- Please put your name and ID number on your blue book.
- CLOSED BOOK, but BOTH SIDES of two pages of notes are allowed.
- Calculators are NOT allowed.
- In a multipart problem, you can do later parts without doing earlier ones.
- 1. (21 pts.) Let p and q be distinct primes.
 - (a) Let $R = \{0, p, 2p, \dots, (q-1)p\}$ under addition and multiplication modulo pq. It is a ring. Prove that R has no zero divisors.
 - (b) Prove that the ring in (a) is an integral domain.
 - (c) Let $S = \{0, p, 2p, \dots, (p-1)p\}$ under addition and multiplication modulo p^2 . It is a ring. Find a zero divisor.
- 2. (8 pts.) Find the maximal ideals in \mathbb{Z}_6 . For each maximal ideal M, find a familiar ring that is isomorphic to \mathbb{Z}_6/M and describe the isomorphism. Examples of "familiar" rings include \mathbb{Z}_n , \mathbb{Q} , $\mathbb{Z}_n[x]$.
- 3. (8 pts.) Prove that the union of a chain $I_1 \subset I_2 \subset \cdots$ of ideals of a commutative ring R is an ideal of R.
- 4. (21 pts.) Let F be the splitting field of $x^5 1$ over \mathbb{Q} .
 - (a) Explain why $F = \mathbb{Q}(e^{2\pi i/5})$.
 - (b) Find $Gal(F/\mathbb{Q})$.
 - (c) Compute $[F:\mathbb{Q}]$.
- 5. (16 pts.) Suppose E_1 and E_2 are subfields of the field K and that they contain the field F. Let E be the set intersection $E_1 \cap E_2$.
 - (a) Prove that E is a field.
 - (b) If $[E_1:F]=12$ and $[E_2:F]=18$, what are the possible values for [E:F]? Explain your reasoning.
- 6. (8 pts.) Can the equilateral triangle be squared? That is, given a side of an equilateral triangle, can one construct the side of a square having the same area?

Give a reason—don't just answer yes or no.

- 7. (10 pts.) Suppose that C_k is a linear code with Hamming weight k.
 - (a) What can C_3 do that C_2 cannot?
 - (b) What can C_4 do that C_3 cannot?
- 8. (8 pts.) Suppose that $[E : \mathbb{Q}]$ is finite. Prove that there only a finite number of fields between E and \mathbb{Q} .