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Cheeger Constant

Introduction

1 Introduction

In many areas of mathematics the questions of “best” comes into play. What is the best bound for
a given constant? What is the best way of row reducing a certain matrix? In this section, we will
describe a way to make the “best possible cut” of a graph G = (V,E), where a cut may be either
an edge-cut or a vertex-cut, and this cut will split G into two disconnected pieces.

2 Cheeger Constant

We would like a way to measure the quality of a cut that is made to G. That is, would it be better
to cut 4 edges which cause us to lose 20 vertices, or is it better to cut 10 edges which would result
in the removal of 120 vetices?

2.1 The Cheeger Ratio and The Cheeger Constant

Suppose we are given a graph G = (V,E) and a subset S ⊆ V . We wish to define the folling two
sets:

∂S = {{u, v}|u ∈ S, v 6∈ S} (1)

and

δS = {v 6∈ S|v ∼ u, u ∈ S}. (2)

Definition 1 For any vertex set W , the volume of W is given by

vol(W ) =
∑
x W

dx, (3)
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where dx is the degree of x in W .

Definition 2 The Cheerger Ratio for a vertex set S is

h(S) =
|∂S|

min{vol(S), vol(S)}
, (4)

where S = V − S.

It is first worth noting that in terms of this defintion of the Cheeger ratio, we are gauging the
quality of our cut by taking a measure of what’s been cut off of G. There are other forms of the
Cheeger ratio as well. For example, we can use |δS| instead of |∂S|, |S|(orS) instead of vol(S) (or
vol(S)), or |S||S| instead of min{vol(S), vol(S)}.

Definition 3 For any graph G = (V,E), the Cheeger Constant of G is given by

hG =min
S h(S). (5)

Now, if we consider the case where vol(S) ≤ 1
2vol(G), then we can see that

|∂S| ≥ hG(vol(S)).

3 The Cheeger Inequality

Given a graph G, we can define λ1 to be the first nontrivial eignevalue of the Laplacian, L, of G.

Theorem 1. For any graph G,

2hG ≥ λ1 ≥
h2
G

2
(6)

Proof of Theorem 1. Suppose hG is acheived by h(A) such that vol(A) ≤ vol(A). Now

h(A) =
∂A

min{vol(A), vol(A)}
.

From before, we know that

λ1 = inf∑
x f(x)dx=0

∑
x∼y(f(x)− f(y))2∑

x f
2(x)dx

,

χ(A) =
{

1 if A is true,
0 if A is false,
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so define

g(x) =

{
1

vol(A) if x ∈ A,
−1

vol(A)
if x 6∈ A.

Then,

λ1 ≤ R(g)

=
|∂A|( 1

vol(A)
+ 1
vol(A)

)2

1
vol(A)

+ 1
vol(A)

= |∂A|( 1
vol(A) + 1

vol(A)
)

= |∂A| vol(G)

vol(A)vol(A)

≤ 2|∂A|
min{vol(A),vol(A)} = 2hG.
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We will now prove the lower bound from the inequality stated in the previous Theorem, namely

that λ1 ≥
h2
G
2 .

Proof. First we define,

V+ = {v : f(v) ≥ 0}

g(x) =
{
f(x) x ∈ V+

0 otherwise

}
.

We also know that by the definition of eigenvaules we have ∀v,

λf(v)dv =
∑
u

u ∼ v

f(v)− f(u)

Multiplying both sides of the above equation by f(v) yields

λf2(v)dv = f(v)
∑
u

u ∼ v

f(v)− f(u)
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Now divide both sides by f2(v)dv and sum over all v ∈ V+. Then,

λ =

∑
v∈V+

f(v)
∑

u∼v(f(v)− f(u))∑
v∈V+

f2(v)dv
≥
∑

v∈V g(v)
∑

u∼v(g(v)− g(u))∑
v∈V g

2(v)dv

We will now multiply the top and bottom by
∑

u∼(g(u) + g(v))2 to get∑
u∼v(g(u)− g(v))2

∑
u∼v(g(u) + g(v))2∑

v∈V g
2(v)dv

∑
u∼v(g(u) + g(v))2

(7)

>
(
∑

u∼v g
2(u)− g2(v))2∑

v∈V g
2(v)dv2

∑
u∼v(g2(u) + g2(v))2

≥
(
∑

i(g
2(xi)− g2(xi+1))|Ci|)2

2(
∑

v∈V g
2(v)dv)2

≥
(
∑

i(g
2(xi)− g2(xi+1))α

∑
j≤i dj)

2

2(
∑

v∈V g
2(v)dv)2

≥ α2

2
(

∑
i(g

2(xi)− g2(xi+1))
∑

j≤i dj)∑
v∈V g

2(v)dv
)2

=
α2

2
≥
h2
G

2

Recall that α = min |Ci|
min (

∑
j≤i dj ,

∑
j>i dj)

and so |Ci| ≥ α
∑

j≤i dj .

It turns out that you can get a better lower bound by applying a better estimate at a step (7). If you
call the expression before you multiply the top and bottom by

∑
u∼v(g(u) + g(v))2, W , all the 2’s

in the above equations become (2−W )’s and arrive at the following.

W ≥ α2

2−W
2W −W 2 ≥ α2

0 ≥ W 2 − 2W + α2

= (W − 2 +
√

4− 4α2

2
)(W − 2−

√
4− 4α2

2
)

= (W − (1 +
√

1− α2))(W − (1−
√

1− α2))
(8)
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So we arrive at the following bound W ≥ 1−
√

1− α2. Notice that the bound from the theorem is
just the first term in the taylor expansion of 1−

√
1− α2.
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