1 Solution

Claim 1.1. Every 2-coloring of the edges of K_n contains a monochromatic spanning tree.

Proof. Proof is done by induction on n. Base case $n = 1$ is trivial. Assume that the statement is true for K_{n-1}.

Consider an arbitrary 2-coloring of the edges of $K_n = G(V, E)$. Take any vertex $v \in V$. Denote $V' = V \setminus \{v\}$, $E_v = \{v, u\} \mid u \in V'$, and $E' = E \setminus E_v$. Consider subgraph $K_{n-1} = G(V', E')$. There are two cases:

- if all edges in E_v have the same color then they form a monochromatic spanning tree;
- if there exist edges in E_v of both colors then one of them matches the color of a monochromatic spanning tree in the subgraph K_{n-1}, and together they form a monochromatic spanning tree in the graph K_n.

\[\square\]

2 Solution

Suppose G is a graph with vertex set V that doesn’t contain K_{r+1}.

Claim 2.1. There is an r-partite graph H with vertex set V such that for every vertex $z \in V$

\[d_G(z) \leq d_H(z) \tag{\star}\]

where $d_G(z)$ denotes the degree of z in G.
Proof. Proof is done by induction on r. Base case $r = 1$ is trivial. Assume that for any graph free from K_r there exists an $(r-1)$-partite graph satisfying the condition (*)

Take vertex $v \in V$ of the maximal degree and partite $V = N \sqcup U$, where N is neighborhood of v. Subgraph G' with $V(G') = N$ is K_r-free; otherwise subgraph K_r in G' together with v would produce subgraph K_{r+1} in G. By the assumption there exists an $(r-1)$-partite graph H' that has vertex set N and satisfies condition $d_{G'}(z) \leq d_{H'}(z)$ for all $z \in N$.

To build graph H, we add set U to the graph H' as a new part, and connect every vertex in U with every vertex in N. Since v has the maximal degree in G, the condition (*) is true for all vertices in U. And it is true for vertices in N by the induction assumption. \Box

Claim 2.2. If G is not a complete r-partite graph, then there is at least one vertex z for which the inequality (*) is strict.

Proof. The claim is directly follows from the previous proof. If G is not a complete r-partite graph, then either N is not a complete $(r-1)$-partite graph, or some vertex $u \in N$ is not connected to all vertices in U. The first case implies (by induction) strict inequality for some vertex in N. In the second case the strict inequality holds for $z = u$. \Box

3 Solution

Claim 3.1. The chromatic number $\chi(G)$ of a graph G satisfies

$$\chi(G) \geq \frac{n^2}{n^2 - 2e(G)}$$

where $n = |V(G)|$.

Proof. Let $r = \chi(G)$. By the definition of chromatic number the vertices of G can be colored in r colors such that no two adjacent vertices receive the same color. So G is r-partite graph with monochromatic parts.

Turán’s theorem claims that Turán graph $T_{n,r}$ has the maximal number of edges among all r-partite graphs on n vertices. Hence,

$$e(G) \leq e(T_{n,r}) \leq \binom{r}{2} \left(\frac{n}{r} \right)^2 = \frac{(r-1)n^2}{2r}.$$
Therefore,
\[2re(G) \leq rn^2 - n^2 \]
and
\[r \geq \frac{n^2}{n^2 - 2e(G)}. \]

\[\square \]

4 Solution

Claim 4.1. Let \(R_k(3) \) denote the least integer \(m \) such that every \(k \)-coloring of the edges of \(K_m \) contains a monochromatic triangle. Then
\[R_k(3) \leq k(R_k(3) - 1) + 2. \]

Proof. Consider \(k \)-coloring of a complete graph on \(R_k(3) - 1 \) vertices that does not contain a monochromatic triangle. According to Pigeonhole Principle, for an arbitrary vertex \(v \) there exist at least \(\left\lceil \frac{R_k(3) - 2}{k} \right\rceil \) incident to \(v \) edges that have the same color. Denote by \(U \) a set of ends of these edges except \(v \). Note that edges between vertices in \(U \) are colored in \(k - 1 \) other colors; otherwise some pair of vertices together with \(v \) would form a monochromatic triangle. On the other hand, subgraph on vertices from \(U \) doesn’t contain a monochromatic triangle. Hence,
\[\left\lceil \frac{R_k(3) - 2}{k} \right\rceil \leq |U| \leq R_{k-1}(3) - 1, \]
that implies
\[R_k(3) \leq k(R_k(3) - 1) + 2. \]
\[\square \]

Claim 4.2. \(R_k(3) \leq \lfloor ek! \rfloor + 1. \)

Proof. Note that \(R_1(3) = 3. \) Define a sequence
\[a_0 = 2, \quad a_k = k(a_{k-1} - 1) + 2, \quad \text{for } k \geq 1. \]
Inequality from the previous claim implies by induction that $R_k(3) \leq a_k$ for all $k \geq 1$. Consider an exponential generating function

$$A(x) = \sum_{k=0}^{\infty} \frac{a_k}{k!} x^k.$$

It satisfies an equation

$$A(x) = x(A(x) - e^x) + 2e^x.$$

Hence,

$$A(x) = e^x \left(1 + \frac{1}{1-x} \right) = e^x \left(1 + \sum_{k=0}^{\infty} x^k \right)$$

and

$$a_k = 1 + \sum_{i=0}^{k} \frac{k!}{i!} \leq 1 + k! \sum_{i=0}^{\infty} \frac{1}{i!} = 1 + k!e.$$

Since a_k is integer,

$$R_k(3) \leq a_k \leq 1 + \lfloor k!e \rfloor.$$

\[\square \]

5 Solution

Claim 5.1. Every 2-coloring of the edges of K_{3n-1} contains n independent edges of the same color.

Proof. Proof is done by induction on n. Base case $n = 1$ is trivial. Assume that every 2-coloring of the edges of K_{3n-4} contains $n-1$ independent edges of the same color.

Consider an arbitrary 2-coloring of the edges of $K_{3n-1} = G(V,E)$. If all edges have the same color we are done. So suppose that there are edges of both colors. Since graph is complete there exist two adjacent edges, say, $\{u, v\}$ and $\{v, w\}$ of different colors. Consider a complete subgraph K_{3n-4} on vertices $V \setminus \{u, v, w\}$. By the assumption it contains $n-1$ independent edges of the same color. Then either $\{u, v\}$, or $\{v, w\}$ has the same color and is independent from any edge in K_{3n-4}. So there are n independent edges of the same color. \[\square \]
Claim 5.2. There is a 2-coloring of the edges of K_{3n-2} in which no set of n independent edges is monochromatic.

Proof. Consider graph $K_{3n-2} = G(V, E)$. Partite set of vertices $V = U \sqcup W$ such that $|U| = 2n - 1$ and $|W| = n - 1$. Color blue all edges inside U, and color red all edges inside W as well as edges between U and W. This coloring has two properties:

- There are no n independent blue edges. Each blue edge ends belong to U, so a set of n independent blue edges requires $|U| \geq 2n$.

- There are no n independent red edges. At least one end of each red edge belongs to W, so a set of n independent red edges requires $|W| \geq n$.