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Today we discussed convergence of lazy walks on strongly connected directed graphs. Recall that if G is such
a graph on n vertices, then we denote by 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1 the eigenvalues of the Laplacian of G.

We began by recalling a theorem from Chung, “Laplacians and the Cheeger inequality for directed graphs.”

Theorem 1 If G is a directed graph with eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λn−1, then λ1 satisfies

2hG ≥ λ1 ≥
h2

G

2

where hG denotes the Cheeger constant of G.

Example 2 If G is the n-cycle, then λ1 = 1− cos 2π
n ∼ 2π2

n2 . Indeed, in this case we have hG = 2
n and the theorem

is verified.

Example 3 The transition probability matrix for the lazy walk on a random graph on n vertices is

P =
I + P

2

where P is the transition probability matrix for the random walk. The Laplacian of P is

I −
Φ

1

2 PΦ
−1

2 P ∗Φ
1

2

2

where Φ is as in the definition of the Laplacian of a directed graph.

We need the following theorem to prove our main result on convergence of random walks.

Theorem 4 Let G be a strongly connected directed graph on n vertices with eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λn−1.

Let P denote the transition probability matrix of G and let P = I+P
2 be a lazy random walk. Then the matrix

M = Φ
1

2PΦ
−1

2 satisfies
||fM ||2

||f ||2
≤ 1 −

λ1

2

for all vectors f satisfying fΦ
1

2 1 = 0, i.e., for all vectors f which are orthogonal to the eigenvector associated with

λ0 = 0.

Proof We have
||fM ||2

||f ||2
=

fMM∗f∗

ff∗

=
fΦ

1

2PΦ−1P∗Φ
1

2 f∗

ff∗

Replacing f by gΦ
1

2 and P by I+P
2 gives

=
gΦ(I + P )Φ−1(I + P ∗)Φg∗

4gΦg∗

=
g(Φ + ΦP + P ∗Φ + ΦPΦ−1P ∗Φ)g∗

4gΦg∗

=
g(−2Φ + ΦP + P ∗Φ)g∗ + g(3Φ + ΦPΦ−1P ∗Φg∗)

4gΦg∗

1



≤ −
R(g)

2
+ 1

≤ 1 −
λ1

2

by the definition of the Laplacian, where R(g) denotes the Rayleigh quotient. �

We can now prove the following theorem.

Theorem 5 Let G be a strongly connected directed graph on n vertices with eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λn−1.

Then G has a lazy walk with rate of convergence of order 2λ−1
1 (−log minxφ(x)). In other words, after at most

t ≥ 2λ−1
1 ((−log minxφ(x)) + 2c) steps, we have

∆′(t) ≤ e−c

Proof Recall that the chi-squared distance ∆′(t) is given by

∆′(t) = maxy

√

∑

x

|Pt(y, x) − φ(x)|2

φ(x)

We write
∆′(t) = maxx||(χy − φ)PtΦ

1

2 ||

= maxy||(χy − φ)Φ
−1

2 (Φ
1

2
P

tΦ
−1

2 )||

= maxy||gΦ
1

2PtΦ
−1

2 ||

= maxy||gM t||

where g = (χy − φ)Φ
−1

2 is orthogonal to φ
1

2 and M = Φ
1

2PΦ
−1

2 . Now Theorem 4 gives

∆′(t)2 = maxy||(χy − φ)Φ
−1

2 M t||2

≤ (1 −
λ1

2
)tmaxy||(χy − φ)Φ

−1

2 ||2

≤ (1 −
λ1

2
)tmaxyφ(y)−1

So if t ≥ 2λ−1
1 ((−log(minxφ(x))) + 2c) then we have

∆′(t) ≤
(1 − λ1

2 )t/2

√

minxφ(x)

≤ etλ1/4− 1

2
log(minxφ(x))

≤ e−c
�

Remark. For undirected graphs, there is a lot of work involved in making the −log(minxφ(x)) term small (the
term is roughly log n). With the log Sobolev method, we can get log log n. Not much work has been done in the
directed case; even for regular graphs, this term could be exponential.
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