
Section 9.2 Improving on Euler’s Method

The sections refer to Stewart’s calculus text.

Suppose we are given the differential equation y′ = F (x, y) with initial condition
y(x0) = y0. Euler’s method, discussed in Section 9.2, produces a sequence of approxima-
tions y1, y2, . . . to y(x1), y(x2), . . . where xn = x0 + nh are equally spaced points.

This is almost the left endpoint approximation in numerical integration (Section 7.7).
To see this, suppose that we have an approximation yn−1 for y(xn−1), and that we want an
approximation for y(xn). Integrate y′ = F (x, y) from xn−1 to xn and use the left endpoint
approximation:

y(xn) − y(xn−1) =

∫

xn

xn−1

F (x, y) dx ≈ hF (xn−1, y(xn−1)).

Now we have a problem that did not arise in numerical integration: We don’t know y(xn−1).
What can we do? We replace y(xn−1) with the approximation yn−1 to obtain

y(xn) − yn−1 ≈ hF (xn−1, yn−1).

Rearranging and calling the approximation to y(xn) thus obtained yn we have Euler’s
method:

yn = yn−1 + hF (xn−1, yn−1). (1)

We know that the left endpoint approximation is a poor way to estimate integrals and
that the Trapezoidal Rule is better. Can we use it here? Adapting the argument that led
to (1) for use with the Trapezoidal Rule gives us

yn = yn−1 +
h

2

(

F (xn−1, yn−1) + F (xn, yn)
)

. (2)

You should carry out the steps. Unfortunately, (2) can’t be used: We need yn on the right
side in order to compute it on the left!

Here is a way around this problem: First, use (1) to estimate (“predict”) the value
of yn and call this prediction y∗

n
. Second, use y∗

n
in place of yn in the right side of (2) to

obtain a better estimate, called the “correction”. The formulas are

(predictor) y∗

n
= yn−1 + hF (xn−1, yn−1)

(corrector) yn = yn−1 +
h

2

(

F (xn−1, yn−1) + F (xn, y∗

n
)
)

.
(3)

This is an example of a predictor-corrector method for differential equations. Here are
results for Example 9.2.3, the differential equation y′ = x+y with initial condition y(0) = 1:

step
size y(1) by (1) y(1) by (3)

0.50 2.500000 3.281250
0.20 2.976640 3.405416
0.10 3.187485 3.428162
0.05 3.306595 3.434382
0.02 3.383176 3.436207
0.01 3.409628 3.436474

The correct value is 3.436564, so (3) is much better than Euler’s method for this problem.


