- Print Name and ID number on your blue book.
- BOOKS and CALCULATORS are NOT allowed. One side of one page of NOTES is allowed.
- You must show your work to receive credit.
- Carry out numerical calculations fully.

1. (6 pts.) Suppose $\left|\nabla f\left(\vec{x}_{0}\right)\right|=3$ and the angle between the unit vector \vec{u} and $\nabla f\left(\overrightarrow{x_{0}}\right)$ is 60°. Compute $D_{\vec{u}} \vec{f}$ at \vec{x}_{0}.
2. (8 pts.) There are functions $f(x, y), x(s, t)$ and $y(s, t)$. Let $g(s, t)=f(x(s, t), y(s, t))$. Compute $\partial g / \partial s$ at $s=t=0$ given the following values

$$
\begin{array}{lll}
f(0,0)=1 & f_{x}(0,0)=2 & f_{y}(0,0)=3 \\
f(0,1)=2 & f_{x}(0,1)=3 & f_{y}(0,1)=1 \\
f(1,0)=0 & f_{x}(1,0)=1 & f_{y}(1,0)=3 \\
x(0,0)=1 & x_{s}(0,0)=1 & x_{t}(0,0)=0 \\
y(0,0)=0 & y_{s}(0,0)=2 & y_{t}(0,0)=3
\end{array}
$$

3. (12 pts.) Find and classify the critical points of $f(x, y)=x^{3}+y^{3}-3 x y$.
4. (a) (10 pts.) Find the critical points of $f(x, y, z)=x+3 y+2 z$ subject to the constraint $x^{2}+y^{2}+z^{2}=14$.
(b) (6 pts.) Find the critical point of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraint $x+3 y+2 z=14$. (There is only one.)
(c) (2 pts.) Interpret (b) in terms of planes and distances.
5. (6 pts.) Suppose you are given $f(x)$ and $G(x, s)$. The equation $G(x(s), s)=0$ is used to determine x as a function of s. Thus we can think of f as a function of s, namely $f(x(s))$. Derive a formula for $d f / d s$ in terms of $d f / d x, \partial G / \partial x$ and $\partial G / \partial s$.
