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1 Introduction

We continue our study of random walks on undirected graphs, with a present focus on the spectrum
of the Laplacian. As usual, for a graph G = (V,E), let A be its adjacency matrix and D be the
diagonal matrix with D(v, v) = dv. Then, the random walk on G will be taken according to the
transition matrix P = D−1A. We also define the stationary distribution π with π(x) = dx/ volG.

Our discussion of random walks on G left off with the result

‖fP t − π‖2 ≤ max
i6=0

|ρi|t
max

x

√
dx

min
y

√
dy

,

where f is a probability distribution (i.e. f ≥ 0 and
∑

x f(x) = 1) and 1 = ρ0 ≥ ρ1 ≥ . . . ≥ ρn−1

are the eigenvalues of P . This inequality implies that convergence to the stationary distribution π
will follow if max{|ρ1|, |ρn−1|} < 1.

2 The Laplacian and the Rayleigh quotient

The transition probability matrix P is similar to the matrix M = D
1
2PD− 1

2 , so P and M have the
same eigenvalues. We previously introduced the Laplacian of the graph as L = I −M , so it has
eigenvalues 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1 (where λi = 1− ρi).

The main tool we’ll use to study the spectrum of L is the Rayleigh quotient R(f) of L, defined
(for our purposes) as

R(f) =
fLf∗

fDf∗

where L = D−A is the combinatorial Laplacian. This is the same as the usual sense of the Rayleigh
quotient gLg∗/gg∗ with the subtitution f = gD− 1

2 . Following this equivalence, if the φi are the
eigenvectors of L, we’ll call the ψi = φiD

− 1
2 the harmonic eigenvectors of L.

Employing the Rayleigh quotient, we see that the eigenvalue λ1 can be written as

λ1 = inf
f :P

x f(x)dx=0

R(f). (1)

Since the eigenvector associated with λ0 is φ0 = 1D
1
2 , the condition

∑
x f(x)dx = 0 is an orthogo-

nality condition. Such variational characterizations can also be made for the other eigenvalues:

λn−1 = sup
f
R(f)
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and, in general,
λi = sup

h0,h1,...,hi−1

inf
f :P

x f(x)hj(x)dx=0
∀j∈{0,...,i−1}

R(f).

The following characterization of the Rayleigh quotient (demonstrated last time) will be useful
later:

R(f) =

∑
x∼y(f(x)− f(y))2∑

x f
2(x)dx

. (2)

To this point, we have done a lot of linear algebra. We are not here to teach linear algebra; we are
here to take linear algebra one step further to understand what is happening in the graph.

3 Properties of the spectrum of L
The graph spectrum reveals many properties of a graph, similarly as the stellar spectrum holds
information about a star’s makeup. Since direct measurement in both cases often proves difficult
or impossible, this shows the importance of spectral analysis. In our study of random walks on
graphs, we’ll be mostly interested in ρ1 and ρn−1 (and thus λ1 and λn−1), since that they determine
the convergence properties of random walks.

Fact 1. For graphs with no self-loops (A(v, v) = 0) and each dv 6= 0, we have
∑n−1

i=0 λi = n.

Proof. Follows from the fact that
∑n−1

i=0 λi = traceL and that L has ones on its diagonal.

Fact 2. For n ≥ 2, we have λ1 ≤ n
n−1 , with equality if and only if G = Kn, the complete graph on

n vertices.

Proof. Since λ0 = 0, the inequality follows immediately from Fact 1. We saw before that the
spectrum of Kn is (0, n

n−1 , . . . ,
n

n−1). To prove that only Kn has λ1 = n
n−1 , we’ll defer to the

stronger Fact 3.

Fact 3. If G 6= Kn, then λ1 ≤ 1.

Proof. Suppose a 6∼ b in G. It suffices to construct an f satisfying
∑

x f(x)dx = 0 (the orthogonality
condition) and R(f) = 1. Since such an f satisfies R(f) ≥ λ1 by (1), the claim will follow. The
following construction will do:

f(x) =


da if x = b
−db if x = a
0 otherwise.

The orthogonality condition is clearly satisfied. Using (2),

R(f) =
d2

bda + d2
adb

d2
bda + d2

adb
= 1,

so we’re done.

This shows that the spectrum can dectect whether a graph is complete, even if it is missing
only one edge.

Fact 4. The graph G is connected ⇔ λ1 > 0.
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This is a connection between a topological invariant (connectivity) and an analytic invariant
(λ1). These types of connections give strength to spectral methods.

Proof. Let f be a harmonic eigenvector associated with the eigenvalue 0 = λ0. Looking at (2), we
see that f(x) = f(y) for x ∼ y. Thus, if G is connected, f(x) = c for some constant c, i.e. f = c1,
which is unique up to scaling. So the zero eigenvalue has multiplicity one, giving λ1 > 0.

Now, suppose G is not connected. Then G is the disjoint union of two graphs G1 and G2. Since
the spectrum of G is the union of the spectra of G1 and G2, the eigenvalue 0 appears twice in G’s
spectrum. So λ1 = 0.

Fact 5. The graph G has i+ 1 components ⇔ λi = 0 and λi+1 6= 0.

Proof. Follows from Fact 4.

Fact 6. For all i, 0 ≤ λi ≤ 2.

Proof. From (2),

R(f) =

∑
x∼y(f(x)− f(y))2∑

x f
2(x)dx

≤
∑

x∼y 2(f2(x) + f2(y))∑
x f

2(x)dx

=
2

∑
x f

2(x)dx∑
x f

2(x)dx

= 2.

Fact 7. The graph G is bipartite ⇔ λn−1 = 2.

Proof. Let f be the harmonic eigenvector associated with the eigenvalue 2. Then equality holds
throughout in the proof of Fact 6. Because all of the terms under summation are nonnegative, we
have f(x) = −f(y) for x ∼ y. So G is two-colorable and thus bipartite.

To prove the other implication, we start with G bipartite with edges only between the disjoint
vertex sets V1 and V2. We construct f with f(x) = 1 if x ∈ V1 and f(x) = −1 if x ∈ V2. It is easy
to check that this satisifes the orthogonality condition, and

R(f) =

∑
x∼y 22∑
x dx

=
4|E|
2|E|

= 2.

Fact 6 was really a consequence of the normalization in R(f), which comes from using L as
opposed to using L directly. In general, the spectrum of the combinatorial Laplacian is heavily
influenced by the graph’s degree distribution; the degree of one vertex is a “local” property. For
non-regular graphs, a few vertices of high degree hamper the spectrum’s usefulness as an indicator
of “global” properties. The situation is fine for regular graphs, as their degree distributions are
constant; and in this case, normalization only scales. The combinatorial Laplacian does have its
uses; for example, it can be used to count the number of spanning trees in a graph. A second reason
for normalizing is to allow us to compare the spectra of two graphs more naturally.
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4 Random walks and Markov chains

Returning to our discussion about random walks on graphs, we see that Facts 4 and 7 reveal the
conditions under which λ1 > 0 and λn−1 < 2. In light of this, our previous discussion can now be
concluded with the following theorem.

Theorem 1. If G is connected (so |1 − λ1| < 1) and not bipartite (so |1 − λn−1| < 1), then the
random walk converges to its unique stationary distribution.

Now, we draw a connection between random walks on graphs and Markov chains. A Markov
chain is defined by its state transition matrix P . The matrix P has

∑
v P (u, v) = 1, where P (u, v)

is the probability of going from state u to state v. We can think of the states of a Markov chain as
vertices in a graph. For a reversible Markov chain, there is a (stationary) probability distribution
π that satisfies

π(u)P (u, v) = π(v)P (v, u).

Thus, transitions between two states are taken in each direction with equal probability. This is
exactly the case for random walks on graphs with edge weights wu,v ∝ π(u)P (u, v).

The property of Markov chains that governs the limiting behavior of fP t is ergodicity. We say
a Markov chain is ergodic if there is a unique stationary distribution π to which fP t converges.
Another notion of ergodic (as defined in some places) is that a system is ergodic if it mixes well.
The necessary and sufficient conditions for ergodicity are that the Markov chain be

1. irreducible: can always move from one state to any other state in finite time, and

2. aperiodic: the chain doesn’t “oscillate”; that is, the greatest common divisor of all closed
circuits is 1.

The definitions given for these conditions are left intentionally vague, but the corresponding con-
ditions for random walks on graphs are very concrete: the graph must be

1. connected, and

2. non-bipartite.

A word of caution: the discussion thus far has only been true for undirected graphs. The situation
will be quite different when we encounter directed graphs!

Exercise 1. Determine the spectrum of the complete tripartite graph Kl,m,n. One will find that
it satisfies the conditions for the random walk to converge.

It is good to look at the spectra of different graphs to build up a dictionary of spectras to be
able to refer to.
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