Math 261A Fall 2005
 Notes for Wednesday, November 23rd

 Pamela Russell

 Pamela Russell}

Today we discussed convergence of lazy walks on strongly connected directed graphs. Recall that if G is such a graph on n vertices, then we denote by $0=\lambda_{0} \leq \lambda_{1} \leq \ldots \leq \lambda_{n-1}$ the eigenvalues of the Laplacian of G.

We began by recalling a theorem from Chung, "Laplacians and the Cheeger inequality for directed graphs."
Theorem 1 If G is a directed graph with eigenvalues $\lambda_{0} \leq \lambda_{1} \leq \ldots \leq \lambda_{n-1}$, then λ_{1} satisfies

$$
2 h_{G} \geq \lambda_{1} \geq \frac{h_{G}^{2}}{2}
$$

where h_{G} denotes the Cheeger constant of G.
Example 2 If G is the n-cycle, then $\lambda_{1}=1-\cos \frac{2 \pi}{n} \sim \frac{2 \pi^{2}}{n^{2}}$. Indeed, in this case we have $h_{G}=\frac{2}{n}$ and the theorem is verified.

Example 3 The transition probability matrix for the lazy walk on a random graph on n vertices is

$$
\mathcal{P}=\frac{I+P}{2}
$$

where P is the transition probability matrix for the random walk. The Laplacian of \mathcal{P} is

$$
I-\frac{\Phi^{\frac{1}{2}} P \Phi^{\frac{-1}{2}} P^{*} \Phi^{\frac{1}{2}}}{2}
$$

where Φ is as in the definition of the Laplacian of a directed graph.
We need the following theorem to prove our main result on convergence of random walks.
Theorem 4 Let G be a strongly connected directed graph on n vertices with eigenvalues $\lambda_{0} \leq \lambda_{1} \leq \ldots \leq \lambda_{n-1}$. Let P denote the transition probability matrix of G and let $\mathcal{P}=\frac{I+P}{2}$ be a lazy random walk. Then the matrix $M=\Phi^{\frac{1}{2}} \mathcal{P} \Phi^{\frac{-1}{2}}$ satisfies

$$
\frac{\|f M\|^{2}}{\|f\|^{2}} \leq 1-\frac{\lambda_{1}}{2}
$$

for all vectors f satisfying $f \Phi^{\frac{1}{2}} \mathbf{1}=0$, i.e., for all vectors f which are orthogonal to the eigenvector associated with $\lambda_{0}=0$.

Proof We have

$$
\begin{aligned}
& \frac{\|f M\|^{2}}{\|f\|^{2}}=\frac{f M M^{*} f^{*}}{f f^{*}} \\
& =\frac{f \Phi^{\frac{1}{2}} \mathcal{P} \Phi^{-1} \mathcal{P}^{*} \Phi^{\frac{1}{2}} f^{*}}{f f^{*}}
\end{aligned}
$$

Replacing f by $g \Phi^{\frac{1}{2}}$ and \mathcal{P} by $\frac{I+P}{2}$ gives

$$
\begin{gathered}
=\frac{g \Phi(I+P) \Phi^{-1}\left(I+P^{*}\right) \Phi g^{*}}{4 g \Phi g^{*}} \\
=\frac{g\left(\Phi+\Phi P+P^{*} \Phi+\Phi P \Phi^{-1} P^{*} \Phi\right) g^{*}}{4 g \Phi g^{*}} \\
=\frac{g\left(-2 \Phi+\Phi P+P^{*} \Phi\right) g^{*}+g\left(3 \Phi+\Phi P \Phi^{-1} P^{*} \Phi g^{*}\right)}{4 g \Phi g^{*}}
\end{gathered}
$$

$$
\begin{aligned}
\leq & -\frac{R(g)}{2}+1 \\
& \leq 1-\frac{\lambda_{1}}{2}
\end{aligned}
$$

by the definition of the Laplacian, where $R(g)$ denotes the Rayleigh quotient.
We can now prove the following theorem.
Theorem 5 Let G be a strongly connected directed graph on n vertices with eigenvalues $\lambda_{0} \leq \lambda_{1} \leq \ldots \leq \lambda_{n-1}$. Then G has a lazy walk with rate of convergence of order $2 \lambda_{1}^{-1}\left(-\log \min _{x} \phi(x)\right)$. In other words, after at most $t \geq 2 \lambda_{1}^{-1}\left(\left(-\log \min _{x} \phi(x)\right)+2 c\right)$ steps, we have

$$
\Delta^{\prime}(t) \leq e^{-c}
$$

Proof Recall that the chi-squared distance $\Delta^{\prime}(t)$ is given by

$$
\Delta^{\prime}(t)=\max _{y} \sqrt{\sum_{x} \frac{\left|\mathcal{P}^{t}(y, x)-\phi(x)\right|^{2}}{\phi(x)}}
$$

We write

$$
\begin{gathered}
\Delta^{\prime}(t)=\max _{x}\left\|\left(\chi_{y}-\phi\right) \mathcal{P}^{t} \Phi^{\frac{1}{2}}\right\| \\
=\max _{y}\left\|\left(\chi_{y}-\phi\right) \Phi^{\frac{-1}{2}}\left(\Phi^{\frac{1}{2} \mathcal{P}^{t} \Phi^{\frac{-1}{2}}}\right)\right\| \\
=\max _{y}\left\|g \Phi^{\frac{1}{2}} \mathcal{P}^{t} \Phi^{\frac{-1}{2}}\right\| \\
=\max _{y}\left\|g M^{t}\right\|
\end{gathered}
$$

where $g=\left(\chi_{y}-\phi\right) \Phi^{\frac{-1}{2}}$ is orthogonal to $\phi^{\frac{1}{2}}$ and $M=\Phi^{\frac{1}{2}} \mathcal{P} \Phi^{\frac{-1}{2}}$. Now Theorem 4 gives

$$
\begin{aligned}
& \Delta^{\prime}(t)^{2}=\max _{y}\left\|\left(\chi_{y}-\phi\right) \Phi^{\frac{-1}{2}} M^{t}\right\|^{2} \\
& \leq\left(1-\frac{\lambda_{1}}{2}\right)^{t} \max _{y}\left\|\left(\chi_{y}-\phi\right) \Phi^{\frac{-1}{2}}\right\|^{2} \\
& \leq\left(1-\frac{\lambda_{1}}{2}\right)^{t} \max _{y} \phi(y)^{-1}
\end{aligned}
$$

So if $t \geq 2 \lambda_{1}^{-1}\left(\left(-\log \left(\min _{x} \phi(x)\right)\right)+2 c\right)$ then we have

$$
\begin{aligned}
& \Delta^{\prime}(t) \leq \frac{\left(1-\frac{\lambda_{1}}{2}\right)^{t / 2}}{\sqrt{\min _{x} \phi(x)}} \\
& \leq e^{t \lambda_{1} / 4-\frac{1}{2} \log \left(\min _{x} \phi(x)\right)} \\
& \leq e^{-c}
\end{aligned}
$$

Remark. For undirected graphs, there is a lot of work involved in making the $-\log \left(\min _{x} \phi(x)\right)$ term small (the term is roughly $\log n)$. With the \log Sobolev method, we can get $\log \log n$. Not much work has been done in the directed case; even for regular graphs, this term could be exponential.

