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1 A look ahead to weighted edges

To this point we have looked at random walks where at each vertex we have equal probability
of moving to one of its neighbors. However, we might have a preferred neighbor, that is one
that we are more likely to want to visit. We can model this by introducing weights on the
edges. (Think of the weights as indicating how likely we are to use the edge in a walk.)

To model this we would let wuv denote the weight of the edge going from u to v. Then
the transition probability matrix will be defined entrywise by

P (u, v) =
wuv∑
s wus

.

We also have the stationary distribution defined by

π(u) =
∑

s wus

volG
.

(Note that underlying this is the idea that
∑

s wus denotes the degree of u.) Assigning
different weights on the edges will lead to different weighted matrices.

If we have a directed graph and we want to have a reversible Markov chain, then we
need π(u)P (u, v) = π(v)P (v, u), which inserting the definitions simplifies to wuv = wvu.
This shows that in order to have a reversible Markov chain not only must we have the flow
be able to go in both directions but the weights of the edges in both directions must be the
same.

At this point in the course we could start focusing on the weighted case but for now we
will continue working with 0-1 matrices. There are two reasons. The first is that if we can
deal with 0-1 matrices then we can deal with the more general case, indeed many of our
proofs will instantly generalize. The second reason is that when we use 0-1 we will be able
to emphasize the discrete structure, i.e., we will not blur the picture of what is going on by
putting weights on the edges.

2 A short review

We are working with an undirected graph G and associated with this graph is the transition
probability matrix P . In previous lectures we have seen that if π(x) = dx/ volG then
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πP = π, showing that π is the stationary distribution. We also saw that if we started
with a probability distribution function f (i.e., a function where 0 ≤ f(v) ≤ 1 for all
v and

∑
v f(v) = 1) then for well-behaved graphs, fP t → π. More precisely if we let

1 = ρ0 ≥ ρ1 ≥ · · · ≥ ρn−1 denote the eigenvalues of P then we saw that

‖fP t − π‖2 ≤ max
i6=0

|ρi|t
max

√
dx

min
√

dy

.

So the question of convergence (and how quickly it converges) boils down to examining
the quantity

ρ = max
i6=0

|ρi| = max{|ρ1|, |ρn−1|}.

We will (eventually) examine what the quantities ρ1 and ρn−1 can tell us, in particular we
will answer the question of when they will be 1.

3 Introduction to the Laplacian

The quantity ρ is determined by the eigenvalues of P = D−1A, in a previous lecture we saw
that

P = D−1/2
(
D−1/2AD−1/2︸ ︷︷ ︸

=M

)
D1/2,

so that the eigenvalues of P are the same as the eigenvalues of M , a symmetric matrix. We
can use properties of symmetric matrices to help us find and evaluate the eigenvalues.

Our main tool will be the Laplacian which is defined by

L = I −M = I −D−1/2AD−1/2 = D−1/2(D −A)D−1/2.

Note that L = D −A is referred to as the combinatorial Laplacian while the Laplacian we
have introduced here is referred to as the normalized Laplacian. Unless we specify, when we
talk about the Laplacian we will be referring to the normalized Laplacian. It is important
to note that the combinatorial Laplacian does have some useful properties which we will
call on from time to time.

From the definition of the Laplacian we can compute it entrywise.

L(u, v) =


1 if u = v;

−1√
dudv

if u∼v;

0 otherwise.

Since the Laplacian is symmetric all the eigenvalues are real, further it is easy to show that
the Laplacian is positive semi-definite (i.e., all the eigenvalues are non-negative). We let
0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 denote the eigenvalues of the Laplacian.

The Laplacian is named after Pierre-Simon Laplace, the famous French mathematician
who studied what has come to be known as the Laplace-Beltrami operator. The Laplacian
that we are working with is the discrete analogue of the Laplace-Beltrami operator.
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4 Facts about the Laplacian

We will now consider the ratio gLg∗/gg∗ (here g∗ denote the conjugate transpose of g).
This ratio shows up (among other places) in the Courant-Fischer theorem for computing
eigenvalues. So the maximum value that can be achieved by a g in this ratio will be λn−1

while the minimum value will be λ0.
Let us manipulate the ratio.

gLg∗

gg∗
=

gD−1/2LD−1/2g∗

gg∗
=

fLf∗

fDf∗
,

where in the last step we made the substitution f = gD−1/2 (or, equivalently, g = fD1/2).

Fact 1. λ0 = 0 with eigenvector φ0 =
1D1/2

√
volG

.

Fact 2. (fL)(x) =
(
f(D −A)

)
(x) = f(x)dx −

∑
y∼x

f(y) =
∑

y
y∼x

(
f(x)− f(y)

)
, and so

fLf∗ =
∑

x

∑
y

y∼x

f(x)
(
f(x)− f(y)

)
=

∑
x∼y

unordered
pairs

(
f(x)− f(y)

)2
.

The last step is done by combining the term x∼y with the term y∼x. The end term is
sometimes referred to as a Dirichlet sum.

Fact 3.
gLg∗

gg∗
=

fLf∗

fDf∗
=

∑
x∼y

(
f(x)− f(y)

)2∑
x

(
f(x)

)2
dx

.

This ratio is sometimes referred to as the Rayleigh quotient. One of the key reasons
that we consider the Laplacian is that it naturally gives us the Rayleigh quotient.

Fact 4 (Courant-Fischer).

λ1 = inf
fP

x f(x)dx=0

∑
x∼y

(
f(x)− f(y)

)2∑
x

(
f(x)

)2
dx

= inf
f

sup
c

∑
x∼y

(
f(x)− f(y)

)2∑
x

(
f(x)− c

)2
dx

(1)

= 2 volG inf
f

∑
x∼y

(
f(x)− f(y)

)2∑
x,y

(
f(x)− f(y)

)2
dxdy

(2)

Exercise 1. Establish the equality of (1).

Exercise 2. Establish the equality of (2).
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5 Examples of spectras

As a general rule, the more symmetric the graph is the cleaner the spectra. So all of our
examples we will present below are graphs with high symmetry.

Example 1. For the complete graph Kn the eigenvalues of the Laplacian are 0 (with
multiplicity 1) and n/(n−1) (with multiplicity of n−1). To see this note that

L =


1 −1

n−1 · · · −1
n−1

−1
n−1

. . . . . .
...

...
. . . . . . −1

n−1
−1
n−1 · · · −1

n−1 1

 .

Now let ϑ = e2πik/n for some k = 0, 1, . . . , n−1 be an nth root of unity. Then
1 −1

n−1 · · · −1
n−1

−1
n−1

. . . . . .
...

...
. . . . . . −1

n−1
−1
n−1 · · · −1

n−1 1




1
ϑ
...

ϑn−1

 =
(
1− 1

n− 1
(ϑ + · · ·+ ϑn−1)

)


1
ϑ
...

ϑn−1

 .

When k = 0 the expression
(
1− 1

n−1(ϑ + · · ·+ ϑn−1)
)

simplifies to 0, otherwise (using the
property that the sum of all nth roots is 0) we get n/(n−1).

Exercise 3. Show that the eigenvalues of the Laplacian for the complete bipartite graph
Km,n are 0 (with multiplicity 1), 1 (with multiplicity m+n−2), and 2 (with multiplicity 1).

Example 2. For the cycle on n vertices (denoted Cn) the eigenvalues of the Laplacian are
1− cos(2πk/n) for k = 0, 1, . . . , n−1. To see this note that

L =


1 −1

2 O −1
2

−1
2

. . . . . . O

O
. . . . . . −1

2
−1

2 O −1
2 1

 .

Again let ϑ = e2πik/n for some k = 0, 1, . . . , n−1 be an nth root of unity. Then
1 −1

2 O −1
2

−1
2

. . . . . . O

O
. . . . . . −1

2
−1

2 O −1
2 1




1
ϑ
...

ϑn−1

 =
(
1− ϑ + ϑ−1

2
)


1
ϑ
...

ϑn−1

 .

Since 1− (ϑ + ϑ−1)/2 = 1− cos(2πk/n) the result follows.
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Note that the spectrum of the cycle is important and shows up, for example, in the
Fast Fourier Transform. A key reason that the cycle shows up frequently in applications is
that locally it looks like a line (even more than the path because the path has the two end
vertices) and so can be used as a discrete model for R.

Exercise 4. Show that the eigenvalues of Pn (the path on n vertices) are 1−cos(πk/(n−1))
for k = 0, 1, . . . , n− 1.

The last graph we will look at is the n-cube Qn. This is the graph where vertices are
indexed by Boolean words of length n and two vertices are adjacent if they differ in exactly
one letter. Such graphs have 2n vertices, n2n−1 edges, and beautiful structure.

Q1 Q2 Q3

Exercise 5. Show that the eigenvalues of the n-cube Qn are 2k/n (with multiplicity
(
n
k

)
)

for k = 0, 1, . . . , n.
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