
October 24, 2005
D. Jacob Wildstrom

Convergence on Directed Graphs

From Perron-Frobenius to Convergence

1 Introduction

Working with a graphG and a probability transition matrix P , we previously saw that the criterion
for convergence was that G is strongly connected and the the GCD of the cycle lengths in G is 1.
We shall prove that this condition is indeed sufficient to demonstrate convergence. By the Perron-
Frobenius Theorem, this condition is equvalent to the statement that the norms of all eigenvalues
of P except for ρ0 = 1 are less than 1. We shall thus show, from a spectral argument alone, that the
random walk converges.

From an algebraic perspective, what we want to do is characterize P t. Ideally we want to charac-
terize this in terms of eigenvalues alone; however, some matrices are not amenable to such charac-

terization. For instance, P =
[
0 1
0 0

]
is not diagonalizable, so P t would not be describable in terms

of the eignevalues alone. However, this matrix also does not correspond to a strongly connected
digraph: nonetheless, we cannot assume diagonalizability when studying the transition matrices
of strongly connected graphs.

Exercise: Find a strongly connected G such that the associated probability transition matrix P
does not have n distinct eigenvectors; that is to say, that P is undiagonalizable.

In general, we can investigate convergence over a class of similar matrices: M and SMS−1 have
the same long-term convergence profile, since (SMS−1)t = SM tS−1. In addition, characterizing
in terms of eigenvalues is supported by the similarity relation, sinceM and SMS−1 have the same
eigenvalues. It is worth noting, however, that even though P represents transitions on a strongly
connected graph, SPS−1 may not.

2 Jordan matrix decomposition

Were P diagonalizable, we would simply note the similarity of P to a matrix with ρi on the di-
agonal, and since ρti → 0 for all i 6= 0, P t would necessarily converge. This approach works for
undirected graphs: even though P itself would not necessarily be symmetric, it would be similar
to the symmetric matrix D

1
2PD−

1
2 , which is diagonalizable, as are all symmetric matrices.
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However, with a directed graph G, we are not guaranteed that the probability transition matrix
P is diagonalizable, and must thus use a weaker form than diagonal form. This is a purpose for
which Jordan matrix decomposition is ideal:

Theorem 1. Any matrix M can be decomposed into the form SΓS−1, where S is an invertable matrix, and
Γ has the block form:

Γ =


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bk


with sub-blocks of the form

Bi =


λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
. . . . . .

...
0 0 0 · · · λi


where λ1, . . . , λk are the eigenvalues of M .

Let us start by taking P0 = ~1φ, where φ is the row eigenvector of P associated with the eigenvalue
ρ0 = 1 with positive entries which sum to 1, called the Perron vector, and let M = P − P0. This
matrix has the same spectral character as P except that the eigenvalue ρ0 is replaced with 0, so we
may show that M t in fact converges to the zero matrix. We than can demonstrate that (P −P0)t =
P t − P0, so that M ’s convergence to zero implies P ’s convergence to P0.

Exercise: Show that (P − P0)t = P t − P0.

Decomposing M this way, we find that M t = SΓtS−1. Since Γ is block-diagonal,

Γt =


Bt

1 0 · · · 0
0 Bt

2 · · · 0
...

...
. . .

...
0 0 · · · Bt

k

 ,
so determining Γt depends on the behavior of each Bt

i . Let us note that Bi = λiI + F , where F
is the matrix with zero-entries everywhere except in the cells directly above the main diagonal
(i.e., the super-diagonal), which contain 1. Then, we use the binomial expansion of this sum. In
general doing so could be quite ugly since matrices do not commute, but since one of the terms
in the sum is λiI , which does commute, our binomial expansion is the traditional commutative
binomial formula:

Bt
i = (λiI + F )t = λtiI +

(
t

1

)
λt−1
i F +

(
t

2

)
λt−2
i F 2 + · · ·

For F an m×m matrix, Fm = 0, so this sum can be rewritten as

λt−m+1
i

(
λm−1
i I +

(
t

1

)
λm−2
i F +

(
t

2

)
λm−3
i F 2 + · · ·+

(
t

m− 1

)
λ0
iF

m−1

)
Note that the expression in the parentheses is a matrix in which each entry is an (m− 1)th-degree
polynomial in t; since |λi| < 1, the product is dominated by the λt−m+1

i term,which approaches
zero as t→∞. Thus Bt

i → 0, so by the block structure Γt → 0 and thus M t → 0.
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3 Four notions of convergence

However, we care not simply about convergence, but convergence rates, and not simply about
convergence of the matrix P t, but of the probability distribution fP t. There are four different
metrics under which convergence is measured, arranged here from least easily demonstrated to
most demonstrable:

Convergence in the L2 norm This is the familiar Euclidean metric for convergence,

∆L2(t) = max
f
‖fP t − φ‖ = max

f

√∑
x

[(fP t)(x)− φ(x)]2,

which is well-known, but for our purposes too weak, inasmuch as it doesn’t capture the
convergence of the distribution at every vertex.

Total-variation convergence The total-variation norm is a metric favored by Persi Diaconis [1]:

∆tv(t) = max
A⊂V (G)

max
x

∣∣∣∣∣∣
∑
y∈A

P t(x, y)− φ(y)

∣∣∣∣∣∣
Exercise: Show that ∆tv(t) = 1

2 maxx
∑

y |P t(x, y)− φ(y)|.

χ-square convergence This metric utilizes variation in each component of a vector, in a manner
similar to the L2-norm, but normalized in each component:

∆′(t) = max
x

√√√√∑
y

(P t(x, y)− φ(y))2

φ(y)

Relative pointwise distance The simplest of the metrics computationally, relative pointwise dis-
tance simply determines the furthest relative distance between two vectors in a single com-
ponent:

∆(t) = max
x,y

|P t(x, y)− φ(y)|
φ(y)

In all of these metrics, the convergence rate is proportional to 1
λ , where λ is the largest eigenvalue

ofM . We shall demonstrate the convergence explicitly in the total-variation and χ-square distance.

∆tv(t) =
1
2

max
x

∑
y

|P t(x, y)− φ(y)

≤ 1
2

max
x

(∑
y

|P t(x, y)− φ(y)|2

φ(y)

) 1
2

by the Cauchy-Schwarz Inequality

≤ 1
2

∆′(t)
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We have shown that the total-variation distance is bounded above by half the χ-square distance,
so next we shall demonstrate χ-square convergence. Below we use χx as the “incidator vector”
on element x; that is, χx(y) is 1 for x = y and zero elsewhere. We shall also let Φ be the matrix
with the elements of φ along its diagonal, and this yields a new representation of the χ-square
difference:

∆′(t) =
1
2

max
x
‖χx(P − P0)tΦ−

1
2 ‖

=
1
2

max
x
‖χxSΓtS−1Φ−

1
2 ‖

≤ 1
2
‖S‖ · ‖S−1Φ−

1
2 ‖ · ‖Γt‖

≤ 1
2
‖S‖ · ‖S−1Φ−

1
2 ‖ · ntnρt−n1

≤ Ctnρt−n1

and since ρ1 < 1, this is dominated by ρt−n1 , which approaches zero.
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