- 1. (a) Suppose $ap \neq 0$ and (ap)(bp) = 0. Then $pq \mid (ap)(bp)$. Since gcd(p,q) = 1, $q \mid ab$. Since q is prime, $q \mid b$ and so bp = 0.
 - (b) It suffices to show that there is a unity. We need a such that (ap)(bp) = bp modulo pq for every b. This will happen if (ap)p = p modulo pq, which will happen if ap = 1 modulo q, which has a solution since $p \in U_q$.
 - (c) Every nonzero element of S is a zero divisor.
- 2. They are $M = \{0, 3\}$ with $\mathbb{Z}_6/M \approx \mathbb{Z}_2$ via $\varphi(3 + \mathbb{Z}_6) = 1$, and $M = \{0, 2, 4\}$ with $\mathbb{Z}_6/M \approx \mathbb{Z}_3$ via $\varphi(4 + \mathbb{Z}_6) = 1$.
- 3. Suppose a and b are in the union. Then there are j, k such that $a \in I_j$ and $b \in I_k$. Let $n = \max(j, k)$. Then $a, b \in I_n$, which is an ideal. Thus ra, a + b and a - b are all in I_n and hence the union.
- 4. (a) $\omega = e^{2\pi i/5}$ is a zero of $x^5 1$ and the remaining zeroes are ω^k for $0 \le k < 5$.
 - (b) You can cite the result from class: U_5 . Alternatively, you can derive it: To specify an automorphism, it suffices to specify $\varphi(\omega)$ and the possibilities are $\varphi_k(\omega) = \omega^k$ where 0 < k < 5.
 - (c) If you computed the order of the group in (b), you receive full credit, regardless if (b) is correct.
 If you note that x⁴ + x³ + x² + x + 1 is irreducible without proof and give 4 as the answer, you'll receive 4 points since you did not prove irreducibility.
- 5. (a) There are various ways to do this. One is to note that the intersection of subgroups is a subgroup and so $E = E_1 \cap E_2$ is a subgroup under addition and $E^* = E_1^* \cap E_2^*$ is a subgroup under multiplication.
 - (b) Since $[E_i:F] = [E_i:E]$ [E:F], it follows that [E:F] must divide both 12 and 18. Thus [E:F] must be a divisor of 6. The possibilities are 1, 2, 3, 6.
- 6. If the side of an equilateral triangle has length s, it's area is $\frac{1}{2}\sqrt{3}s^2$. The side of a square of the same area has length $\sqrt{\frac{1}{2}\sqrt{3}s}$. Since $\sqrt{\frac{1}{2}\sqrt{3}}$ is constructible, the answer is **yes**.
- 7. C_{k+1} can always detect up to k errors, but C_k is only guaranteed to detect up to k-1 errors.
 - (a) In addition, C_3 can always correct one error, but C_2 cannot.
 - (b) Nothing additional.
- 8. We may write $E = \mathbb{Q}(a)$ for some $a \in E$. Suppose a is a zero of $p(x) \in \mathbb{Q}[x]$. Let K be the splitting field of p(x) over \mathbb{Q} . Since elements of $\operatorname{Gal}(K/\mathbb{Q})$ permute the zeroes of p(x), $\operatorname{Gal}(K/\mathbb{Q})$ is finite. Since there is a bijection between subgroups of $\operatorname{Gal}(K/\mathbb{Q})$ and subfields of K, K has only a finite number of subfields and hence so does E since $E \subseteq K$.