- Print Name and ID number on your blue book.
- BOOKS and CALCULATORS are NOT allowed. One side of one page of NOTES is allowed.
- You must show your work to receive credit.

1. (12 pts.) The vector \vec{a} has length 3 and the vector \vec{b} has length 2 . The angle between the vectors is $\pi / 6\left(=30^{\circ}\right)$.
(a) Compute the dot product $\vec{a} \cdot \vec{b}$.
(b) Compute the length of the cross product $\vec{a} \times \vec{b}$.
2. (8 pts .) Find the distance from the point $P(2,8,5)$ to the plane $x-2 y-2 z=1$.
3. (12 pts.) The points $P(0,1,1), Q(0,1,2)$ and $R(1,2,1)$ determine a plane.
(a) Find a vector perpendicular to the plane.
(b) Find an equation for the plane.
4. (12 pts.) A curve is given by $\vec{r}(t)=\left\langle t^{2}+1, t^{3}-1, \sin (\pi t)\right\rangle$ for $0 \leq t \leq 2$.
(a) Write down an integral whose value is the arc length of this curve. You are NOT expected to evaluate the integral.
(b) Find a parametric equation for the line tangent to the curve at $t=1$.
5. (6 pts.) There are two vector functions $\vec{v}(t)$ and $\vec{w}(t)$ about which the following facts are known.

$$
|\vec{v}(1)|=2, \quad|\vec{w}(1)|=3, \quad\left|\vec{v}^{\prime}(1)\right|=1, \quad\left|\vec{w}^{\prime}(1)\right|=4
$$

the vectors $\vec{v}(1)$ and $\vec{w}(1)$ are perpendicular, and the vectors $\vec{v}(1), \vec{v}^{\prime}(1)$ and $\vec{w}^{\prime}(1)$ are all parallel. Compute the magnitude of $(\vec{v}(t) \times \vec{w}(t))^{\prime}$ at $t=1$.

