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Edge Isoperimetric Inequalities

1 Four Questions

Recall that in the last lecture we looked at the problem of isoperimetric inequalities in the hyper-
cube,Qn. Our notion of boundary was that of vertex boundary, defined by δ(G) = {v 6∈ S | v ∼ u, u ∈ S}.
We found that when trying to minimize the vertex boundary while holding the size of our set S
fixed, the (near) Hamming balls characterize those S with minimal vertex boundary.

In this lecture, we consider a different notion of boundary based on edges. We define the edge
boundary of S to be ∂(S) = {{u, v} | u ∈ S, v 6∈ S}. This is exactly the set of edges required to
disconnect S from any vertex not in S.

1.1 Four Problems

We shall look at four related isoperimetric problems which all utilize the concept of edge bound-
ary.

1.1.1 Question 1

We begin with the simplest question: Given a fixed positive integer m, what is the smallest edge
boundary for a set of m vertices? We may formalize this question by defining

g(m) = min
S⊆V (Qn)
|S|=m

|∂(S)|.

We may then ask: Can we place bounds on g(m)? Can we characterize those subsets S which
achieve the value of g(m)? Whereas in the case of vertex boundary, the optimal subsets S were
found to be (near) Hamming balls, we shall see that for the edge isoperimetric problem these
optimal sets are (near) subcubes. Because the problem of finding a set S with minimum edge
boundary is dual to the problem of maximizing the number of edges between vertices in S, this
result makes intuitive sense.
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1.1.2 Question 2

For a subset S ⊆ V (Qn) of size m, let Ei be all those edges in E(Qn) whose vertices differ in the
ith coordinate. Set ∂i(S) = ∂(S) ∩ Ei. This provides a partition of ∂(S), with∑

i

|∂i(S)| = |∂(S)|.

We may then define our function of interest as

g1(m) = min
S⊆V (Qn)
|S|=m

max
i
|∂i(S)|.

Thus we have that for every subset S of size m, ∂i(S) ≥ g1(m) for some i. Trivially we obtain the
relation g1(m) ≥ g(m)/n. Can we further characterize g1(m)? This question was first proposed by
Ben-Or and Linial [1]

1.1.3 Question 3

An alternate direction is to look at subgraphs induced by a subset S of vertices. For S ⊆ V (Qn), we
denote by Qn[S] the subgraph of Qn induced by S, that is, the graph on vertex set S and containing
all edges of E(Qn) for which both endpoints are in S. For positive integer m, define

g2(m) = min
S⊆V (Qn)
|S|=m

|E (Qn[S]) |.

Note that if m ≤ 2n−1 we have g2(m) = 0, since the hypercube is bipartite. However, when
m = 2n−1 + 1, we obtain a sharp jump in the number of edges of Qn[S].

1.1.4 Question 4

Let ∆(G) denote the maximum degree of a graph G. We may again look at induced subgraphs of
the hypercube, but measure their maximum degree. Formally we define

g3(m) = min
S⊆V (Qn)
|S|=m

∆(Qn[S]).

Once again, we must restrict our attention to m > 2n−1. Can we characterize g3(m)? Currently,
both g2(m) and g3(m) are not fully understood even for m = 2n−1 + 1.

2 Theorems

We shall explore the first two questions.
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2.0.5 On the First Question

Our first question asks simply what subsets have minimal edge boundaries. If we letm be a power
of 2 then our answer is simple: a subcube of size m. If m is not an integer the answer is not too
different, but unfortunately it becomes a bit less beautiful to both state and prove. Nonetheless,
we have the following Theorem:

Theorem 1. Fix a positive integer m. For 0 ≤ γ ≤ m, we may express γ by its binary expansion
γ =

∑n−1
i=0 γi2

i. Let S = {(γ0, . . . , γn−1) | 0 ≤ γ ≤ m} be the set of all binary expansions of positive
integers γ ≤ m. Then S achieves the minimum edge boundary of all subsets with m vertices.

Proof. By Induction. This is left as Exercise 1.

If we sacrifice an exact description, we obtain a much cleaner bound.

Theorem 2. For S ⊆ V (Qn) with |S| = m,

|∂(S)| ≥ m(n− log2m).

In order to prove Theorem 2, we shall require an additional result. Recall that the average degree

d̄ of a graph G is defined as d̄ =
∑
v∈V (G) dG(v)

|G| .

Theorem 3. Let G be a subgraph of Qn[S] with average degree d̄. Then

|V (G)| ≥ 2d̄.

Let us first show how Theorem 3 implies Theorem 2. Note that |∂(S)| = m(n − d̄), by definition.
By Theorem 3, we have 2d̄ ≤ m or d̄ ≤ log2m. Combining these two observations yields

|∂(S)| ≥ m(n− log2m).

We thus need only prove Theorem 3.

Proof (Theorem 3). We prove this by induction. We view Qn as composed of two (n − 1)cubes,
which we label Q(1) and Q(2). We let G1 and G2 be the intersection of G with these two subcubes,
and set mi = |V (Gi)|. Without loss of generality, assume 0 ≤ m1 ≤ m2. Finally assume there are
s edges of G between G1 and G2. Note that for each vertex in G1 there can be at most one edge
adjacent to this vertex crossing to G2, so s ≤ m1.

We may conclude by induction that

mi log2mi ≥
∑

v∈V (Gi)

dGi(v) =
∑

v∈V (Gi)

dG(v)− s, i = 1, 2.
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Observe that
m1 log2m1 +m2 log2m1 + 2s ≥

∑
v∈V (G)

dG(v).

Thus we have, noting that m2 ≥ m1

m log2m = (m1 +m2) log2(m1 +m2) ≥ m1 log2m1 +m2 log2m2 + 2m1

≥
∑

v∈V (G)

dG(v).

Here, the first inequality is a fact which is proved at the end of these notes (where one can see why
the base two logarithm is required), and the second inequality follows simply from the calculations
done above and observing that m1 ≥ s. Thus, the proof concludes.

2.1 On the second question

To begin to approach the second question, we shall introduce the notion of Boolean functions. A
Boolean function is simply a function on 0/1 strings of length nwhich is either zero or one. It shall
be of some utility to view each coordinate of the length n string as a separate 0/1 variables, which
we shall denote x1, . . . , xn. Let us now look at three important examples.

Parity: f1(x1, . . . , xn) =
∑
i

xi (mod 2)

Projection: f2(x1, . . . , xn) = x1

Majority: f3(x1, . . . , xn) =

{
1
∑

i xi ≥ n/2,
0 otherwise.

To analyze these examples we shall associate to each Boolean function a game. Each game has n
players associated to one each of the variables x1, . . . , xn. Each player flips a fair coin to decide the
value of xi. The value of the game is just the value of f(x1, . . . , xn). But what if one of the players
acts intelligently, choosing his value deterministically in order to influence the value of the game?
We can then ask, how much influence can a single player have on the value of the game?

To formalize this question, let us fix some index i, and form the Boolean function fi(0) on the
variables x1, x2, . . . , xi−1, xi+1, . . . , xn by setting

fi(0)(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn).

We form fi(1) similarly. We may then define the influence If (i) of the ith player to be

If (i) = P (fi(0) 6= fi(1)).

Observe that the parity function satisfies If (i) = 1, because flipping one bit in a string changes
the parity of the entire string. For the projection function, observe that If (i) is 1 if i = 1 and 0
otherwise, i.e. the first player completely determines the value of f . The majority function is more
complicated, and it is a nontrivial fact that the influence of the ith player is 1/

√
n.

4



xi = 0 xi = 1

Sf

Figure 1: An ith coordinate boundary edge corresponds to a place of influence for player i.

Say that the coin-flipping game is fair if the probability that f = 0 is 1/2. We can show that for any
fair game, there must exist some player with influence at least 1/n. To see this, we need to relate
our game to the hypercube.

Observe that a Boolean function f determines a partition of Qn. We denote by Sf the set of all
vertices of the hypercube for which f = 1. If P (f = 0) = 1/2 then Sf consists of exactly half of the
vertices ofQn. We again note that for a fixed i, we can view theQn as two copies ofQn−1 (denoted
by Q(1) and Q(2)) joined by edges along the ith coordinate. Observe that the number of strings for
which changing i’s value changes the value of f is simply the number edges from ∂(Sf ) which
cross from Q(1) to Q(2), denoted by ∂i(S) (see figure 1). Thus, the influence of player i is given by

If (i) =
|∂i(Sf )|

2n−1
.

Summing over all i, we have ∑
i

If (i) =
|∂(Sf )|
2n−1

.

Finally, we may apply Theorem 2 with m = |Sf | = 2n−1 to give a lower bound on |∂(Sf )|, which
forces the right hand side to be at least one. Thus, If (i) ≥ 1/n for some i.

Indeed, more is true. Kahn, Kalai, and Linial [3] have shown that for any fair game there exists
some player i such that

If (i) ≥ c log n
n

,

where here c is some fixed constant.

3 Appendix

Lemma 1. If 0 ≤ x ≤ y then

(x+ y) log2(x+ y) ≥ x log2 x+ y log2 y + 2x.
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Proof. Assume x > 0, otherwise the result is trivial. Let γ = y/x. Then

(x+ y) log2(x+ y) ≥ x log2 x(1 + γ) + y log2 y(1 + 1/γ)
= x log2 x+ y log2 y + x log2(1 + γ) + y log2(1 + 1/γ)
= x log2 x+ y log2 y + x(log2(1 + γ) + γ log2(1 + 1/γ))

To see that log2(1 + γ) + γ log2(1 + 1/γ) ≥ 2 we observe that

log2(1 + γ) + γ log2(1 + 1/γ) ≥ log2(1 + γ) + log2(1 + 1/γ)
≥ log2(1 + γ)(1 + 1/γ)
≥ log2(2 + γ + 1/γ) = 2.

Where here we use the basic fact that γ + 1/γ ≥ 2.
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