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1 Review and Motivation

Recall that for a graphG = (V,E) we define thetransition probability matrix P(u, v) by

P(u, v) =

 1
du

if u ∼ v

0 otherwise,

wheredu denotes the degree of a vertexu andu ∼ v is notation for{u, v} ∈ E. Recall
further that we may represent a distribution onG by a row vectorf whoseith entry
gives the “amount” residing at theith vertexvi . A typical initial distribution might be
−→
1 = (1,1, . . . ,1), or the row vectore∗i with all entries zero except for a one in theith

entry. Some papers like to use the uniform distribution
−→
1 ; however, we will see that

this distribution is not stationary if the graph in question is not regular.

The notion of a transition probability matrix allows us to examine distributions on
G after some number of steps in our walk: iff is the initial distribution, thenf P is
the distribution after one step, andf Pt is the distribution aftert steps. In a sense, we
are considering all possible random walks simultaneously; for instance, iff = e∗i , the
jth entry of f Pt is the likelihood that if we start a walk at vertexvi and continue fort
random steps that we will find ourselves at vertexv j .

However, before this tool becomes useful to us, we must consider the mathematical
behavior of iteratively multiplying byP on the right. Does this sequence converge?
Does it converge to a stationary distribution? Is such a distribution necessarily unique?
Finally, what is the rate of convergence of this process? (We say that a distributionπ is
stationary or stable ifπP = π, in which caseπPt = π for all t.)
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2 Examples

Example1. If G is ak-regular graph, thenP = 1
k A, whereA is the adjacency matrix of

G. Let
−→
1 be the initial distribution, and observe that

−→
1P =

−→
1

(
1
k A

)
=
−→
1 , so that

−→
1 is a

stable distribution for any regular graph.

Example2. Let G be the disjoint union of two copies ofKm, and let distributionsπ1

andπ2 be defined by
π1 = (1, . . . ,1︸  ︷︷  ︸

m

,0, . . . ,0︸  ︷︷  ︸
m

)

and
π2 = (0, . . . ,0︸  ︷︷  ︸

m

,1, . . . ,1︸  ︷︷  ︸
m

).

Then with the obvious ordering on the vertices ofG, we have thatπ1P = π1 and
π2P = π2. Thus we see that stable distributions are not necessarily unique.

Example3. Let G be the star graph onk+ 1 vertices (that is,G is a tree withk vertices
of degree one, each adjacent to a single vertex of degreek).

Figure 1: The star graph on nine vertices.

Let distributionπ be defined by

π = (1, . . . ,1︸  ︷︷  ︸
k

, k).

Then it is easy to see thatπ is a stable distribution forG.
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3 Finding Stable Distributions

These examples give us some rudimentary insight into how stable distributions relate
to a graph; before we continue, however, we must define the notion of volume for a
graph. IfG = (V,E) is an undirected graph andS ⊆ V is arbitrary, then define the
volumeof S by

vol S =
∑
v∈S

dv

=
∑
v∈S

vol v.

Of course, volG is defined to be volV. If G is directed, then letd+u andd−u denote the
outdegree and indegree of the vertexu, respectively. Here we do not define the volume
of an arbitrary subset ofV; we define only

vol G =
∑
u∈V

d+u =
∑
v∈V

d−v .

Note that volume is a measure onG, and that it is not unique in this respect. This
measure comes naturally from the theory, but of course any measure is useful as long
as it produces good results.

Now for an undirected graphG = (V,E) define the distributionπ by

π =

(
du

vol G

)
u∈V

=

(
d1

vol G
, . . . ,

dn

vol G

)
.

Then we have that

(πP)(v) =
∑
u∼v

π(u)P(u, v)

=
∑
u∼v

du

vol G
·

1
du

=
dv

vol G
= π(v).

Since this holds for allv ∈ V, it follows thatπ is a stable distribution.

3.1 The Directed Case

We are not so lucky in the directed case. Defineπ+ andπ− by

π
+ =

(
d+u

vol G

)
u∈V
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and

π
− =

(
d−u

vol G

)
u∈V

.

Thenπ+P = π−, so that there is no hope of obtaining a stable distribution as we have
done above for undirected graphs. In fact, the equationf P = f has no closed form
solution for f in general.

Figure 2: The graph considered in Exercise 1.

Exercise1. Try to find a stable distribution for the graphG in Figure 2. This example
demonstrates the difficulty of trying to find a stable distribution. Observe that if one
starts at the top vertexv0 and begins to walk randomly on this graph, every path visits
v0 infinitely many times. It is easy to see that the number of steps before the first return
to v0 is, with equal likelihood, any number in the interval [4,11]. This gives some
indication of the difficulty of finding a stable distribution inG.

4 The Issue of Convergence

Now we will attempt to answer our questions from earlier in the lecture for undirected
graphs, so consider again the process of taking an initial distributionf and multiplying
it on the right byPt for somet. This is a particularly easy operation ifP happens to
be a diagonal matrix; happily, we will achieve something similar for arbitraryP. Note
that we may write

P = D−1A = D−
1
2 (D−

1
2 AD−

1
2 )D

1
2

= D−
1
2 MD

1
2 ,

where D is the diagonal matrix of degrees,A is the adjacency matrix, andM =

D−
1
2 AD−

1
2 is a symmetric matrix. Now we need the following theorem.

Theorem 1 (Eigenvalue Decomposition Theorem). If M ∈ Mn(R) is symmetric, then
M = U∆U∗, where U is unitary and∆ is diagonal with entries the eigenvalues of M.
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Proof. A complete proof can be found in [1]. �

Given the result above, more manipulation will be useful. So, to continue, let
ρi be the eigenvalues ofM (necessarily real sinceM is real and symmetric) and let
f ∗0 , . . . , f

∗
n−1 be the columns ofU if we write M = U∆U∗. Then we have that

fi M = e∗i diag(ρ1, . . . , ρn−1)


f0
...

fn−1


= ρie

∗
i


f0
...

fn−1


= ρi fi .

Therefore, we may write

M =
n−1∑
i=0

ρi f
∗
i fi =

n−1∑
i=0

ρiPi ,

wherePi is projection onto theith eigenvector. Now if

f =
n−1∑
i=0

ai fi =
n−1∑
i=0

f f ∗i fi

is arbitrary, then

f M =
n−1∑
i=0

ρi( f f ∗i ) fi .

Let

f0 =

√ dv

vol G


v∈V

=

−→
1D

1
2

√
vol G

and observe that

f0M =

−→
1D

1
2

√
vol G

·
(
D−

1
2 AD−

1
2

)
=

−→
1D

1
2

√
vol G

= f0,

so thatρ0 = 1.

Finally we can apply this to answer our earlier questions (the norm below is the
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2-norm):

‖ f Pt − π‖ =

∥∥∥∥∥∥∥ f D−
1
2 MtD

1
2 −

−→
1D

vol G

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥ f D−
1
2

n−1∑
i=0

(ρt
i f ∗i fi)D

1
2 −

−→
1D

vol G

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥ f D−
1
2

n−1∑
i=1

(ρt
i f ∗i fi)D

1
2 + f D−

1
2ρ0 f ∗0 f0D

1
2 −

−→
1D

vol G

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥ f D−
1
2

n−1∑
i=1

(ρt
i f ∗i fi)D

1
2

∥∥∥∥∥∥∥
≤ max

i>0
|ρi |

t ·

maxx
√

dx

maxy
√

dy

 .
If |ρi | < 1 for i , 0, then this inequality gives the existence and uniqueness of a
stationary distribution, as well as telling us that our iterative process converges, and a
bound on the rate of its convergence. This condition (|ρi | < 1 for i , 0) does not hold
in general, and so it seems natural now to consider for which classes of graphs this
condition is satisfied.
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