- Please put your name and ID number on your blue book.
- CLOSED BOOK, but BOTH SIDES of two pages of notes are allowed.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.

1. (21 pts.) Let p and q be distinct primes.
(a) Let $R=\{0, p, 2 p, \ldots,(q-1) p\}$ under addition and multiplication modulo $p q$. It is a ring. Prove that R has no zero divisors.
(b) Prove that the ring in (a) is an integral domain.
(c) Let $S=\{0, p, 2 p, \ldots,(p-1) p\}$ under addition and multiplication modulo p^{2}. It is a ring. Find a zero divisor.
2. (8 pts.) Find the maximal ideals in \mathbb{Z}_{6}. For each maximal ideal M, find a familiar ring that is isomorphic to \mathbb{Z}_{6} / M and describe the isomorphism.
Examples of "familiar" rings include $\mathbb{Z}_{n}, \mathbb{Q}, \mathbb{Z}_{n}[x]$.
3. (8 pts .) Prove that the union of a chain $I_{1} \subset I_{2} \subset \cdots$ of ideals of a commutative ring R is an ideal of R.
4. (21 pts.) Let F be the splitting field of $x^{5}-1$ over \mathbb{Q}.
(a) Explain why $F=\mathbb{Q}\left(e^{2 \pi i / 5}\right)$.
(b) Find $\operatorname{Gal}(F / \mathbb{Q})$.
(c) Compute $[F: \mathbb{Q}]$.
5. (16 pts.) Suppose E_{1} and E_{2} are subfields of the field K and that they contain the field F. Let E be the set intersection $E_{1} \cap E_{2}$.
(a) Prove that E is a field.
(b) If $\left[E_{1}: F\right]=12$ and $\left[E_{2}: F\right]=18$, what are the possible values for $[E: F]$? Explain your reasoning.
6. (8 pts.) Can the equilateral triangle be squared? That is, given a side of an equilateral triangle, can one construct the side of a square having the same area?
Give a reason-don't just answer yes or no.
7. (10 pts.) Suppose that C_{k} is a linear code with Hamming weight k.
(a) What can C_{3} do that C_{2} cannot?
(b) What can C_{4} do that C_{3} cannot?
8. (8 pts.) Suppose that $[E: \mathbb{Q}]$ is finite. Prove that there only a finite number of fields between E and \mathbb{Q}.
