- 1. Since the directional derivative is a dot product and $\cos 60^{\circ} = 1/2$, the answer is 3/2.
- 2. We want to evaluate f at x(0,0) = 1 and y(0,0) = 0. By the chain rule, $g_s = f_x x_s + f_y y_s = 1 \times 1 + 3 \times 2 = 7$.
- 3. $\nabla f = \vec{0}$ gives us $3x^2 3y = 0$ and $3y^2 3x = 0$. Thus $x^2 = y$ and $y^2 = x$. Squaring the first and substituting in the second, $x^4 = x$. Since $x^4 x = x(x-1)(x^2+x+1)$, we have two values x = 0 and x = 1. Using $x^2 = y$, we get y = 0 and y = 1, respectively. Thus the critical values are $\langle 0, 0 \rangle$ and $\langle 1, 1 \rangle$.
- 4. (a) With $x^2 + y^2 + z^2 = g$, $\nabla f + \lambda \nabla g = \langle 1 + 2\lambda x, 3 + 2\lambda y, 2 + 2\lambda z \rangle$. Thus $x = -1/2\lambda$, $y = -3/2\lambda$ and $z = -2/2\lambda$ and so $g(x,y,z) = 14/4\lambda^2$. It follows that $4\lambda^2 = 1$ and so $2\lambda = \pm 1$. Hence the critical points are $\langle x,y,z \rangle$ is either $\langle 1,3,2 \rangle$ or $\langle -1,-3,-2 \rangle$. (The function values are +14 and -14, respectively, but you were not asked for them.)
 - (b) The process is similar to (a) except the roles of $x^2 + y^2 + z^2$ and x + 3y + 2z are reversed. In this case, $\langle x, y, z \rangle = \langle 1, 3, 2 \rangle$
 - (c) The constraint is a plane and f is the square of the distance to the origin. Hence we are finding the point on the plane closest to the origin.
- 5. By the chain rule or Math 20A, df/ds = (df/dx)(dx/ds). By the formula for implicit differentiation, $dx/ds = -G_s/G_x$ and so $df/ds = \frac{-(df/dx)(\partial G/\partial s)}{\partial G/\partial x}$.