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Eigenvalue bounds

1 Introduction and brief review

We continue studying the spectrum of the Laplacian, finding bounds for A;.

Recall that a random walk on an undirected graph G converges to its unique stationary distribu-
tion if and only if it is connected (so A1 # 0) and nonbipartite (so A\,,—1 # 2).

Also recall that

Dy (F (@) = f())?

A = inf R = inf
! ) Y f@de=0 >, fA(x)dy

Y, F@)de=0

(1)

2 Deriving a lower bound

Given a connected undirected graph G, define d(u, v) to be the length of a shortest path between
two vertices u and v, with d(u, u) = 0. The diameter of a graph is then naturally defined as

D(G) = max d(u,v).

U,

One interpretation for diameter is thatHence each eigenvalue Qn—k, for 0 < k < n, has multiplicity
(%) itis the cost in the worst-case situation to send a message in the graph.

Now, suppose we have an optimal f for equation (1). Then, after possibly reversing the sign of f
(which doesn’t change the value of (1)), there is a maximal vertex z such that f(z¢) = max, | f(z)|.
Since f can’t be uniformly nonnegative, there must also exist another vertex yo such that f(yo) <0,
and a path P joining x( and yo containing ¢ < D edges.

Let xo = v, v1, ..., v = yo (Where v; ~ v;41) denote the vertices of P. Then, since all components
of the numerator sum in (1) are nonnegative, we can simply throw out all edges not contained in
P and get
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Since we made f () maximal, replacing all instances of f%(x) with f2(z¢) in the denominator will
not decrease it, so

S0 (f () — f(vz-+1))2.
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The Cauchy-Schwarz inequality states that > ; a? > (327"
we get

L ai)?. Applying it to our equation,
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The sum in the numerator nicely telescopes, leaving

(f (o) = f(%0))* f*(xo) 1
AL Z B vol(G) = 12 () vol(G) = D x vol(G)

(2)

If G is disconnected then we define D = oo. In this case A1 = 0 so the result still holds.

3 Upper bounds

Any function f satisfying > f(x)d, = 0 will give an upper bound. In particular, if G is connected
and is k-regular, then we can show
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Proof (from [1]): A weighted graph is a graph in which each edge uv has a numerical weight
Wyy. If there isn’t an edge between u and v, then w,,, = 0. An ordinary graph can be treated as a
weighted graph where all edges that exist have weight 1; this is what we will do in our proof.

A contraction of G is formed by identifying two distinct vertices u and v into a single vertex v*, and
updating edge weights in the obvious manner:



Wryx = Way + Wy

Wy y* Wyy + Wyp + 2Wyy

Note that a contraction never decreases A1, since any eigenfunction f defined on the contracted
graph yields the same Rayleigh quotient as the following function f’ defined on G-

f’(:c):{ f*) ifx=wuorzx=vw

f(z) otherwise

Now, let u and v denote two vertices at maximal distance D from each other, and for convenience
define ¢ to be the largest integer such that D > 2t + 2. We contract G into a path H with 2¢ + 2
edges, with vertices xo,z1,...,2¢, 2, Y, .., Y1, Yo such that vertices at distance ¢ < ¢ from u are
contracted to z;, vertices at distance j < ¢ from v are contracted to y;, and all remaining vertices
are contracted to z. We then define f by

flai) =alk = 1) f(y;) = b(k — 1) 72f(2) =0

where a and b are chosen to satisfy the initial condition ), f(z)d, = 0.

Then after some simplifying the Rayleigh quotient satisfies
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since it is maximized when w4, , = Wy,y,,, = k(k — 1)1,

This bound is good for Ramanujan graphs (which have applications in coding theory). These graphs

are connected k-regular graphs with A; <1— 2v Z‘l ; much research has been done on such graphs

and numerical evidence indicates that most k-regular graphs are “almost” Ramanujan.

Note that (3) actually isn’t a very good bound in general, since it assumes a regular graph. An
open research problem is to discover a nontrivial upper bound for general graphs.

4 Convergence and lazy walks

We now look at a type of walk where )\ is uniquely important.



Recall from last Monday’s lecture that convergence is dependent on the quantity

p = max |p;| = max{|p1],|pn-1]}
i#0

which corresponds to min{|\|, |2 — A\,,—1|}; the larger this last value is, the faster the convergence.
It turns out that, when \,,_; is limiting convergence, we can sidestep that by changing our random
walk into a lazy walk — thus, \; is in a sense the only eigenvalue that matters.
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dy = ), Wuy, define its associated lazy walk by adding a ﬁ chance of standing in place, so

Given an ordinary random walk defined by a set of edge weights w,,,, with P(u,v) =

/ W if u #£ v;

- Wyy + cdy  if u = v;
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Then X, = 1%: If we choose ¢ = % — 1, then \] = 2 — X _;, so we've neutralized \,,_;.

(Note, any ¢ > 0 suffices to guarantee convergence when G is connected. This ¢ was chosen to get
A1 and A, close to 1 to speed up the rate of convergence.)

Since A\,—1 < 2if A\ > 0, a lazy walk converges if and only if the graph is connected.
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