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Eigenvalue bounds

1 Introduction and brief review

We continue studying the spectrum of the Laplacian, finding bounds for λ1.

Recall that a random walk on an undirected graph G converges to its unique stationary distribu-
tion if and only if it is connected (so λ1 6= 0) and nonbipartite (so λn−1 6= 2).

Also recall that

λ1 = inf
f :
P

x f(x)dx=0
R(f) = inf

f :
P

x f(x)dx=0

∑
x∼y(f(x)− f(y))2∑

x f2(x)dx
(1)

2 Deriving a lower bound

Given a connected undirected graph G, define d(u, v) to be the length of a shortest path between
two vertices u and v, with d(u, u) = 0. The diameter of a graph is then naturally defined as

D(G) = max
u,v

d(u, v).

One interpretation for diameter is thatHence each eigenvalue 2k
n , for 0 ≤ k ≤ n, has multiplicity(

n
k

)
. it is the cost in the worst-case situation to send a message in the graph.

Now, suppose we have an optimal f for equation (1). Then, after possibly reversing the sign of f
(which doesn’t change the value of (1)), there is a maximal vertex x0 such that f(x0) = maxx |f(x)|.
Since f can’t be uniformly nonnegative, there must also exist another vertex y0 such that f(y0) < 0,
and a path P joining x0 and y0 containing t ≤ D edges.

Let x0 = v0, v1, . . . , vt = y0 (where vi ∼ vi+1) denote the vertices of P . Then, since all components
of the numerator sum in (1) are nonnegative, we can simply throw out all edges not contained in
P and get
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λ1 ≥
∑

(x,y)∈P (f(x)− f(y))2∑
x f2(x)dx

.

Since we made f(x0) maximal, replacing all instances of f2(x) with f2(x0) in the denominator will
not decrease it, so

λ1 ≥
∑t−1

i=0(f(vi)− f(vi+1))2

f2(x0) vol(G)
.

The Cauchy-Schwarz inequality states that
∑n

i=1 a2
i ≥ 1

n(
∑n

i=1 ai)2. Applying it to our equation,
we get

λ1 ≥
1
t (

∑t−1
i=0 f(vi)− f(vi+1))2

f2(x0) vol(G)
.

The sum in the numerator nicely telescopes, leaving

λ1 ≥
(f(x0)− f(y0))2

tf2(x0) vol(G)
≥ f2(x0)

tf2(x0) vol(G)
≥ 1

D × vol(G)
(2)

If G is disconnected then we define D = ∞. In this case λ1 = 0 so the result still holds.

3 Upper bounds

Any function f satisfying
∑

x f(x)dx = 0 will give an upper bound. In particular, if G is connected
and is k-regular, then we can show

λ1 ≤ 1− 2
√

k − 1
k

(1− 2
D

) +
2
D

(3)

Proof (from [1]): A weighted graph is a graph in which each edge uv has a numerical weight
wuv. If there isn’t an edge between u and v, then wuv = 0. An ordinary graph can be treated as a
weighted graph where all edges that exist have weight 1; this is what we will do in our proof.

A contraction of G is formed by identifying two distinct vertices u and v into a single vertex v∗, and
updating edge weights in the obvious manner:
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wxv∗ = wxu + wxv

wv∗v∗ = wuu + wvv + 2wuv

Note that a contraction never decreases λ1, since any eigenfunction f defined on the contracted
graph yields the same Rayleigh quotient as the following function f ′ defined on G:

f ′(x) =
{

f(v∗) if x = u or x = v
f(x) otherwise

Now, let u and v denote two vertices at maximal distance D from each other, and for convenience
define t to be the largest integer such that D ≥ 2t + 2. We contract G into a path H with 2t + 2
edges, with vertices x0, x1, . . . , xt, z, yt, . . . , y1, y0 such that vertices at distance i ≤ t from u are
contracted to xi, vertices at distance j ≤ t from v are contracted to yj , and all remaining vertices
are contracted to z. We then define f by

f(xi) = a(k − 1)−i/2f(yj) = b(k − 1)−j/2f(z) = 0

where a and b are chosen to satisfy the initial condition
∑

x f(x)dx = 0.

Then after some simplifying the Rayleigh quotient satisfies

∑
u∼v(f(u)− f(v))2wuv∑

v f2(v)dv
≤ 1− 2

√
k − 1
k

(1− 1
t + 1

) +
1

t + 1

since it is maximized when wxixi+1 = wyiyi+1 = k(k − 1)i−1.

This bound is good for Ramanujan graphs (which have applications in coding theory). These graphs
are connected k-regular graphs with λ1 ≤ 1− 2

√
k−1
k ; much research has been done on such graphs

and numerical evidence indicates that most k-regular graphs are “almost” Ramanujan.

Note that (3) actually isn’t a very good bound in general, since it assumes a regular graph. An
open research problem is to discover a nontrivial upper bound for general graphs.

4 Convergence and lazy walks

We now look at a type of walk where λ1 is uniquely important.
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Recall from last Monday’s lecture that convergence is dependent on the quantity

ρ = max
i6=0

|ρi| = max{|ρ1|, |ρn−1|}

which corresponds to min{|λ1|, |2−λn−1|}; the larger this last value is, the faster the convergence.
It turns out that, when λn−1 is limiting convergence, we can sidestep that by changing our random
walk into a lazy walk – thus, λ1 is in a sense the only eigenvalue that matters.

Given an ordinary random walk defined by a set of edge weights wuv, with P (u, v) = wuv
du

and
du =

∑
v wuv, define its associated lazy walk by adding a 1

1+c chance of standing in place, so

w′
uv =

{
wuv if u 6= v;

wvv + cdv if u = v;

d′v = dv + cdv = (1 + c)dv,

P ′(u, v) =
w′

uv

d′u
.

Then λ′k = λk
1+c . If we choose c = λ1+λn−1

2 − 1, then λ′1 = 2 − λ′n−1, so we’ve neutralized λn−1.
(Note, any c > 0 suffices to guarantee convergence when G is connected. This c was chosen to get
λ1 and λn−1 close to 1 to speed up the rate of convergence.)

Since λn−1 < 2 if λ1 > 0, a lazy walk converges if and only if the graph is connected.
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