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Random Walks on Graphs and Directed
Graphs

A Result of Lovasz and Simonovits

We now have a Cheeger’s inequality for both directed and undirected graphs,
o2

2he > A\ > 70 >

We can approximate Cheeger’s constant, by algorithmically finding a good cut. Recall that A is
defined in terms of the Raliegh quotient by

A= B
and
. F(05S;)
= inf -
YT RS)E(S)
where
F(S)=7  o(v)
veES
and by ordering vertices in terms of f, so that f(v1) < f(v2) < --- < f(vx), we take S; =
{v1,...,v;}; the i lowest weighted vertices. For an undirected graph, recall that
dy
P(v) = S a4

In the directed case it becomes a numerical excercise to solve for .

1 Approximating the Volume of a Convex Body

Many counting problems can be reduced to computing a volume. In the non-convex case, there
are examples that make the volume very hard to compute, but in many problems the desired
volume arises from a convex body. Approximating the volume of a covex body can be done
via linear programming, and there are polynomial algorithms to solve linear programs, however
the efficiency of the algorithms is still important. A method that has been used to improve the
efficiency of volume computation is using modified random walks.
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To see this connection, we note that computing the volume of a body, and sampling are not so
different. Consider putting the body in a box; and sampling n points; then the percentage of
points falling inside the body gives an approximation of the volume as n gets large. The question
then becomes, how do we appropriately choose a random point in a graph. One method is to
use a random walk; start at a point and iteratively choose one of its neighbors for some number of
steps. The problen is knowing when to stop. We can find, however, a bound for the convergence of
random walks, so the strategy is to choose a k large enough so that after £ steps we are sufficiently
close to the stationary distribution, where “sufficiently close” depends on our application, let our
random walk run for £ steps and take the resulting position to be our random point.

2 A Theorem of Lovasz and Simonovits

We consider the following theorem of Lovdsz and Simonovits [2], which gives a bound on the
convergence of random walks and holds in both the directed and undirected case.

Theorem 1 (Theorem (Lovasz-Simonovits)). Let G be a strongly connected directed graph, and P =
# be the transition probability matrix for a lazy walk. Then

- ﬁ) $(u)

[P (v,u) — ¢(u)| < (1 2 o)

The f3;,, are defined in the following, algorithmic, fashion. Fix v, and order the vertices according

Pk (v,u)
to O] . Take

Pk (v, u)
O

Another way of thinking about the collections S 1. ,, is we start a random walk at v, and select the
J highest weight vertices after going for k steps . Then

S;.kv = {J vertices with largest value of

» = Inf inf — Ul .
B, k<t j min{F (S ), F(Sjru)}

This theorem has seen use lately in such areas as graph sparsification, and solving linear systems
efficiently [3]. Also encoded in the theorem is a hidden Cheeger inequality.

2.1 A Hidden Cheeger Inequality

Encoded in the result of Lovédsz and Simonovits is the following [1]:

62 h2
> 1~ lim (A()Y > §G > §G.
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where hq is the Cheeger constant, the p; are eigenvalue of P, and 8¢ = inf;, 3;,. Note that we
sacrifice a factor of four from our original Cheeger inequality, but in return we get the relative
pointwise distance metric in the middle.

Previously, we’ve used eigenvalues to get a bound on the convergence of random walks. Having
relative pointwise distance in the middle gives us a method going the other direction. By using
random walks, and the cuts gotten from them we get a bound on the eigenvalues of the Laplacian.

2.2 Proving the Theorem of Lovasz and Simonovits

We begin with the following lemma

Lemma 1. Let G be strongly connected, with Perron vector ¢, with S C V and f : V — R. Then

2
veS
where ® = diag(p(u)) and 0 < g;(v) < ¢(v) with

> gi(v) = #(S) - $(d9),
D g2(v) = 6(S)+¢(dS).

Proof. We note

S FEP) = DO Fw)e(uw)P(u,v)

veS vES u
= 3 Fwew) Y Pluv) + 3 fwe(w) Y Plu,v)
ues veS u€5 veS
1+EU€SPU v UESP(U7U>
= fu)o(u) Fu)p(u)Zres
% %; ;
= > Fwu) Z““P t:v) +3 f(w) veS;D(“’"’)
ues u¢S
= % Z flw)d(u)(1 — ZP(U, v)) + % Z fu)o(u) + % Z Fu)p(u) ZP(%,U)
ues vgS ues ugS veES

ot soa

where

else

g1(u) = { ¢(u)(1 — Zéjes P(u,v)) uwes

and

_ o(u) ueS
92(u) —{ d(1) Y, es Pu,v) else
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It remains to show that ¢g; and g, have the correct sums, but

S gilw) = Y o)1 - 3 Plu,v)) = 6(S) - 6(9S)

uesS vgS
and
D g2(u) =) dw) + > d(u)P(u,v) = ¢(S) + $(dS)
u ues ugS
as desired.

For f : V — R and for any = we take

f(a) = max{f-g:0 < gv) < 6(v) foralle, 3 g(v) = x}

Suppose f(v1) > f(vs) > -+ > f(v,), and

k k+1

D o) <z <Y d(w)

i=1 i=1
then it is easy to check that

k k

fx) =" fo)d(vi) + flopr) (@ = Y (vi)

i=1 i=1

Proof of Lovasz-Simonovits. Define

then
fr®P(u) = P"(0,u) — ¢(u) = frr1®(u)

We prove the following lemma.

- i@l = Br)) + ful@(1+ Bro))
2

Lemma 2. fi ()

Proof.
S i @P() = 0TI e fu(0(S) = #(9(8))) + fu(0(S) + ¢(9(S)))
u€esS 2 o 2
_ S@(t = Bro)) = fulx(L+ o))
B 2



We use this to show the following lemma, which implies the result.

Lemma 3.

fi< <1 - ﬂgv>k min{ﬁq;(g—*x}

Bi

2
,V
8

Suppose by induction that we know |P!(v,u) — ¢(u)| < (1 -

t
) °®) " Then as P*(v,u) —
d(u) < fr(d(u)), the lemma implies the result.

é(u)

Proof of lemma. We prove this by induction. For k = 0, we have fop(u)) < 1and fo(1) < ﬁ SO
this holds. By our assumption and the previous lemma we have

B 51371,),6 (min{\/x(l — Brw)s \/1 —xz(1— pk,v)} + min{\/x(l + Brw), \/1 —z(1+ Brv)})
8 ¢(u)

To finish the proof, we make the following observation based off of the taylor series for v/1 + z =
1422 4. . that

frera(@) < (1

2 2

Vi—z+V1+a < -5 -2 +1+ =
5 <

ML)

|+

w5,

:2+ _1 22

2 8

_|_

Taking = (1 — () in this we get that

BE.
min(\/Be.vs /1 — Brw) + min(y/Bews V1 + Bew) < /1= Brw+ V14 Brw <1+ %

and hence
A o7 v min{v/z,v1—=x
fi(e) < (1 - ooy DIVE VL2 )
¢(u)
as desired. 0
This completes the proof of the theorem. O
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