1. AUTOMATIC contains 2 pairs of repeated letters and 7 distinct letters for a total of 9 letters. For $4 \leq n \leq 7$, find a formula for the number of n-letter "words" that can be made from this collection of letters. Your answer should be a formula involving n, not 4 separate numbers for $n=4,5,6,7$.
2. Let $P_{k}(n)$ be the number of permutations of the set $\{1, \ldots, n\}$ having no cycles of length greater than k. Thus $P_{1}(n)=1$ for $n>0$ since all cycles are of length 1 . For later convenience, define

$$
P_{k}(n)= \begin{cases}0, & \text { if } n<0 \\ 1, & \text { if } n=0\end{cases}
$$

(a) By considering the cycle containing $n+1$, prove that $P_{2}(n+1)=P_{2}(n)+n P_{2}(n-1)$ for $n \geq 0$. (Be careful for small values of n.)
(b) State and prove a similar recursion for $P_{3}(n+1)$.
3. Define a "special" tree to be a rooted plane tree which is either

- a single vertex (the root) or
- a root vertex that is joined to either a left tree or a right tree or both a left and right tree.
The special trees with at most 3 vertices are

Let s_{n} be the number of n-vertex special trees and let $S(x)=\sum_{n=1}^{\infty} s_{n} x^{n}$. By the picture, $s_{0}=0, s_{1}=1, s_{2}=2$, and $s_{3}=5$.
(a) Use the definition of special trees to obtain an equation that can be solved for $S(x)$.
(b) Prove that the solution to the equation you obtained in (a) is

$$
S(x)=\frac{1-2 x-\sqrt{1-4 x}}{2 x} .
$$

(c) As in the text, let b_{n} be the number of n-leaf binary RP-trees. Prove that $s_{n}=b_{n+1}$ for $n>0$. (In case you've forgotten, the generating function for the b_{n} 's satisfies $B(x)=x+B(x)^{2}$.)
4. In this problem, you look at sequences made from $\{0, \ldots, k\}$ where none of $1, \ldots, k$ may be adjacent to itself. (We also allow the empty sequence.) Call such a sequence "special." For example, 011 is not special, but 012 and 100 are special. Call special sequences without zeros "zero-free."
Notice (you need not prove this) that a special sequence is either

- a zero-free special sequence or
- a special sequence, followed by a 0 , followed by a zero-free special sequence.

Let s_{n} be the number of n-long special sequences and let z_{n} be the number of n-long zero-free special sequences. Let $S(x)$ and $Z(x)$ be their generating functions.
(a) Prove that $S(x)=Z(x)+S(x) x Z(x)$.
(b) Prove that $z_{0}=1$ and $z_{n}=k(k-1)^{n-1}$ for $n \geq 1$.
(c) Express $S(x)$ as a rational function of x; that is, a ratio of two polynomials in x.
5. (a) Prove that a simple connected graph with v vertices and $v+n$ edges has at least $n+1$ cycles for $n \geq 0$. (See the end of the exam for facts you may find useful.)
(b) For every $n \geq 0$, construct a simple connected graph that has v vertices and $v+n$ edges for some v, and has only $n+1$ cycles.
Hint: For $n=1$, consider

For a simple connected graph with more than one vertex, the following are equivalent:

- It is a tree.
- It has no cycles.
- For every pair of points $u \neq v$, there is a unique path from u to v.
- The number of vertices is one more than the number of edges.

You may use any of these without proof.

