- 1. (a) FALSE. $D[x]/\langle x \rangle \approx D$. Let $D = \mathbb{Z}$.
 - (b) TRUE. See p.329.
 - (c) TRUE. See p.294.
 - (d) TRUE. See p.250.
 - (e) FALSE. The square of $x + 1 + \langle x^2 + 1 \rangle$ is zero.
 - (f) FALSE. The converse is true.
- 2. Let $A \neq \{0\}$ be an ideal of F. Suppose $r \neq 0$ and $r \in A$. Then $s = (sr^{-1})r \in A$ for all $s \in F$ and so A = F.
- 3. (a) $\phi(r) + \phi(s) = 6r + 6s = 6(r+s) = \phi(r+s)$ and $\phi(r)\phi(s) = 6r6s = 36rs = 6rs = \phi(rs)$, where we have used the fact that 36 = 6 in \mathbb{Z}_{10} .
 - (b) In \mathbb{Z}_{10} , 6r = 0 if and only if it is a multiple of 10. This happens for r = 0 and r = 5. Thus $\text{Ker}\phi = \{0, 5\}$.
 - (c) The image of ϕ is $S = \{0, 2, 4, 6, 8\} \subset \mathbb{Z}_{10}$, not all \mathbb{Z}_{10} . In fact, $6 = \phi(1)$ is the unity of the ring S.
- 4. Suppose $r^3 = r$ and $s^3 = s$.
 - Note that since the characteristic is 3, 3x = 0 for all $x \in R$. We have $(r-s)^3 = r^3 - 3r^2s + 3rs^2 - s^3 = r - s$.
 - $(rs)^3 = r^3 s^3 = rs.$

Note: If the two occurrences of "3" in the statement of the problem are replaced by a prime p, S is still a subring. When p = 2, the fact that x = -x + 2x = -x is also needed.

5. Suppose $s \in \langle e \rangle$. Then s = er for some $r \in R$. Thus $es = e^2r = er = s$. A somewhat subtle point: we need to know that $e \in \langle e \rangle$. (Since $\langle a \rangle = aR$, this may not be true for general a if R does not not have a unity.) In this case, $e = e^2 = ee \in$ $eR = \langle e \rangle$. Since the book only defined principal ideals for commutative rings with unity, you will NOT lose points if you did not prove $e \in \langle e \rangle$.