Convergence on Directed Graphs

From Perron-Frobenius to Convergence

1 Introduction

Working with a graph G and a probability transition matrix P, we previously saw that the criterion for convergence was that G is strongly connected and the the GCD of the cycle lengths in G is 1 . We shall prove that this condition is indeed sufficient to demonstrate convergence. By the PerronFrobenius Theorem, this condition is equvalent to the statement that the norms of all eigenvalues of P except for $\rho_{0}=1$ are less than 1 . We shall thus show, from a spectral argument alone, that the random walk converges.

From an algebraic perspective, what we want to do is characterize P^{t}. Ideally we want to characterize this in terms of eigenvalues alone; however, some matrices are not amenable to such characterization. For instance, $P=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is not diagonalizable, so P^{t} would not be describable in terms of the eignevalues alone. However, this matrix also does not correspond to a strongly connected digraph: nonetheless, we cannot assume diagonalizability when studying the transition matrices of strongly connected graphs.

Exercise: Find a strongly connected G such that the associated probability transition matrix P does not have n distinct eigenvectors; that is to say, that P is undiagonalizable.

In general, we can investigate convergence over a class of similar matrices: M and $S M S^{-1}$ have the same long-term convergence profile, since $\left(S M S^{-1}\right)^{t}=S M^{t} S^{-1}$. In addition, characterizing in terms of eigenvalues is supported by the similarity relation, since M and $S M S^{-1}$ have the same eigenvalues. It is worth noting, however, that even though P represents transitions on a strongly connected graph, $S P S^{-1}$ may not.

2 Jordan matrix decomposition

Were P diagonalizable, we would simply note the similarity of P to a matrix with ρ_{i} on the diagonal, and since $\rho_{i}^{t} \rightarrow 0$ for all $i \neq 0, P^{t}$ would necessarily converge. This approach works for undirected graphs: even though P itself would not necessarily be symmetric, it would be similar to the symmetric matrix $D^{\frac{1}{2}} P D^{-\frac{1}{2}}$, which is diagonalizable, as are all symmetric matrices.

However, with a directed graph G, we are not guaranteed that the probability transition matrix P is diagonalizable, and must thus use a weaker form than diagonal form. This is a purpose for which Jordan matrix decomposition is ideal:
Theorem 1. Any matrix M can be decomposed into the form $S \Gamma S^{-1}$, where S is an invertable matrix, and Γ has the block form:

$$
\Gamma=\left[\begin{array}{cccc}
B_{1} & 0 & \cdots & 0 \\
0 & B_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_{k}
\end{array}\right]
$$

with sub-blocks of the form

$$
B_{i}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right]
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of M.

Let us start by taking $P_{0}=\overrightarrow{1} \phi$, where ϕ is the row eigenvector of P associated with the eigenvalue $\rho_{0}=1$ with positive entries which sum to 1 , called the Perron vector, and let $M=P-P_{0}$. This matrix has the same spectral character as P except that the eigenvalue ρ_{0} is replaced with 0 , so we may show that M^{t} in fact converges to the zero matrix. We than can demonstrate that $\left(P-P_{0}\right)^{t}=$ $P^{t}-P_{0}$, so that M^{\prime} 's convergence to zero implies P^{\prime} s convergence to P_{0}.

Exercise: Show that $\left(P-P_{0}\right)^{t}=P^{t}-P_{0}$.
Decomposing M this way, we find that $M^{t}=S \Gamma^{t} S^{-1}$. Since Γ is block-diagonal,

$$
\Gamma^{t}=\left[\begin{array}{cccc}
B_{1}^{t} & 0 & \cdots & 0 \\
0 & B_{2}^{t} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_{k}^{t}
\end{array}\right]
$$

so determining Γ^{t} depends on the behavior of each B_{i}^{t}. Let us note that $B_{i}=\lambda_{i} I+F$, where F is the matrix with zero-entries everywhere except in the cells directly above the main diagonal (i.e., the super-diagonal), which contain 1 . Then, we use the binomial expansion of this sum. In general doing so could be quite ugly since matrices do not commute, but since one of the terms in the sum is $\lambda_{i} I$, which does commute, our binomial expansion is the traditional commutative binomial formula:

$$
B_{i}^{t}=\left(\lambda_{i} I+F\right)^{t}=\lambda_{i}^{t} I+\binom{t}{1} \lambda_{i}^{t-1} F+\binom{t}{2} \lambda_{i}^{t-2} F^{2}+\cdots
$$

For F an $m \times m$ matrix, $F^{m}=0$, so this sum can be rewritten as

$$
\lambda_{i}^{t-m+1}\left(\lambda_{i}^{m-1} I+\binom{t}{1} \lambda_{i}^{m-2} F+\binom{t}{2} \lambda_{i}^{m-3} F^{2}+\cdots+\binom{t}{m-1} \lambda_{i}^{0} F^{m-1}\right)
$$

Note that the expression in the parentheses is a matrix in which each entry is an $(m-1)$ th-degree polynomial in t; since $\left|\lambda_{i}\right|<1$, the product is dominated by the λ_{i}^{t-m+1} term, which approaches zero as $t \rightarrow \infty$. Thus $B_{i}^{t} \rightarrow 0$, so by the block structure $\Gamma^{t} \rightarrow 0$ and thus $M^{t} \rightarrow 0$.

3 Four notions of convergence

However, we care not simply about convergence, but convergence rates, and not simply about convergence of the matrix P^{t}, but of the probability distribution $f P^{t}$. There are four different metrics under which convergence is measured, arranged here from least easily demonstrated to most demonstrable:

Convergence in the \mathcal{L}^{2} norm This is the familiar Euclidean metric for convergence,

$$
\Delta_{\mathcal{L}^{2}}(t)=\max _{f}\left\|f P^{t}-\phi\right\|=\max _{f} \sqrt{\sum_{x}\left[\left(f P^{t}\right)(x)-\phi(x)\right]^{2}},
$$

which is well-known, but for our purposes too weak, inasmuch as it doesn't capture the convergence of the distribution at every vertex.

Total-variation convergence The total-variation norm is a metric favored by Persi Diaconis [1]:

$$
\Delta_{t v}(t)=\max _{A \subset V(G)} \max _{x}\left|\sum_{y \in A} P^{t}(x, y)-\phi(y)\right|
$$

Exercise: Show that $\Delta_{t v}(t)=\frac{1}{2} \max _{x} \sum_{y}\left|P^{t}(x, y)-\phi(y)\right|$.
χ-square convergence This metric utilizes variation in each component of a vector, in a manner similar to the \mathcal{L}^{2}-norm, but normalized in each component:

$$
\Delta^{\prime}(t)=\max _{x} \sqrt{\sum_{y} \frac{\left(P^{t}(x, y)-\phi(y)\right)^{2}}{\phi(y)}}
$$

Relative pointwise distance The simplest of the metrics computationally, relative pointwise distance simply determines the furthest relative distance between two vectors in a single component:

$$
\Delta(t)=\max _{x, y} \frac{\left|P^{t}(x, y)-\phi(y)\right|}{\phi(y)}
$$

In all of these metrics, the convergence rate is proportional to $\frac{1}{\lambda}$, where λ is the largest eigenvalue of M. We shall demonstrate the convergence explicitly in the total-variation and χ-square distance.

$$
\begin{aligned}
\Delta_{t v}(t) & \left.=\frac{1}{2} \max _{x} \sum_{y} \right\rvert\, P^{t}(x, y)-\phi(y) \\
& \leq \frac{1}{2} \max _{x}\left(\sum_{y} \frac{\left|P^{t}(x, y)-\phi(y)\right|^{2}}{\phi(y)}\right)^{\frac{1}{2}} \text { by the Cauchy-Schwarz Inequality } \\
& \leq \frac{1}{2} \Delta^{\prime}(t)
\end{aligned}
$$

We have shown that the total-variation distance is bounded above by half the χ-square distance, so next we shall demonstrate χ-square convergence. Below we use χ_{x} as the "incidator vector" on element x; that is, $\chi_{x}(y)$ is 1 for $x=y$ and zero elsewhere. We shall also let Φ be the matrix with the elements of ϕ along its diagonal, and this yields a new representation of the χ-square difference:

$$
\begin{aligned}
\Delta^{\prime}(t) & =\frac{1}{2} \max _{x}\left\|\chi_{x}\left(P-P_{0}\right)^{t} \Phi^{-\frac{1}{2}}\right\| \\
& =\frac{1}{2} \max _{x}\left\|\chi_{x} S \Gamma^{t} S^{-1} \Phi^{-\frac{1}{2}}\right\| \\
& \leq \frac{1}{2}\|S\| \cdot\left\|S^{-1} \Phi^{-\frac{1}{2}}\right\| \cdot\left\|\Gamma^{t}\right\| \\
& \leq \frac{1}{2}\|S\| \cdot\left\|S^{-1} \Phi^{-\frac{1}{2}}\right\| \cdot n t^{n} \rho_{1}^{t-n} \\
& \leq C t^{n} \rho_{1}^{t-n}
\end{aligned}
$$

and since $\rho_{1}<1$, this is dominated by ρ_{1}^{t-n}, which approaches zero.

References

[1] P. Diaconis, Group Representations in Probability and Statistics, IMS Lecture Series volume 11, Institute of Mathematical Statistics, Hayward, California, 1988.

