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Random Walks on Graphs and Directed
Graphs

A Result of Lovász and Simonovits

We now have a Cheeger’s inequality for both directed and undirected graphs,

2hG ≥ λ ≥
α2

G

2
≥

h2
G

2

We can approximate Cheeger’s constant, by algorithmically finding a good cut. Recall that λ is
defined in terms of the Raliegh quotient by

λ =
R(f)

2

and

αG = inf
i

F (∂Si)
F (Si)F (S̄i)

where

F (S) =
∑
v∈S

φ(v)

and by ordering vertices in terms of f , so that f(v1) ≤ f(v2) ≤ · · · ≤ f(vk), we take Si =
{v1, . . . , vi}; the i lowest weighted vertices. For an undirected graph, recall that

φ(v) =
dv∑
u du

.

In the directed case it becomes a numerical excercise to solve for u.

1 Approximating the Volume of a Convex Body

Many counting problems can be reduced to computing a volume. In the non-convex case, there
are examples that make the volume very hard to compute, but in many problems the desired
volume arises from a convex body. Approximating the volume of a covex body can be done
via linear programming, and there are polynomial algorithms to solve linear programs, however
the efficiency of the algorithms is still important. A method that has been used to improve the
efficiency of volume computation is using modified random walks.
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To see this connection, we note that computing the volume of a body, and sampling are not so
different. Consider putting the body in a box; and sampling n points; then the percentage of
points falling inside the body gives an approximation of the volume as n gets large. The question
then becomes, how do we appropriately choose a random point in a graph. One method is to
use a random walk; start at a point and iteratively choose one of its neighbors for some number of
steps. The problen is knowing when to stop. We can find, however, a bound for the convergence of
random walks, so the strategy is to choose a k large enough so that after k steps we are sufficiently
close to the stationary distribution, where ’sufficiently close’ depends on our application, let our
random walk run for k steps and take the resulting position to be our random point.

2 A Theorem of Lovász and Simonovits

We consider the following theorem of Lovász and Simonovits [2], which gives a bound on the
convergence of random walks and holds in both the directed and undirected case.

Theorem 1 (Theorem (Lovász-Simonovits)). Let G be a strongly connected directed graph, and P =
I+P

2 be the transition probability matrix for a lazy walk. Then

|Pt(v, u)− φ(u)| ≤

(
1−

β2
t,v

8

)√
φ(u)
φ(v)

.

The βt,v are defined in the following, algorithmic, fashion. Fix v, and order the vertices according
to Pk(v,u)

φ(u) . Take

Sj,k,v = {j vertices with largest value of
Pk(v, u)

φ(u)
}.

Another way of thinking about the collections Sj,k,v is we start a random walk at v, and select the
j highest weight vertices after going for k steps . Then

βt,v = inf
k′<t

inf
j

F (∂Sj,k,v)
min{F (Sj,k′,v), F (Sj,k′,v)}

.

This theorem has seen use lately in such areas as graph sparsification, and solving linear systems
efficiently [3]. Also encoded in the theorem is a hidden Cheeger inequality.

2.1 A Hidden Cheeger Inequality

Encoded in the result of Lovász and Simonovits is the following [1]:

2hG ≥ λ ≥ 1−max
i6=0

∣∣∣∣1 + ρi

2

∣∣∣∣ ≥ 1− lim
t→∞

(∆(t))1/t ≥
β2

G

8
≥

h2
G

8
.

2



where hG is the Cheeger constant, the ρi are eigenvalue of P , and βG = inft,v βt,v. Note that we
sacrifice a factor of four from our original Cheeger inequality, but in return we get the relative
pointwise distance metric in the middle.

Previously, we’ve used eigenvalues to get a bound on the convergence of random walks. Having
relative pointwise distance in the middle gives us a method going the other direction. By using
random walks, and the cuts gotten from them we get a bound on the eigenvalues of the Laplacian.

2.2 Proving the Theorem of Lovász and Simonovits

We begin with the following lemma

Lemma 1. Let G be strongly connected, with Perron vector φ, with S ⊆ V and f : V → R. Then∑
v∈S

fΦP(v) =
f · g1 + f · g2

2

where Φ = diag(φ(u)) and 0 ≤ gi(v) ≤ φ(v) with∑
v

g1(v) = φ(S)− φ(∂S),∑
v

g2(v) = φ(S) + φ(∂S).

Proof. We note∑
v∈S

fΦP(v) =
∑
v∈S

∑
u

f(u)φ(u)P(u, v)

=
∑
u∈S

f(u)φ(u)
∑
v∈S

P(u, v) +
∑
u 6∈S

f(u)φ(u)
∑
v∈S

P(u, v)

=
∑
u∈S

f(u)φ(u)
1 +

∑
v∈S P (u, v)

2
+
∑
u/∈S

f(u)φ(u)
∑

v∈S P (u, v)
2

=
∑
u∈S

f(u)φ(u)
2−

∑
v/∈S P (u, v)

2
+
∑
u/∈S

f(u)φ(u)
∑

v∈S P (u, v)
2

=
1
2

∑
u∈S

f(u)φ(u)(1−
∑
v/∈S

P (u, v)) +
1
2

∑
u∈S

f(u)φ(u) +
1
2

∑
u/∈S

f(u)φ(u)
∑
v∈S

P (u, v)

=
1
2
(f · g1 + f · g2)

where

g1(u) =
{

φ(u)(1−
∑

v/∈S P (u, v)) u ∈ S
0 else

and

g2(u) =
{

φ(u) u ∈ S
φ(u)

∑
v∈S P (u, v) else
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It remains to show that g1 and g2 have the correct sums, but∑
u

g1(u) =
∑
u∈S

φ(u)(1−
∑
v/∈S

P (u, v)) = φ(S)− φ(∂S)

and ∑
u

g2(u) =
∑
u∈S

φ(u) +
∑
u/∈S

φ(u)P (u, v) = φ(S) + φ(∂S)

as desired.

For f : V → R and for any x we take

f̂(x) = max{f · g : 0 ≤ g(v) ≤ φ(v) for allv,
∑

v

g(v) = x}

Suppose f(v1) ≥ f(v2) ≥ · · · ≥ f(vn), and

k∑
i=1

φ(v1) ≤ x <

k+1∑
i=1

φ(vi)

then it is easy to check that

f̂(x) =
k∑

i=1

f(vi)φ(vi) + f(vk+1)(x−
k∑

i=1

(vi))

Proof of Lovasz-Simonovits. Define

fk(u) =
Pk(v, u)− φ(u)

φ(u)

then

fkΦP(u) = Pk+1(v, u)− φ(u) = fk+1Φ(u)

We prove the following lemma.

Lemma 2. f̂k+1(x) <
f̂k(x(1− βk,v)) + f̂k(x(1 + βk,v))

2

Proof.

∑
u∈S

fk+1ΦP(v) =
fk · g1 + fk · g2

2
≤ f̂k(φ(S)− φ(∂(S))) + f̂k(φ(S) + φ(∂(S)))

2

≤
f̂k(x(1− βk,v))− f̂k(x(1 + βk,v))

2
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We use this to show the following lemma, which implies the result.

Lemma 3.

f̂k ≤
(

1−
βk,v

8

)k min{
√

x,
√

1− x}√
φ(u)

Suppose by induction that we know |P t(v, u) − φ(u)| ≤
(
1− β2

t,v

8

)t√
φ(v)
φ(u) . Then as P k(v, u) −

φ(u) ≤ f̂k(φ(u)), the lemma implies the result.

Proof of lemma. We prove this by induction. For k = 0, we have f̂0(φ(u)) ≤ 1 and f̂0(1) ≤ 1√
u

so
this holds. By our assumption and the previous lemma we have

f̂k+1(x) ≤ (1−
β2

k,v

8
)k (min{

√
x(1− βk,v),

√
1− x(1− βk, v)}+ min{

√
x(1 + βk,v),

√
1− x(1 + βk,v)})

φ(u)

To finish the proof, we make the following observation based off of the taylor series for
√

1 + x =
1 + x

2 −
x2

8 + . . . that
√

1− x +
√

1 + x

2
≤

1− x
2 −

x2

8 + 1 + x
2 −

x2

8

2

=
2 + x2

4

2
= 1 +

x2

8
Taking x = (1− βk,v) in this we get that

min(
√

βk,v,
√

1− βk,v) + min(
√

βk,v,
√

1 + βk,v) ≤
√

1− βk,v +
√

1 + βk,v ≤ 1 +
β2

k,v

8
and hence

f̂k+1(x) ≤ (1−
β2

k,v

8
)k+1 min{

√
x,
√

1− x}√
φ(u)

as desired.

This completes the proof of the theorem.

References

[1] F. Chung, Random walks and cuts in directed graphs, preprint.

[2] L. Lovász, and M. Simonovits, Random walks in a convex body and an improved volume
algorithm, Random Structures and Algorithms 4 (1993), 359-412

[3] D. Spielman and S.-H. Teng, Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems, Proceedings of the 96th Annual ACM Symposium on
Theory of Computing, (2004), 91-90.

5


