1. (a) Since $r^{2}-2 r+2=0$, we have $r=1 \pm i$. Thus $y=e^{t}\left(C_{1} \cos t+C_{2} \sin t\right)$. Alternate forms: $C_{1} e^{t} \sin \left(t+C_{2}\right)$ and $C_{1} e^{t} \cos \left(t+C_{2}\right)$.
(b) This is linear. Dividing by t, the integrating factor is $\exp \left(\int 2 / t\right)=t^{2}$. Thus $\left(t^{2} y\right)^{\prime}=4 t^{3}$ and so $y=t^{2}+C / t^{2}$. Since $y(1)=3, y=t^{2}+2 / t^{2}$.
(c) Separating variables gives $\left(1+y^{2}\right) d y=x^{2} d x$ and so $3 y+y^{3}=x^{3}+C$.
(d) Since $r^{2}-1=0$, the general solution to the homogeneous equation is $C_{1} e^{t}+C_{2} e^{-t}$. Hence we let $y=C t e^{t}$ and find C. Since $y^{\prime \prime}=C(t+2) e^{t}, y^{\prime \prime}-y=2 C e^{t}$ and so $C=1$. Thus the general solution is $y=t e^{t}+C_{1} e^{t}+C_{2} e^{-t}$.
(e) (p. $190 \# 13)$ Variation of parameters: Either use $y=u_{1} y_{1}+u_{2} y_{2}$ or Theorem 3.7.1. For the latter, $W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=\left(t^{2}\right)\left(-1 / t^{2}\right)-(2 t)(1 / t)=-3$ and so a particular solution is

$$
\begin{aligned}
Y(t) & =-t^{2} \int \frac{(1 / t)\left(3-/ t^{2}\right)}{-3} d t+(1 / t) \int \frac{t^{2}\left(3-1 / t^{2}\right)}{-3} d t \\
& =\frac{t^{2}}{3} \int\left(3 / t-1 / t^{3}\right) d t-\frac{1}{3 t} \int\left(3 t^{2}-1\right) d t \\
& =\left(t^{2} / 3\right)\left(3 \ln t+1 / 2 t^{2}\right)-(1 / 3 t)\left(t^{3}-t\right) \\
& =t^{2} \ln t+1 / 2-t^{2} / 3 .
\end{aligned}
$$

Thus the general solution is $C_{1} t^{2}+C_{2} / t+t^{2} \ln t+1 / 2$.
(f) $($ p.391 $) \mathbf{x}=C_{1} e^{3 t}\binom{1}{2}+C_{2} e^{-t}\binom{1}{-2}$
2. (a) The characteristic equation is $r^{2}-2 r+5=0$ and so the eigenvalues are $1 \pm 2 i$.
(b) As $t \rightarrow \infty, x_{1}(t)$ oscillates with increasing amplitude. (You need not be more specific.)
3. (a) (p. $259 \# 5$) Since

$$
\begin{aligned}
(1-x) y^{\prime \prime} & =(1-x) \sum_{n \geq 0} n(n-1) a_{n} x^{n-2} \\
& =\sum_{k \geq 0}(k+2)(k+1) a_{k+2} x^{k}-\sum_{k \geq 0}(k+1) k a_{k+1} x^{k}
\end{aligned}
$$

the recursion is $(k+2)(k+1) a_{k+2}-(k+1) k a_{k+1}+a_{k}=0$. (You need not specify where k starts in the recursion.) We could rearrange this (but need not for (a)):

$$
a_{n+2}=\frac{n(n+1) a_{n+1}-a_{n}}{(n+1)(n+2)} .
$$

(b) By the initial conditions, $a_{0}=1$ and $a_{1}=0$. You can either use the recursion or differentiate the differential equation and evaluate at $x=0$.
By the recursion

$$
\begin{aligned}
& a_{2}=\frac{0-a_{0}}{2}=-1 / 2 \\
& a_{3}=\frac{2 a_{2}-a_{1}}{6}=-1 / 6 \\
& a_{4}=\frac{6 a_{3}-a_{2}}{12}=\frac{-1+1 / 2}{12}=-1 / 24
\end{aligned}
$$

Using the differential equation, $y^{\prime \prime}(0)=-y(0)$, which is $2 a_{2}=-a_{0}$.
Hence $a_{2}=-1 / 2$.
Differentiating, $(1-x) y^{(3)}-y^{\prime \prime}+y^{\prime}=0$ and so $y^{(3)}(0)=y^{\prime \prime}(0)-y^{\prime}(0)$, which is $6 a_{3}=2 a_{2}-a_{1}$. Hence $a_{3}=-1 / 6$.
Differentiating again, $(1-x) y^{(4)}-2 y^{(3)}+y^{\prime \prime}=0$ and so $y^{(4)}(0)=2 y^{(3)}(0)-y^{\prime \prime}(0)$, which is $24 a_{4}=12 a_{3}-2 a_{2}$. Hence $a_{4}=-1 / 24$.
4. We have $F(s)=\frac{s}{(s-1)^{2}+2^{2}}=\frac{s-1}{(s-1)^{2}+2^{2}}+\frac{1}{(s-1)^{2}+2^{2}}$ and so $f(t)=e^{t} \cos 2 t+(1 / 2) e^{t} \sin 2 t$.
5. Taking the transform, $s^{2} Y(s)-s y(0)-y^{\prime}(0)+3 Y(s)=G(s)$. Thus $Y(s)=\frac{s+2+G(s)}{3+s^{2}}$.
6. Either write $g(t)=1-u_{3}(t)$ and use the table to get $G(s)=\left(1-e^{-3 s}\right) / s$ or evaluate the transform directly:

$$
G(s)=\int_{0}^{3} e^{-s t} d t=\left.\frac{-e^{-s t}}{s}\right|_{t=0} ^{3}=\frac{1-e^{-3 s}}{s}
$$

