Nov 14, 2005
Reid Andersen

Problems on the Hypercube

There are many interesting problems on the hypercube. We will briefly discuss some of them here.

1 A Turán problem on the hypercube

Conjecture 1. If G is a subgraph of Q_{n} (not necessarily induced), and G does not contain C_{4} as a subgraph, then

$$
e(G)=\left(\frac{1}{2}+o(1)\right) e\left(Q_{n}\right),
$$

where $e(G)$ is the number of edges in G.

This is known as a Turán-type problem. Using the language of such problems, we are interested in

$$
t\left(C_{4}, Q_{n}\right)=\max _{G}\left\{e(G): C_{4} \nsubseteq G \subseteq Q_{n}\right\} .
$$

In the reverse direction, it is not hard to see that it is possible for $e(g) \geq \frac{1}{2} e\left(Q_{n}\right)$. This follows from noting that each copy of C_{4} in Q_{n} contains four vertices, two of which must have the same Hamming weight w, while the other two must have Hamming weights $w+1$ and $w-1$. If we take only those edges $u v$ where $w(u)<w(v), w(u)$ is odd, and $w(v)$ is even, then we have taken at least half the edges in the graph, and the resulting subgraph does not contain a C_{4}.

One can do better by taking every other level, as before, and adding a matching within the levels not taken.

2 Induced subgraphs of the hypercube

Let $S \subseteq V\left(Q_{n}\right)$ be a subset of vertices of the hypercube, and let $G=Q_{n}[S]$ be the induced subgraph on those vertices. Let $\Delta(G)$ be the maximum degree in G.

Theorem 1. If $\Delta(n)$ is the minimum of $\Delta(G)$ for any graph $G=Q_{n}(S)$ with $|S|>2^{n-1}$. Then,

$$
\sqrt{n}+1 \geq \Delta(n) \geq \frac{1}{2} \log n-\frac{1}{2} \log \log n+\frac{1}{2} .
$$

Here we will focus on the lower bound for $\Delta(n)$. The following Lemma, which we will use in proving the theorem, was reproved in [1].

Lemma 1. If $G \subseteq Q_{n}$, and G has average degree \bar{d}, then $|V(G)| \geq 2^{\bar{d}}$.
Theorem 2. If $G=Q_{n}[S]$ with $|S|=2^{n-1}$, and if G contains edges from all the n directions, then

$$
\Delta(G) \geq \frac{1}{2} \log n-\frac{1}{2} \log \log n+\frac{1}{2} .
$$

We remark that Theorem 2 implies Theorem 1, and now proceed to prove Theorem 2.

Proof. For a vertex x in Q_{n}, let $x^{(i)}$ be the vertex that differs from x in the i th digit. Also, let

$$
X_{i}=\left\{x \in S: x^{(i)} \in S\right\},
$$

and

$$
Y_{i}=\left\{x \notin S: x^{(i)} \notin S\right\} .
$$

Notice that $\left|X_{i}\right|=\left|Y_{i}\right|$. (This follows by our choice of $|S|=Z^{n-1}$.)
Define $A_{i}=V\left(Q_{n}\right)-X_{i}-Y_{i}$.
Claim: For a vertex x with $x^{(i)} \in X_{i}, x$ has at most $2 \Delta(G)-2$ neighbors in A_{i}.
Proof of Claim: Let x have s neighbors in A_{i}, which we denote $x^{\left(j_{1}\right)}, \ldots, x^{\left(j_{s}\right)}$. For each k, either $x^{\left(j_{k}\right)}$ or $\left(x^{\left(j_{k}\right)}\right)^{(i)}$ belongs to S. Thus, $s \leq 2(\Delta(G)-1)$.

This implies that every x in X_{i} has at least $(n-2 \Delta(G)+1)$ neighbors in Y_{i}. Thus,

$$
e\left(G\left(X_{i} \cup Y_{j}\right)\right) \geq \frac{1}{2}\left|X_{i}\right|+\frac{1}{2}\left|Y_{i}\right|+(n-2 \Delta(G)+1)\left|X_{i}\right|,
$$

which implies

$$
\bar{d}\left(G\left(X_{i} \cup Y_{i}\right)\right) \geq n-2 \Delta(G)+2 .
$$

Applying Lemma 1, we obtain

$$
\left|X_{i}\right| \geq 2^{n-2 \Delta(G)+1} .
$$

Counting the degrees in $V(G)$ yields

$$
\Delta(G) 2^{n-1} \geq \sum_{x \in V(G)} \operatorname{deg}_{G}(x) \geq \sum_{i \in[1, n]}\left|X_{i}\right|=n 2^{n-2 \Delta(G)+1} .
$$

Since $\Delta(G) 2^{n-1} \geq n 2^{n-2 \Delta(G)+1}$, we have $\Delta(G) 2^{2 \Delta(G)} \geq 4 n$, and an easy calculation shows that

$$
\Delta(G) \geq \frac{1}{2} \log n-\frac{1}{2} \log \log n+\frac{1}{2} .
$$

References

[1] F.R.K. Chung, Z. Füredi, R.L. Graham, and P. Seymour, "On induced subgraphs of the cube", Journal of Combinatorial Theory, Series A. 49 (1988). 180-187

