Math 261A Fall 2005
Notes for Wednesday, November 23rd

Pamela Russell

Today we discussed convergence of lazy walks on strongly connected directed graphs. Recall that if G is such
a graph on n vertices, then we denote by 0 = A\g < A\ < ... < \,_1 the eigenvalues of the Laplacian of G.
We began by recalling a theorem from Chung, “Laplacians and the Cheeger inequality for directed graphs.”

Theorem 1 If G is a directed graph with eigenvalues A\g < A1 < ... < A\p_1, then A\ satisfies
h2
2hg > A1 2> TG

where hg denotes the Cheeger constant of G.

2 . .
%’T ~ QH% Indeed, in this case we have hg = % and the theorem

Example 2 If G is the n-cycle, then Ay = 1 — cos
is verified.

Example 3 The transition probability matrix for the lazy walk on a random graph on n vertices is

I+P
P="0=

where P is the transition probability matriz for the random walk. The Laplacian of P is
>:Pd = Pror
-

1

where ® is as in the definition of the Laplacian of a directed graph.
We need the following theorem to prove our main result on convergence of random walks.

Theorem 4 Let G be a strongly connected directed graph on n wvertices with eigenvalues Ag < A1 < ... < Ap_1.
Let P denote the transition probability matrixz of G and let P = # be a lazy random walk. Then the matrix
M=o:Pd= satisfies
2
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for all vectors [ satisfying f@él =0, i.e., for all vectors [ which are orthogonal to the eigenvector associated with
Ao = 0.

Proof We have )
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Replacing f by g‘b% and P by # gives
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by the definition of the Laplacian, where R(g) denotes the Rayleigh quotient. W

We can now prove the following theorem.

Theorem 5 Let G be a strongly connected directed graph on n vertices with eigenvalues Ag < A1 < ... < Ap_1.
Then G has a lazy walk with rate of convergence of order 2Af1(—log mingd(x)). In other words, after at most
t > 2A7 ((—log ming¢d(x)) + 2¢) steps, we have

Aty <e

Proof Recall that the chi-squared distance A’(t) is given by

) = sy [ P o

We write )
A'(t) = max,||(xy — o)P @2 ||
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where g = (xy, — qS)(b_Tl is orthogonal to ¢2 and M = $3Pd= . Now Theorem 4 gives

A(1)? = maz, ||(x, — $)@7 M|
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So if t > 2X\[ ! ((—~log(ming¢(x))) + 2¢) then we have
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Remark. For undirected graphs, there is a lot of work involved in making the —log(min,¢(z)) term small (the
term is roughly log n). With the log Sobolev method, we can get log log n. Not much work has been done in the
directed case; even for regular graphs, this term could be exponential.



