October 12, 2005
Chris Chang

Eigenvalue bounds

1 Introduction and brief review

We continue studying the spectrum of the Laplacian, finding bounds for λ_{1}.
Recall that a random walk on an undirected graph G converges to its unique stationary distribution if and only if it is connected (so $\lambda_{1} \neq 0$) and nonbipartite (so $\lambda_{n-1} \neq 2$).

Also recall that

$$
\begin{equation*}
\lambda_{1}=\inf _{f: \sum_{x} f(x) d_{x}=0} R(f)=\inf _{f: \sum_{x} f(x) d_{x}=0} \frac{\sum_{x \sim y}(f(x)-f(y))^{2}}{\sum_{x} f^{2}(x) d_{x}} \tag{1}
\end{equation*}
$$

2 Deriving a lower bound

Given a connected undirected graph G, define $d(u, v)$ to be the length of a shortest path between two vertices u and v, with $d(u, u)=0$. The diameter of a graph is then naturally defined as

$$
D(G)=\max _{u, v} d(u, v) .
$$

One interpretation for diameter is thatHence each eigenvalue $\frac{2 k}{n}$, for $0 \leq k \leq n$, has multiplicity $\binom{n}{k}$. it is the cost in the worst-case situation to send a message in the graph.

Now, suppose we have an optimal f for equation (1). Then, after possibly reversing the sign of f (which doesn't change the value of (1)), there is a maximal vertex x_{0} such that $f\left(x_{0}\right)=\max _{x}|f(x)|$. Since f can't be uniformly nonnegative, there must also exist another vertex y_{0} such that $f\left(y_{0}\right)<0$, and a path P joining x_{0} and y_{0} containing $t \leq D$ edges.

Let $x_{0}=v_{0}, v_{1}, \ldots, v_{t}=y_{0}$ (where $v_{i} \sim v_{i+1}$) denote the vertices of P. Then, since all components of the numerator sum in (1) are nonnegative, we can simply throw out all edges not contained in P and get

$$
\lambda_{1} \geq \frac{\sum_{(x, y) \in P}(f(x)-f(y))^{2}}{\sum_{x} f^{2}(x) d_{x}}
$$

Since we made $f\left(x_{0}\right)$ maximal, replacing all instances of $f^{2}(x)$ with $f^{2}\left(x_{0}\right)$ in the denominator will not decrease it, so

$$
\lambda_{1} \geq \frac{\sum_{i=0}^{t-1}\left(f\left(v_{i}\right)-f\left(v_{i+1}\right)\right)^{2}}{f^{2}\left(x_{0}\right) \operatorname{vol}(G)}
$$

The Cauchy-Schwarz inequality states that $\sum_{i=1}^{n} a_{i}^{2} \geq \frac{1}{n}\left(\sum_{i=1}^{n} a_{i}\right)^{2}$. Applying it to our equation, we get

$$
\lambda_{1} \geq \frac{\frac{1}{\bar{t}}\left(\sum_{i=0}^{t-1} f\left(v_{i}\right)-f\left(v_{i+1}\right)\right)^{2}}{f^{2}\left(x_{0}\right) \operatorname{vol}(G)}
$$

The sum in the numerator nicely telescopes, leaving

$$
\begin{equation*}
\lambda_{1} \geq \frac{\left(f\left(x_{0}\right)-f\left(y_{0}\right)\right)^{2}}{t f^{2}\left(x_{0}\right) \operatorname{vol}(G)} \geq \frac{f^{2}\left(x_{0}\right)}{t f^{2}\left(x_{0}\right) \operatorname{vol}(G)} \geq \frac{1}{D \times \operatorname{vol}(G)} \tag{2}
\end{equation*}
$$

If G is disconnected then we define $D=\infty$. In this case $\lambda_{1}=0$ so the result still holds.

3 Upper bounds

Any function f satisfying $\sum_{x} f(x) d_{x}=0$ will give an upper bound. In particular, if G is connected and is k-regular, then we can show

$$
\begin{equation*}
\lambda_{1} \leq 1-\frac{2 \sqrt{k-1}}{k}\left(1-\frac{2}{D}\right)+\frac{2}{D} \tag{3}
\end{equation*}
$$

Proof (from [1]): A weighted graph is a graph in which each edge $u v$ has a numerical weight $w_{u v}$. If there isn't an edge between u and v, then $w_{u v}=0$. An ordinary graph can be treated as a weighted graph where all edges that exist have weight 1 ; this is what we will do in our proof.

A contraction of G is formed by identifying two distinct vertices u and v into a single vertex v^{*}, and updating edge weights in the obvious manner:

$$
\begin{aligned}
w_{x v^{*}} & =w_{x u}+w_{x v} \\
w_{v^{*} v^{*}} & =w_{u u}+w_{v v}+2 w_{u v}
\end{aligned}
$$

Note that a contraction never decreases λ_{1}, since any eigenfunction f defined on the contracted graph yields the same Rayleigh quotient as the following function f^{\prime} defined on G :

$$
f^{\prime}(x)=\left\{\begin{array}{cl}
f\left(v^{*}\right) & \text { if } x=u \text { or } x=v \\
f(x) & \text { otherwise }
\end{array}\right.
$$

Now, let u and v denote two vertices at maximal distance D from each other, and for convenience define t to be the largest integer such that $D \geq 2 t+2$. We contract G into a path H with $2 t+2$ edges, with vertices $x_{0}, x_{1}, \ldots, x_{t}, z, y_{t}, \ldots, y_{1}, y_{0}$ such that vertices at distance $i \leq t$ from u are contracted to x_{i}, vertices at distance $j \leq t$ from v are contracted to y_{j}, and all remaining vertices are contracted to z. We then define f by

$$
f\left(x_{i}\right)=a(k-1)^{-i / 2} f\left(y_{j}\right)=b(k-1)^{-j / 2} f(z)=0
$$

where a and b are chosen to satisfy the initial condition $\sum_{x} f(x) d_{x}=0$.
Then after some simplifying the Rayleigh quotient satisfies

$$
\frac{\sum_{u \sim v}(f(u)-f(v))^{2} w_{u v}}{\sum_{v} f^{2}(v) d_{v}} \leq 1-\frac{2 \sqrt{k-1}}{k}\left(1-\frac{1}{t+1}\right)+\frac{1}{t+1}
$$

since it is maximized when $w_{x_{i} x_{i+1}}=w_{y_{i} y_{i+1}}=k(k-1)^{i-1}$.
This bound is good for Ramanujan graphs (which have applications in coding theory). These graphs are connected k-regular graphs with $\lambda_{1} \leq 1-\frac{2 \sqrt{k-1}}{k}$; much research has been done on such graphs and numerical evidence indicates that most k-regular graphs are "almost" Ramanujan.

Note that (3) actually isn't a very good bound in general, since it assumes a regular graph. An open research problem is to discover a nontrivial upper bound for general graphs.

4 Convergence and lazy walks

We now look at a type of walk where λ_{1} is uniquely important.

Recall from last Monday's lecture that convergence is dependent on the quantity

$$
\rho=\max _{i \neq 0}\left|\rho_{i}\right|=\max \left\{\left|\rho_{1}\right|,\left|\rho_{n-1}\right|\right\}
$$

which corresponds to $\min \left\{\left|\lambda_{1}\right|,\left|2-\lambda_{n-1}\right|\right\}$; the larger this last value is, the faster the convergence. It turns out that, when λ_{n-1} is limiting convergence, we can sidestep that by changing our random walk into a lazy walk - thus, λ_{1} is in a sense the only eigenvalue that matters.

Given an ordinary random walk defined by a set of edge weights $w_{u v}$, with $P(u, v)=\frac{w_{u v}}{d_{u}}$ and $d_{u}=\sum_{v} w_{u v}$, define its associated lazy walk by adding a $\frac{1}{1+c}$ chance of standing in place, so

$$
\begin{aligned}
w_{u v}^{\prime} & =\left\{\begin{array}{cc}
w_{u v} & \text { if } u \neq v ; \\
w_{v v}+c d_{v} & \text { if } u=v ;
\end{array}\right. \\
d_{v}^{\prime} & =d_{v}+c d_{v}=(1+c) d_{v}, \\
P^{\prime}(u, v) & =\frac{w_{u v}^{\prime}}{d_{u}^{\prime}} .
\end{aligned}
$$

Then $\lambda_{k}^{\prime}=\frac{\lambda_{k}}{1+c}$. If we choose $c=\frac{\lambda_{1}+\lambda_{n-1}}{2}-1$, then $\lambda_{1}^{\prime}=2-\lambda_{n-1}^{\prime}$, so we've neutralized λ_{n-1}. (Note, any $c>0$ suffices to guarantee convergence when G is connected. This c was chosen to get λ_{1} and λ_{n-1} close to 1 to speed up the rate of convergence.)

Since $\lambda_{n-1}<2$ if $\lambda_{1}>0$, a lazy walk converges if and only if the graph is connected.

References

[1] F. Chung, "Lectures on Spectral Graph Theory", AMS, 1992.

