1. Since the directional derivative is a dot product and $\cos 60^{\circ}=1 / 2$, the answer is $3 / 2$.
2. We want to evaluate f at $x(0,0)=1$ and $y(0,0)=0$. By the chain rule, $g_{s}=$ $f_{x} x_{s}+f_{y} y_{s}=1 \times 1+3 \times 2=7$.
3. $\nabla f=\overrightarrow{0}$ gives us $3 x^{2}-3 y=0$ and $3 y^{2}-3 x=0$. Thus $x^{2}=y$ and $y^{2}=x$. Squaring the first and substituting in the second, $x^{4}=x$. Since $x^{4}-x=x(x-1)\left(x^{2}+x+1\right)$, we have two values $x=0$ and $x=1$. Using $x^{2}=y$, we get $y=0$ and $y=1$, respectively. Thus the critical values are $\langle 0,0\rangle$ and $\langle 1,1\rangle$.
4. (a) With $x^{2}+y^{2}+z^{2}=g, \nabla f+\lambda \nabla g=\langle 1+2 \lambda x, 3+2 \lambda y, 2+2 \lambda z\rangle$. Thus $x=-1 / 2 \lambda$, $y=-3 / 2 \lambda$ and $z=-2 / 2 \lambda$ and so $g(x, y, z)=14 / 4 \lambda^{2}$. It follows that $4 \lambda^{2}=1$ and so $2 \lambda= \pm 1$. Hence the critical points are $\langle x, y, z\rangle$ is either $\langle 1,3,2\rangle$ or $\langle-1,-3,-2\rangle$. (The function values are +14 and -14 , respectively, but you were not asked for them.)
(b) The process is similar to (a) except the roles of $x^{2}+y^{2}+z^{2}$ and $x+3 y+2 z$ are reversed. In this case, $\langle x, y, z\rangle=\langle 1,3,2\rangle$
(c) The constraint is a plane and f is the square of the distance to the origin. Hence we are finding the point on the plane closest to the origin.
5. By the chain rule or Math 20A, $d f / d s=(d f / d x)(d x / d s)$. By the formula for implicit differentiation, $d x / d s=-G_{s} / G_{x}$ and so $d f / d s=\frac{-(d f / d x)(\partial G / \partial s)}{\partial G / \partial x}$.
