1. (a) $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=3 \sqrt{3}$.
(b) $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta=3$.
2. A normal to the plane is $\langle 1,-2,-2\rangle$. A convenient point on the plane is $Q(1,0,0)$. The absolute value of the scalar projection of $\overrightarrow{Q P}$ onto \vec{n} is the distance. This is

$$
\left|\frac{\overrightarrow{Q P} \cdot \vec{n}}{|\vec{n}|}\right|=\left|\frac{-25}{3}\right|=25 / 3
$$

3. (a) One such vector is $\overrightarrow{P Q} \times \overrightarrow{P R}=-\vec{i}+\vec{j}$.
(b) $-x+y=1$.
4. We have $\vec{r}^{\prime}(t)=\left\langle 2 t, 3 t^{2}, \pi \cos (\pi t)\right\rangle$.
(a) $\int_{0}^{2}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{2} \sqrt{4 t^{2}+9 t^{4}+\pi^{2} \cos ^{2}(\pi t)} d t$.

Since $\vec{r}(1)=\langle 2,0,0\rangle$ and $\vec{r}^{\prime}(1)=\langle 2,3,-\pi\rangle$, a parametric equation for the line is

$$
\vec{r}(t)=\langle 2,0,0\rangle+t\langle 2,3,-\pi\rangle
$$

5. $\left.(\vec{v}(t) \times \vec{w}(t))^{\prime}\right|_{t=1}=\vec{v}^{\prime}(1) \times \vec{w}(1)+\vec{v}(1) \times \vec{w}^{\prime}(1)$. This equals $\vec{v}^{\prime}(1) \times \vec{w}(1)$ since we are given that $\vec{v}(1)$ and $\vec{w}^{\prime}(1)$ are parallel. The magnitude of $\vec{v}^{\prime}(1) \times \vec{w}(1)$ is $\left|\vec{v}^{\prime}(1)\right|$ times $|\vec{w}(1)|$ since these two vectors are perpendicular. Thus the answer is 3 .
