and (∇if )(σ) denotes the gradient F in the ith variable evaluated at
(σ(s1), σ(s2), . . . , σ(sn)). Proof. Integrate by parts on HP (M) and then pass to the
limit as |P| → 0.
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More Detailed Proof

Proof. Given k ∈ C1 ∩H(ToM), let XP· (σ) ∈ TσHP(M) such that

∇XPs (σ)

ds
|s=si+ = //si(σ)k′(si+).

1. XP(σ) is a certain projection of //·(σ)k(·) into TσHP(M).

2.

dE(XP) = 2

∫ 1

0

〈σ′(s),∇X
P
s

ds
〉ds

= 2

n∑
i=1

〈∆ib, k
′(si−1+)〉

3. LXkPVolG1
P

= 0.

4. 1 & 2 imply that

LXkPν
1
P = −

n∑
i=1

〈∆ib, k
′(si−1+)〉ν1

P.
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Equivalently: ∫
HP(M)

(
XkPf

)
ν1
P =

∫
HP(M)

n∑
i=1

〈k′(si−1+),∆ib〉 f ν1
P.

5. After some work one shows

lim
|P|→0

∫
HP(M)

(
XkPf

)
ν1
P =

∫
W (M)

Xzf dν

and

6.

lim
|P|→0

∫
HP(M)

n∑
i=1

〈k′(si−1+),∆ib〉fdν1
P =

∫
W(M)

Xzfdν

7. The previous three equations and the limit theorem imply the IBP result.
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Quasi-Invariance Theorem for νW (M)

Theorem 10 (D. 92, Hsu 95). Let h ∈ H(ToM) and Xh be the νW (M) – a.e. well defined
vector field on W (M) given by

Xh
s (σ) = //s(σ)h(s) for s ∈ [0, 1]. (10)

Then Xh admits a flow etX
h

on W (M) and this flow leaves νW (M) quasi-invariant. (Ref:
D. 92, Hsu 95, Enchev-Strook 95, Lyons 96, Norris 95, ...)
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A word from our sponsor:
Quantized Yang-Mills Fields

• A $1,000,000 question, http://www.claymath.org/millennium-problems

• “. . . Quantum Yang-Mills theory is now the foundation of most of elementary particle
theory, and its predictions have been tested at many experimental laboratories, but its
mathematical foundation is still unclear. . . . ”

• Roughly speaking one needs to make sense out of the path integral expressions
above when [0, T ] is replaced by R4 = R×R3 :

dµ(A)“ = ”
1

Z
exp

(
−1

2

∫
R×R3

∣∣FA
∣∣2 dt dx)DA, (11)
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More Motivation: Physics proof of the
Atiyah–Singer Index Theorem

Physics proof of the Atiyah–Singer Index Theorem (Alvarez-Gaumé, Friedan & Windey,
Witten)

index(D)“ = ” lim
T→0

∫
L(M)

e
−
∫ T
0

[
|σ′(s)|2−ψ(s)·∇ψ(s)ds

]
dsDσDψ

...
(Laplace Asymptotics)
...

= C2n

∫
M

Â(R).

• Toy Model for Constructive Field Theory,

• Intuitive understanding of smoothness properties of ν.

• Heuristic path integral methods have lead to many interesting conjectures and
theorems.

End
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