- Print Name and ID number on your blue book.
- BOOKS and CALCULATORS are NOT allowed. One side of one page of NOTES is allowed.
- You must show your work to receive credit.
- Carry out numerical calculations fully.
- 1. (6 pts.) Suppose $|\nabla f(\vec{x_0})| = 3$ and the angle between the unit vector \vec{u} and $\nabla f(\vec{x_0})$ is 60°. Compute $D_{\vec{u}}\vec{f}$ at $\vec{x_0}$.
- 2. (8 pts.) There are functions f(x,y), x(s,t) and y(s,t). Let g(s,t) = f(x(s,t),y(s,t)). Compute $\partial g/\partial s$ at s=t=0 given the following values

$$f(0,0) = 1 f_x(0,0) = 2 f_y(0,0) = 3$$

$$f(0,1) = 2 f_x(0,1) = 3 f_y(0,1) = 1$$

$$f(1,0) = 0 f_x(1,0) = 1 f_y(1,0) = 3$$

$$x(0,0) = 1 x_s(0,0) = 1 x_t(0,0) = 0$$

$$y(0,0) = 0 y_s(0,0) = 2 y_t(0,0) = 3$$

- 3. (12 pts.) Find and classify the critical points of $f(x,y) = x^3 + y^3 3xy$.
- 4. (a) (10 pts.) Find the critical points of f(x, y, z) = x + 3y + 2z subject to the constraint $x^2 + y^2 + z^2 = 14$.
 - (b) (6 pts.) Find the critical point of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraint x + 3y + 2z = 14. (There is only one.)
 - (c) (2 pts.) Interpret (b) in terms of planes and distances.
- 5. (6 pts.) Suppose you are given f(x) and G(x,s). The equation G(x(s),s)=0 is used to determine x as a function of s. Thus we can think of f as a function of s, namely f(x(s)). Derive a formula for df/ds in terms of df/dx, $\partial G/\partial x$ and $\partial G/\partial s$.