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Abstract

We propose a random graph model which is a special case of sparse
random graphs with given degree sequences which satisfy a power law.
This model involves only a small number of parameters, called log-
size and log-log growth rate. These parameters capture some universal
characteristics of massive graphs. Furthermore, from these parame-
ters, various properties of the graph can be derived. For example, for
certain ranges of the parameters, we will compute the expected distri-
bution of the sizes of the connected components which almost surely
occur with high probability. We will illustrate the consistency of our
model with the behavior of some massive graphs derived from data in
telecommunications. We will also discuss the threshold function, the
giant component, and the evolution of random graphs in this model.

1 Introduction

Is the World Wide Web completely connected? If not, how big is the largest
component, the second largest component, etc.? Anyone who has “surfed”
the Web for any length of time will undoubtedly come away feeling that if
there are disconnected components at all, then they must be small and few
in number. Is the Web too large, dynamic and structureless to answer these
questions?

Probably yes, if the sizes of the largest components are required to be
exact. Recently, however, some structure of the Web has come to light which
may enable us to describe graph properties of the Web qualitatively. Kumar
et al. [13, 14] and Kleinberg et al. [12] have measured the degree sequences of
the Web and shown that it is well approximated by a power law distribution.
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That is, the number of nodes, y, of a given degree x is proportional to
x−β for some constant β > 0. This was reported independently by Albert,
Barabási and Jeong in [4, 6, 7]. The power law distribution of the degree
sequence appears to be a very robust property of the Web despite its dynamic
nature. In fact, the power law distribution of the degree sequence may be
a ubiquitous characteristic, applying to many massive real world graphs.
Indeed, Abello et al. [1] have shown that the degree sequence of so called
call graphs is nicely approximated by a power law distribution. Call graphs
are graphs of calls handled by some subset of telephony carriers for a specific
time period. In addition, Faloutsos, et al. [10] have shown that the degree
sequence of the Internet router graph also follows a power law.

Just as many other real world processes have been effectively modeled
by appropriate random models, in this paper we propose a parsimonious
random graph model for graphs with a power law degree sequence. We
then derive connectivity results which hold with high probability in various
regimes of our parameters. And finally, we compare the results from the
model with the exact connectivity structure for some call graphs computed
by Abello et al. [1].

An extended abstract of this paper has appeared in the Proceedings
of the Thirtysecond Annual ACM Symposium on Theory of Computing
2000 (see [2]). In this paper, we have included the complete proofs for
the main theorems and several additional theorems focused on the second
largest components of power graphs in various ranges. In addition, some
recent references are provided (also see [11]).

1.1 Power-Law Random Graphs

The study of random graphs dates back to the work of Erdős and Rényi
whose seminal papers [8, 9] laid the foundation for the theory of random
graphs. There are three standard models for what we will call in this paper
uniform random graphs [5]. Each has two parameters. One parameters
controls the number of nodes in the graph and one controls the density, or
number of edges. For example, the random graph model G(n, e) assigns
uniform probability to all graphs with n nodes and e edges while in the
random graph model G(n, p) each edge is chosen with probability p.

Our power law random graph model also has two parameters. The two
parameters only roughly delineate the size and density but they are natural
and convenient for describing a power law degree sequence. The power law
random graph model P (α, β) is described as follows. Let y be the number of
nodes with degree x. P (α, β) assigns uniform probability to all graphs with
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y = eα/xβ (where self loops are allowed). Note that α is the intercept and
β is the (negative ) slope when the degree sequence is plotted on a log-log
scale.

We remark that there is also an alternative power law random graph
model analogous to the uniform graph model G(n, p). Instead of having a
fixed degree sequence, the random graph has an expected degree sequence
distribution. The two models are basically asymptotically equivalent, sub-
ject to bounding error estimates of the variances (which will be further
described in a subsequent paper).

1.2 Our Results

Just as for the uniform random graph model where graph properties are
studied for certain regimes of the density parameter and shown to hold
with high probability asymptotically in the size parameter, in this paper we
study the connectivity properties of P (α, β) as a function of the power β
which hold almost surely for sufficiently large graphs. Briefly, we show that
when β < 1, the graph is almost surely connected. For 1 < β < 2 there
is a giant component, i.e., a component of size Θ(n). Moreover, all smaller
components are of size O(1). For 2 < β < β0 = 3.4785 there is a giant
component and all smaller components are of size O(log n). For β = 2 the
smaller components are of size O(log n/ log log n). For β > β0 the graph
almost surely has no giant component. In addition we derive several results
on the sizes of the second largest component. For example, we show that
for β > 4 the numbers of components of given sizes can be approximated by
a power law as well.

1.3 Previous Work

Strictly speaking our model is a special case of random graphs with a given
degree sequence for which there is a large literature. For example, Wormald
[20] studied the connectivity of graphs whose degrees are in an interval [r,R],
where r ≥ 3. HLuczak [16] considered the asymptotic behavior of the largest
component of a random graph with given degree sequence as a function
of the number of vertices of degree 2. His result was further improved by
Molloy and Reed [17, 18]. They consider a random graph on n vertices with
the following degree distribution. The number of vertices of degree 0, 1, 2, . . .
are about λ0n, λ1n, . . . respectively, where the λ’s sum to 1. It is shown in
[17] that if Q =

∑
i i(i− 2)λi > 0 and the maximum degree is not too large,

then such random graphs have a giant component with probability tending
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to 1 as n goes to infinity, while if Q < 0 then all components are small
with probability tending to 1 as n → ∞. They also examined the threshold
behavior of such graphs. In this paper, we will apply these techniques to
deal with the special case that applies to our model.

Several other papers have taken a different approach to modeling power
law graphs than the one taken here [3, 6, 7, 12, 14]. The essential idea of these
papers is to define a random process for growing a graph by adding nodes
and edges. The intent is to show that the defined processes asymptotically
yield graphs with a power law degree sequence with very high probability.
While this approach is interesting and important it has several difficulties.
First, the models are difficult to analyze rigorously since the transition prob-
abilities are themselves dependent on the the current state. For example,
[6, 7] implicitly assume that the probability that a node has a given degree
is a continuous function. The authors of [12, 14] will offer a partial analysis
in a recent paper [15]. Second, while the models may generate graphs with
power law degree sequences, it remains to be seen if they generate graphs
which duplicate other structural properties of the Web, the Internet, and
call graphs. For example, the model in [6, 7] cannot generate graphs with
a power law other than c/x3. Moreover, all the graphs can be decomposed
into m disjoint trees, wherem is a parameter of the model. The (α, β) model
in [14] is able to generate graphs for which the power law for the indegree
is different than the power law for the outdegree as is the case for the Web.
However, to do so, the model requires that there be nodes that have only
indegree and no outdegree and visa versa. While this may be appropriate for
call graphs (e.g., customer service numbers) it remains to be seen whether it
models the Web. Thus, while the random graph generation approach holds
the promise of accurately predicting a wide variety a structural properties
of many real world massive graphs much work remains to be done.

In this paper we take a different approach. We do not attempt to answer
how a graph comes to have a power law degree sequence. Rather, we take
that as a given. In our model, all graphs with a given power law degree
sequence are equi-probable. The goal is to derive structural properties which
hold with probability asymptotically approaching 1. Such an approach,
while potentially less accurate than the detailed modelling approach above,
has the advantage of being robust: the structural properties derived in this
model will be true for the vast majority of graphs with the given degree
sequence. Thus, we believe that this model will be an important complement
to random graph generation models.

We remark that in a subsequent paper[3] several aspects of power law
graphs are further examined, including (1) analyzing the evolution of graphs,
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(2) the asymmetry of in-degrees and out-degrees, (3) the “scale invariance”
of power law graphs.

The power law random graph model will be described in detail in the
next section. In Sections 3 and 4, our results on connectivity will be derived.
In section 5, we discuss the sizes of the second largest components. In section
6, we compare the results of our model to exact connectivity data for call
graphs.

2 A random graph model

We consider a random graph with the following degree distribution depend-
ing on two given values α and β. Suppose there are y vertices of degree x
where x and y satisfy

log y = α− β log x

In other words, we have

| {v : deg(v) = x} |= y =
eα

xβ

Basically, α is the logarithm of the size of the graph and β can be regarded
as the log-log growth rate of the graph.

We note that the number of edges should be an integer. To be precise,
the above expression for y should be rounded down to 	 eα

xβ 
. If we use real
numbers instead of rounding down to integers, it may cause some error terms
in further computation. However, we will see that the error terms can be
easily bounded. For simplicity and convenience, we will use real numbers
with the understanding the actual numbers are their integer parts. Another
constraint is that the sum of the degrees should be even. This can be assured
by adding a vertex of degree 1 if the sum is old if needed. Furthermore, for
simplicity, we here assume that there is no isolated vertices.

We can deduce the following facts for our graph:
(1) The maximum degree of the graph is e

α
β . Note that 0 ≤ log y = α −

β log x.
(2) The vertices number n can be computed as follows: By summing y(x)
for x from 1 to e

α
β , we have

n =
e

α
β∑

x=1

eα

xβ
≈




ζ(β)eα if β > 1
αeα if β = 1
e

α
β

1−β if 0 < β < 1
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where ζ(t) =
∑∞

n=1
1
nt is the Riemann Zeta function.

(3) The number of edges E can be computed as follows:

E =
1
2

e
α
β∑

x=1

x
eα

xβ
≈




1
2ζ(β − 1)eα if β > 2
1
4αe

α if β = 2
1
2

e
2α
β

2−β if 0 < β < 2

(4) The differences of the real numbers in (1)-(3) and their integer parts can
be estimated as follows: For the number n of vertices, the error term is at
most e

α
β . For β ≥ 1, it is o(n), which is a lower order term. For 0 < β < 1,

the error term for n is relatively large. In this case, we have

n ≥ e
α
β

1− β
− e

α
β =

βe
α
β

1− β

Therefore, n has the same magnitude as e
α
β

1−β . The number E of edges can
be treated in a similarly way. For β ≥ 2, the error term of E is o(E), a
lower order term. For 0 < β < 2, E has the same magnitude as in formula
of item (3). In this paper, we mainly deal with the case β > 2. The only
place that we deal with the case 0 < β < 2 is in the next section where
we refer to 2− β as a constant. By using real numbers instead of rounding
down to their integer parts, we simplify the arguments without affecting the
conclusions.

In order to consider the random graph model, we will need to consider
large n. We say that some property almost surely (a. s. ) happens if the
probability that the property holds tends to 1 as the number n of the vertices
goes to infinity. Thus we consider α to be large but where β is fixed.

We use the following random graph model for a given degree sequence:
The model:
1. Form a set L containing deg(v) distinct copies of each vertex v.
2. Choose a random matching of the elements of L.
3. For two vertices u and v, the number of edges joining u and v is equal
to the number of edges in the matching of L joining copies of u to copies of
v.

We remark that the graphs that we are considering are in fact multi-
graphs, possibly with loops. This model is a natural extension of the model
for k-regular graphs, which is formed by combining k random matching. For
references and undefined terminology, the reader is referred to [5, 21].

We note that this random graph model is slightly different from the
uniform selection model P (α, β) as described in section 1.1. However, by
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using techniques in Lemma 1 of [18], it can be shown that if a random graph
with a given degree sequence a. s. has property P under one of these two
models, then it a. s. has property P under the other model, provided some
general conditions are satisfied.

3 The connected components

Molloy and Reed [17] showed that for a random graph with (λi + o(1))n
vertices of degree i, where λi are non-negative values which sum to 1, the
giant component emerges when Q =

∑
i≥1 i(i− 2)λi > 0, provided that the

maximum degree is less than n1/4−ε. They also show that almost surely
there is no giant component when Q =

∑
i≥1 i(i − 2)λi < 0 and maximum

degree less than n1/8−ε.
Here we compute Q for our (α, β)-graphs.

Q =
e

α
β∑

x=1

x(x− 2)	 e
α

xβ



≈
e

α
β∑

x=1

eα

xβ−2
− 2

e
α
β∑

x=1

eα

xβ−1

≈ (ζ(β − 2)− 2ζ(β − 1))eα if β > 3

Hence, we consider the value β0 = 3.47875 . . ., which is a solution to

ζ(β − 2)− 2ζ(β − 1) = 0

If β > β0, we have
e

α
β∑

x=1

x(x− 2)	 e
α

xβ

 < 0

We first summarize the results here:

1. When β > β0 = 3.47875 . . ., the random graph a. s. has no giant
component. When β < β0 = 3.47875 . . ., there is a. s. a unique giant
component.

2. When 2 < β < β0 = 3.47875 . . ., the second largest components are
a. s. of size Θ(log n). For any 2 ≤ x < Θ(log n), there is almost surely
a component of size x.
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3. When β = 2, a. s. the second largest components are of size Θ( log n
loglog n).

For any 2 ≤ x < Θ( log n
loglog n), there is almost surely a component of size

x.

4. When 1 < β < 2, the second largest components are a. s. of size Θ(1).
The graph is a. s. not connected.

5. When 0 < β < 1, the graph is a. s. connected.

6. For β = β0 = 3.47875 . . ., this is a very complicated case. It corre-
sponds to the double jump of random graph G(n, p) with p = 1

n . For
β = 1, there is a nontrivial probability for either cases that the graph
is connected or disconnected.

We remark that for β > 8, Molloy and Reed’s result immediately implies
that almost surely there is no giant component. When β ≤ 8, additional
analysis is needed to deal with the degree constraints. We will prove in
Theorem 2 that almost surely there is no giant component when β > β0. In
section 5, we will deal with the range β < β0. We will show in Theorem 3
that almost surely there is a unique giant component when β < β0. Fur-
thermore, we will determine the size of the second largest component within
a constant factor.

4 The sizes of connected components in certain
ranges for β

For β > β0 = 3.47875 . . ., almost surely there is no giant component. This
range is of special interest since it is quite useful later for describing the
distribution of small components. We will prove the following:

Theorem 1 For (α, β)-graphs with β > 4, the distribution of the number
of connected components is as follows:

1. For each vertex v of degree d = Ω(1), let τ be the size of connected
component containing v. Then

Pr(|τ − d

c1
| > 2λ

c1

√
dc2
c1

) ≤ 2
λ2

where λ = dε. In other words, the vertex v a. s. belongs to a connected
component of size d

c1
+O(d

1
2
+ε), where c1 = 2− ζ(β−2)

ζ(β−1) , c2 = ζ(β−3)
ζ(β−1) −
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(
ζ(β−2)
ζ(β−1)

)2
are two constants, ε is an arbitrary small positive number

and d is a (slowly) increasing function of n.

2. The number of connected components of size x is a. s. at least

(1 + o(1))
eα

cβ−1
1 xβ

.

and at most

c3
eα log

β
2
−1 n

x
β
2
+1

where c3 = 41+βc2
(β−2)c1+β

1

is a constant only depending on β.

3. A connected component of the (α, β)-graph a. s. has the size at most

e
2α

β+2α = Θ(n
2

β+2 log n)

In our proof we use the second moment whose convergence depends on β > 4.
In fact for β ≤ 4 the second moment diverges as the size of the graph goes
to infinity so that our method no longer applies.

Theorem 1 strengthens the following result (which can be derived from
Lemma 3 in [17]) for the range of β > 4.

Theorem 2 For β > β0 = 3.47875 . . ., a connected component of the (α, β)-
graph a. s. has the size at most

Ce
2α
β α = Θ(n

2
β log n)

where C = 16
c21

is a constant only depending on β.

The proof for Theorem 2 is by using branching process method. We here
briefly describe the proof since it is needed for the proof of Theorem 1. Pick
any vertex v in our graph, expose its neighbors, and then the neighbors of its
neighbors, repeating until the entire component is exposed. We expose only
one vertex at each stage. At stage i, let Li be the set of vertices exposed
and Xi be the random variable that counts the number of vertices in Li.
We mark all vertices in Li by either “live” or “dead”. A vertex in Li, whose
neighbors have not been all exposed yet, is marked “live”. A vertex, whose
neighbors have all been exposed, is marked “dead”. Let Oi be the set of
live vertices and Yi be the random variable that is the number of vertices
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in Oi. Each step we mark exact one dead vertex, so the total number of
dead vertices at i-th step is i. We have Xi = Yi + i. Initially we assign
L0 = O0 = {v}. Then at stage i ≥ 1, we do the following:

1. If Yi−1 = 0, then we stop and output Xi−1.

2. Otherwise, randomly choose a live vertex u from Oi−1 and expose
its neighbors in Nu. Then mark u dead and mark each vertex live
if it is in Nu but not in Li−1. We have Li = Li−1 ∪ Nu, and Oi =
(Oi−1 \ {u}) ∪ (Nu \ Li−1).

Suppose that v has degree d. Then X1 = d+ 1, and Y1 = d. Eventually
Yi will hit 0 if i is large enough. Let τ denote the stopping time of Y ,
namely, Yτ = 0. Then Xτ = Yτ + τ = τ measures the size of the connected
component. We first compute the expected value of Yi and then use Azuma’s
Inequality [17] to prove Theorem 2.

Suppose that the vertex u is exposed at stage i. Then Nu∩Li−1 contains
at least one vertex v, which was exposed to reach u. However, Nu ∩ Li−1

may contain more than one vertex. We call an edge from u to Li−1 (that is
not v) a “backedge”. We note that “backedges” causes the exploration to
stop more quickly, especially when the component is large. However in our
case β > β0 = 3.47875 . . ., the contribution of “backedges” is quite small.
We denote Zi = #{Nu} and Wi = #{Nu ∩ Li−1} − 1. Zi measures the
degree of the vertex exposed at stage i, while Wi measures the number of
“backedges”. By definition, we have

Yi − Yi−1 = Zi − 2−Wi.

We have

E(Zi) =
∑e

α
β

x=1 x
x eα

xβ

E = eα

E

∑e
α
β

x=1 x
2−β

= ζ(β−2)+O(n
3
β
−1

)

ζ(β−1)+O(n
2
β
−1

)

= ζ(β−2)
ζ(β−1) +O(n

3
β
−1)

Now we will bound Wi. Suppose that there are m edges exposed at stage
i−1. Then the probability that a new neighbor is in Li−1 is at most m

E . We
have

E(Wi) ≤
∞∑

x=1

x
(m
E

)x
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=
m
E

(1− m
E )2

(∗)

=
m

E
+O((

m

E
)2)

provided m
E = o(1).

When i ≤ Ce
2α
β α, m is at most ie

α
β ≤ Ce

3α
β α. Hence,

m

E
= O(n

3
β
−1 log n) = o(1)

We have

E(Yi) = Y1 +
i∑

j=2

E(Yj − Yj−1)

= d+
i∑

j=2

E(Zj − 2−Wj)

= d+ (i− 1)
(
ζ(β − 2)
ζ(β − 1)

− 2
)
− iO(n

3
β
−1 log n)

= d− c1(i− 1) + io(1)

Proof of Theorem 2: Since |Yj − Yj−1| ≤ e
α
β , by Azuma’s martingale

inequality, we have

Pr(|Yi − E(Yi)| > t) ≤ 2e
−t2

2ie
2α
β

where i = 16
c21
e

2α
β log n, and t = c1

2 i. Since

E(Yi) + t = d− c1(i− 1) + io(1) +
c1
2
i = −c1

2
i+ d+ c1 + io(1) < 0

We have

Pr(τ > 16
c21
e

α
β log n) = Pr(τ > i) ≤ Pr(Yi ≥ 0)

≤ Pr(Yi > E(Yi) + t)

≤ 2e
−t2

2ie
2α
β = 2

n2

Hence, the probability that there exists a vertex v such that v lies in a
component of size greater than 16

c21
e

2α
β log n is at most

n
2
n2

=
2
n

= o(1). �
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The proof of Theorem 1 uses the methodology above as a starting point
while introducing the calculation of the variance of the above random vari-
ables.
Proof of Theorem 1

We follow the notation and previous results of Section 4. Under the
assumption β > 4, we consider the following:

V ar(Zi) =
e

α
β∑

x=1

x2
x eα

xβ

E
− E(Zi)2

=
eα

E

e
α
β∑

x=1

x3−β − E(Zi)2

=
ζ(β − 3) +O(n

4
β
−1)

ζ(β − 1) +O(n
2
β
−1)

−
(
ζ(β − 2)
ζ(β − 1)

)2

+O(n
3
β
−1)

=
ζ(β − 3)
ζ(β − 1)

−
(
ζ(β − 2)
ζ(β − 1)

)2

+O(n
4
β
−1)

= c2 + o(1)

since β > 4.
We need to compute the covariants. There are models for random graphs

in which the edges are in dependently chosen. Then, Zi and Zj are indepen-
dent. However, in the model based on random matchings, there is a small
correlation. For example, Zi = x slightly effects the probability of Zj = y.
Namely, Zj = x has slightly less chance, while Zj = y �= x has slightly more
chance. Both differences can be bounded by

1
E − 1

− 1
E

≤ 2
E2

Hence CoV ar(Zi, Zj) ≤ E(Zi)E 2
E2 = O( 1

n) if i �= j.
Now we will bound Wi. Suppose that there are m edges exposed at stage

i−1. Then the probability that a new neighbor is in Li−1 is at most m
E . We

have

V ar(Wi) ≤
∞∑

x=1

x3
(m
E

)x − E(Wi)2

=
m
E (m

E + 1)
(1− m

E )3
−O((

m

E
)2)
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=
m

E
+O((

m

E
)2)

CoV ar(Wi,Wj) ≤
√
V ar(Wi)V ar(Wj) ≤ m

E
+O((

m

E
)2)

CoV ar(Zi,Wj) ≤
√
V ar(Zi)V ar(Wj) = O(

√
m

E
)

When i = O(e
α
β ), m ≤ ie

α
β = O(e

2α
β ), we have

E(Yi) = d+ (i− 1)
(
ζ(β − 2)
ζ(β − 1)

− 2
)

+ iO(n
3
β
−1) + i

m

E

= d− (i− 1)c1 +O(n
4
β
−1)

= d− (i− 1)c1 + o(1)

V ar(Yi) = V ar(d+
i∑

j=2

(Yj − Yj−1))

= V ar(
i∑

j=2

(Zj −Wj))

=
i∑

j=2

(V ar(Zj) + V ar(Wj))

+
∑

2≤j 	=k≤i

(CoV ar(Zj , Zk)

−CoV ar(Zj,Wk) + CoV ar(Wj ,Wk))

= ic2 + io(1) + i2(O(
1
n
) +O(

√
e
( 2

β
−1)α)

+O(e( 2
β
−1)α))

= ic2 + io(1) + i(O(e( 2
β
− 1

2
)α) +O(e( 3

β
−1)α))

= ic2 + io(1)

Chebyshev’s inequality gives

Pr(|Yi −E(Yi)| > λσ) <
1
λ2

where σ is the standard deviation of Yi, σ =
√
ic2 + o(

√
i) Let i1 = 	 d

c1
−

2λ
c1

√
dc2
c1


 and i2 = � d
c1

+ 2λ
c1

√
dc2
c1

�. We have

E(Yi1)− λσ = d− (i1 − 1)c1 + o(1)− (λ√c2i1 + o(
√
i1)
)
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≥ 2λ
√

dc2
c1

− λ

√
c2

d

c1
− o(

√
d)

= λ

√
dc2
c1

− o(
√
d)

> 0

Hence,

Pr(τ < i1) ≤ Pr(Yi1 ≤ 0) ≤ Pr(Yi1 < E(Yi1)− λσ) ≤ 1
λ2

Similarly,

E(Yi2) + λσ = d− (i2 − 1)c1 + o(1) +
(
λ
√
c2i2 + o(

√
i2)
)

≥ −2λ
√

dc2
c1

+ λ

√
c2

d

c1
+ o(

√
d)

= −λ

√
dc2
c1

+ o(
√
d)

< 0

Hence,

Pr(τ > i2) ≤ Pr(Yi2 > 0) ≤ Pr(Yi2 > E(Yi2) + λσ) ≤ 1
λ2

Therefore

Pr(|τ − d

c1
| > 2λ

c1

√
dc2
c1

) ≤ 2
λ2

For a fixed v and λ a slowly increasing function to infinity, above inequality
implies that almost surely we have τ = d

c1
+O(λ

√
d).

We note that almost all components generated by vertices of degree x
is about the size of d

c1
. One such component can have at most about 1

c1

vertices of degree d. Hence, the number of component of size d
c1

is at least
c1e

α
β

dβ . Let d = c1x. Then the number of components of size x is at least

e
α
β

cβ−1
1 xβ

(1 + o(1))

The proof above actually gives the following result. The size of every com-
ponent, whose vertices have degree at most d0, is almost surely Cd2

0 log n
where C = 16

c21
is the same constant as in Theorem 2. Let x = Cd2

0 log n and

14



consider the number of components of size x. A component of size x almost
surely contains at least one vertex of degree greater than d0.

For each vertex v with degree d ≥ d0, by part 1 in the statement of
Theorem 1, we have

Pr

(
|τ − d

c1
| > 2λd

c1

√
dc2
c1

)
≤ 2

λ2
d

Let λd = c1Cd2
0 log n
4

√
c1
c2d , we have

Pr(τ ≥ Cd2
0 log n) ≤ Pr

(
τ >

d

c1
+

2λd

c1

√
dc2
c1

)

≤ C3
d

d4
0 log

2 n

where C3 = 32c2
c31C2 = c1c2

8 is constant depending only on β. Since there are

only eα

dβ vertices of degree d, the number of components of size at least x is
at most

e
α
β∑

d=d0

eα

dβ
C3

d

d4
0 log

2 n
≤ C3e

α

d4
0 log

2 n

∞∑
d=d0

1
dβ−1

≤ C3e
α

d4
0 log

2 n

2
β − 2

1

dβ−2
0

=
2C3e

α

(β − 2)dβ+2
0 log2 n

= c3
eα log

β
2
−1 n

x
β
2
+1

where c3 = 2C3
(β−2)C

1+ β
2 = 41+βc2

(β−2)c1+β
1

. For x = e
2α

β+2α, the above inequality

implies that the number of components of size at least x is at most o(1). In
other words, almost surely no component has size greater than e

2α
β+2α. This

completes the proof of Theorem 1.

5 On the size of the second largest component

For β < β0 = 3.47875 . . ., we consider the giant component as well as the
size of the second largest component.
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Theorem 3 For (α, β)-graphs with β < β0 = 3.47875 . . ., the following
holds:

1. There is a unique giant component of size Θ(n).

2. When 2 < β < β0, almost surely the size of the second largest compo-
nent is Θ(log n).

3. When β = 2, almost surely the size of the second largest component is
Θ( log n

loglog n).

4. When 1 ≤ β < 2, almost surely the size of the second largest component
is Θ(1).

5. When 0 < β < 1, almost surely the (α, β)-graph is connected.

Proof: When β < β0, the branching process method is no longer feasible
when vertices of large degrees are involved. Thus, we can not apply Azuma’s
martingale inequality for bounding Yi as in the proofs of the previous sec-
tions. We will modify the branching process method as follows.
1. Choose a number xβ (to be specified later depending on β).
2. Start with Y ∗

0 live vertices and Y ∗
0 ≥ C log n. All other vertices are

unmarked.
3. At the i-th step, we choose one live vertex u and exposed its neighbors.
If the degree of u is less than or equal to xβ, we proceed as in section 4, by
marking u dead and all vertices v ∈ N(u) live (provided v is not marked
before). If the degree of u is greater than xβ, we will mark exactly one
vertex v ∈ N(u) live and others dead, provided v is unmarked. In both case
u is marked dead.

The main idea is to show that Y ∗
i , a truncated version of Yi, is well-

concentrated around E(Y ∗
i ). Although it is difficult to directly derive such

result for Yi because of vertices of large degrees, we will be able to bound
the distribution Y ∗

i . Indeed, we will show that the set of marked vertices
(live or dead) grows to a giant component if Y ∗

0 exceeds a certain bound.
We consider the following three ranges of β.
Case 1: 2 < β < β0.

We consider Q = 1
E

∑e
α
β

x=1 x(x−2)	 eα

xβ 
. (Note that Q is a positive constant.)
There is a constant integer x0 satisfying 1

E

∑x0
x=1 x(x − 2)	 eα

xβ 
 > Q
2 . We

choose δ satisfying:
δ

(1− δ)2
=

Q

4
.
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If the component has more than δE edges, it must have Θ(n) vertices since
β > 2. So it is a giant component and we are done. We may assume that
the component has no more than δE edges.

We now choose xβ = x0 and apply the modified branching process. Then,
Y ∗

i satisfies the following:

• Y ∗
0 ≥ �C log n�, where C = 130x2

0
Q is a constant only depending on β.

• −1 ≤ Y ∗
i − Y ∗

i−1 ≤ x0.

• Let Wi be the number of “backedges” as defined in section 4. By
inequality (*) and the assumption that the number of edges m in the
component is at most δn, we have E(Wi) ≤ δ

(1−δ)2
= Q

4 . Hence, we
have

E(Y ∗
i − Y ∗

i−1) ≈ 1
E

x0∑
x=1

x(x− 2)	 e
α

xβ

 − E(Wi)

≥ Q

2
− Q

4
=

Q

4
.

By Azuma’s martingale inequality, we have

Pr(Y ∗
i ≤ Qi

8
) ≤ Pr(Y ∗

i − E(Y ∗
i ) ≤ −Qi

8
)

< e
− (Qi/8)2

2ix2
0 = o(n−1)

provided i > C log n.
The above inequality implies that with probability at least 1 − o(n−1),

Y ∗
i > Qi

8 > 0 when i > �C log n�. Since Y ∗
i decreases at most by 1 at each

step, Y ∗
i can not be zero if i ≤ �C log n�. So Y ∗

i > 0 for all i. In other words,
a. s. the branching process will not stop. However, it is impossible to have
Y ∗

n > 0, that is a contradiction. Thus we conclude that the component
must have at least δn edges. So it is a giant component. We note that if a
component has more than �C log n� edges exposed, then almost surely it is a
giant component. In particular, any vertex with degree more than �C log n�
is almost surely in the giant component. Hence, the second component have
size of at most Θ(log n).

Next, we will show that the second largest has size at least Θ(log n). We
consider the vertices v of degree x = cα, where c is some constant. There
is a positive probability that all neighboring vertices of v have degree 1.
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In this case, we get a connected component of size x + 1 = Θ(log n). The
probability of this is about

(
1

ζ(β − 1)
)cα

Since there are eα

(cα)β vertices of degree x, the probability that none of them
has the above property is about

(1− 1
ζ(β − 1)cα

)
eα

(cα)β ≈ e
− 1

ζ(β−1)cα
eα

(cα)β

= e
−

( e
ζ(β−1)c

)α

(cα)β = o(1)

where we have

c =
{

1 if β ≥ 3
1

−2 log(β−2) if 3 > β > 2

In other words, a. s. there is a component of size cα + 1 = Θ(log n).
Therefore, the second largest component has size Θ(log n). Moreover, the
above argument holds if we replace cα by any small number. Hence, small
components exhibit a continuous behavior.
Case 2: β = 2.
We choose xβ = 10α. We note that a component with more than 2E/3 edges
must be unique. We will prove that almost surely the unique component
contains all vertices with degree greater than 101α2. So it contains (1 −
o(1))E edges and it is the giant component.

We further modify the branching process by starting from Y ∗
0 ≥ �101α2�

vertices. If the component has more than 2E/3 edges, we are done. Other-
wise, the expected number of backeges is small.

E(Wi) ≤ 2/3
(1− 2/3)2

= 6

from inequality (*). Hence, Y ∗
i satisfies:

• Y ∗
0 ≥ �101α2�.

• −1 ≤ Y ∗
i − Y ∗

i−1 ≤ 10α.

• E(Y ∗
i − Y ∗

i−1) ≈ 1
E

∑10α
x=1 x(x− 2)	 eα

xβ 
 −E(Wi)
> 10− 2− 6 = 2

18



By Azuma’s martingale inequality, we have

Pr(Y ∗
i ≤ i) ≤ Pr(Y ∗

i − E(Y ∗
i ) ≤ −i

< e
− i2

i(10α)2 = o(n−1)

provided i ≥ 101α2.
The above inequality implies that with proability at least 1 − o(n−1),

Y ∗
i ≥ i > 0 when i > �101α2�. Since Y ∗

i decreases at most by 1 at each
step, Y ∗

i can not be zero if i ≤ �101α2�. So Y ∗
i > 0 for all i. In other words,

a. s. the branching process will not stop. However, it is impossible to have
Y ∗

n > 0, that is a contradiction. Thus we conclude that the component must
have at least 2

3E edges. We note that a. s. all vertices with degree more
than �101α2� are in the unique component with at least 2

3E edges, hence
the giant component.

The probability that a random vertex is in the giant component is at
most

1
E

101α2∑
x=1

x
eα

x2
≈ 2 log α

α

The probability that there are 2.1 α
log α vertices not in the giant component

is at most
(
2 log α

α
)2.1 α

log α = e−(2.1+o(1))α = o(n−2).

Since there is at most n connected components, we conclude that a. s. a
connected component of size greater that 2.1 α

log α = Θ( log n
loglog n) must be the

giant component.
Now we find a vertex v of degree x and x ≤ 0.9 α

log α . The probability
that all its neighbors are of degree 1 is ( 1

α)
x. The probability that no such

vertex exists is at most

(1− (
1
α
)x)

eα

x2 ≈ e−( 1
α

)x eα

x2 = e−
e0.1α

x2 = o(1)

Hence, a. s. there is a vertex of degree x ≤ 0.9 α
log α , which forms a connected

component of size x+1. This proves that a. s. the second largest component
has size Θ( log n

loglog n).
Case 3: 0 < β < 2.

We use the modified branching process by choosing xβ = e
(5−2β)α
(6−2β)β . If a

component has more than 2E/3 edges, it is the unqiue giant component
and we are done. Otherwise, we have

E(Wi) ≤ 2/3
(1− 2/3)2

= 6.
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Hence, Y ∗
i satisfies:

• Y ∗
0 ≥ 5

C2 e
(2−β)α
(3−β)β .

• −1 ≤ Y ∗
i − Y ∗

i−1 ≤ e
(5−2β)α
(6−2β)β .

• E(Y ∗
i − Y ∗

i−1) ≈ 1
E

∑e
(5−2β)α
(6−2β)β

x=1 x(x− 2)	 eα

xβ 
 − E(Wi)
≈ Ce

α
2β

Here C is a constant depending only on β.
By Azuma’s martingale inequality, we have

Pr(Y ∗
i ≤ 1

2
Ce

α
2β i) < Pr(Y ∗

i − E(Y ∗
i ) ≤ −1

2
Ce

α
2β i)

< e
− ( 1

2 Ce
α
2β i)2

i(e((5−2β)α)/((6−2β)β))2 = o(n−1)

provided i ≥ 5
C2 e

(2−β)α
(3−β)β .

The above inequality shows that with probability at least 1 − o(n−1),

Y ∗
i > 1

2Ce
α
2β i > 0 provided i > 5

C2 e
(2−β)α
(3−β)β . Since Y ∗

i decreases at most by

1 at each step, Y ∗
i can not be zero if i ≤ 5

C2 e
(2−β)α
(3−β)β . So Y ∗

i > 0 for all i.
In othe words, a. s. the branching processing will not stop. However, it is
impossible to have Y ∗

n > 0, that is a contradiction. So, a. s. all vertices with

degree more than 5
C2 e

(2−β)α
(3−β)β are in the giant component. The probability

that a random vertex is in the giant component is at most

1
E

5
C2 e

(2−β)α
(3−β)β∑

x=1

x
eα

xβ
= Θ(e−

(2−β)α
(3−β)β )

The probability that all 2	3−β
2−β 
+1 vertices are not in the giant vertex is at

most
(Θ(e−

(2−β)α
(3−β)β ))2


3−β
2−β

�+1 = o(n−2).

Since there is at most n connected component, we conclude that a. s. a
connected component of size greater that 2	3−β

2−β 
 = Θ(1) must be the giant
component.

For 1 < β < 2, we fix a vertex v of degree 1. The probability that the
other vertex that connects to v is also of degree 1 is

Θ(
eα

e
2α
β

)
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Therefore the probability that no component has size of 2 is at most

(1−Θ(
eα

e
2α
β

))e
α ≈ e−Θ(e

2α− 2α
β ) ≈ o(1)

In other words, the graph a. s. has at least one component of size 2.
For 0 < β < 1, we want to show that the random graph is a. s. con-

nected. Since the size of the possible second largest component is bounded
by a constant M , all vertices of degree ≥ M are almost surely in the giant
component. We only need to show the probability that there is an edge
connecting two small degree vertices is small. There are only

M∑
x=1

x	 e
α

xβ

 ≈ Ceα

vertices with degree less than M . For any random pair of vertices (u, v), the
probability that there is an edges connecting them is about

1
E

= Θ(e−
2α
β )

Hence the probability that there is edge connecting two small degree vertices
is at most ∑

u,v

1
E

= (Ceα)2Θ(e
2α
β ) = o(1)

Hence, every vertex is a. s. connected to a vertex with degree ≥ M , which
a. s. belongs to the giant exponent. Hence, the random graph is a. s.
connected. �

6 Comparisons with realistic massive graphs

Our (α, β)-random graph model was originally derived from massive graphs
generated by long distance telephone calls. These so-called call graphs are
taken over different time intervals. For the sake of simplicity, we consider
all the calls made in one day. Every completed phone call is an edge in the
graph. Every phone number which either originates or receives a call is a
node in the graph. When a node originates a call, the edge is directed out of
the node and contributes to that node’s outdegree. Likewise, when a node
receives a call, the edge is directed into the node and contributes to that
node’s indegree.
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In Figure 2, we plot the number of vertices versus the indegree for the call
graph of a particular day. Let y(i) be the number of vertices with indegree
i . For each i such that y(i) > 0, a × is marked at the coordinate (i , y(i)).
As similar plot is shown in Figure 1 for the outdegree. Plots of the number
of vertices versus the indegree or outdegree for the call graphs of other days
are very similar. For the same call graph in Figure 3 we plot the number of
connected components for each possible size.

The degree sequence of the call graph does not obey perfectly the (α, β)-
graph model. The number of vertices of a given degree does not even
monotonically decrease with increasing degree. Moreover, the call graph
is directed, i.e., for each edge there is a node that originates the call and a
node that receives the call. The indegree and outdegree of a node need not
be the same. Clearly the (α, β)-random graph model does not capture all
of the random behavior of the real world call graph.

Nonetheless, our model does capture some of the behavior of the call
graph. To see this we first estimate α and β of Figure 2. Recall that for
an (α, β)-graph, the number of vertices as a function of degree is given by
log y = α− β log x. By approximating Figure 2 by a straight line, β can be
estimated using the slope of the line to be approximately 2.1. The value of
eα for Figure 2 is approximately 30× 106. The total number of nodes in the
call graph can be estimated by ζ(2.1) ∗ eα = 1.56 ∗ eα ≈ 47× 106

For β between 2 and β0, the (α, β)-graph will have a giant component
of size Θ(n). In addition, a. s. , all other components are of size O(log n).
Moreover, for any 2 ≥ x ≥ O(log n), a component of size x exists. This is
qualitatively true of the distribution of component sizes of the call graph
in Figure 31. The one giant component contains nearly all of the nodes.
The maximum size of the next largest component is indeed exponentially
smaller than the size of the giant component. Also, a component of nearly
every size below this maximum exists. Interestingly, the distribution of the
number of components of size smaller than the giant component is nearly
log-log linear. This suggests that after removing the giant component, one
is left with an (α, β)-graph with β > 4 (Theorem 1 yields a log-log linear
relation between number of components and component size for β > 4. )
This intuitively seems true since the greater the degree, the fewer nodes of
that degree we expect to remain after deleting the giant component. This
will increase the value of β for the resulting graph.

1This data was compiled by J. Abello and A. Buchsbaum of AT&T Labs from raw
phone call records using, in part, the external memory algorithm of Abello, Buchsbaum,
and Westbrook [1] for computing connected components of massive graphs.
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There are numerous questions that remain to be studied. For example,
what is the effect of time scaling? How does it correspond with the evolution
of β? What are the structural behaviors of the call graphs? What are the
correlations between the directed and undirected graphs? It is of interest
to understand the phase transition of the giant component in the realistic
graph. In the other direction, the number of tiny components of size 1 is
leading to many interesting questions as well. Clearly, there is much work
to be done in our understanding of massive graphs.

Acknowledgments. We are grateful to J. Feigenbaum, J. Abello, A. Buchs-
baum, J. Reeds, and J. Westbrook for their assistance in preparing the
figures and for many interesting discussions on call graphs. We are very
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Figure 1: The number of vertices for
each possible outdegree for the call
graph of a typical day.

Figure 2: The number of vertices
for each possible indegree for the call
graph of a typical day.
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Figure 3: The number of connected components for each possible component
size for the call graph of a typical day.
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