- Print Name and ID number on your blue book.
- BOOKS and CALCULATORS are NOT allowed. Two pages of NOTES (both sides) are allowed.
- You must show your work to receive credit.

1. (10 pts.) The vertices of a triangle are $O(0,0,0), A(0,1,1)$ and $B(1,0,-3)$.
(a) Compute the area of the triangle.
(b) Compute the size of angle $A O B$. You may leave trig functions in your answer.
2. (8 pts.) Find the equation of the plane passing through $(1,0,-1)$ and containing the line with symmetric equations $x=2 y=3 z$.
3. (8 pts.) Find the unit tangent vector to $\mathbf{r}(t)=4 \sqrt{t} \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k}$ at $t=1$.
4. (8 pts.) Your are given that $z=f(x, y), x=u+v$ and $y=u^{2} v$. Use the chain rule to compute the following.

$$
\text { (a) } z_{u}=\partial z / \partial u \quad \text { (b) } z_{u v}=\partial^{2} z / \partial u \partial v .
$$

Of course, you will have to leave expressions such as $f_{x}, f_{x y}$ and so on in your answer since the partial derivatives of f are not known.
5. (6 pts.) The function $f(x, y)$ satisfies $\nabla f(1,4)=\langle 4,-3\rangle$.
(a) Find all unit vectors \mathbf{u} such that $D_{\mathbf{u}} f(1,4)$ is a large as possible.
(b) Find all unit vectors \mathbf{u} such that $D_{\mathbf{u}} f(1,4)=0$.
6. (6 pts.) The function $g(x, y, z)$ satisfies $\nabla g(1,4,3)=\langle 4,-3,0\rangle$.
(a) Find all unit vectors \mathbf{u} such that $D_{\mathbf{u}} g(1,4,3)$ is a large as possible.
(b) Find all unit vectors \mathbf{u} such that $D_{\mathbf{u}} g(1,4,3)=0$.
7. (8 pts.) Find the tangent plane to the surface $z=x^{2}-y^{3}$ at $(2,1,3)$.
8. (8 pts.) Write $\iint_{D} x^{2} d A$ as an iterated integral in polar coordinates where D is the interior of the circle of radius 2 centered at the origin.
Do NOT evaluate the integral-just change to polar coordinates.
9. (10 pts.) Change the order of integration in $\int_{0}^{1} \int_{0}^{x+1} f(x, y) d y d x$.
10. (8 pts.) Calculate $\iint_{D} y e^{x y} d A$ where $D=\{(x, y) \mid 0 \leq x y \leq 1,1 \leq y \leq e\}$.
11. (10 pts.) Use the change of variables $u=x-y, v=x+y$ to rewrite the following as an iterated integral over u and v.

$$
\iint_{D} \frac{x-y}{x+y+2} d A \quad \text { where } \quad D=\{(x, y)|0 \leq x-y \leq 1,|x+y| \leq 1\}
$$

Do NOT evaluate the integral-just change variables.

