Random Walks on Graphs and Directed Graphs

A Result of Lovász and Simonovits

We now have a Cheeger's inequality for both directed and undirected graphs,

$$
2 h_{G} \geq \lambda \geq \frac{\alpha_{G}^{2}}{2} \geq \frac{h_{G}^{2}}{2}
$$

We can approximate Cheeger's constant, by algorithmically finding a good cut. Recall that λ is defined in terms of the Raliegh quotient by

$$
\lambda=\frac{R(f)}{2}
$$

and

$$
\alpha_{G}=\inf _{i} \frac{F\left(\partial S_{i}\right)}{F\left(S_{i}\right) F\left(\bar{S}_{i}\right)}
$$

where

$$
F(S)=\sum_{v \in S} \phi(v)
$$

and by ordering vertices in terms of f, so that $f\left(v_{1}\right) \leq f\left(v_{2}\right) \leq \cdots \leq f\left(v_{k}\right)$, we take $S_{i}=$ $\left\{v_{1}, \ldots, v_{i}\right\}$; the i lowest weighted vertices. For an undirected graph, recall that

$$
\phi(v)=\frac{d_{v}}{\sum_{u} d_{u}} .
$$

In the directed case it becomes a numerical excercise to solve for u.

1 Approximating the Volume of a Convex Body

Many counting problems can be reduced to computing a volume. In the non-convex case, there are examples that make the volume very hard to compute, but in many problems the desired volume arises from a convex body. Approximating the volume of a covex body can be done via linear programming, and there are polynomial algorithms to solve linear programs, however the efficiency of the algorithms is still important. A method that has been used to improve the efficiency of volume computation is using modified random walks.

To see this connection, we note that computing the volume of a body, and sampling are not so different. Consider putting the body in a box; and sampling n points; then the percentage of points falling inside the body gives an approximation of the volume as n gets large. The question then becomes, how do we appropriately choose a random point in a graph. One method is to use a random walk; start at a point and iteratively choose one of its neighbors for some number of steps. The problen is knowing when to stop. We can find, however, a bound for the convergence of random walks, so the strategy is to choose a k large enough so that after k steps we are sufficiently close to the stationary distribution, where 'sufficiently close' depends on our application, let our random walk run for k steps and take the resulting position to be our random point.

2 A Theorem of Lovász and Simonovits

We consider the following theorem of Lovász and Simonovits [2], which gives a bound on the convergence of random walks and holds in both the directed and undirected case.

Theorem 1 (Theorem (Lovász-Simonovits)). Let G be a strongly connected directed graph, and $\mathcal{P}=$ $\frac{I+P}{2}$ be the transition probability matrix for a lazy walk. Then

$$
\left|\mathcal{P}^{t}(v, u)-\phi(u)\right| \leq\left(1-\frac{\beta_{t, v}^{2}}{8}\right) \sqrt{\frac{\phi(u)}{\phi(v)}}
$$

The $\beta_{t, v}$ are defined in the following, algorithmic, fashion. Fix v, and order the vertices according to $\frac{\mathcal{P}^{k}(v, u)}{\phi(u)}$. Take

$$
S_{j, k, v}=\left\{j \text { vertices with largest value of } \frac{\mathcal{P}^{k}(v, u)}{\phi(u)}\right\} .
$$

Another way of thinking about the collections $S_{j, k, v}$ is we start a random walk at v, and select the j highest weight vertices after going for k steps. Then

$$
\beta_{t, v}=\inf _{k^{\prime}<t} \inf _{j} \frac{F\left(\partial S_{j, k, v}\right)}{\min \left\{F\left(S_{j, k^{\prime}, v}\right), F\left(S_{j, k^{\prime}, v}\right)\right\}} .
$$

This theorem has seen use lately in such areas as graph sparsification, and solving linear systems efficiently [3]. Also encoded in the theorem is a hidden Cheeger inequality.

2.1 A Hidden Cheeger Inequality

Encoded in the result of Lovász and Simonovits is the following [1]:

$$
2 h_{G} \geq \lambda \geq 1-\max _{i \neq 0}\left|\frac{1+\rho_{i}}{2}\right| \geq 1-\lim _{t \rightarrow \infty}(\Delta(t))^{1 / t} \geq \frac{\beta_{G}^{2}}{8} \geq \frac{h_{G}^{2}}{8} .
$$

where h_{G} is the Cheeger constant, the ρ_{i} are eigenvalue of P, and $\beta_{G}=\inf _{t, v} \beta_{t, v}$. Note that we sacrifice a factor of four from our original Cheeger inequality, but in return we get the relative pointwise distance metric in the middle.

Previously, we've used eigenvalues to get a bound on the convergence of random walks. Having relative pointwise distance in the middle gives us a method going the other direction. By using random walks, and the cuts gotten from them we get a bound on the eigenvalues of the Laplacian.

2.2 Proving the Theorem of Lovász and Simonovits

We begin with the following lemma
Lemma 1. Let G be strongly connected, with Perron vector ϕ, with $S \subseteq V$ and $f: V \rightarrow \mathbb{R}$. Then

$$
\sum_{v \in S} f \Phi \mathcal{P}(v)=\frac{f \cdot g_{1}+f \cdot g_{2}}{2}
$$

where $\Phi=\operatorname{diag}(\phi(u))$ and $0 \leq g_{i}(v) \leq \phi(v)$ with

$$
\begin{aligned}
\sum_{v} g_{1}(v) & =\phi(S)-\phi(\partial S) \\
\sum_{v} g_{2}(v) & =\phi(S)+\phi(\partial S)
\end{aligned}
$$

Proof. We note

$$
\begin{aligned}
\sum_{v \in S} f \Phi \mathcal{P}(v) & =\sum_{v \in S} \sum_{u} f(u) \phi(u) \mathcal{P}(u, v) \\
& =\sum_{u \in S} f(u) \phi(u) \sum_{v \in S} \mathcal{P}(u, v)+\sum_{u \notin S} f(u) \phi(u) \sum_{v \in S} \mathcal{P}(u, v) \\
& =\sum_{u \in S} f(u) \phi(u) \frac{1+\sum_{v \in S} P(u, v)}{2}+\sum_{u \notin S} f(u) \phi(u) \frac{\sum_{v \in S} P(u, v)}{2} \\
& =\sum_{u \in S} f(u) \phi(u) \frac{2-\sum_{v \notin S} P(u, v)}{2}+\sum_{u \notin S} f(u) \phi(u) \frac{\sum_{v \in S} P(u, v)}{2} \\
& =\frac{1}{2} \sum_{u \in S} f(u) \phi(u)\left(1-\sum_{v \notin S} P(u, v)\right)+\frac{1}{2} \sum_{u \in S} f(u) \phi(u)+\frac{1}{2} \sum_{u \notin S} f(u) \phi(u) \sum_{v \in S} P(u, v) \\
& =\frac{1}{2}\left(f \cdot g_{1}+f \cdot g_{2}\right)
\end{aligned}
$$

where

$$
g_{1}(u)=\left\{\begin{array}{cl}
\phi(u)\left(1-\sum_{v \notin S} P(u, v)\right) & u \in S \\
0 & \text { else }
\end{array}\right.
$$

and

$$
g_{2}(u)=\left\{\begin{array}{cl}
\phi(u) & u \in S \\
\phi(u) \sum_{v \in S} P(u, v) & \text { else }
\end{array}\right.
$$

It remains to show that g_{1} and g_{2} have the correct sums, but

$$
\sum_{u} g_{1}(u)=\sum_{u \in S} \phi(u)\left(1-\sum_{v \notin S} P(u, v)\right)=\phi(S)-\phi(\partial S)
$$

and

$$
\sum_{u} g_{2}(u)=\sum_{u \in S} \phi(u)+\sum_{u \notin S} \phi(u) P(u, v)=\phi(S)+\phi(\partial S)
$$

as desired.

For $f: V \rightarrow \mathbb{R}$ and for any x we take

$$
\hat{f}(x)=\max \left\{f \cdot g: 0 \leq g(v) \leq \phi(v) \text { for all } v, \sum_{v} g(v)=x\right\}
$$

Suppose $f\left(v_{1}\right) \geq f\left(v_{2}\right) \geq \cdots \geq f\left(v_{n}\right)$, and

$$
\sum_{i=1}^{k} \phi\left(v_{1}\right) \leq x<\sum_{i=1}^{k+1} \phi\left(v_{i}\right)
$$

then it is easy to check that

$$
\hat{f}(x)=\sum_{i=1}^{k} f\left(v_{i}\right) \phi\left(v_{i}\right)+f\left(v_{k+1}\right)\left(x-\sum_{i=1}^{k}\left(v_{i}\right)\right)
$$

Proof of Lovasz-Simonovits. Define

$$
f_{k}(u)=\frac{\mathcal{P}^{k}(v, u)-\phi(u)}{\phi(u)}
$$

then

$$
f_{k} \Phi \mathcal{P}(u)=\mathcal{P}^{k+1}(v, u)-\phi(u)=f_{k+1} \Phi(u)
$$

We prove the following lemma.
Lemma 2. $\hat{f}_{k+1}(x)<\frac{\hat{f}_{k}\left(x\left(1-\beta_{k, v}\right)\right)+\hat{f}_{k}\left(x\left(1+\beta_{k, v}\right)\right)}{2}$

Proof.

$$
\begin{aligned}
\sum_{u \in S} f_{k+1} \Phi \mathcal{P}(v)=\frac{f_{k} \cdot g_{1}+f_{k} \cdot g_{2}}{2} & \leq \frac{\hat{f}_{k}(\phi(S)-\phi(\partial(S)))+\hat{f}_{k}(\phi(S)+\phi(\partial(S)))}{2} \\
& \leq \frac{\hat{f}_{k}\left(x\left(1-\beta_{k, v}\right)\right)-\hat{f}_{k}\left(x\left(1+\beta_{k, v}\right)\right)}{2}
\end{aligned}
$$

We use this to show the following lemma, which implies the result.

Lemma 3.

$$
\hat{f}_{k} \leq\left(1-\frac{\beta_{k, v}}{8}\right)^{k} \frac{\min \{\sqrt{x}, \sqrt{1-x}\}}{\sqrt{\phi(u)}}
$$

Suppose by induction that we know $\left|P^{t}(v, u)-\phi(u)\right| \leq\left(1-\frac{\beta_{t, v}^{2}}{8}\right)^{t} \sqrt{\frac{\phi(v)}{\phi(u)}}$. Then as $P^{k}(v, u)-$ $\phi(u) \leq \hat{f}_{k}(\phi(u))$, the lemma implies the result.

Proof of lemma. We prove this by induction. For $k=0$, we have $\hat{f}_{0}(\phi(u)) \leq 1$ and $\hat{f}_{0}(1) \leq \frac{1}{\sqrt{u}}$ so this holds. By our assumption and the previous lemma we have
$\hat{f}_{k+1}(x) \leq\left(1-\frac{\beta_{k, v}^{2}}{8}\right)^{k} \frac{\left(\min \left\{\sqrt{x\left(1-\beta_{k, v}\right)}, \sqrt{1-x(1-\beta k, v)}\right\}+\min \left\{\sqrt{x\left(1+\beta_{k, v}\right)}, \sqrt{1-x\left(1+\beta_{k, v}\right)}\right\}\right)}{\phi(u)}$
To finish the proof, we make the following observation based off of the taylor series for $\sqrt{1+x}=$ $1+\frac{x}{2}-\frac{x^{2}}{8}+\ldots$ that

$$
\begin{aligned}
\frac{\sqrt{1-x}+\sqrt{1+x}}{2} & \leq \frac{1-\frac{x}{2}-\frac{x^{2}}{8}+1+\frac{x}{2}-\frac{x^{2}}{8}}{2} \\
& =\frac{2+\frac{x^{2}}{4}}{2}=1+\frac{x^{2}}{8}
\end{aligned}
$$

Taking $x=\left(1-\beta_{k, v}\right)$ in this we get that

$$
\min \left(\sqrt{\beta_{k, v}}, \sqrt{1-\beta_{k, v}}\right)+\min \left(\sqrt{\beta_{k, v}}, \sqrt{1+\beta_{k, v}}\right) \leq \sqrt{1-\beta_{k, v}}+\sqrt{1+\beta_{k, v}} \leq 1+\frac{\beta_{k, v}^{2}}{8}
$$

and hence

$$
\hat{f}_{k+1}(x) \leq\left(1-\frac{\beta_{k, v}^{2}}{8}\right)^{k+1} \frac{\min \{\sqrt{x}, \sqrt{1-x}\}}{\sqrt{\phi(u)}}
$$

as desired.

This completes the proof of the theorem.

References

[1] F. Chung, Random walks and cuts in directed graphs, preprint.
[2] L. Lovász, and M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures and Algorithms 4 (1993), 359-412
[3] D. Spielman and S.-H. Teng, Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems, Proceedings of the 96th Annual ACM Symposium on Theory of Computing, (2004), 91-90.

