1. (a) Suppose $a p \neq 0$ and $(a p)(b p)=0$. Then $p q \mid(a p)(b p)$. Since $\operatorname{gcd}(p, q)=1, q \mid a b$. Since q is prime, $q \mid b$ and so $b p=0$.
(b) It suffices to show that there is a unity. We need a such that $(a p)(b p)=b p$ modulo $p q$ for every b. This will happen if $(a p) p=p$ modulo $p q$, which will happen if $a p=1$ modulo q, which has a solution since $p \in U_{q}$.
(c) Every nonzero element of S is a zero divisor.
2. They are $M=\{0,3\}$ with $\mathbb{Z}_{6} / M \approx \mathbb{Z}_{2}$ via $\varphi\left(3+\mathbb{Z}_{6}\right)=1$, and $M=\{0,2,4\}$ with $\mathbb{Z}_{6} / M \approx \mathbb{Z}_{3}$ via $\varphi\left(4+\mathbb{Z}_{6}\right)=1$.
3. Suppose a and b are in the union. Then there are j, k such that $a \in I_{j}$ and $b \in I_{k}$. Let $n=\max (j, k)$. Then $a, b \in I_{n}$, which is an ideal. Thus $r a, a+b$ and $a-b$ are all in I_{n} and hence the union.
4. (a) $\omega=e^{2 \pi i / 5}$ is a zero of $x^{5}-1$ and the remaining zeroes are ω^{k} for $0 \leq k<5$.
(b) You can cite the result from class: U_{5}. Alternatively, you can derive it: To specify an automorphism, it suffices to specify $\varphi(\omega)$ and the possibilities are $\varphi_{k}(\omega)=\omega^{k}$ where $0<k<5$.
(c) If you computed the order of the group in (b), you receive full credit, regardless if (b) is correct.
If you note that $x^{4}+x^{3}+x^{2}+x+1$ is irreducible without proof and give 4 as the answer, you'll receive 4 points since you did not prove irreducibility.
5. (a) There are various ways to do this. One is to note that the intersection of subgroups is a subgroup and so $E=E_{1} \cap E_{2}$ is a subgroup under addition and $E^{*}=E_{1}^{*} \cap E_{2}^{*}$ is a subgroup under multiplication.
(b) Since $\left[E_{i}: F\right]=\left[E_{i}: E\right][E: F]$, it follows that $[E: F]$ must divide both 12 and 18. Thus $[E: F]$ must be a divisor of 6 . The possibilities are $1,2,3,6$.
6. If the side of an equilateral triangle has length s, it's area is $\frac{1}{2} \sqrt{3} s^{2}$. The side of a square of the same area has length $\sqrt{\frac{1}{2} \sqrt{3}} s$. Since $\sqrt{\frac{1}{2} \sqrt{3}}$ is constructible, the answer is yes.
7. C_{k+1} can always detect up to k errors, but C_{k} is only guaranteed to detect up to $k-1$ errors.
(a) In addition, C_{3} can always correct one error, but C_{2} cannot.
(b) Nothing additional.
8. We may write $E=\mathbb{Q}(a)$ for some $a \in E$. Suppose a is a zero of $p(x) \in \mathbb{Q}[x]$. Let K be the splitting field of $p(x)$ over \mathbb{Q}. Since elements of $\operatorname{Gal}(K / \mathbb{Q})$ permute the zeroes of $p(x), \operatorname{Gal}(K / \mathbb{Q})$ is finite. Since there is a bijection between subgroups of $\operatorname{Gal}(K / \mathbb{Q})$ and subfields of K, K has only a finite number of subfields and hence so does E since $E \subseteq K$.
