REGULARITY LEmma For \(k \)-uniForm HyperGRaphs

VOJTĚCH RÖDL AND JOZEF SKOKAN

In particular, [Extremal problems on set systems, Random Structures and Algorithms 20 (2002), 131–164] contains a regularity lemma for 3-uniform hypergraphs that was applied to a number of problems. In this paper, we present a generalization of this regularity lemma to \(k \)-uniform hypergraphs. Similar results were independently and alternatively obtained by W. T. Gowers.

1. Introduction

While proving his famous Density Theorem [Sze75], E. Szemerédi found an auxiliary lemma which later proved to be a powerful tool in extremal graph theory. This lemma [Sze78] states that all sufficiently large graphs can be approximated, in some sense, by random graphs. Since “random-like” graphs are often easier to handle than arbitrary graphs, the Regularity Lemma is especially useful in situations where the problem in question is easier to prove for random graphs.

This paper is an attempt to expand Szemerédi’s Regularity Lemma to \((k+1)\)-uniform hypergraphs for \(k \geq 2 \). Unlike for graphs, there are several natural ways to define “regularity” (quasi-randomness) for \(k \)-uniform hypergraphs. Consequently, various forms of a regularity lemma for hypergraphs have been already considered in [Chu91, PS92, FR92, FK99, CR00, FR02].

One of the main reasons for the wide applicability of Szemerédi’s Regularity Lemma is the fact that it enables one to find all small graphs as subgraphs of a regular graph (see [KS96, KSSS02] for a survey). In [FR02], this issue is addressed for 3-uniform hypergraphs (i.e. case \(k = 2 \)). The Regularity

Date: February 19, 2004.

Key words and phrases. Regularity lemma, uniform hypergraphs, regular partition.

The first author was partially supported by NSF grants DMS-0071261, DMS-0300529 and INT-0072064.

The second author was partially supported by NSF grants INT-0072064, and INT-0305793.
Lemma proved by Frankl and Rödl produces a quasi-random setup in which one can find small subhypergraphs (see also [NR03]). The aim of this paper is to discuss a generalization of this lemma to \((k+1)\)-uniform hypergraphs for \(k > 2\) that similarly as [FR02] allows one to find small subhypergraphs in its regular partition.

We first recall the Regularity Lemma of Szemerédi.

Definition 1.1. Let \(G = (V, E)\) be a graph and \(\delta\) be a positive real number, \(0 < \delta \leq 1\). We say that a pair \((A, B)\) of two disjoint subsets of \(V\) is \(\delta\)-regular if

\[|d(A', B') - d(A, B)| < \delta\]

for any two subsets \(A' \subseteq A, B' \subseteq B, |A'| \geq \delta |A|, |B'| \geq \delta |B|\). Here, \(d(A, B) = |E(A, B)|/(|A||B|)\) stands for the density of the pair \((A, B)\).

This definition states that a regular pair has uniformly distributed edges. The Regularity Lemma of Szemerédi [Sze78] guarantees a partition of the vertex set \(V(G)\) of a graph \(G\) into \(t\) sets \(V_1 \cup \ldots \cup V_t\) in such a way that most of the pairs \((V_i, V_j)\) satisfy Definition 1.1. The precise statement is following.

Theorem 1.2 (Regularity Lemma [Sze78]). For every \(\varepsilon > 0\) and \(t_0 \in \mathbb{N}\) there exist two integers \(N_0 = N_0(\varepsilon, t_0)\) and \(T_0 = T_0(\varepsilon, t_0)\) with the following property: for every graph \(H\) with \(n \geq N_0\) vertices there is a partition \(\mathcal{P}\) of the vertex set into \(t\) classes

\[\mathcal{P}: V = V_1 \cup \ldots \cup V_t\]

such that

(i) \(t_0 \leq t \leq T_0\),

(ii) \(||V_i| - |V_j|| \leq 1\) for every \(1 \leq i < j \leq t\), and

(iii) all but at most \(\varepsilon \binom{n}{2}\) pairs \((V_i, V_j)\), \(1 \leq i < j \leq t\), are \(\varepsilon\)-regular.

For technical reasons, in this paper, we consider a slightly weaker version of this lemma.

Theorem 1.3. For every \(\varepsilon > 0\) there exist two integers \(N_0 = N_0(\varepsilon)\) and \(T_0 = T_0(\varepsilon)\) with the property that for every graph \(H\) with \(n \geq N_0\) vertices there is a partition \(\mathcal{P}\) of the vertex set \(V\) into \(t\) classes

\[\mathcal{P}: V = V_1 \cup \ldots \cup V_t\]

such that

(i) \(t \leq T_0\), and

(ii) all but at most \(\varepsilon \binom{n}{2}\) pairs of vertices \(\{v, w\} \subset V\) belong to \(\varepsilon\)-regular pairs \((V_i, V_j)\), \(1 \leq i < j \leq t\), i.e., \(v \in V_i, w \in V_j\). Consequently, \(\sum_{i=1}^{t} \binom{|V_i|}{2} \leq \varepsilon \binom{n}{2}\) holds.

Observe that Theorem 1.3 follows from the Regularity Lemma applied with \(\varepsilon\) replaced by \(\varepsilon/8\) and \(t_0 = 8/\varepsilon\).
The aim of this paper is to establish a Regularity Lemma for \((k + 1)\)-uniform hypergraphs (we will refer to it as statement \textbf{Regularity}(k)) which extends Theorem 1.3.

For \(k + 1 = 2\) (the case of Szemerédi’s Regularity Lemma), the underlying structure \(\mathcal{P}_1\) of a graph \(\mathcal{H} = (V, E)\) is an auxiliary partition \(V_1 \cup \ldots \cup V_t\) of the set of vertices \(V\).

For \(k + 1 > 2\) (the case discussed in this paper), the underlying structure of a \((k + 1)\)-uniform hypergraph \(\mathcal{H}\) will be an auxiliary partition \(\mathcal{P}_k\) of \([V]^k\), where \([V]^k\) is the set of all \(k\)-tuples from \(V\). It turns out that in order to take a full advantage of the “regular behavior” of \(\mathcal{H}\) with respect to \(\mathcal{P}_k\), one needs more information about partition \(\mathcal{P}_k\) itself. To “gain control” over the partition classes of \(\mathcal{P}_k\), we view them as \(k\)-uniform hypergraphs and regularize them (applying \textbf{Regularity}(k − 1) as an induction argument), getting partitions \(\mathcal{P}_{k-1}, \mathcal{P}_{k-2}, \ldots, \mathcal{P}_1\) of \([V]^{k-1}, [V]^{k-2}, \ldots, V\) respectively. Unfortunately, this leads to a fairly technical concept of a partition.

The advantage of this concept is, however, that similarly to [Sze78], [FR02] and [NR03], it allows to find and count small subhypergraphs in a “regular situation” using so called Counting Lemma. In the graph case, the proof of the Counting Lemma is rather simple (cf. Fact A in [FR02] or the Key Lemma in [KS96]). On the other hand, in the \(k\)-uniform hypergraph case, this is a very technical statement which has been proved for \(k = 3\) in [NR03] and for \(k = 4\) in [RS, Sko00]. The general case (i.e. \(k\) is arbitrary) has been recently verified in [NRS]. We have been also informed [Gow] that W. T. Gowers proved the Regularity Lemma and the corresponding Counting Lemma for \(k\)-uniform hypergraphs independently, using a different approach.

2. Acknowledgment

We would like to thank to Yoshi Kohayakawa, Brendan Nagle and Norihide Tokushige for their useful remarks. Our thanks are especially due to Mathias Schacht for his formidable help.

3. Organization

As mentioned before, the most technical part of this paper is the description of the environment in which we work. The proof of the Regularity Lemma itself is then straightforward, based on ideas from [Sze78, FR02]. The structure of the paper is as follows.

In Section 4, we introduce cylinders and complexes, which are the basic building blocks of auxiliary partitions considered here.

In Section 5, we describe the structure of this auxiliary partition, whereas in Section 6, we introduce a concept of polyad that extends the concept of a pair \((V_i, V_j)\) in partitions considered by Szemerédi.
In Section 8, we introduce an equitable \((\mu, \delta, d, r)\)-partition which is a concept ensuring that all but at most \(\mu\binom{n}{k+1}\) \((k + 1)\)-tuples of vertices from \(V\) are “under control”, that is, they belong to regular polyads (similarly as all but at most \(\epsilon\binom{n}{2}\) pairs are in regular pairs, cf. (ii) in Theorem 1.3). We also define a \((\delta_{k+1}, r)\)-regular partition corresponding to a regular partition of Szemerédi and present our main results – Theorems 8.14 and 8.17.

The proof of the main result is in Sections 9 – 12. In Section 9, we describe our induction scheme and in Section 10, we show its easier part. Section 11 contains auxiliary results for the proof of implication (I3), which is the key part of our induction scheme for the Main Theorem. In Section 12, we give the proof of this implication.

4. Concepts

We start with a basic notation. We denote by \([\ell]\) the set \(\{1, \ldots, \ell\}\). For a set \(V\) and an integer \(k \geq 2\), let \([V]^k\) be the system of all \(k\)-element subsets of \(V\). A subset \(G \subseteq [V]^k\) is called a \(k\)-uniform hypergraph. We sometimes use the notation \(G = ([V], E(G)) = (V, E)\). For every subset \(V' \subseteq V\), we denote by \(G[V']\) the subhypergraph induced on \(V'\), in other words, \(G[V'] = G \cap [V']^k\). If there is no danger of confusion, we shall identify the hypergraphs with their edge sets.

4.1. Cylinders and Complexes.

This paper deals mainly with \(\ell\)-partite \(k\)-uniform hypergraphs. We shall refer to such hypergraphs as \((\ell, k)\)-cylinders.

Definition 4.1 (cylinder). Let \(\ell \geq k \geq 2\) be two integers, \(V\) be a set, \(|V| \geq \ell\), and \(V = V_1 \cup \cdots \cup V_\ell\) be a partition of \(V\).

A \(k\)-set \(K \subseteq [V]^k\) is crossing if \(|V_i \cap K| \leq 1\) for every \(i \in [\ell]\). We shall denote by \(K^{(k)}_{\ell}(V_1, \ldots, V_\ell)\) the complete \((\ell, k)\)-cylinder with vertex partition \(V_1 \cup \cdots \cup V_\ell\), i.e. the set of all crossing \(k\)-sets. Then, an \((\ell, k)\)-cylinder \(G\) is any subset of \(K^{(k)}_{\ell}(V_1, \ldots, V_\ell)\).

Definition 4.2. For an \((\ell, k)\)-cylinder \(G\), where \(k > 1\), we shall denote by \(K_j(G)\), \(k \leq j \leq \ell\), the \(j\)-uniform hypergraph with the same vertex set as \(G\) and whose edges are precisely those \(j\)-element subsets of \(V(G)\) that span cliques of order \(j\) in \(G\).

Clearly, the quantity \(|K_j(G)|\) counts the total number of cliques of order \(j\) in an \((\ell, k)\)-cylinder \(G\), \(1 < k \leq j \leq \ell\), and \(K_k(G) = G\).

For formal reasons, we find it convenient to extend the above definitions to the case when \(k = 1\).

Definition 4.3. We define an \((\ell, 1)\)-cylinder \(G\) as a partition \(V_1 \cup \cdots \cup V_\ell\). For an \((\ell, 1)\)-cylinder \(G = V_1 \cup \cdots \cup V_\ell\) and \(1 \leq j \leq \ell\), we set \(K_j(G) = K^{(j)}_{\ell}(V_1, \ldots, V_\ell)\).
The concept of "cliques in 1-uniform hypergraphs" is certainly artificial. It fits well, however, to our general description of a complex (see Definition 4.6).

For an \((\ell, k)\)-cylinder \(G\) and a subset \(L\) of vertices in \(G\), where \(k \leq |L| \leq \ell\), we say that \(L\) belongs to \(G\) if \(L\) induces a clique in \(G\).

We will often face a situation when one cylinder 'lies on' another cylinder. To this end, we define the term underlying cylinder.

Definition 4.4 (underlying cylinder). Let \(F\) be an \((\ell, k-1)\)-cylinder and \(G\) be a \((\ell, k)\)-cylinder. We say that \(F\) underlies \(G\) if \(G \subset K_k(F)\).

Note that if \(k = 2\) and \(F = V_1 \cup \cdots \cup V_\ell\), then \(G\) is an \(\ell\)-partite graph with \(\ell\)-partition \(V_1 \cup \cdots \cup V_\ell\).

Definition 4.5 (density). Let \(G\) be a \(k\)-uniform hypergraph and \(F\) be a \((k,k-1)\)-cylinder. We define the density of \(F\) with respect to \(G\) by

\[
d_G(F) = \begin{cases} \frac{|G \cap K_k(F)|}{|K_k(F)|} & \text{if } |K_k(F)| > 0, \\ 0 & \text{otherwise}. \end{cases}
\] (4.1)

Through this paper, we will work with a sequence of underlying cylinders. To accommodate this situation, we introduce the notion of complex.

Definition 4.6 (complex). Let \(\ell\) and \(k\), \(\ell \geq k \geq 1\), be two integers. An \((\ell, k)\)-complex \(G\) is a system of cylinders \(\{G^{(j)}\}_{j=1}^k\) such that

(a) \(G^{(1)}\) is an \((\ell, 1)\)-cylinder, i.e. \(G^{(1)} = V_1 \cup \cdots \cup V_\ell\),

(b) \((\ell, j)\)-cylinder \(G^{(j)}\) underlies \((\ell, j+1)\)-cylinder \(G^{(j+1)}\) for every \(j \in [k-1]\), i.e. \(G^{(j+1)} \subset K_{j+1}(G^{(j)})\).

4.2. Regularity of Cylinders and Complexes.

Now we define the notion of regularity of cylinders:

Definition 4.7 (regular cylinder). Let \(\delta, d\) be real numbers, \(0 \leq \delta < d \leq 1\), \(F\) be a \((k,k-1)\)-cylinder, and \(G\) be a \(k\)-uniform hypergraph with the same vertex set. We say that \(G\) is \((\delta, d)\)-regular with respect to \(F\) if the following condition is satisfied: whenever \(F' \subset F\) is a \((k,k-1)\)-cylinder such that

\[
|K_k(F')| \geq \delta |K_k(F)|
\]

then

\[
d - \delta \leq d_G(F') \leq d + \delta.
\]

We also say that \(G\) is \((\delta, \geq d)\)-regular if \(G\) is \((\delta, d')\)-regular for some \(d' \geq d\).

For \(k = 2\) this definition means that a bipartite graph \(G = (V_1 \cup V_2, E)\) is \((\delta, d)\)-regular if for any two subsets \(V'_1 \subset V_1\) and \(V'_2 \subset V_2\) such that \(|V'_1||V'_2| \geq \delta |V_1||V_2|\), we have

\[
|d(V'_1, V'_2) - d| < \delta,
\]
where \(d(V'_1, V'_2) = \frac{|G[V'_1 \cup V'_2]|}{|V'_1||V'_2|} \) is the density of the pair \((V'_1, V'_2)\).

This differs from Definition 1.1. However, it is easy to observe that

- (\(\delta, d \))-regularity implies \(2\delta^{1/2} \)-regularity in a sense of Definition 1.1, and
- \(\delta \)-regularity implies (\(\delta, d \))-regularity, where \(d = d(V_1, V_2) \), in a sense of Definition 4.7.

We further extend this definition to the case when \(F \) is an \((\ell, k - 1)\)-cylinder.

Definition 4.8. Let \(\ell \geq k \) be positive integers, \(F \) be an \((\ell, k - 1)\)-cylinder with an \(\ell \)-partition \(\bigcup_{i=1}^{\ell} V_i \) and \(G \) be a \(k \)-uniform hypergraph with the same vertex set. We say that \(G \) is (\(\delta, d \))-regular ((\(\delta, \geq d \))-regular respectively) in the sense of Definition 4.7 with respect to \(F \) if the restriction \(G[\bigcup_{j \in I} V_j] \) is (\(\delta, d \))-regular ((\(\delta, \geq d \))-regular respectively) with respect to \(F[\bigcup_{j \in I} V_j] \) for all \(I \in [\ell]^k \).

For \(k > 2 \), the situation becomes more complicated and due to the quantification of constants in a hypergraph regularity lemma (Remark 4.6, [FR02]), it is not obvious that Definition 4.7 has an effect comparable to the case \(k = 2 \).

To overcome this difference, Frankl and Rödl introduced in [FR02] the concept of (\(\delta, r \))-regularity. Here we present this concept in more general form. We start with the definition of the density of a system of cylinders.

Definition 4.9. Let \(r \in \mathbb{N} \), \(G \) be a \(k \)-uniform hypergraph, and \(\tilde{F} \) be a system of \((k, k - 1)\)-cylinders \(F_1, \ldots, F_r \) with the same vertex set as \(G \). We define the density of \(\tilde{F} \) with respect to \(G \) by

\[
d_{G}(\tilde{F}) = \begin{cases}
\frac{|G \cap \bigcup_{j=1}^{r} \mathcal{K}_k(F_j)|}{|\bigcup_{j=1}^{r} \mathcal{K}_k(F_j)|} & \text{if } |\bigcup_{j=1}^{r} \mathcal{K}_k(F_j)| > 0, \\
0 & \text{otherwise}.
\end{cases}
\] (4.2)

Now we define a regular cylinder.

Definition 4.10 ((\(\delta, d, r \))-regular cylinder). Let \(r \in \mathbb{N} \), \(F \) be a \((k, k - 1)\)-cylinder, and \(G \) be a \(k \)-uniform hypergraph. We say that \(G \) is (\(\delta, d, r \))-regular with respect to \(F \) if the following condition is satisfied: whenever \(\tilde{F} = \{F_1, \ldots, F_r\} \) is a system of subcylinders of \(F \) such that

\[
\left| \bigcup_{j=1}^{r} \mathcal{K}_k(F_j) \right| \geq \delta |\mathcal{K}_k(F)|,
\]

then

\[
d - \delta \leq d_{G}(\tilde{F}) \leq d + \delta.
\]

We also say that

- \(G \) is (\(\delta, d, r \))-irregular with respect to \(F \) if it is not (\(\delta, d, r \))-regular with respect to \(F \);
• \mathcal{G} is $(\delta, \geq d, r)$-regular with respect to \mathcal{F} if \mathcal{G} is (δ, d', r)-regular with respect to \mathcal{F} for some $d' \geq d$;
• \mathcal{G} is (δ, r)-regular with respect to \mathcal{F} if \mathcal{G} is (δ, d', r)-regular with respect to \mathcal{F} for some $d' \geq 0$.

We extend the above definition to the case of an $(\ell, k - 1)$-cylinder \mathcal{F}.

Definition 4.11. Let $k, \ell, r \in \mathbb{N}$, $\ell \geq k$, \mathcal{F} be an $(\ell, k - 1)$-cylinder with an ℓ-partition $\bigcup_{i=1}^{\ell} V_i$, and \mathcal{G} be a k-uniform hypergraph. We say that \mathcal{G} is (δ, d, r)-regular ($(\delta, \geq d, r)$-regular respectively) with respect to \mathcal{F} if the restriction $\mathcal{G} \left[\bigcup_{j \in I} V_j \right]$ is (δ, d, r)-regular ($(\delta, \geq d, r)$-regular respectively) with respect to $\mathcal{F} \left[\bigcup_{j \in I} V_j \right]$ for all $I \in [\ell]^k$.

Notice that if a k-uniform hypergraph \mathcal{G} is $(\delta, \geq d, r)$-regular with respect to \mathcal{F}, then each restriction $\mathcal{G} \left[\bigcup_{j \in I} V_j \right]$ can be (δ, d', r)-regular with a different $d' \geq d$. Similarly to Definition 4.10, we say

• \mathcal{G} is (δ, d, r)-irregular with respect to \mathcal{F} if it is not (δ, d, r)-regular with respect to \mathcal{F};
• \mathcal{G} is (δ, r)-regular with respect to \mathcal{F} if \mathcal{G} is (δ, d', r)-regular with respect to \mathcal{F} for some $d' \geq 0$.

Now we are ready to introduce the concept of regularity for an (ℓ, k)-complex \mathcal{G}.

Definition 4.12 ((δ, d, r)-regular complex). Let $d = (d_2, \ldots, d_k)$ and $\delta = (\delta_2, \ldots, \delta_k)$ be two vectors of positive real numbers such that $0 < \delta_j < d_j \leq 1$ for all $j = 2, \ldots, k$ and $r \in \mathbb{N}$. We say that an (ℓ, k)-complex \mathcal{G} is (δ, d, r)-regular if

(a) $G^{(2)} = (\delta_2, d_2)$-regular with respect to $G^{(1)}$, and
(b) $G^{(j+1)} = (\delta_{j+1}, d_{j+1}, r)$-regular with respect to $G^{(j)}$ for every $j \in [k-1]\{1\}$.

We say that an (ℓ, k)-complex \mathcal{G} is $(\delta, \geq d, r)$-regular if there exits a vector $d' = (d'_2, \ldots, d'_k)$, $d'_j \geq d_j$, $j = 2, 3, \ldots, k$, so that \mathcal{G} is (δ, d', r)-regular.

Remark 4.13. We owe the reader an explanation of the above definition for $k = 1$ and 2.

When $k = 1$, vector d is empty, conditions (a) and (b) do not apply, and, thus, every $(\ell, 1)$-complex is (δ, d, r)-regular.

When $k = 2$, only condition (a) applies. Therefore, an $(\ell, 2)$-complex $\mathcal{G} = \{G_1, G_2\}$ is (δ, d, r)-regular if $G^{(2)}$ is (δ_2, d_2)-regular with respect to $G^{(1)}$.

Note that parameter r is relevant only in the case when $k > 2$.

As mentioned in the Introduction, regular complexes are basic building elements of an auxiliary partition used in the formulation and proof of our regularity lemma. The next sections describe these auxiliary partitions.
5. Partitions

For every \(j \in [k] \), let \(a_j \in \mathbb{N} \) and \(\psi_j : [V]^j \to [a_j] \) be a mapping. Clearly, mapping \(\psi_1 \) defines a partition \(V = V_1 \cup \ldots \cup V_{a_1} \), where \(V_i = \psi_1^{-1}(i) \) for all \(i \in [a_1] \).

For \(j \in [a_1] \), let \(\text{Cross}_j(\psi_1) \) be the set of all crossing sets \(J \in [V]^j \), i.e., sets for which \(|J \cap V_i| \leq 1 \) for all \(i \in [a_1] \). Note that \(\text{Cross}_j(\psi_1) = K_{a_1}^j(V_1, \ldots, V_{a_1}) \).

Let \(([a_1])^<_J = \{ (\lambda_1, \ldots, \lambda_j) : 1 \leq \lambda_1 < \ldots < \lambda_j \leq a_1 \} \) be the set of vectors naturally corresponding to the totally ordered \(j \)-element subsets of \([a_1] \). More generally, for a totally ordered set \(\Pi \) of cardinality at least \(j \), let \((\Pi)^<_J \) be the family of totally ordered \(j \)-element subsets of \(\Pi \).

For every \(j \in [k] \), we consider the projection \(\pi_j \) of \(\text{Cross}_j(\psi_1) \) to \(([a_1])^<_J \), mapping a set \(J \in \text{Cross}_j(\psi_1) \) to the set \(\pi_j(J) = (\lambda_1, \ldots, \lambda_j) \in ([a_1])^<_J \) so that \(|J \cap V_{\lambda_h}| = 1 \) for every \(h \in [j] \).

Moreover, for every \(1 \leq h \leq \min\{j, k\} \), let
\[
\Psi_h(J) = (x_{\pi_h(H)} = \psi_h(H))_{H \in [j]^h}
\]
be a vector with \(\binom{j}{h} \) entries indexed by elements from \((\pi_j(J))^h \). For our purposes it will be convenient to assume that the entries of \(\Psi_h(J) \) are ordered lexicographically with respect to their indices. Notice that
\[
\Psi_1(J) \in ([a_1])^<_J \text{ and } \Psi_h(J) \in [a_h] \times \ldots \times [a_h] = [a_h]^{(\binom{j}{h})} \text{ for } h > 1.
\]

We define
\[
\Psi^{(j)}(J) = (\Psi_1(J), \Psi_2(J), \ldots, \Psi_j(J)).
\]
Then \(\Psi^{(j)}(J) \) is a vector with \(2^j - 1 \) entries. Also observe that if we set \(\mathbf{a} = (a_1, a_2, \ldots, a_k) \) and
\[
A(j, \mathbf{a}) = ([a_1])^<_J \times \prod_{h=2}^{j} [a_h]^{(\binom{j}{h})}, \tag{5.1}
\]
then \(\Psi^{(j)}(J) \in A(j, \mathbf{a}) \) for every crossing set \(J \in \text{Cross}_j(\psi_1) \). In other words, to each crossing set \(J \) we assign a vector \((x_{\pi_h(H)})_{H \subset J} \) with each entry \(x_{\pi_h(H)} \) corresponding to a non-empty subset \(H \) of \(J \) such that \(x_{\pi_h(H)} = \psi_h(H) \in [a_h] \), where \(h = |H| \).

For two crossing sets \(J_1, J_2 \in \text{Cross}_j(\psi_1) \), let us write
\[
J_1 \sim J_2 \text{ if } \Psi^{(j)}(J_1) = \Psi^{(j)}(J_2). \tag{5.2}
\]
The equivalence relation (5.2) defines a partition of \(\text{Cross}_j(\psi_1) \) into at most
\[
|A(j, \mathbf{a})| = \binom{a_1}{j} \times \prod_{h=2}^{j} a_h^{(\binom{j}{h})}
\]
parts. Now we describe these parts explicitly using \((2^j - 1)\)-dimensional vectors from \(A(j, \mathbf{a})\).

For each \(j \in [k]\), let \(\mathcal{P}(j)\) be the partition of \(\text{Cross}_j(\psi_1)\) given by the equivalence relation \((5.2)\). This way, each partition class in \(\mathcal{P}(j)\) has its unique address \(\mathbf{x}(j) \in A(j, \mathbf{a})\). While \(\mathbf{x}(j)\) is a \((2^j - 1)\)-dimensional vector, we will frequently view it as a \(j\)-dimensional vector \((\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_j)\), where \(\mathbf{x}_1 = (x_1, \ldots, x_j) \in ([a_1])_{<j}^j\) is a totally ordered set and \(x_h = (x_\Xi)_{\Xi \in (x_1)}^j \in [a_h]^j, 1 < h \leq j\), is a \((j)\)-dimensional vector with entries from \([a_h]\). For each address \(\mathbf{x}(j) \in A(j, \mathbf{a})\) we denote its corresponding partition class from \(\mathcal{P}(j)\) by

\[
\mathcal{P}(j)(\mathbf{x}(j)) = \{ P \in \text{Cross}_j(\psi_1) : \Psi(j)(P) = \mathbf{x}(j) \}.
\]

This way we will ensure some structure between the classes from \(\mathcal{P}(j)\) and \(\mathcal{P}(j-1)\).

More precisely, for each partition class \(\mathcal{P}(j)(\mathbf{x}(j)) \in \mathcal{P}(j)\) there exist \(j\) partition classes \(\mathcal{P}_1^{(j-1)}, \ldots, \mathcal{P}_j^{(j-1)} \in \mathcal{P}(j-1)\) such that \(\mathcal{P}^{(j-1)}(\mathbf{x}(j)) = \bigcup_{h \in [j]} \mathcal{P}_h^{(j-1)}\) we have

\[
\mathcal{P}(j)(\mathbf{x}(j)) \subseteq K_j(\mathcal{P}^{(j-1)}(\mathbf{x}(j))).
\]

In other words, \(\mathcal{P}^{(j-1)}(\mathbf{x}(j))\) forms an underlying \((j, j-1)\)-cylinder of \(\mathcal{P}(j)(\mathbf{x}(j))\) consisting of \(\binom{j}{j-1}\) classes from \(\mathcal{P}(j-1)\). Given \(\mathbf{x}(j) \in A(j, \mathbf{a})\) (and the corresponding \(\mathcal{P}(j)(\mathbf{x}(j)) \in \mathcal{P}(j)\)), we give a formal definition of \(\mathcal{P}^{(j-1)}(\mathbf{x}(j))\) below. In fact, for every \(h < j\) we introduce a notation for a \((j, h)\)-cylinder \(\mathcal{P}^{(h)}(\mathbf{x}(j))\) which consists of \(\binom{j}{h}\) partition classes of \(\mathcal{P}^{(h)}\) and satisfies \(\mathcal{P}(j)(\mathbf{x}(j)) \subseteq K_j(\mathcal{P}^{(h)}(\mathbf{x}(j)))\).

This cylinder forms a \((j, h)\)-cylinder of \(\mathcal{P}(j)(\mathbf{x}(j))\).

To this end, we need the following notation. Let \(\mathbf{y}(j) = (\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_j) \in A(j, \mathbf{a})\), where \(\mathbf{x}_1 \in ([a_1])_{<j}^j\) is a totally ordered set and \(\mathbf{y}_u = (\mathbf{x}_\Upsilon)_{\Upsilon \in (\mathbf{x}_1)}^j \in [a_u]^j, 1 < u \leq j\). For a given \(h\)-element subset \(\Xi\) of \(\mathbf{x}_1 = (x_1, \ldots, x_j)\) we are interested in a vector \(\mathbf{x}(j)(\Xi)\) which is “the restriction of \(\mathbf{x}(j)\) to \(\Xi\)”. More precisely, we define \(\mathbf{x}(j)(\Xi)\) as the vector consisting of precisely those entries of \(\mathbf{x}(j)\) that are indexed by subsets of \(\Xi\). Finally, \(\mathbf{x}(j)(\Xi) = (\mathbf{x}_1^\Xi, \mathbf{x}_2^\Xi, \ldots, \mathbf{x}_h^\Xi, \ldots, \mathbf{x}_j^\Xi)\), where for \(1 \leq u \leq h\),

\[
\mathbf{x}_u^\Xi = (\mathbf{x}_\Upsilon)_{\Upsilon \in (\Xi)}^j
\]

is the \((j)\)-dimensional vector consisting of those entries of \(\mathbf{x}_u\) that are labeled with ordered \(u\)-element subsets of \(\Xi\).

Remark. For example, if \(\mathbf{x}(4) = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)\), where

\[
\mathbf{x}_1 = (2, 3, 5, 7), \quad \mathbf{x}_2 = (x_{(2,3)}, x_{(2,5)}, x_{(2,7)}, x_{(3,5)}, x_{(3,7)}, x_{(5,7)}),
\]

\[
\mathbf{x}_3 = (x_{(2,3,5)}, x_{(2,3,7)}, x_{(2,5,7)}, x_{(3,5,7)}), \quad \mathbf{x}_4 = (x_{(2,3,5,7)}),
\]

and \(\Xi = (2, 5, 7)\), then

\[
\mathbf{x}_1^\Xi = (2, 5, 7), \quad \mathbf{x}_2^\Xi = (x_{(2,5)}, x_{(2,7)}, x_{(5,7)}), \quad \mathbf{x}_3^\Xi = (x_{(2,5,7)}).
\]
Definition 5.1. For each \(h \in [j] \) and \(x^{(j)} = (x_1, x_2, \ldots, x_j) \in A(j, a) \), we set
\[
P^{(h)}(x^{(j)}) = \bigcup_{\Xi \in \{a\}^h} \{ P \in \text{Cross}_h(\psi_1) : \Psi^{(h)}(P) = (x_1^\Xi, \ldots, x_j^\Xi) \}. \tag{5.3}
\]

Then, the following claim holds.

Claim 5.2. For every \(j \in [k] \) and every \(x^{(j)} = (x_1, x_2, \ldots, x_j) \in A(j, a) \), the following is true.

(a) For all \(h \in [j] \), \(P^{(h)}(x^{(j)}) \) is a \((j, h)\)-cylinder;
(b) \(P(x^{(j)}) = \{ P^{(h)}(x^{(j)}) \}_{h=1}^{j} \) is a \((j, j)\)-complex.

Now we define formally the notion of a partition.

Definition 5.3 (Partition). Let \(k \) be a positive integer, \(V \) be a non-empty set, \(a = a_\mathcal{P} = (a_1, a_2, \ldots, a_k) \) be a vector of positive integers, and \(\psi_j : [V]^j \to [a_j] \) be a mapping, \(j \in [k] \). Set \(\Psi = \{ \psi_j : j \in [k] \} \). Then, we define a partition \(\mathcal{P} = \mathcal{P}(k, a, \psi) \) of \(\text{Cross}_k(\psi_1) \) by\(^1\)
\[
\mathcal{P} = \{ \mathcal{P}^{(k)}(x) : x \in A(k, a) \}. \tag{5.4}
\]
We also define the rank of \(\mathcal{P} \) by
\[
\text{rank}(\mathcal{P}) = |A(k, a)|. \tag{5.5}
\]

Remark 5.4. Without loss of generality, we may assume that mappings \(\psi_j : [V]^j \to [a_j] \) are onto for all \(j \in [k] \). Then we have
\[
\binom{a_1}{k} \times \prod_{h=2}^{k} a_h^{k_h} = \text{rank}(\mathcal{P}) \geq a_h
\]
for all \(h \in [k] \).

Remark 5.5. It follows from Definition 5.3 that for every \(j \in [k] \),
\[
\mathcal{P}^{(j)} = \mathcal{P}(j, a, \psi) = \{ \mathcal{P}^{(j)}(x^{(j)}) : x^{(j)} \in A(j, a) \} \tag{5.6}
\]
is a partition of \(\text{Cross}_j(\psi_1) \). Therefore, with every partition \(\mathcal{P} = \mathcal{P}(k, a, \psi) \) of \(\text{Cross}_k(\psi_1) \) we have associated a system of partitions \(\{ \mathcal{P}^{(j)} \}_{j=1}^{k} \) defined by (5.6). This system represents the “underlying structure” of \(\mathcal{P} \) in the following sense:

Every \(\mathcal{P} \in \mathcal{P} \) can be written as \(\mathcal{P}^{(k)}(x) \) for some \(x \in A(k, a) \) (see (5.4)). Since \(\mathcal{P} = \mathcal{P}(k) \), every \(\mathcal{P} \in \mathcal{P} \) uniquely defines \((k, k)\)-complex \(\mathcal{P}(x) = \{ \mathcal{P}^{(h)}(x) \}_{h=1}^{k} \) (see Claim 5.2) such that
- \(\mathcal{P} = \mathcal{P}^{(k)}(x) \in \mathcal{P}(x) \),
- \(\mathcal{P}^{(h)}(x) \) consists of \(\binom{k}{h} \) elements of \(\mathcal{P}^{(h)} \) for every \(h \in [k] \), and
- \(\mathcal{P}^{(h+1)}(x) \subseteq \mathcal{K}_{h+1}(\mathcal{P}^{(h)}(x)) \) for every \(h \in [k-1] \).

\(^1\)If there is no danger of confusion, we will omit the superscript \(^{(k)}\) in \(x^{(k)} \in A(k, a) \) to simplify the text.
Remark 5.6. For $k = 1$, \mathcal{P} is simply the partition $V = V_1 \cup \ldots \cup V_{a_1}$, where $V_i = \psi_1^{-1}(i)$. Such partition is considered in Theorem 1.3.

Remark 5.7. For $k = 2$, \mathcal{P} is composed of bipartite graphs ((2, 2)-cylinders) $\mathcal{P}^{(2)}(x)$ with bipartition $\mathcal{P}^{(1)}(x)$ (2, 1)-cylinders). If we write $x \in A(2, a)$ as $x = (i, j, \alpha)$, where $1 \leq i < j \leq a_1$ and $\alpha \in [a_2]$, then (2, 2)-cylinders $\mathcal{P}^{(2)}(x)$ correspond to bipartite graphs $P^{(2)}_{ij}$ with bipartition $V_i \cup V_j$ that were considered in [FR02].

Later, we will also need to describe when one partition refines another one.

Definition 5.8. Let $\mathcal{P} = \mathcal{P}(k, \psi, a)$ and $\mathcal{I} = \mathcal{I}(k, \varphi, b)$ be two partitions. We say that \mathcal{I} refines \mathcal{P}, and write $\mathcal{I} \prec \mathcal{P}$, if for every $\mathcal{P}(k) \in \mathcal{P}$ there are $\mathcal{S}_i^{(k)}(k) \in \mathcal{I}$, $i \in I(S^{(k)})$, so that

$$\mathcal{P}(k) = \bigcup \{S_i^{(k)} : i \in I(S^{(k)})\}. $$

We remark that the above definition implies that $\text{Cross}_k(\psi_1) \subseteq \text{Cross}_k(\varphi_1)$.

Let $\mathcal{P} = \mathcal{P}(k, \psi, a)$ be a partition of $\text{Cross}_k(\psi_1)$ and suppose that for every $x \in A(k, a)$, we decompose $\mathcal{P}(k)(x) \in \mathcal{P}$ into mutually edge-disjoint (k, k)-cylinders $S^{(k)}(\xi, x)$, where $1 \leq \xi \leq s$. In other words, $\mathcal{P}(k)(x) = \bigcup_{\xi=1}^s S^{(k)}(\xi, x)$ for all $x \in A(k, a)$. Then we claim the following.

Claim 5.9. The system

$$\mathcal{I} = \left\{S^{(k)}(\xi, x) : x \in A(k, a), \xi \in [s]\right\}$$

is a partition of $\text{Cross}_k(\psi_1)$ that refines \mathcal{P}.

6. Polyads

A regular pair played a central role in the definition of a regular partition for graphs (see Theorem 1.2). In [FR02], where the regularity lemma for triples was considered, this role was played by a ‘triad’ (which corresponds to a (3, 2)-cylinder). In order to define a regular partition \mathcal{P} for a k-uniform hypergraph, we extend these two concepts by introducing polyads. Polyads are $(k + 1, k)$-cylinders consisting of selected $k + 1$ members of \mathcal{P}.

We describe first the environment in which we work.

Setup 6.1. Let k be a positive integer, V be a non-empty set, $a = a_\mathcal{P} = (a_1, a_2, \ldots, a_k)$ be a vector of positive integers, $\psi = \{\psi_j : j \in [k]\}$ be a set of mappings $\psi_j : [V]^j \rightarrow [a_j]$, $j \in [k]$. Let $\mathcal{P} = \mathcal{P}(k, a, \psi)$ be the partition of $\text{Cross}_k(\psi_1)$ (see Definition 5.3).

Recall that for every crossing set $K \in \text{Cross}_{k+1}(\psi_1)$ and $h \in [k]$, we defined $\Psi_h(K)$ as the $(k+1)$-dimensional vector

$$\Psi_h(K) = (x_{\pi_h(H)} = \psi_h(H))_{H \in (K)^l},$$
where \(\pi_h(H) = (\lambda_1, \ldots, \lambda_h) \in ([a_1])_h^k \) is such that \(|H \cap V_{\lambda_h}| = 1\) for every \(u \in [h] \). We set
\[
\hat{\Psi}^{(k)}(K) = (\Psi_1(K), \Psi_2(K), \ldots, \Psi_k(K))
\]
and observe that \(\hat{\Psi}^{(k)}(K) \) is a vector having \(\sum_{h=1}^k (k+1)_h^h = 2k+1 - 2 \) entries. We define set \(\hat{A}(k, a) \) of \((2k+1 - 2)\)-dimensional vectors by
\[
\hat{A}(k, a) = \hat{A}(\emptyset, k, a) = ([a_1])_{k+1}^k \times \prod_{h=2}^k [a_h]_{k+1}^h.
\]
(6.1)
Then \(\hat{\Psi}^{(k)}(K) \in \hat{A}(k, a) \) for each crossing set \(K \in \text{Cross}_{k+1}(\psi_1) \).

Let \(\hat{x} \in \hat{A}(k, a) \). Then we write vector \(\hat{x} \) as \(\hat{x} = (\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_k) \), where \(\hat{x}_1 \in ([a_1])_{k+1}^k \) is an ordered set and \(\hat{x}_u = (\hat{x}_1 \uparrow (\hat{x}_i))_{\psi} \in [a_u]_{k+1}^u \) is a \((k+1)_u^u\)-dimensional vector with entries from \([a_u]_u^u\) for every \(u \geq 1 \).

Given an ordered set \(\Xi \subseteq \hat{x}_1 \) with \(1 \leq |\Xi| = h \leq k \), we set \(\hat{x}^\Xi_u = (\hat{x}_1 \uparrow (\hat{x}_i))_{\psi} \) for each \(u \in [h] \). We also define
\[
\hat{P}^{(h)}(\hat{x}) = \bigcup_{\Xi \subseteq (\hat{x}_1)_h^k} \{ P \in \text{Cross}_{h}(\psi_1) \colon \Psi^{(h)}(P) = (\hat{x}_1^\Xi, \ldots, \hat{x}_k^\Xi) \}
\]
for each \(h \in [k] \), and set \(\hat{P}(\hat{x}) = \left\{ \hat{P}^{(h)}(\hat{x}) \right\}_{h=1}^k \). Similarly to Claim 5.2, we can prove the following.

Claim 6.2. For every vector \(\hat{x} = (\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_k) \in \hat{A}(k, a) \), the following statements are true.

(1) For all \(h \in [k] \), \(\hat{P}^{(h)}(\hat{x}) \) is a \((k+1, h)\)-cylinder;

(2) \(\hat{P}(\hat{x}) = \left\{ \hat{P}^{(h)}(\hat{x}) \right\}_{h=1}^k \) is a \((k+1, k)\)-complex.

In this paper, \((k+1, k)\)-cylinders \(\hat{P}^{(k)}(\hat{x}) \) will play a special role and we will call them polyads.

Definition 6.3 (Polyad). Let \(\mathcal{P} = \mathcal{P}(k, a, \psi) \) be the partition of \(\text{Cross}_k(\psi_1) \) as described in the Setup 6.1. Then, for each vector \(\hat{x} \in \hat{A}(k, a) \), we refer to \((k+1, k)\)-cylinder \(\hat{P}^{(k)}(\hat{x}) \) as a polyad.

We also define the set \(\hat{\mathcal{P}} \) of all polyads of \(\mathcal{P} \) by
\[
\hat{\mathcal{P}} = \left\{ \hat{P}^{(k)}(\hat{x}) \colon \hat{x} \in \hat{A}(k, a) \right\}.
\]
(6.3)
For every polyad \(\hat{P} \in \hat{\mathcal{P}} \) there exists a unique vector \(\hat{x} \in \hat{A}(k, a) \) such that \(\hat{P} = \hat{P}^{(k)}(\hat{x}) \). Hence, each polyad \(\hat{P} \in \hat{\mathcal{P}} \) uniquely defines \((k+1, k)\)-complex \(\hat{P}(\hat{x}) = \left\{ \hat{P}^{(i)}(\hat{x}) \right\}_{i=1}^k \) such that \(\hat{P} \in \hat{P}(\hat{x}) \).
Remark 6.4. Similarly to Remark 5.4, if $\psi_j : [V]^j \to [a]$, $j \in [k]$, are mappings defining \mathcal{P}, then we have

$$\left(\begin{array}{c} a_1 \\ k + 1 \end{array} \right) \times \prod_{h=2}^{k} a_h^{(k+1)} \geq |\mathcal{P}|.$$

Remark 6.5. For $k = 1$, we have $a = (a_1)$ and $\hat{A}(1, a)$ consists of 1-dimensional vectors $\hat{x} = (\hat{x}_1)$, where $\hat{x}_1 = (i, j)$, $1 \leq i < j \leq a_1$. For a fixed $\hat{x} = (i, j)$, we have $\hat{x}_1^{(i)} = (i)$ and $\hat{x}_1^{(j)} = (j)$. Consequently, a polyad

$$\hat{P}^{(1)}(\hat{x}) = \bigcup_{\xi \in \{(i), (j)\}} \{ P \in \text{Cross}_1(\psi_1) : \Psi^{(1)}(P) = (\hat{x}_1^{\xi}) \}$$

is the bipartition $V_i \cup V_j$ (see Remark 5.6).

Remark 6.6. For $k = 2$, a polyad $\hat{P}^{(2)}(\hat{x}) \in \hat{P}$ is a $(3, 2)$-cylinder and $\hat{x} = ((i, j, \ell), (\alpha, \beta, \gamma)) \in \hat{A}(2, a)$ is a six-dimensional vector such that $1 \leq i < j < \ell \leq a_1$, $\alpha, \beta, \gamma \in [a_2]$. In view of Remark 5.7, $\hat{P}^{(2)}(\hat{x})$ is the 3-partite graph $P_a^i \cup P_a^j \cup P_a^\ell$ and $\hat{P}^{(1)}(\hat{x})$ is its 3-partition $V_i \cup V_j \cup V_\ell$. Note that the triple (P_a^i, P_a^j, P_a^ℓ) corresponding to $\hat{P}^{(2)}(\hat{x})$ was called a triad in [FR02].

Every polyad $\hat{P}^{(k)}(\hat{x}) \in \hat{P}$ is a $(k+1, k)$-cylinder that is the union of $k+1$ elements $((k, k)$-cylinders) of \mathcal{P}. We describe these elements using vector \hat{x}.

Let $\hat{x} = (\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_k) \in \hat{A}(k, a)$ be given. Then, for every $1 \leq u \leq k$, vector $\partial_u \hat{x}$ can be written as $\partial_u \hat{x} = (\hat{x}_y : y \in (\hat{x}_s)_{<u})$, i.e. its entries are labeled by u-element subsets of \hat{x}_1 in lexicographic order. For every $x \in \hat{x}_1$, we set

$$\partial_u \hat{x}_u = (\hat{x}_y : x \notin y) \in (\hat{x}_s)_{<u}. \quad (6.4)$$

In other words, vector $\partial_u \hat{x}_u$ contains precisely those entries of \hat{x} which are labeled by an u-element subset of \hat{x}_1 not containing x. Clearly, $\partial_u \hat{x}_u$ has $\binom{k}{u}$ entries from $[a]$. Furthermore, we set

$$\partial_u \hat{x} = (\partial_u \hat{x}_1, \partial_u \hat{x}_2, \ldots, \partial_u \hat{x}_k)$$

and observe that $\partial_u \hat{x}$ is a $(2^k - 1)$-dimensional vector belonging to $A(k, a)$. Then, the following fact is true.

Fact 6.7. For every vector $\hat{x} = (\hat{x}_1, \ldots, \hat{x}_k) \in \hat{A}(k, a)$,

$$\hat{P}^{(k)}(\hat{x}) = \bigcup_{x \in \hat{x}_1} P^{(k)}(\partial_x \hat{x}). \quad (6.5)$$

On the other hand, given a (k, k)-cylinder $P^{(k)}(x) \in \mathcal{P}$, we will also need to describe all polyads that contain this (k, k)-cylinder.

Let $x \in A(k, a)$ and $\hat{x} = (\hat{x}_1, \ldots, \hat{x}_k) \in \hat{A}(k, a)$ be given. We say that $x < \hat{x}$ if there exists $x \in \hat{x}_1$ such that $x = \partial_x \hat{x}$. In this case, we say that \hat{x} is an extension of x and denote by $\text{Ext}(x)$ the set of all extensions of x, i.e.

$$\text{Ext}(x) = \left\{ \hat{x} \in \hat{A}(k, a) : x < \hat{x} \right\}.$$
Then, in view of Fact 6.7, we have that $\mathcal{P}(k)(x) \subset \hat{\mathcal{P}}(k)(\hat{x})$ whenever $x < \hat{x}$.

Remark. For $k = 1$, a 1-dimensional vector $x = (i)$ describes a subscript i of a set V_i in Szemerédi’s partition and a 2-dimensional vector $\hat{x} = (i, j)$ describes a pair of subscripts i, j of a pair V_i, V_j in Szemerédi’s partition (see Theorem 1.3). Hence, if $x = (i)$, then $x < \hat{x}$ if \hat{x} contains i and $\text{Ext}(x)$ is the set of all 2-dimensional vectors containing i.

Remark. For $k = 2$, a 3-dimensional $(3 = 2^2 - 1)$ vector x describes subscripts i, j, and α corresponding to a bipartite graph P^{ij}_α in a Frankl-Rödl partition. A 6-dimensional $(6 = 2^{2+1} - 2)$ vector $\hat{x} = (i, j, \ell, \alpha, \beta, \gamma)$ describes a triad in a Frankl-Rödl partition (see Definition 8.6). Hence, $x < \hat{x}$ if a triad determined by \hat{x} includes bipartite graph P^{ij}_α and $\text{Ext}(x)$ is the set of all such vectors \hat{x}.

We will prove the following fact.

Fact 6.8. For every $x \in A(k, a)$, $|\text{Ext}(x)| \leq |A(k, a)|^k$.

Proof. Let $x \in A(k, a)$ be given. If $\hat{x} = (\hat{x}_1, \ldots, \hat{x}_k) \in \text{Ext}(x)$, i.e. $x = \partial_x \hat{x}$ for some $x \in \hat{x}_1$, then notice that $2^k - 1$ of $2^{k+1} - 2$ components of vector \hat{x} are determined by x. Therefore, the size of set $\text{Ext}(x)$ is bounded by

$$(a_1 - k) \times \prod_{j=2}^{k} \frac{a_j^{(k+1)}}{\prod_{j=2}^{k} a_j^{(j)}} \leq a_1 \times \prod_{j=2}^{k} a_j^{(j-1)}.$$

Since $\binom{k}{j-1} \leq k \times \binom{k}{j}$ and $|A(k, a)| = \binom{\alpha_1}{k} \times \prod_{j=2}^{k} a_j^{(j)}$, it is easy to observe that the above product is bounded by $|A(k, a)|^k$. \qed

7. Glossary of terms

This section provides a brief summary of terms defined in the previous three sections. The reader may find it useful in the remainder of this paper.

Cylinders and Complexes.

- An (ℓ, k)-cylinder is an ℓ-partite k-uniform hypergraph.
- A complex $\mathcal{G} = \{G^{(j)}\}_{j=1}^{k}$ is a set of k-cylinders satisfying conditions (a) and (b) of Definition 4.6.

Partition.

Let a_1, a_2, \ldots, a_k be fixed positive integers and $a = (a_1, \ldots, a_k)$. Below, J is a set with j elements.

- $\psi_j : [V]^{j} \rightarrow [a_j], j \in [k]$ are k mappings.
- $V_i = \psi_i^{-1}(i)$ for every $i \in [a_1]$.
- $\text{Cross}_j(\psi_1) = \{J \in [V]^{j} : |J \cap V_i| \leq 1, i \in [a_1]\}$ is the set of all j-element crossing subsets J of V.

REGULARITY LEMMA FOR k-UNIFORM HYPERGRAPHS

15

• \(\pi_j(J) = (\lambda_1, \ldots, \lambda_j) \in ([a_1])^j \) is so that \(|J \cap V_{\lambda_h}| = 1 \) for every \(h \in [j] \).

• \(\Psi_h(J) = (x_{\pi_h(H)} = \psi_h(H))_{H \in [J]^h} \) is a vector with \(\binom{j}{k} \) entries from \([a_h]\), where \(h \in [j] \).

• \(\Psi(j)(J) = (\Psi_1(J), \Psi_2(J), \ldots, \Psi_j(J)) \) is a vector with \(\sum_{h=1}^j \binom{j}{h} = 2^j - 1 \) entries.

• \(A(j, a) = ([a_1])^j < \times \prod_{h=2}^j [a_h]\binom{j}{h} \) is a set of \(2^j - 1 \) dimensional vectors.

• \(x(j) = (x_1, x_2, \ldots, x_j) \) is a vector from \(A(j, a) \), where \(\hat{x}_1 \in ([a_1])^j \) and \(\hat{x}_u = (\hat{x}_\Upsilon)_{\Upsilon \in (\hat{x}_1)^u} \) for every \(u > 1 \).

• for an ordered set \(\Xi \subseteq \hat{x}_1 \) with \(1 \leq |\Xi| = h \leq j \), we set \(\hat{x}_u = (\hat{x}_\Upsilon)_{\Upsilon \in (\Xi)^u} \) for each \(u \in [h] \).

• \(\mathcal{P}^{(h)}(x(j)) = \bigcup_{\Xi \subseteq \hat{x}_1} \{ P \in \text{Cross}_h(\psi_1) : \Psi^{(h)}(P) = (x_1^\Xi, \ldots, x_h^\Xi) \} \) is a \((j, h) \)-cylinder for every \(h \in [j] \).

• \(\mathcal{P}(x(j)) = \{ \mathcal{P}^{(h)}(x(j)) \}_{h=1}^j \) is a \((j, j) \)-complex.

• \(\mathcal{P}(k, a, \psi) = \{ \mathcal{P}^{(h)}(x) : x \in A(k, a) \} \) is a partition of the set \(\text{Cross}_k(\psi_1) \).

Polyads.
Let \(\mathcal{P} = \mathcal{P}(k, a, \psi) \) be any partition of \(\text{Cross}_k(\psi_1) \) and \(K \in \text{Cross}_{k+1}(\psi_1) \) is a \(k + 1 \) element crossing set.

• \(\Psi_h(K) = (\psi_h(H))_{H \in [K]^h} \) is a vector with \(\binom{k+1}{h} \) entries from \([a_h]\) for every \(h \in [k] \).

• \(\hat{\Psi}^{(k)}(K) = (\hat{\Psi}_1(K), \ldots, \hat{\Psi}_k(K)) \) is a vector with \(\sum_{h=1}^k \binom{k+1}{h} = 2^{k+1} - 2 \) entries.

• \(\hat{A}(k, a) = \hat{A}(a) = ([a_1])^{k+1} < \times \prod_{h=2}^{k+1} [a_h]\binom{k+1}{h} \) is a set of \(2^{k+1} - 2 \) dimensional vectors.

• \(\hat{x} = (\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_k) \) is a vector from \(\hat{A}(k, a) \), where \(\hat{x}_1 \in ([a_1])^{k+1} \) and \(\hat{x}_u = (\hat{x}_\Upsilon)_{\Upsilon \in (\hat{x}_1)^u} \) for every \(u > 1 \).

• for an ordered set \(\Xi \subseteq \hat{x}_1 \) with \(1 \leq |\Xi| = h \leq k \), we set \(\hat{x}_u = (\hat{x}_\Upsilon)_{\Upsilon \in (\Xi)^u} \) for each \(u \in [h] \).

• \(\hat{\mathcal{P}}^{(h)}(\hat{x}) = \bigcup_{\Xi \subseteq \hat{x}_1} \{ P \in \text{Cross}_h(\psi_1) : \Psi^{(h)}(P) = (\hat{x}_1^\Xi, \ldots, \hat{x}_h^\Xi) \} \) is a \((k + 1, h) \)-cylinder for every \(h \in [k] \).

• \(\hat{\mathcal{P}}(\hat{x}) = \{ \hat{\mathcal{P}}^{(h)}(\hat{x}) \}_{h=1}^k \) is a \((k + 1, k) \)-complex.

• \(\hat{\mathcal{P}}(\hat{x}) \) is called a polyad.

Extensions.
Let \(x \in A(a, k) \), \(\hat{x} = (\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_k) \in \hat{A}(a, k) \), \(\hat{x}_u = (\hat{x}_\Upsilon)_{\Upsilon \in (\hat{x}_1)^u} \) for \(u \in [k] \).

• \(\partial_x \hat{x}_u = (\hat{x}_\Upsilon : x \not\in \Upsilon)_{\Upsilon \in (\hat{x}_1)^u} \) is a \(\binom{k}{u} \)-dimensional vector from \([a_u]\binom{k}{u} \) for every \(u \in [k] \).
8. Regular partition

Let $\mathcal{P} = \mathcal{P}(k, a, \psi)$ be any partition of $\text{Cross}_k(\psi_1)$ on n vertices as described in Setup 6.1. Then we define the (relative) volume of a polyad $\mathcal{P}^{(k)} \in \hat{\mathcal{P}}$ by

$$\text{Vol}(\mathcal{P}^{(k)}) = \frac{|K_{k+1}(\mathcal{P}^{(k)})|}{\binom{n}{k+1}}.$$ (8.1)

Remark 8.1. For $k = 1$ and for any vector $\hat{x} = (i, j) \in \hat{A}(1, a)$, we have $1 \leq i < j \leq a_1$, and polyad $\mathcal{P}^{(1)}(\hat{x})$ is simply bipartition $V_i \cup V_j$ (cf. Remark 6.5). Thus, $K_2(\mathcal{P}^{(1)}(\hat{x}))$ is the complete bipartite graph $K(V_i, V_j)$ (cf. Definition 4.3) and $\text{Vol}(\mathcal{P}^{(1)}(\hat{x})) = |V_i||V_j|/\binom{n}{2}$.

Remark 8.2. For $k = 2$ and for any six-dimensional vector $\hat{x} = (i, j, \ell, \alpha, \beta, \gamma) \in \hat{A}(2, a)$, polyad $\mathcal{P}^{(2)}(\hat{x}) = P_{\alpha, \beta}^{i, j} \cup P_{\beta, \gamma}^{i, \ell} \cup P_{\gamma, \alpha}^{\ell, j}$ is a $(3, 2)$-cylinder (see Remark 5.7). Hence, $|K_3(\mathcal{P}^{(2)}(\hat{x}))|$ counts the number of triangles in $\mathcal{P}^{(2)}(\hat{x})$ and $\text{Vol}(\mathcal{P}^{(2)}(\hat{x}))$ corresponds to a relative number of triangles $t((P_{\alpha, \beta}^{i, j}, P_{\beta, \gamma}^{i, \ell}, P_{\gamma, \alpha}^{\ell, j}))$ in a triad $(P_{\alpha, \beta}^{i, j}, P_{\beta, \gamma}^{i, \ell}, P_{\gamma, \alpha}^{\ell, j})$ defined in [FR02].

In this paper, we will work only with partitions with certain properties. These properties are summarized in the following definition.

Definition 8.3 (equitable (μ, δ, d, r)-partition). Let $\delta = (\delta_2, \ldots, \delta_k)$ and $d = (d_2, \ldots, d_k)$ be two arbitrary but fixed vectors of real numbers between 0 and 1, μ be a number in interval $(0, 1)$ and r be a positive integer. We say that a partition $\mathcal{P} = \mathcal{P}(k, a, \psi)$ is an equitable (μ, δ, d, r)-partition if all but at most $\mu |n|^{k+1}$ many $(k+1)$-tuples $K \in [V]^{k+1}$ belong to (δ, d, r)-regular complexes $\hat{\mathcal{P}}(\hat{x}) = \{\hat{\mathcal{P}}(\hat{x})\}_{j=1}^k$, where $\hat{x} \in \hat{A}(k, a)$. More precisely,

$$\sum_{\hat{x} \in \hat{A}(k, a)} \left\{ \text{Vol}(\mathcal{P}(k)(\hat{x})): \hat{\mathcal{P}}(\hat{x}) \text{ is } (\delta, d, r)\text{-regular} \right\} > 1 - \mu.$$ (8.2)

Remark 8.4. For $k = 1$, polyad $\mathcal{P}^{(1)}(\hat{x})$ is a $(2, 1)$-cylinder (see Remark 6.5) and $\hat{\mathcal{P}}(\hat{x}) = \{\hat{\mathcal{P}}^{(1)}(\hat{x})\}$ is a $(2, 1)$-complex that is (δ, d, r)-regular for every vector $\hat{x} \in \hat{A}(1, a)$ (cf. Remark 6.1). Thus, Definition 8.3 states that all but $\mu |n|^{2}$ pairs of vertices are crossing.

Remark 8.5. For $k = 2$ and a vector $\hat{x} \in \hat{A}(2, a)$, (δ, d, r)-regular $(3, 2)$-complex $\hat{\mathcal{P}}(\hat{x})$ consists of (δ_2, d_2)-regular tripartite graph $\hat{\mathcal{P}}^{(2)}(\hat{x})$ and its
tripartition $\mathcal{P}^{(1)}(\bar{x})$ (see Remarks 4.13 and 6.6). Due to (8.1), inequality (8.2) means that all but at most $\mu(\binom{n}{3})$ triples of vertices from V are crossing and belong to (δ_2, d_2)-regular $(3,2)$-cylinders from $\hat{\mathcal{P}}$.

In terms of the connection between Definition 8.3 and [FR02], we first recall the definition of an equitable $(\ell,t,\varepsilon_1,\varepsilon_2)$-partition (Definition 3.2 in [FR02]).

Definition 8.6. Let V be a set. An equitable $(\ell,t,\varepsilon_1,\varepsilon_2)$-partition \mathcal{P} of $[V]^2$ is an (auxiliary) partition $V = \bigcup_{i=0}^{t} V_i$ with $|V_0| \leq t\varepsilon_1$ and $|V_i| = \ldots = |V_t| = m$, together with a family of graphs P^i_j, where $1 \leq i < j \leq t$ and $0 \leq \alpha \leq \ell$, such that

1. $\bigcup_{i=0}^{t} P^i_j = K(V_i, V_j)$ for all i,j, $1 \leq i < j \leq t$, and
2. for all but $\varepsilon_1\left(\frac{t}{2}\right)$ pairs i,j, $1 \leq i < j \leq t$, $|P^i_j| \leq \varepsilon_1 m^2$ and all bipartite graphs P^i_j, $\alpha \in [\ell]$, are $(\varepsilon_2,1/\ell)$-regular (see Definition 4.10).

Remark 8.7. One can show that an equitable $(\ell,t,\varepsilon_1,\varepsilon_2)$-partition \mathcal{P} is also an equitable (μ, δ, d, r)-partition, provided that $\mu = 27\varepsilon_1$, $\delta = (\delta_2) = (\varepsilon_2)$, $d = (d_2) = (1/\ell)$, $t \geq 1/\varepsilon_1$, $m \geq 1/\varepsilon_1$, and $a = (t+1, \ell+1)$. This means that we must prove that all but at most $\mu(\binom{n}{3})$ triples are crossing and triangles in (δ_2, d_2)-regular $(3,2)$-cylinders. Indeed, there are at most

- $t \times n^2$ triples containing a vertex from V_0,
- $t \times \binom{m}{2} \times n + t \times \binom{m}{3}$ triples which are not crossing,
- $\varepsilon_1\left(\frac{t}{2}\right) \times n^2 \times m$ triples in $(3,2)$-cylinders containing P^{ij}_0 with $|P^{ij}_0| > \varepsilon_1 m^2$ or in $(3,2)$-cylinders containing $(\varepsilon_2,1/\ell)$-irregular P^{ij}_0 (i.e. ε_1 is an exceptional pair from (2))
- $\binom{t}{2} \times n \times \varepsilon_1 m^2$ triples in $(3,2)$-cylinders containing P^{ij}_0 with $|P^{ij}_0| \leq \varepsilon_1 m^2$.

Thus, the number of triples of vertices which are not in (δ, d, r)-regular polyads is bounded by

$$
nt^2 + t\binom{m}{2} n + t\binom{m}{3} + 2\varepsilon_1\left(\frac{t}{2}\right) m^2 n \leq \left(\frac{t}{n} + \frac{1}{2t} + \frac{1}{6t^2} + \varepsilon_1\right)n^3 \\
\leq 9(\varepsilon_1 + \varepsilon_1/2 + \varepsilon_1/3 + \varepsilon_1)\binom{n}{3} = \mu\binom{n}{3}.
$$

Hence, (8.2) holds.

Now we can define the notion of a regular partition – a partition we are looking for.

Definition 8.8 (regular partition). Let \mathcal{H} be a $(k+1)$-uniform hypergraph with vertex set V, $|V| = n$, and let $\mathcal{P} = \mathcal{P}(k, a, \psi)$ be any equitable (μ, δ, d, r)-partition of Cross$_k(\psi_1)$.

A polyad $\hat{\mathcal{P}}^{(k)}(\bar{x})$ is called (δ_{k+1}, r)-regular (w.r.t \mathcal{H}) if

(a) complex $\hat{\mathcal{P}}(\bar{x}) = \left\{ \hat{\mathcal{P}}^{(j)}(\bar{x}) \right\}_{j=1}^{k}$ is (δ, d, r)-regular, and
(b) \(\mathcal{H} \) is \((\delta_{k+1}, r)\)-regular\(^2\) with respect to \(\hat{\mathcal{P}}^{(k)}(\hat{x})\).

We say \(\mathcal{P} \) is \((\delta_{k+1}, r)\)-regular\(^1\) (w.r.t. \(\mathcal{H} \)) if all but at most \(\delta_{k+1, \binom{n}{k+1}} \) many \((k+1)\)-tuples \(K \in [V]^{k+1} \) are in \((\delta_{k+1}, r)\)-regular polyads \(\hat{\mathcal{P}}^{(k)}(\hat{x})\). In other words,

\[
\sum_{\hat{x} \in A(k, a)} \left\{ \text{Vol}(\hat{\mathcal{P}}^{(k)}(\hat{x})); \hat{\mathcal{P}}^{(k)}(\hat{x}) \text{ is } (\delta_{k+1}, r)\text{-regular} \right\} > 1 - \delta_{k+1}. \tag{8.3}
\]

Remark 8.9. For \(k = 1 \), each polyad \(\hat{\mathcal{P}}^{(1)}(\hat{x}) \), where \(\hat{x} = (i, j) \in \hat{A}(1, a) \), is just bipartition \(V_i \cup V_j \). Moreover, by Remark 4.13, condition (a) is trivially satisfied and condition (b) means that pair \((V_i, V_j) \) is \(\delta_2 \)-irregular (see discussion behind Definition 4.7).

Hence, Definition 8.8 states that partition \(V = V_1 \cup \ldots \cup V_{a_1} \) is \(\delta_2 \)-regular if all but at most \(\delta_2, \binom{n}{2} \) pairs of vertices are crossing and in \(\delta_2 \)-regular pairs. This exactly fits the description of the partition from Theorem 1.3.

Remark 8.10. For \(k = 2 \), the concept of an equitable \((\mu, \delta, \mathbf{d}, r)\)-partition plays the same role as that of an equitable \((\ell, t, \varepsilon_1, \varepsilon_2)\)-partition in [FR02]. Similarly, a polyad \(\hat{\mathcal{P}}^{(2)}(\hat{x}) \) corresponds to a triad defined in [FR02] (see Remarks 8.5 and 8.7). Then, \((\delta_3, r)\)-irregular polyad \(\hat{\mathcal{P}}^{(2)}(\hat{x}) \) corresponds to a \((\delta_3, r)\)-irregular triad as defined in Definition 3.3 of [FR02]. Hence, Definition 8.8 corresponds to Definition 3.4 in [FR02].

In the previous two definitions, \(r \) was a fixed integer and \(\mathbf{d} \) and \(\delta \) were two fixed vectors. For our regularity lemma to work, we need to extend these definitions to the case when vector \(\delta \) is a prescribed function of \(\mathbf{d} \) and \(r \) is a prescribed function of \(a_1 \) (the number of vertex classes) and \(\mathbf{d} \). We remark that the dependency of \(r \) on \(a_1 \) and \(\mathbf{d} \) is not needed for the proof of our regularity lemma but it is essential for applications of this lemma.

Definition 8.11 (functionally equitable partition). Let \(\mu \) be a number in interval \((0, 1]\), \(\delta_k(d_k), \delta_{k-1}(d_{k-1}, d_k), \ldots, \delta_2(d_2, \ldots, d_k) \), and \(r = r(t, d_2, \ldots, d_k) \) be non-negative functions. Set \(\delta = (\delta_2, \ldots, \delta_k) \).

A partition \(\mathcal{P} = \mathcal{P}(k, \mathbf{a}, \psi) \) of \(\text{Cross}_k(\psi_1) \) is a functionally equitable \((\mu, \delta, r)\)-partition if there exists a vector \(\mathbf{d} = (d_2, \ldots, d_k) \) such that \(\mathcal{P} \) is an equitable \((\mu, \delta(\mathbf{d}), \mathbf{d}, r(a_1, \mathbf{d}))\)-partition (see Definition 8.3).

Definition 8.12 (regular functionally equitable partition). Let a \((k+1)\)-uniform hypergraph \(\mathcal{H} \) and a number \(\delta_{k+1} \), where \(0 < \delta_{k+1} \leq 1 \), be given. We say that a functionally equitable \((\mu, \delta, r)\)-partition \(\mathcal{P} \) is \((\delta_{k+1}, r)\)-regular\(^3\) (w.r.t. \(\mathcal{H} \)) if \(\mathcal{P} \) is \((\delta_{k+1}, r(a_1, \mathbf{d}))\)-regular\(^2\) (w.r.t. \(\mathcal{H} \)), where \(\mathbf{d} \) is the vector from Definition 8.11.

Remark 8.13. Note that for \(k = 1 \) there are no functions given in the above definitions, and, therefore, a \(\delta_2 \)-regular functionally equitable \((\mu, \delta, r)\)-partition \(\mathcal{P} \) corresponds to a \(\delta_2 \)-regular partition (see Remark 8.9).

\(^2\)\(\delta_2\)-regular for \(k = 1 \)

\(^3\)\(\delta_2\)-regular for \(k = 1 \)
The objective of this paper is to prove the following theorem.

Theorem 8.14 (Main theorem). For every integer \(k \in \mathbb{N} \), all numbers \(\delta_{k+1} > 0 \) and \(\mu > 0 \), and any non-negative functions \(\delta_k(d_k), \delta_{k-1}(d_{k-1}, d_k), \ldots, \delta_2(d_2, \ldots, d_k) \), and \(r = r(t, d_2, \ldots, d_k) \), there exist integers \(n_{k+1} \) and \(L_{k+1} \) such that the following holds.

For every \((k+1)\)-uniform hypergraph \(\mathcal{H} \) with at least \(n_{k+1} \) vertices there exists a partition \(\mathcal{P} = \mathcal{P}(k, a, \psi) \) of \(\text{Cross}_k(\psi) \) so that

(i) \(\mathcal{P} \) is a functionally equitable \((\mu, \delta, r)\)-partition,
(ii) \(\mathcal{P} \) is \((\delta_{k+1}, r)\)-regular (w.r.t. \(\mathcal{H} \)), and
(iii) \(\text{rank}(\mathcal{P}) = |A(k, a)| \leq L_{k+1} \).

Remark 8.15. For \(k = 1 \), Theorem 8.14 is equivalent to Theorem 1.3. Indeed, in view of Remark 8.13, (i) and (ii) mean that the partition \(\mathcal{P} \) is \(\delta_2\)-regular. Furthermore, \(|A(1, a)| = a_1 \), thus, condition (iii) means that the number of partition classes is bounded by \(L_2 \), independently of the given graph \(\mathcal{H} \). This is precisely the statement of Theorem 1.3.

Remark 8.16. The proof of Theorem 8.14 is by induction and implicitly uses the Regularity Lemma of Szemerédi as the base case for the induction. Since the proof doesn’t change the sizes of vertex classes once we apply the induction assumption, we may assume that every two vertex classes of every partition considered in this paper differ in sizes by at most 1. In other words, if \(\mathcal{P} \) is a partition of \(\text{Cross}_k(\psi) \), then

\[
|\psi_1^{-1}(1)| \leq |\psi_1^{-1}(2)| \leq \ldots \leq |\psi_1^{-1}(a_1)| \leq |\psi_1^{-1}(1)| + 1.
\]

Note that similarly to Szemerédi’s Lemma (case \(k = 1 \)), one can show a version of Theorem 8.14 with the hypergraph \(\mathcal{H} \) replaced by an \(s \)-tuple of hypergraphs \(\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_s \).

Theorem 8.17 (Statement Regularity(k)). Let \(s, k \geq 1 \) be fixed integers. Then, for all numbers \(\delta_{k+1} > 0 \) and \(\mu > 0 \), and any non-negative functions \(\delta_k(d_k), \delta_{k-1}(d_{k-1}, d_k), \ldots, \delta_2(d_2, \ldots, d_k) \), and \(r = r(t, d_2, \ldots, d_k) \), there exist integers \(n'_{k+1} \) and \(L'_{k+1} \) such that the following holds.

For every \((k+1)\)-uniform hypergraphs \(\mathcal{H}_1, \ldots, \mathcal{H}_s \) with common vertex set of size at least \(n'_{k+1} \) there exists a partition \(\mathcal{P} = \mathcal{P}(k, a, \psi) \) of \(\text{Cross}_k(\psi) \) so that

(i) \(\mathcal{P} \) is a functionally equitable \((\mu, \delta, r)\)-partition,
(ii) \(\mathcal{P} \) is \((\delta_{k+1}, r)\)-regular with respect to every \(\mathcal{H}_i, i \in [s] \), and
(iii) \(\text{rank}(\mathcal{P}) = |A(k, a)| \leq L'_{k+1} \).

Remark 8.18. We are going to use Regularity\((k)\) as an assumption to prove Regularity\((k + 1)\). However, for simplicity and since there is no principle difference between the proof of Theorem 8.17 and Theorem 8.14, we will show Regularity\((k + 1)\) only for \(s = 1 \).

Remark 8.19. For \(k = 1 \), the above theorem appears (as Lemma 3.7) in [FR02] in the following form:
For any $\varepsilon_0 > 0$ and positive integers t and s, there exist integers $N(\varepsilon_0, t, s)$ and $T(\varepsilon_0, t, s)$ such that the following holds. If $|V| > N(\varepsilon_0, t, s)$, then for any partition $V = V_0 \cup V_1 \cup \ldots \cup V_t$, with $|V_0| < t$ and $|V_1| = |V_2| = \ldots = |V_t|$, and any system of graphs H_1, H_2, \ldots, H_s, each on the vertex set V, there exists a partition $V = W_0 \cup W_1 \cup \ldots \cup W_{t'}$ such that

1. $|W_0| < t' < T(\varepsilon_0, t, s)$,
2. $|W_1| = |W_2| = \ldots = |W_{t'}|$,
3. the partition $V = W_0 \cup W_1 \cup \ldots \cup W_{t'}$ “refines” the given partition $V = V_0 \cup V_1 \cup \ldots \cup V_t$, that is, for all $1 \leq i \leq t'$, there exists $1 \leq j \leq t$ such that $W_i \subset V_j$,
4. $W_0 \cup W_1 \cup \ldots \cup W_{t'}$ is ε_0-regular with respect to H_i for all $i = 1, 2, \ldots, s$.

Note that if $|V|$ is divisible by t and t', then W_0 and V_0 are empty and the partition $V = W_1 \cup \ldots \cup W_{t'}$ refines the given partition $V = V_1 \cup \ldots \cup V_t$.

Regularities (k) is an assumption to prove Regularities $(k + 1)$ and, therefore, Lemma 3.7 in [FR02] is the base case for the induction. Since the proof doesn’t change the sizes of the vertex classes once we apply the induction assumption and we apply Regularities (k) (and implicitly Lemma 3.7) only finitely many times, we may assume the following throughout the proof:

- the size of the vertex set V is divisible by the number of classes of each vertex partition considered (we can always add a constant number of vertices);
- when applying Regularities (k), the resulting partition \mathcal{R} refines any given initial vertex partition $V = V_1 \cup \ldots \cup V_t$. In other words, if \mathcal{R} is a partition of $\text{Cross}_k(\psi_1)$, then for every $1 \leq i \leq a_1$ there exists $1 \leq j \leq t$ such that

$$\psi_1^{-1}(i) \subset V_j.$$

Consequently, every crossing set in the partition $V = V_1 \cup \ldots \cup V_t$ remains crossing in \mathcal{R}. In particular, this delicate observation will be used in (12.10).

Since we introduced a number of various symbols in this section, we highlight the following:

- $\delta_2, \delta_3, \ldots, \delta_k, r$ are parameters that control the regularity properties of the underlying structure (partition);
- μ is a parameter describing what fraction of $(k + 1)$-tuples are not “under control”, that is, they are not crossing or do not belong to dense, regular polyads;
- δ_{k+1} controls the regularity of \mathcal{H} with respect to underlying polyads;
- while μ and δ_{k+1} are fixed positive reals, $\delta_2, \delta_3, \ldots, \delta_k$ are functions of densities d_2, d_3, \ldots, d_k;
- r is a function of the number of partition classes a_1 and densities d_2, d_3, \ldots, d_k.

Our proof of Theorem 8.14 resembles the proofs from [Sze78, FR02]. First, we define the notion of the index of a partition.

Definition 9.1 (Index). Let H be a $(k+1)$-uniform hypergraph with vertex set V and let $\mathcal{P} = \mathcal{P}(k, a, \psi)$ be a partition of $\text{Cross}_k(\psi_1)$. We define the index of partition \mathcal{P} by

$$\text{ind}\mathcal{P} = \sum_{\hat{x} \in \hat{A}(k, a)} \text{Vol}(\hat{P}^{(k)}(\hat{x})) \times d^2_k(\hat{P}^{(k)}(\hat{x})).$$

Then we observe that the index of every partition is bounded.

Fact 9.2. For every $(k+1)$-uniform hypergraph H and every partition $\mathcal{P} = \mathcal{P}(k, a, \psi)$ of $\text{Cross}_k(\psi_1)$, we have

$$0 \leq \text{ind}\mathcal{P} \leq 1.$$

Let $\delta_{k+1}, \mu, \delta = (\delta_2, \ldots, \delta_k)$, $\delta_i = \delta_i(d_i, \ldots, d_k)$, where $i = 2, \ldots, k$, and $r = r(t, d_2, \ldots, d_k)$ be as in Theorem 8.14. In the actual proof of Theorem 8.14, we make a use of the following statement that enables to increase the index of the partition.

Lemma 9.3 (Index Pumping Lemma, Statement Pump(k)). For every functionally equitable (μ, δ, r)-partition $\mathcal{P} = \mathcal{P}(k, a, \psi)$, which is not (δ_{k+1}, r)-regular, there exists a partition \mathcal{T} and a function f (defined in context) such that

- \mathcal{T} is a functionally equitable (μ, δ, r)-partition,
- $\text{rank}(\mathcal{T}) \leq f(\text{rank}(\mathcal{P}), \delta_{k+1}, \delta, r),$
- and $\text{ind}\mathcal{T} \geq \text{ind}\mathcal{P} + \delta_{k+1}^4/2$.

The proof of Theorem 8.14 will follow from the following facts

(I1) **Regularity(2)** holds;

(I2) **Pump(k)⇒Regularity(k)** holds for every $k > 2$;

(I3) **Regularity($k - 1$)⇒Pump(k)** holds for every $k > 2$.

Indeed, we have

$$(\text{Regularity(2)} \Rightarrow \text{Pump(3)} \Rightarrow \text{Regularity(3)} \Rightarrow \text{Pump(4)} \Rightarrow \cdots) \Rightarrow \cdots \Rightarrow \text{Regularity($k - 1$)} \Rightarrow \text{Pump(k)} \Rightarrow \text{Regularity(k)} \Rightarrow \cdots.$$

What remains to prove are facts (I1)–(I3). We start with the first two since they are easier to handle.
10. Proof of facts (I1), (I2).

Proof of (I1). First we write the statement of Regularity(2):

Lemma 10.1. Let \(s \geq 1 \) be a fixed integer. Then, for all numbers \(\delta_3 > 0 \) and \(\mu > 0 \), and any non-negative functions \(\delta_2(d_2) \) and \(r = r(t, d_2) \), there exist integers \(n_3 \) and \(L_3 \) such that the following holds.

For all 3-uniform hypergraphs \(H_1, \ldots, H_s \) on the same vertex set with at least \(n_3 \) vertices there exists a partition \(\mathcal{P} = \mathcal{P}(2, a, \psi) \) of \(\text{Cross}_2(\psi_1) \) so that

(i) \(\mathcal{P} \) is a functionally equitable \((\mu, (\delta_2), r)\)-partition,
(ii) \(\mathcal{P} \) is \((\delta_3, r)\)-regular with respect to every \(H_i, i \in [s] \), and
(iii) \(\text{rank}(\mathcal{P}) = |A(2, a)| \leq L_3 \).

Lemma 10.1 is a consequence of Theorem 10.2 (see Theorem 3.11 in [FR02]).

Theorem 10.2. For all integers \(s, t_0, \) and \(\ell_0, \) for all \(\delta \) and \(\varepsilon_1 \), \(0 < \varepsilon_1 \leq 2\delta^4/s \), and for all integer-valued functions \(r(t, \ell) \) and all functions \(\varepsilon_2(\ell) \), there exist \(T_0, L_0, \) and \(N_0 \) such that if \(H_1, \ldots, H_s \) are 3-uniform hypergraphs on the same vertex set \(V \) with \(|V| > N_0 \), then, for some \(t \) and \(\ell \) satisfying \(t_0 \leq t < T_0 \) and \(\ell_0 \leq \ell < L_0 \), there exists an equitable \((\ell, t, \varepsilon_1, \varepsilon_2(\ell))\)-partition (see Definition 8.6) which is \((\delta, r(t, \ell))\)-regular with respect to each \(H_i, i \in [s] \).

In order to get Lemma 10.1, we apply Theorem 10.2 and obtain an equitable \((\ell, t, \varepsilon_1, \varepsilon_2(\ell))\)-partition \(\mathcal{P} \) that is \((\delta, r(t, \ell))\)-regular with respect to each \(H_i, i \in [s] \). The input parameters for Theorem 10.2 are chosen so that \(\mathcal{P} \) is an equitable \((\mu, (\delta, r(\ell, \ell)))\)-partition by Remark 8.7 and \((\delta, r(t, d))\)-regular with respect to each \(H_i, i \in [s] \), by Remark 8.10. We omit details here.

Proof of I2. To prove \(\text{Pump}(k) \Rightarrow \text{Regularity}(k) \), we follow the idea of Szemerédi [Sze78]. We define an initial partition \(\mathcal{P}_0 \) that is a functionally equitable \((\mu,\delta, r)\)-partition. If partition \(\mathcal{P}_0 \) is not \((\delta_{k+1}, r)\)-regular, then we apply \(\text{Pump}(k) \) and obtain a functionally equitable \((\mu,\delta, r)\)-partition \(\mathcal{P}_1 \) whose index exceeds \(\text{ind} \mathcal{P}_0 \) by a positive constant. We repeat the whole procedure until we get a \((\delta_{k+1}, r)\)-regular functionally equitable \((\mu,\delta, r)\)-partition. This must happen in finite many steps because the index of every partition is bounded by 1 and we increase the index by a positive constant at each step.

Set \(a_1 = [4(k + 1)^2/\mu] \) and let \(\mathcal{P}_0 = \mathcal{P}_0(k, a_0, \psi_0) \) be a partition of \(\text{Cross}_k(\psi_{0,1}) \), where \(a_0 = (a_1, 1, \ldots, 1) \), \(\psi_0 = (\psi_{0,1}, \ldots, \psi_{0,k}) \), where \(\psi_{0,1} \) is an arbitrary mapping \(V \rightarrow [a_1] \) so that

\[
|\psi_{0,1}^{-1}(1)| \leq |\psi_{0,1}^{-1}(2)| \leq \ldots \leq |\psi_{0,1}^{-1}(a_1)| \leq |\psi_{0,1}^{-1}(1)| + 1
\]

and \(\psi_{0,j} : [V]^j \rightarrow \{1\} \) for \(j \in [k] \setminus \{1\} \).
Set \(V_i = \psi_{\alpha_i}^{-1}(i) \) for \(i = 1, \ldots, a_1 \). It follows from Definitions 5.3 and 5.1 that any \(\mathcal{P} \in \mathcal{P}_0 \) is of the form \(K_k^{(k)}(V_{i_1}, \ldots, V_{i_k}) \), where \(1 \leq i_1 < \cdots < i_k \leq a_1 \). Similarly, by Definition 6.3 and (6.2), every polyad \(\hat{\mathcal{P}} \in \hat{\mathcal{P}}_0 \) is of the form \(K_{k+1}^{(k)}(V_{i_1}, \ldots, V_{i_{k+1}}) \), where \(1 \leq i_1 < \cdots < i_{k+1} \leq a_1 \).

Let \(\hat{\mathcal{P}} = K_{k+1}^{(k)}(V_{i_1}, \ldots, V_{i_{k+1}}) \in \hat{\mathcal{P}}_0 \) be any polyad. Then, by (6.2), the unique \((k+1, k)\)-complex \(\hat{\mathcal{P}} = \{ \hat{\mathcal{P}}^{(i)} \}_{i=1}^k \) such that \(\hat{\mathcal{P}} \in \hat{\mathcal{P}} \) is defined by

\[
\hat{\mathcal{P}}^{(i)} = \begin{cases} V_{i_1} \cup \cdots \cup V_{i_{k+1}} & \text{for } i = 1, \\ K_{k+1}^{(i)}(V_{i_1}, \ldots, V_{i_{k+1}}) & \text{for } i > 1. \end{cases}
\]

It follows from Definition 4.10 that the complete \((i+1)\)-uniform \((k+1)\)-partite hypergraph \(K_{k+1}^{(i+1)}(V_{i_1}, \ldots, V_{i_{k+1}}) \) is \((\delta', 1, r')\)-regular with respect to \(K_{k+1}^{(i)}(V_{i_1}, \ldots, V_{i_{k+1}}) \) for any \(\delta' > 0 \) and any \(r' \in \mathbb{N} \). Therefore, \(\hat{\mathcal{P}} \) is \((\delta(d), d, r(a_1, d))\)-regular \((k+1, k)\)-complex, where \(d = (1, \ldots, 1) \).

Consequently, to conclude that \(\mathcal{P}_0 \) is a functionally equitable \((\mu, \delta, r)\)-partition, we need to show that the total volume of all polyads in \(\hat{\mathcal{P}}_0 \) is at least \(1 - \mu \) (cf. Definitions 8.11 and 8.3). This translates into proving that all but \(\mu(n+1) \) many \((k+1)\)-tuples are crossing.

This is, however, easy, since the number of \((k+1)\)-tuples that are not crossing is at most \(a_1 \times \binom{1+n/a_1}{2} \times \binom{n}{k+1} \leq \mu(n+1) \) since \(a_1 = \lceil 4(k+1)^2 / \mu \rceil \).

If partition \(\mathcal{P}_0 \) is \((\delta_{k+1}, r)\)-regular, then we are done. Otherwise, we apply \textbf{Pump}(\(k\)) and obtain a functionally equitable \((\mu, \delta, r)\)-partition \(\mathcal{P}_1 \) with rank(\(\mathcal{P}_1\)) \leq f(\text{rank}(\mathcal{P}_0), \delta_{k+1}, \delta, r) \) and \(\text{ind} \mathcal{P}_1 \geq \text{ind} \mathcal{P}_0 + \delta_{k+1}^4/2 \).

If \(\mathcal{P}_1 \) is not \((\delta_{k+1}, r)\)-regular, we repeat the process and obtain partitions \(\mathcal{P}_2, \mathcal{P}_3, \ldots \) satisfying

\[
\text{rank}(\mathcal{P}_i) \leq f^i(\text{rank}(\mathcal{P}_0), \delta_{k+1}, \delta, r),
\]

where \(f^i(\mathcal{P}_0) \) means \(i \)-times iterated function \(f \), and

\[
\text{ind} \mathcal{P}_i \geq \text{ind} \mathcal{P}_0 + i \times \delta_{k+1}^4/2.
\]

Since \(0 \leq \text{ind} \mathcal{P} \leq 1 \) for any partition \(\mathcal{P} \), this process will stop after at most \(2/\delta_{k+1}^4 \) steps. The last partition \(\mathcal{P}_{\text{last}} \) must be a functionally equitable \((\mu, \delta, r)\)-partition that is \((\delta_{k+1}, r)\)-regular and \(\text{rank}(\mathcal{P}_{\text{last}}) \leq L_{k+1} = f^{2k+4}(\text{rank}(\mathcal{P}_0), \delta_{k+1}, \delta, r) \).

In order to prove \((I3)\), we first summarize all needed auxiliary results in the next section and then we provide the actual proof of implication \((I3)\).

11. Auxiliary results for the proof of implication \((I3)\).

In our proof we will need the following results. The first tool is statement \textbf{Regularity}(\(k-1\)) in which \(\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_s \) are replaced with \(k\)-uniform
hypergraphs $G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)}$ and which we assume by induction assumption. We use the notation μ', δ'_k, δ', etc. to be consistent with the context in which we apply Lemma 11.1 and to distinguish the fact that it is an induction assumption.

Lemma 11.1. Let $s, k \geq 1$ be fixed integers. Then, for all numbers $\delta'_k > 0$ and $\mu' > 0$, for any vector $\delta' = (\delta'_2, \ldots, \delta'_{k-1})$ of non-negative functions $\delta'_k(d_{k-1}), \delta'_{k-2}(d_{k-2}, d_{k-1}), \ldots, \delta'_2(d_2, \ldots, d_{k-1})$, and for any positive integer function $r' = r'(t, d_2, \ldots, d_{k-1})$, there exist integers n'_k and L'_k such that the following holds:

For every k-uniform hypergraphs $G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)}$ with common vertex set of size at least n'_k there exists a partition $R = R(k-1, a^R, \psi^R)$ of $Cross_{k-1}(\psi^R)$ so that

(i) R is a functionally equitable (μ', δ', r')-partition,

(ii) R is (δ'_k, r')-regular with respect to every $G_i^{(k)}$, $i \in [s]$, and

(iii) $\text{rank}(R) = |A(k-1, a^R)| \leq L'_k$.

The next lemma enables to decompose each sufficiently dense regular (k, k)-cylinder into a bounded number of regular (k, k)-cylinders with smaller relative densities. In order to preserve the flow of the proof, we postpone the proof of this lemma as well as the next lemma (Lemma 11.3) to the Appendix A.

Lemma 11.2 (Slicing Lemma). Suppose α, δ are two positive real numbers such that $0 < 2\delta < \alpha \leq 1$. Let G be a $(k, k-1)$-cylinder satisfying $|K_k(G)| \geq m^k / \ln m$ and H be a (k, k)-cylinder which is (δ, α, r)-regular with respect to G. Then, for every $0 < p < 1$, where $3\delta < \rho a$ and $kr \ln m / m \leq \delta^3 / (3(\ln 4) \alpha p)$, and $u = \lfloor 1/p \rfloor$ the following holds:

There exists a decomposition of $H = H_0 \cup H_1 \cup \ldots \cup H_u$ such that H_i is $(3\delta, \rho a, r')$-regular with respect to G for every $i \in [u]$.

Remark. For H_0 we have the following: $|H_0| = |H| - \sum_{j=1}^u |H_j| \leq (\alpha + \delta)|K_k(G)| - u \times (\rho a - 3\delta)|K_k(G)|$. Since $pu = \rho \lfloor 1/p \rfloor \geq 1 - p$, we obtain $|H_0| \leq (\rho a + 4u\delta)|K_k(G)|$.

The proof of the Slicing Lemma is very similar to the proof of Lemma 3.8 in [FR02] (which is actually this lemma for $k = 2$ in a slightly different setting). The details can be found in the Appendix A.

By Definition 5.8, for two partitions \mathcal{S} and \mathcal{T}, \mathcal{T} refines \mathcal{S} if for every $S^{(k)} \in \mathcal{S}$ there exists $T_i^{(k)} \in \mathcal{T}$, $i \in I(S^{(k)})$, such that $S^{(k)} = \bigcup_{i \in I(S^{(k)})} T_i^{(k)}$. Then we have the following lemma.

Lemma 11.3. If \mathcal{T} refines \mathcal{S}, then $\text{ind } \mathcal{T} \geq \text{ind } \mathcal{S}$.

We will also need the following fact which is a consequence of the Cauchy-Schwarz inequality (for its proof see [FR02]).
Fact 11.4. Let $\sigma_i, d_i, i \in I$, be positive real numbers satisfying $\sum_{i \in I} \sigma_i = 1$. Set $d = \sum_{i \in I} \sigma_i d_i$. Let $J \subset I$ be a proper subset of I such that $\sum_{j \in J} \sigma_j = \sigma$ and

$$\sum_{j \in J} \sigma_j d_j = \sigma(d + \nu).$$

Then

$$\sum_{i \in I} \sigma_i d_i^2 \geq d^2 + \frac{\nu^2 \sigma}{1 - \sigma}$$

and, therefore, if $\sigma \geq \delta$ and $|\nu| \geq \delta$ for some $\delta > 0$, then

$$\sum_{i \in I} \sigma_i d_i^2 \geq d^2 + \delta^3.$$

Now we are ready for the proof of implication (I3).

12. Proof of implication (I3)

Proof of Lemma 9.3. We will follow the scheme outlined at Fig.1.

Let H be a $(k + 1)$-uniform hypergraph, $a^\varphi = (a_1^{\varphi}, \ldots, a_k^{\varphi})$ be a vector of positive integers and let $\delta_{k+1}, \mu, \delta = (\delta_2, \ldots, \delta_k)$, where $\mu \leq \delta_{k+1}/2$, $\delta_i = \delta_i(d_i, \ldots, d_k)$, where $i = 2, \ldots, k$, and $r = r(t, d_2, \ldots, d_k)$ be as in Theorem 8.14. Furthermore, let

$$P = P(k, a^\varphi, \psi^\varphi) = \{P^{(k)}(x): x = (x_1, \ldots, x_k) \in A(k, a^\varphi)\}$$

be any functionally equitable (μ, δ, r)-partition of Cross$_k(\psi^\varphi)$ which is not (δ_{k+1}, r)-regular.

This means (see Definition 8.11) that there exists a vector $\pi = (\pi_2, \ldots, \pi_k)$ of positive real numbers such that P is an equitable $(\mu, \delta(\pi), \pi, r(a_1^{\varphi}, \pi))$-partition and (cf. (8.3))

$$\sum_{\hat{x} \in A(k, a^\varphi)} \{ \text{Vol}(\hat{P}^{(k)}(\hat{x})): \hat{P}^{(k)}(\hat{x}) \text{ is } (\delta_{k+1}, r(a_1^{\varphi}, \pi)) \text{-regular} \} \leq 1 - \delta_{k+1}.$$

For every $(\delta_{k+1}, r(a_1^{\varphi}, \pi))$-irregular polyad $\hat{P}^{(k)}(\hat{x})$ satisfying (a) and violating (b) of Definition 8.8, there exist $r(a_1^{\varphi}, \pi)$ witnesses of irregularity, that is, an $r(a_1^{\varphi}, \pi)$-tuple of $(k + 1, k)$-cylinders $\hat{Q}(\hat{x}) = \{Q_1^{(k)}(\hat{x}), \ldots, Q_k^{(k)}(r(a_1^{\varphi}, \pi)(\hat{x}))\}$ such that

$$\left| \bigcup_{i=1}^{r(a_1^{\varphi}, \pi)} \mathcal{K}_{k+1}(Q_i^{(k)}(\hat{x})) \right| \geq \delta_{k+1} |\mathcal{K}_{k+1}(\hat{P}^{(k)}(\hat{x}))|$$

and

$$|d_H(\hat{P}^{(k)}(\hat{x})) - d_H(\hat{Q}(\hat{x}))| > \delta_{k+1}. \quad (12.1b)$$
Show that slicing did not decrease $\text{ind } \mathcal{I}$ (see (C)).

Use the Slicing Lemma on \mathcal{I} to get \mathcal{I}'.

Use \mathcal{R} and \mathcal{I} to obtain a new partition \mathcal{I} (see (12.10)) satisfying (12.5) ($\text{ind } \mathcal{I} \geq \text{ind } \mathcal{P} + \delta^{k+1}_{k+1}$).

Obtain (δ'_k, r')-regular (w.r.t. $G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)}$) functionally equitable (μ', δ', r')-partition \mathcal{R}(of $(k-1)$-tuples).

Apply Regularity$(k-1)$ (induction assumption) to $G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)}$ with a special choice of constants μ', δ'_k and functions δ', r' (see (12.6a)-(12.6e)).

\mathcal{P} is (δ_{k+1}, r)-irregular with respect to \mathcal{H}.

Find witnesses of irregularity for each (δ_{k+1}, r)-irregular polyad $\hat{\mathcal{P}}^{(k)}(\hat{x})$ (see (12.1a), (12.1b)).

Construct the Venn Diagram (see (12.2)) and obtain a system of k-uniform hypergraphs $\mathcal{G} = \{G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)}\}$ (see (12.3)) with $s \leq |A(k, a^{\mathcal{P}})| \times 2^{\delta(a^{\mathcal{P}}, \pi) \times |A(k, a^{\mathcal{P}})|}$.

Apply Regularity$(k-1)$ (induction assumption) to $G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)}$ with a special choice of constants μ', δ'_k and functions δ', r' (see (12.6a)-(12.6e)).

Use \mathcal{R} and \mathcal{G} to obtain a new partition \mathcal{I} (see (12.10)) satisfying (12.5) ($\text{ind } \mathcal{I} \geq \text{ind } \mathcal{P} + \delta^{k+1}_{k+1}$).

Obtain (δ'_k, r')-regular (w.r.t. $G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)}$) functionally equitable (μ', δ', r')-partition \mathcal{R} (of $(k-1)$-tuples).

Apply Regularity$(k-1)$ (induction assumption) to $G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)}$ with a special choice of constants μ', δ'_k and functions δ', r' (see (12.6a)-(12.6e)).

Use the Slicing Lemma on \mathcal{I} to get \mathcal{I}'.

Apply Regularity$(k-1)$ (induction assumption) to $G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)}$ with a special choice of constants μ', δ'_k and functions δ', r' (see (12.6a)-(12.6e)).

Figure 1. Scheme of the proof of Regularity$(k-1) \Rightarrow \text{Pump}(k)$.

Since each $Q_i^{(k)}(\hat{x})$ is a $(k + 1, k)$-cylinder, it can be written as the union of $k + 1$ (k, k)-cylinders $Q_i^{(k)}(\hat{x}) = \bigcup_{x \in \hat{x}} Q_i^{(k)}(\partial_x \hat{x})$, where $\hat{x} = (\hat{x}_1, \ldots, \hat{x}_k)$ and

$$Q_i^{(k)}(\partial_x \hat{x}) = Q_i^{(k)}(\hat{x}) \cap \mathcal{P}^{(k)}(\partial_x \hat{x}).$$

Let x_0 be an arbitrary but fixed vector from $A(k, a^{\mathcal{P}})$. Observe that for given $\hat{x} = (\hat{x}_1, \ldots, \hat{x}_k) \in \hat{A}(k, a^{\mathcal{P}})$ there exists at most one $x = x(\hat{x}) \in \hat{x}_1$ such that $Q_i^{(k)}(\partial_x \hat{x}) \subset \mathcal{P}^{(k)}(x_0)$ for every $i \in [r(a^{\mathcal{P}}, \pi)]$. Moreover, such x exists if, and only if, \hat{x} extends x_0, i.e. $x_0 \prec \hat{x}$.
Consider system \(\mathcal{X}(x_0) \) of such hypergraphs, i.e.

\[
\mathcal{X}(x_0) = \left\{ Q_i^{(k)}(\partial_x \hat{x}) : Q_i^{(k)}(\partial_x \hat{x}) \subseteq P^{(k)}(x_0), \hat{x} \in \text{Ext}(x_0), \right. \\
\left. x = x(\hat{x}), i \in [r(a_1^\mathcal{P}, \pi)] \right\}.
\]

From Fact 6.8, we have that \(|\mathcal{X}(x_0)| \leq r(a_1^\mathcal{P}, \pi) \times |A(k, \mathcal{P})|^k \).

For every \(x_0 \in A(k, \mathcal{P}) \), let \(\tilde{G}(x_0) \) be the system of edge disjoint \((k, k)\)-cylinders given by regions of the Venn diagram of elements of \(\mathcal{X}(x_0) \) in \(P^{(k)}(x_0) \). In other words, if \(\mathcal{X}(x_0) = \{ Q_1, \ldots, Q_c \} \), where \(Q_i \subseteq P^{(k)}(x_0) \) and \(c = |\mathcal{X}(x_0)| \leq r(a_1^\mathcal{P}, \pi) \times |A(k, \mathcal{P})|^k \), then

\[
\tilde{G}(x_0) = \left\{ \bigcap_{i=1}^c Q_i^{\varepsilon_i} : (\varepsilon_1, \ldots, \varepsilon_c) \in \{0, 1\}^c \right\}.
\]

where

\[
Q_i^{\varepsilon_i} = \begin{cases}
Q_i & \text{for } \varepsilon_i = 1, \\
P^{(k)}(x_0) \setminus Q_i & \text{for } \varepsilon_i = 0.
\end{cases}
\]

Note that

(1) \(P^{(k)}(x_0) = \bigcup_{G \in \tilde{G}(x_0)} G \) and this union is disjoint, and

(2) the size of \(\tilde{G}(x_0) \) is bounded by \(2^{r(a_1^\mathcal{P}, \pi) \times |A(k, \mathcal{P})|^k} \).

We remark that for those \(x_0 \) for which \(\mathcal{X}(x_0) \) is empty (i.e. there are no irregular polyads \(P(\hat{x}) \) with \(x_0 < \hat{x} \)), we have \(\tilde{G}(x_0) = \{ P^{(k)}(x_0) \} \). In view of Claim 5.9, system

\[
\mathcal{G} = \bigcup_{x \in A(k, \mathcal{P})} \tilde{G}(x)
\]

is a partition of \(\text{Cross}_k(\psi_1^\mathcal{P}) \) that refines \(\mathcal{P} \). Alternatively, we will write

\[
\mathcal{G} = \{ G_1^{(k)}, G_2^{(k)}, \ldots, G_s^{(k)} \},
\]

where

\[
s \leq |A(k, \mathcal{P})| \times 2^{r(a_1^\mathcal{P}, \pi) \times |A(k, \mathcal{P})|^k}.
\]

(12.4)
Now, we are going to modify \mathcal{F} to obtain a partition \mathcal{J} with the following properties:

(a) \mathcal{J} is an almost equitable $(\mu/2, \delta, r)$-partition, that is there is a vector $\sigma = (\sigma_2, \ldots, \sigma_k)$ such that all but at most $(\mu/2)(\binom{n}{k+1})$ many $(k+1)$-tuples $K \in [V]^{k+1}$ belong to almost $(\delta(\sigma), \sigma, r(a^\sigma_1, \sigma))$-regular complexes $\hat{S} = \{\hat{S}(i)\}_{j=1}^k \in \mathcal{J}$. Here, $\hat{S} = \{\hat{S}(i)\}_{i=1}^k$ is almost $(\delta(\sigma), \sigma, r(a^\sigma_1, \sigma))$-regular if, for $\sigma^i = (\sigma_i, \ldots, \sigma_k)$, $i = 2, 3, \ldots, k$,

- $\hat{S}(2)$ is $(\delta_2(\sigma_2^2), \sigma_2^2)$-regular with respect to $S^{(1)}$,
- $\hat{S}(i)$ is $(\delta_i(\sigma_i), \sigma_i, r(a^\sigma_1, \sigma))$-regular with respect to $S^{(i-1)}$ for $i = 3, \ldots, k-1$, and
- $\hat{S}(k)$ is $(\delta_k(\sigma_k^k), \rho, r(a^\sigma_1, \sigma))$-regular with respect to $S^{(k-1)}$ and $\rho \geq \sigma_k$.

(b) rank(\mathcal{J}) $\leq f(\text{rank}(\mathcal{P}), \delta_{k+1}, \delta, r)$, and

(c) ind\mathcal{J} $\geq \text{ind } \mathcal{P} + \delta_{k+1}/2$.

This will be done in three steps.

Step 1. Define input parameters δ'_2, δ'_3, \ldots, δ'_k, r', and μ' appearing in Lemma 11.1. Then apply this lemma on k-uniform hypergraphs $G_1^{(k)}$, $G_2^{(k)}$, \ldots, $G_s^{(k)}$ to obtain a partition \mathcal{R} of Cross$_{k-1}(\psi_\mathcal{R})$.

Step 2. Combine hypergraphs $G_1^{(k)}$, $G_2^{(k)}$, \ldots, $G_s^{(k)}$ (which form a partition of Cross$_k(\psi_\mathcal{P}^\mathcal{R})$) and partition \mathcal{R} to construct our partition \mathcal{J}.

Step 3. Show that \mathcal{J} satisfies conditions 12.5(a)-(c).

We continue with **Step 1.** Recall that δ_{k+1}, μ, $\delta = (\delta_2, \ldots, \delta_k)$, $\delta_i = \delta_i(d_i, \ldots, d_k)$, where $i = 2, \ldots, k$, and $r = r(t, d_2, \ldots, d_k)$ as in Theorem 8.14 are given. Moreover, $\pi = (\pi_2, \ldots, \pi_k)$ is a vector of positive real numbers such that \mathcal{P} is an equitable $(\mu, \delta(\pi), \pi, r(a^\pi_1, \pi))$-partition.

Set

$$\rho_k = \mu/(8s(k+1)^2),$$

(12.6a)

and define

$$\delta'_k = \min \{ \delta_k(\rho_k)/3, \mu/(8s(k+1)^2), \mu^2/(512s^2(k+1)^4) \},$$

$$\mu' = \min \{ 48\delta'_k^4/s, \mu/(8s(k+1)^2) \},$$

(12.6b, c)

be reals between 0 and 1. For $i = 2, 3, \ldots, k-1$, we also define the following functions (in variables d_2, \ldots, d_{k-1}):

$$\delta'_i(d_2, \ldots, d_{k-1}) = \delta_i(d_2, \ldots, d_{k-1}, \rho_k),$$

(12.6d)

and

$$r'(t, d_2, \ldots, d_{k-1}) = r(t, d_2, \ldots, d_{k-1}, \rho_k).$$

(12.6e)

Moreover, set $\delta' = (\delta'_2, \ldots, \delta'_{k-1})$.

Applying Lemma 11.1 (i.e. the induction assumption \textbf{Regularity}(k - 1)) with these choices of parameters to $G^{(k)}_1, G^{(k)}_2, \ldots, G^{(k)}_s$, we obtain a partition $\mathcal{R} = \mathcal{R}(k - 1, a^R, \psi^R)$ such that for some vector $\rho = (\rho_2, \ldots, \rho_{k-1}) \in (0, 1)^{k-1}$,

(i) \mathcal{R} is an equitable $(\mu', \delta'(\rho), \rho, r'(a^R, \rho))$-partition,

(ii) \mathcal{R} is $(\delta_k, r'(a^R, \rho))$-regular with respect to every $G^{(k)}_i, i \in [s]$, and

(iii) $\text{rank}(\mathcal{R}) = |A(k - 1, a^R)| \leq L'_k$.

For Step 2, we will now extend partition $\mathcal{R} = \mathcal{R}(k - 1, a^R, \psi^R)$ to a partition \mathcal{S} of k-tuples. For each $\xi \in [s]$, and every $(2^k - 2)$-dimensional vector $\hat{y} \in \hat{A}(k - 1, a^R)$, we define (k, k)-cylinders $S^{(k)}(\xi, \hat{y})$, by

$$S^{(k)}(\xi, \hat{y}) = \begin{cases} G^{(k)}_k \cap K_k(\hat{R}^{(k-1)}(\hat{y})) & \text{if } K_k(\hat{R}^{(k-1)}(\hat{y})) \subset \text{Cross}_k(\psi^R_1), \\ K_k(\hat{R}^{(k-1)}(\hat{y})) & \text{otherwise.} \end{cases}$$

Note that if $K_k(\hat{R}^{(k-1)}(\hat{y})) \not\subset \text{Cross}_k(\psi^R_1)$, then $S^{(k)}(\xi, \hat{y}) = \ldots = S^{(k)}(s, \hat{y})$. This may seem artificial, but we find it convenient to define it this way.

For each $i \in [k - 1]$, we also define (k, i)-cylinders $S^{(i)}(\xi, \hat{y})$, by

$$S^{(i)}(\xi, \hat{y}) = \hat{R}^{(i)}(\hat{y}).$$

Since we have $\text{Cross}_k(\psi^R_1) \subset \text{Cross}_k(\psi^R)$ by Remark 8.19 and $\mathcal{S} = \{G^{(k)}_1, G^{(k)}_2, \ldots, G^{(k)}_s\}$ is a partition of $\text{Cross}_k(\psi^R)$, we obtain

$$K_k(\hat{R}^{(k-1)}(\hat{y})) = \bigcup_{\xi = 1}^{s} S^{(k)}(\xi, \hat{y})$$

for every $\hat{y} \in \hat{A}(k - 1, a^R)$.

Combining (12.9) with the fact that $\{K_k(\hat{R}^{(k-1)}(\hat{y})) : \hat{y} \in \hat{A}(k - 1, a^R)\}$ is a partition of $\text{Cross}_k(\psi^R)$, and Claim 5.9 yields

$$\mathcal{S} = \{S^{(k)}(\xi, \hat{y}) : \hat{y} \in \hat{A}(k - 1, a^R), \xi \in [s]\}$$

is a partition of $\text{Cross}_k(\psi^R)$. Furthermore, \mathcal{S} refines \mathcal{P}, that is, each $P \in \mathcal{P}$ is a disjoint union of members of \mathcal{S}:

$$\mathcal{P} = \bigcup_{S \subset \mathcal{P}, S \in \mathcal{S}} S.$$

Now we establish Step 3 by showing that \mathcal{S} satisfies (12.5)(a)-(c).

\textbf{Proof of (12.5)(a).} We will show that the following vector σ satisfies requirements of (12.5)(a): $\sigma = (\rho, \rho_k) = (\rho_2, \ldots, \rho_{k-1}, \rho_k)$, where ρ_k is given by (12.6a) and $(\rho_2, \ldots, \rho_{k-1}) = \rho$ comes from (12.7).

Set $a^R_1 = a^R, \sigma^i = (\rho_i, \ldots, \rho_k), \rho^i = (\rho_i, \ldots, \rho_{k-1})$ for $i = 2, \ldots, k - 1$, and $\sigma^k = (\rho_k)$. Observe that $r'(a^R, \rho) = r(a^R, \sigma), \delta_k \leq \delta_k(\rho_k) = \delta_k(\sigma^k)$, and $\delta^i(\rho^i) = \delta^i(\sigma^i)$ for $i = 2, \ldots, k - 1$.
We call a \((k+1)\)-tuple of vertices \(K\) \textit{bad} if one of the following cases occurs:

\begin{enumerate}
\item \(K\) is not crossing.
\item There exists a \((k+1,k)\)-complex \(\hat{S} = \{\hat{S}^{(1)}, \hat{S}^{(2)}, \ldots, \hat{S}^{(k)}\}\), where \(\hat{S}^{(k)} \in \hat{\mathcal{R}}\), such that either
\begin{enumerate}
\item \(K\) belongs\footnote{\(K\) belongs to \(\hat{S}^{(i)}\) if it induces a clique in \(\hat{S}^{(i)}\).} to a \((\delta_i(\sigma^i), \rho_i, r(a_1^{\sigma^i}, \sigma))\)-irregular \((k+1,i)\)-cylinder \(\hat{S}^{(i)}\) for some \(i \in \{2, \ldots, k-1\}\), or
\item \(K\) belongs to a \((\delta_k(\sigma^k), r(a_1^{\sigma^k}, \sigma))\)-irregular \((k+1,k)\)-cylinder \(\hat{S}^{(k)}\), or
\item \(K\) belongs to a \((\delta_k(\sigma^k), \rho, r(a_1^{\sigma^k}, \sigma))\)-regular \((k+1,k)\)-cylinder \(\hat{S}^{(k)}\) with \(\rho < \rho_k\).
\end{enumerate}
\end{enumerate}

In view of (12.5)(a), we need to show that at most \(\mu(\frac{n}{k+1})\) many \((k+1)\)-tuples are bad. Now we estimate the number of \((k+1)\)-tuples in (1) and (2a)–(2c).

First, we estimate the number of \((k+1)\)-tuples in (1) and (2a). If a \((k+1)\)-tuple \(K\) is not crossing, then it contains a \(k\)-tuple \(K' \in [K]^k\) that is not crossing. Also, if \(K\) belongs to a \((\delta_i(\sigma^i), \rho_i, r(a_1^{\sigma^i}, \sigma))\)-irregular \((k+1,i)\)-cylinder \(\hat{S}^{(i)}\) for some \(i \in \{2, \ldots, k-1\}\), then, in view of (12.8a), it must contain a \(k\)-tuple \(K'\) which belongs to some \((\delta'_i(\rho^i), \rho_i, r'(a_1^{\rho^i}, \rho))\)-irregular \((k,i)\)-cylinder \(\hat{R}^{(i)}(\hat{y}) \in \hat{\mathcal{R}}\).

Since \(\hat{\mathcal{R}}\) is an equitable \((\mu', \delta'(\rho), \rho, r'(a_1^{\rho}, \rho))\)-partition (cf. 12.7(i)) the number of \(k\)-tuples \(K'\) satisfying either of the above two properties is at most \(\mu'\left(\begin{array}{c} n \\ k \end{array}\right)\). We have \(\mu' \leq \mu/(8(k+1)^2)\) (cf. (12.6c)). Therefore, the number of \((k+1)\)-tuples \(K\) satisfying (1) or (2a) is at most

\[
\mu/(8(k+1)^2)\left(\begin{array}{c} n \\ k \end{array}\right) \times n \leq \mu/(4(k+1))\left(\begin{array}{c} n \\ k+1 \end{array}\right).
\]

(12.12)

Second, we estimate the number of \((k+1)\)-tuples \(K\) to which (2b) applies. Assume that \(K\) belongs to \((k+1,k)\)-cylinder \(\hat{S}^{(k)}\) which is \((\delta_k(\sigma^k), r(\sigma_1^{\sigma^k}, \sigma))\)-irregular.

This means (see Definition 4.11) that one of the \((k+1)(k,k)\)-subcylinders of \(\hat{S}^{(k)}\) (say \(S_{\text{irreg}}\)) is \((\delta'_k(\rho^k), r(a_1^{\rho^k}, \rho))\)-irregular.

By (12.8a) and (12.10), there exist \(\xi \in [s]\) and \(\hat{y} \in \hat{A}(k-1, \alpha^{\hat{y}})\) such that

\[
S_{\text{irreg}} = S^{(k)}(\xi, \hat{y}) = G^{(k)}(\xi, \hat{y}) \cap K_k(\hat{R}^{(k-1)}(\hat{y})).
\]

Hence, \(G^{(k)}(\xi, \hat{y})\) is \((\delta'_k, r'(a_1^{\rho}, \rho))\)-irregular with respect to \(\hat{R}^{(k-1)}(\hat{y})\). This means, however, that \(\hat{R}^{(k-1)}(\hat{y})\) violates condition (b) of Definition 8.8. Moreover, \(K\) contains a \(k\)-tuple \(K' \in K_k(\hat{R}^{(k-1)}(\hat{y}))\).

Since \(\hat{R}\) is \((\delta'_k, r'(a_1^{\rho}, \rho))\)-regular with respect to all \(G^{(k)}(\xi, \hat{y})\) (see 12.7(ii) and Definition 8.8), the number of such \(k\)-tuples \(K'\) is at most \(s \times \delta'_k \times \left(\begin{array}{c} n \\ k \end{array}\right)\). Thus, the number of \((k+1)\)-tuples \(K\) in this category is bounded by \(s \times \delta'_k \times \left(\begin{array}{c} n \\ k \end{array}\right)\).
Now we estimate the number of \((k+1)\)-tuples satisfying (2c). If \(K\) belongs to a \((k+1, k)\)-cylinder \(\hat{S}^{(k)}\) that is \((\delta_k(\sigma^k), \rho, r(\alpha^\gamma_1, \sigma))\)-regular with \(\rho < \rho_k\), then the number of such \((k+1)\)-tuples is at most \(\rho_k \times (\binom{n}{k}) \times n\).

Using (12.6a) and (12.6b), we obtain that the number of \((k+1)\)-tuples satisfying (2b) or (2c) is at most
\[
s \times \delta_k' \times \left(\binom{n}{k}\right) \times n + \rho_k \times \left(\binom{n}{k}\right) \times n \leq \mu/(4(k+1)) \left(\binom{n}{k+1}\right).
\]
Combining (12.12) and (12.13) yields that at most
\[
\mu/(4(k+1)) \left(\binom{n}{k+1}\right) + \mu/(4(k+1)) \left(\binom{n}{k+1}\right) \leq (\mu/2) \left(\binom{n}{k+1}\right)
\]
many \((k+1)\)-tuples \(K\) satisfy either one of (1), (2a)-(2c).

Proof of (12.5)(b). It follows from (12.10) that \(\text{rank}(\mathcal{S}) \leq |\hat{A}(k-1, \alpha^\emptyset)| \times s\). We know that \(s \leq |A(k, \alpha^\emptyset)| \leq 2^{r(a^\emptyset_1, \pi)} \times |A(k, \alpha^\emptyset)|^k\) (see (12.4)). Moreover, by the induction assumption (see 12.7(iii)), we have \(|A(k-1, \alpha^\emptyset)| \leq L_{k}^l\), where \(L_{k}^l\) depends only on \(\mathcal{G}_1^{(k)}, \ldots, \mathcal{G}_n^{(k)}\) (i.e. on \(\mathcal{P}\), \(\delta\), and \(r\)). Consequently,
\[
|\hat{A}(k-1, \alpha^\emptyset)| \leq |A(k-1, \alpha^\emptyset)|^k \leq L_{k}^l
\]
and \(\text{rank}(\mathcal{S}) \leq f(\text{rank}(\mathcal{P}), \delta_{k+1}, \delta, r)\).

Proof of (12.5)(c). Let \(\hat{\mathcal{P}}_{\text{reg}}\) be the set of all \((\delta_{k+1}, r(a^\emptyset_1, \pi))\)-regular polyads in \(\hat{\mathcal{P}}\), \(\hat{\mathcal{P}}_{\text{a}}\) be the set of all polyads \(\hat{\mathcal{P}}^{(k)}(\hat{\sigma})\) violating (a) in Definition 8.8, and let \(\hat{\mathcal{P}}_{\text{b}}\) be the set of all polyads \(\hat{\mathcal{P}}^{(k)}(\hat{\sigma}) \in \hat{\mathcal{P}}\) which satisfy (a) and violate (b) in Definition 8.8. Observe that \(\hat{\mathcal{P}} = \hat{\mathcal{P}}_{\text{reg}} \cup \hat{\mathcal{P}}_{\text{a}} \cup \hat{\mathcal{P}}_{\text{b}}\) and this union is disjoint.

Then,
\[
\text{ind } \mathcal{P} = \xi_1 + \xi_2,
\]
where
\[
\xi_1 = \sum_{\hat{\mathcal{P}}^{(k)} \in \hat{\mathcal{P}}_{\text{reg}} \cup \hat{\mathcal{P}}_{\text{a}}} \text{Vol}(\hat{\mathcal{P}}^{(k)}) d_{\mathcal{H}}(\hat{\mathcal{P}}^{(k)})
\]
and
\[
\xi_2 = \sum_{\hat{\mathcal{P}}^{(k)} \in \hat{\mathcal{P}}_{\text{b}}} \text{Vol}(\hat{\mathcal{P}}^{(k)}) d_{\mathcal{H}}(\hat{\mathcal{P}}^{(k)}).
\]

For any polyad \(\hat{\mathcal{P}}^{(k)} \in \hat{\mathcal{P}}\) with \(|\mathcal{K}_{k+1}(\hat{\mathcal{P}}^{(k)})| > 0\), and for any polyad \(\mathcal{S}^{(k)} \in \hat{\mathcal{P}}^{(k)}\), we set
\[
\sigma_{\mathcal{S}^{(k)}} = \frac{|\mathcal{K}_{k+1}(\mathcal{S}^{(k)})|}{|\mathcal{K}_{k+1}(\hat{\mathcal{P}}^{(k)})|} = \frac{\text{Vol}(\mathcal{S}^{(k)})}{\text{Vol}(\hat{\mathcal{P}}^{(k)})}.
\]
Since partition \mathcal{P} refines \mathcal{P} (see (12.11), for each polyad $\hat{P}^{(k)} \in \hat{\mathcal{P}}$, we have

$$\mathcal{K}_{k+1}(\hat{P}^{(k)}) = \bigcup_{\hat{S}^{(k)} \subset \hat{P}^{(k)}} \mathcal{K}_{k+1}(\hat{S}^{(k)})$$

and this union is disjoint. Consequently, we have

$$1 = \sum_{\hat{S}^{(k)} \subset \hat{P}^{(k)}} \sigma_{\hat{S}^{(k)}} \quad (12.14a)$$

and

$$d_H(\hat{P}^{(k)}) = \sum_{\hat{S}^{(k)} \subset \hat{P}^{(k)}} \sigma_{\hat{S}^{(k)}} d_H(\hat{S}^{(k)}). \quad (12.14b)$$

Combining (12.14a), (12.14b), and the Cauchy-Schwarz inequality yields

$$d_H^2(\hat{P}^{(k)}) \leq \sum_{\hat{S}^{(k)} \subset \hat{P}^{(k)}} \sigma_{\hat{S}^{(k)}} d_H^2(\hat{S}^{(k)}) \quad (12.15)$$

for every polyad $\hat{P}^{(k)} \in \hat{\mathcal{P}}$. We use this to estimate ξ_1. Indeed, we use (12.15) and $\sigma_{\hat{S}^{(k)}} = \text{Vol}(\hat{S}^{(k)}) / \text{Vol}(\hat{P}^{(k)})$ to conclude that

$$\xi_1 \leq \sum_{\hat{P}^{(k)} \in \hat{\mathcal{P}}_{\text{reg}} \cup \hat{\mathcal{P}}_{\text{a}}} \text{Vol}(\hat{P}^{(k)}) \sum_{\hat{S}^{(k)} \subset \hat{P}^{(k)}} \sigma_{\hat{S}^{(k)}} d_H^2(\hat{S}^{(k)})$$

$$= \sum_{\hat{P}^{(k)} \in \hat{\mathcal{P}}_{\text{reg}} \cup \hat{\mathcal{P}}_{\text{a}}} \sum_{\hat{S}^{(k)} \subset \hat{P}^{(k)}} \text{Vol}(\hat{S}^{(k)}) d_H^2(\hat{S}^{(k)}). \quad (12.16)$$

Let $\hat{P}^{(k)}(\hat{x})$ be any polyad in $\hat{\mathcal{P}}_b$ and let I be the set of all polyads $\hat{S}^{(k)} \subset \hat{P}^{(k)}(\hat{x})$. Recall that $\hat{Q}(\hat{x}) = \{Q_1^{(k)}(\hat{x}), \ldots, Q_{r(a_1^p, \pi)}^{(k)}(\hat{x})\}$ is an $r(a_1^p, \pi)$-tuple of witnesses of irregularity, that is, $(k+1, k)$-cylinders satisfying (12.1a) and (12.1b). Denote by J the set of all polyads $\hat{S}^{(k)}$ so that $\hat{S}^{(k)} \subset Q_i^{(k)}(\hat{x})$ for some $i \in [r(a_1^p, \pi)]$, and set

$$\sigma = \sum_{\hat{S}^{(k)} \in J} \sigma_{\hat{S}^{(k)}},$$

$$\nu = d_H(\hat{Q}(\hat{x})) - d_H(\hat{P}^{(k)}(\hat{x})).$$

Then,

$$\sigma = \sum_{\hat{S}^{(k)} \in J} \sigma_{\hat{S}^{(k)}} = \frac{\left| \bigcup_{i=1}^{r(a_1^p, \pi)} K_{k+1}(Q_i^{(k)}(\hat{x})) \right|}{|K_{k+1}(\hat{P}^{(k)}(\hat{x}))|} \geq \delta_{k+1} \quad (12.17)$$
Moreover,

\[\sum_{\hat{J}(k) \in J} \sigma_{\hat{J}(k)} d_{\mathcal{H}}(\hat{S}(k)) = \sigma \sum_i \left\{ \frac{\sigma_{\hat{J}(k)}}{\sigma} d_{\mathcal{H}}(\hat{S}(k)) : \hat{S}(k) \subseteq Q_i^{(k)}(\hat{\mathbf{x}}) \right\} \]

\[= \sigma d_{\mathcal{H}}(\hat{Q}(\hat{\mathbf{x}})) = \sigma \left(d_{\mathcal{H}}(\hat{P}(k)(\hat{\mathbf{x}})) + \nu \right). \tag{12.18} \]

Thus, by Fact 11.4 applied with parameters \(I, J, \sigma, \nu \) defined above and \(\delta = \delta_{k+1} \), we obtain

\[\sum_{\hat{J}(k) \in \hat{P}(k)} \sigma_{\hat{J}(k)} d_{\mathcal{H}}(\hat{S}(k)) \geq d_{\mathcal{H}}^2(\hat{P}(k)) + \delta_{k+1}^3. \tag{12.20} \]

for every polyad \(\hat{P}(k) \subseteq \hat{P}_b \). We remark that (12.14a), (12.14b), (12.17), (12.18), and (12.19) verify the assumptions of Fact 11.4.

Now we use this to estimate \(\xi_2 \). Indeed, observe first that

\[\sum_{\hat{P}(k) \in \hat{P}_b} \text{Vol}(\hat{P}(k)) > \delta_{k+1} - \mu \geq \delta_{k+1}/2 \tag{12.21} \]

because at most \((1 - \delta_{k+1}) \binom{n}{k+1} \) many \((k+1)\)-tuples are in \((\delta_{k+1}, r(a_1^{(k)}, \pi))\)-regular polyads and at most \(\mu \binom{n}{k+1} \) many \((k+1)\)-tuples are either not crossing or not in \((\delta(\pi), \pi, r(a_1^{(k)}, \pi))\)-regular \((k+1, k)\)-complexes \(\hat{P} \). Combining this with (12.20) yields

\[\xi_2 = \sum_{\hat{P}(k) \in \hat{P}_b} \text{Vol}(\hat{P}(k)) d_{\mathcal{H}}^2(\hat{P}(k)) \leq \]

\[\sum_{\hat{P}(k) \in \hat{P}_b} \text{Vol}(\hat{P}(k)) \left(\sum_{\hat{S}(k) \subseteq \hat{P}(k)} \sigma_{\hat{S}(k)} d_{\mathcal{H}}^2(\hat{S}(k)) - \delta_{k+1}^3 \right) \leq \sum_{\hat{P}(k) \in \hat{P}_b} \sum_{\hat{S}(k) \subseteq \hat{P}(k)} \text{Vol}(\hat{S}(k)) d_{\mathcal{H}}^2(\hat{S}(k)) - \delta_{k+1}^4/2. \tag{12.22} \]

We put equations (12.16) and (12.22) together and obtain

\[\text{ind} \mathcal{V} = \sum_{\hat{S}(k) \in \hat{S}} \text{Vol}(\hat{S}(k)) d_{\mathcal{H}}^2(\hat{S}(k)) \geq \sum_{\hat{P}(k) \in \hat{P}_b} \sum_{\hat{S}(k) \subseteq \hat{P}(k)} \text{Vol}(\hat{S}(k)) d_{\mathcal{H}}^2(\hat{S}(k)) \geq \xi_1 + \xi_2 + \delta_{k+1}^4/2 = \text{ind} \mathcal{V} + \delta_{k+1}^4/2. \]
Observe that if we could show that I is an equitable $(\mu/2, \delta, r)$-partition instead of an almost equitable $(\mu/2, \delta, r)$-partition, then I would be a partition we are looking for. Note that the only difference would be to prove in (12.5) (a)

- $S^{(k)}$ is $(\delta_k(\sigma^k), \sigma_k, r(a_1^\sigma, \sigma))$-regular with respect to $S^{(k-1)}$;

instead of

- $S^{(k)}$ is $(\delta_k(\sigma^k), \rho, r(a_1^\sigma, \sigma))$-regular with respect to $S^{(k-1)}$ and $\rho \geq \sigma_k$.

However, we are not able to prove this and, therefore, in the remaining part of the proof we will modify partition I into a functionally equitable (μ, δ, r)-partition I.

To this end, we will use the Slicing lemma (with appropriately chosen p) which enables to decompose each sufficiently dense (δ, α, r)-regular cylinder into $\lceil 1/p \rceil (3\delta, \alpha p, r)$-regular cylinders. We apply this lemma to every $S^{(k)} \in I$ with relative density $\rho \geq \sigma_k$ and divide it into (k, k)-cylinders with the same density.

We need to verify that the rank of a new partition I will not increase by much and its index will not decrease.

Now we provide details of this construction. We call $S^{(k)}(\xi, \hat{y}) \in I$ good if it satisfies the following:

(S1) $S^{(k)}(\xi, \hat{y})$ is $(\delta_k', \rho, r(a_1^\sigma, \sigma))$-regular with respect to $S^{(k-1)}(\xi, \hat{y})$ and $\rho = \rho(\xi, \hat{y}) \geq \rho_k$;

(S2) $S^{(i)}(\xi, \hat{y}) = \hat{R}^{(i)}(\hat{y})$ is $(\delta_i(\sigma^i), \rho_i, r(a_1^\sigma, \sigma))$-regular with respect to $S^{(i-1)}(\xi, \hat{y}) = \hat{R}^{(i)}(\hat{y})$ for $i = 2, \ldots, k - 1$, and

(S3) $|S^{(k)}(\xi, \hat{y})| \geq (n/a_1)^k / \ln(n/a_1)$.

Otherwise, we call $S^{(k)}(\xi, \hat{y})$ bad. Denote by I_{good} the set of all good (k, k)-cylinders $S^{(k)}(\xi, \hat{y}) \in I$ and let $I_{\text{bad}} = I \setminus I_{\text{good}}$. Observe the following:

- $\mu'((\alpha))$ bounds the size of the union of those (k, k)-cylinders $S^{(k)}(\xi, \hat{y})$, for which (S2) does not hold (recall I is an equitable $(\mu' \hat{R}(\sigma), \rho, r'(a_1^\sigma, \sigma))$-partition and $a_1^\sigma = a_1^\sigma$);

- $s \times \delta_k'(\alpha) + s \times \rho_k((\alpha))$ estimates the size of the union of those $S^{(k)}(\xi, \hat{y})$ for which (S1) does not hold: $s \times \delta_k'(\alpha)$ is for the size of all $(\delta_k', \rho, r(a_1^\sigma, \sigma))$-irregular $S^{(k)}(\xi, \hat{y}) = G^{(k)}_\xi \cap K_k(\hat{R}^{(k-1)}(\hat{y}))$ (I is $(\delta_k', r'(a_1^\sigma, \sigma))$-regular with respect to all $G^{(k)}_\xi$ and $s \times \rho_k((\alpha))$ for ones with $\rho = \rho(\xi, \hat{y}) < \rho_k$;

- $\text{rank}(I \times (n/a_1)^k / \ln(n/a_1))$ estimates the size of the union of those $S^{(k)}(\xi, \hat{y})$ that are violating (S3).
Subsequently, for sufficiently large n, we obtain
\[
\sum \{ |S^{(k)}| : S^{(k)} \in \mathcal{I}_{\text{bad}} \}
\leq \mu' \left(\frac{n}{k} \right) + s \times \delta_k \left(\frac{n}{k} \right) + s \times \rho_k \left(\frac{n}{k} \right) + \text{rank}(\mathcal{I}) \times \left(\frac{n/a_1}{\ln(n/a_1)} \right)^k
\leq \frac{\mu}{2(k+1)^2} \left(\frac{n}{k} \right). \tag{12.23}
\]

Now we are going to define a new partition \mathcal{I} as follows:

(a) First observe that every $S^{(k)}(\xi, \hat{\gamma}) \in \mathcal{I}_{\text{good}}$ is $(\delta_k', \rho, r(a_1', \sigma))$-regular with respect to $S^{(k-1)}(\xi, \hat{\gamma})$, where $\rho = \rho(\xi, \hat{\gamma}) \geq \rho_k$, and
\[
|K_k(S^{(k-1)}(\xi, \hat{\gamma}))| \geq \left| S^{(k)}(\xi, \hat{\gamma}) \right| \geq (n/a_1)^k / \ln(n/a_1).
\]

Then we use the Slicing lemma with \mathcal{H} replaced by $S^{(k)}(\xi, \hat{\gamma})$, \mathcal{G} by $S^{(k-1)}(\xi, \hat{\gamma})$, and r with $r(a_1', \sigma)$, and with parameters
\[
m = \left\lfloor \frac{n}{a_1'} \right\rfloor, \tag{12.24a}
\delta = \delta_k', \tag{12.24b}
\alpha = \rho(\xi, \hat{\gamma}), \tag{12.24c}
p = p(\xi, \hat{\gamma}) = \frac{\mu}{8s(k+1)^2\rho(\xi, \hat{\gamma})} = \frac{\rho_k}{\rho(\xi, \hat{\gamma})} \leq 1, \tag{12.24d}
u = u(\xi, \hat{\gamma}) = \left\lfloor 1/p(\xi, \hat{\gamma}) \right\rfloor \leq \frac{8s(k+1)^2}{\mu}. \tag{12.24e}
\]

This yields (k, k)-cylinders $T^{(k)}(i, \xi, \hat{\gamma})$, $i = 0, 1, \ldots, u(\xi, \hat{\gamma})$, satisfying

(T1) $S^{(k)}(\xi, \hat{\gamma}) = \bigcup_{i=0}^{u(\xi, \hat{\gamma})} T^{(k)}(i, \xi, \hat{\gamma})$ and this union is disjoint,

(T2) $T^{(k)}(i, \xi, \hat{\gamma})$ is $(3\delta_k', \rho_k, r(a_1', \sigma))$-regular w.r.t. $S^{(k-1)}(\xi, \hat{\gamma})$ for every $i = 1, \ldots, u(\xi, \hat{\gamma})$, and

(T3) $|T^{(k)}(0, \xi, \hat{\gamma})| \leq (p\alpha+4u\delta)|K_k(S^{(k-1)}(\xi, \hat{\gamma}))| \leq \frac{\mu}{4s(k+1)^2} |K_k(S^{(k-1)}(\xi, \hat{\gamma}))|.

(\beta) For every $S^{(k)}(\xi, \hat{\gamma}) \in \mathcal{I}_{\text{bad}}$, we set
\[
T^{(k)}(0, \xi, \hat{\gamma}) = S^{(k)}(\xi, \hat{\gamma}). \tag{12.25}
\]

Then we define \mathcal{I} by
\[
\mathcal{I} = \left\{ T^{(k)}(i, \xi, \hat{\gamma}) : S^{(k)}(\xi, \hat{\gamma}) \in \mathcal{I}_{\text{good}}, i \in [u(\xi, \hat{\gamma})] \right\}
\bigcup \left\{ T^{(k)}(0, \xi, \hat{\gamma}) : \hat{\gamma} \in \hat{A}(k-1, a_\mathcal{H}), \xi \in [s] \right\}. \tag{12.26}
\]

We need to show that \mathcal{I} is a partition we are looking for. We accomplish this by proving

(A): \mathcal{I} is a functionally equitable (μ, δ, r)-partition,
Since parts (B) and (C) are easier to prove than (A), we start with them.

Part (B): It follows from (12.26) and (12.24e) that

\[
\text{rank}(\mathcal{T}) \leq \frac{8s(k + 1)^2}{\mu} \times \text{rank}(\mathcal{P}) + s \times \text{rank}(\mathcal{J})
\]

\[
\leq \left(\frac{8s(k + 1)^2}{\mu} + s \right) f(\text{rank}(\mathcal{P}), \delta_{k+1}, \delta, r) = \tilde{f}(\text{rank}(\mathcal{P}), \delta_{k+1}, \delta, r).
\]

Part (C): (T1) and (12.25) shows that \(\mathcal{T} \) refines \(\mathcal{J} \) (see Definition 5.8). Hence, applying Lemma 11.3 yields

\[
\text{ind} \mathcal{T} \geq \text{ind} \mathcal{P} \geq \text{ind} \mathcal{P} + \frac{\delta_{k+1}^4}{2}.
\]

Now we prove part (A): For \(a_1^T = a_1^\mathcal{J} \) and \(\sigma = (\rho_2, \ldots, \rho_k) = (\rho, \rho_k) \), we prove that \(\mathcal{T} \) is an equitable \((\mu, \delta(\sigma), r(a_1^\mathcal{J}, \sigma))\)-partition. (12.27)

Then, by Definition 8.11, partition \(\mathcal{T} \) is a functionally equitable \((\mu, \delta, r)\)-partition. By Definition 8.3, all what remains to show is

all but at most \(\mu \left(\binom{n}{k+1} \right) \) \((k + 1)\)-tuples \(K \in [V]^{k+1} \) belong to \((\delta(\sigma), r(a_1^\mathcal{J}, \sigma))\)-regular complexes.

For the following we recall that \(\sigma^i = (\rho_i, \ldots, \rho_k) \) for \(2 \leq i \leq k \). Now, let \(S^{(k)}(\xi, \hat{y}) \in \mathcal{J}_{\text{good}} \). We show then that

\[
\{ S^{(1)}(\xi, \hat{y}), \ldots, S^{(k-1)}(\xi, \hat{y}), T^{(k)}(i, \xi, \hat{y}) \}
\]

is a \((\delta(\sigma), r(a_1^\mathcal{J}, \sigma))\)-regular complex for all \(i \in [u(\xi, \hat{y})] \). Indeed,

- \(S^{(2)}(\xi, \hat{y}) \) is \((\delta_2(\sigma^2), \rho_2)\)-regular with respect to \(S^{(1)}(\xi, \hat{y}) \) because of (S2),

- For \(i = 3, \ldots, k-1 \), \(S^{(i)}(\xi, \hat{y}) \) is \((\delta_i(\sigma^i), \rho_i, r(a_1^\mathcal{J}, \sigma))\)-regular with respect to \(S^{(i-1)}(\xi, \hat{y}) \) because of (S2),

- \(T^{(k)}(i, \xi, \hat{y}) \) is \((\delta_k(\rho_k), \rho_k, r(a_1^\mathcal{J}, \sigma))\)-regular with respect to \(S^{(k-1)}(\xi, \hat{y}) \) because of (T2), and

- \(\delta_k' \leq \delta_k(\rho_k)/3 \) (cf. (12.6b)).

Denote by \(\mathcal{J}_{\text{good}} \) the set of all \(T^{(k)}(i, \xi, \hat{y}) \in \mathcal{T}, i \in [u(\xi, \hat{y})] \), such that \(S^{(k)}(\xi, \hat{y}) \in \mathcal{J}_{\text{good}} \). Furthermore, set \(\mathcal{J}_{\text{bad}} = \mathcal{T} \setminus \mathcal{J}_{\text{good}} \) and let \(\hat{\mathcal{J}}_{\text{good}} \) be the set of polyads \(\hat{T}^{(k)} \in \hat{\mathcal{J}} \) which consists only of elements from \(\mathcal{J}_{\text{good}} \).

In other words, every \(\hat{T}^{(k)} \in \hat{\mathcal{J}}_{\text{good}} \) belongs to a \((\delta(\sigma), r(a_1^\mathcal{J}, \sigma))\)-regular \((k + 1, k)\)-complex. Hence, we must prove

\[
\sum \{ \text{Vol}(\hat{T}^{(k)}); \hat{T}^{(k)} \in \hat{\mathcal{J}}_{\text{good}} \} > 1 - \mu.
\]
If $\mathcal{F}(k) \notin \mathcal{F}_{\text{good}}$, then it must contain a (k, k)-cylinder $T(k) \in \mathcal{F}_{\text{bad}}$. This means however, that $T(k) = T(k)(0, \xi, \hat{y})$ for some $\hat{y} \in \hat{A}(k - 1, a^{\mathbb{R}})$ and $\xi \in [s]$. By the definitions of $T(k)(0, \xi, \hat{y})$ (see $(\alpha), (\beta)$), we have

$$\sum \{ |T(k)(0, \xi, \hat{y})|: \xi \in [s], \hat{y} \in \hat{A}(k - 1, a^{\mathbb{R}}) \} \leq \sum \{ |S(k)(\xi, \hat{y})|: S(k)(\xi, \hat{y}) \in \mathcal{F}_{\text{bad}} \} + \sum \{ |T(k)(0, \xi, \hat{y})|: S(k)(\xi, \hat{y}) \in \mathcal{F}_{\text{good}} \}.$$

Then we use (12.23) and (T3) to conclude

$$\sum \{ |T(k)(0, \xi, \hat{y})|: \xi \in [s], \hat{y} \in \hat{A}(k - 1, a^{\mathbb{R}}) \} \leq \frac{\mu}{2(k + 1)^2} \binom{n}{k} + \frac{\mu}{4s(k + 1)^2} \sum \{ |K_k(S^{(k-1)}(\xi, \hat{y}))|: \xi \in [s], \hat{y} \in \hat{A}(k - 1, a^{\mathbb{R}}) \} \leq \frac{\mu}{(k + 1)^2} \binom{n}{k}. \quad (12.28)$$

The last inequality follows from the fact that $\{K_k(S^{(k-1)}(\xi, \hat{y})): \hat{y} \in \hat{A}(k - 1, a^{\mathbb{R}}) \}$ forms a partition of $\text{Cross}_k(\psi_1^{k\mathbb{R}})$ for every fixed $\xi \in [s]$. Therefore, by (12.28), we have

$$\sum \{ \text{Vol}(\hat{T}(k)): \hat{T}(k) \notin \mathcal{F}_{\text{good}} \} \leq \frac{n}{(k + 1)} \sum \{ |T(k)(0, \xi, \hat{y})|: \xi \in [s], \hat{y} \in \hat{A}(k - 1, a^{\mathbb{R}}) \} \overset{(12.23)}{\leq} \frac{n}{(k + 1)} \times \frac{\mu}{(k + 1)^2} \binom{n}{k} \leq \mu. \quad \square$$

13. Concluding remarks

Definitions 8.11 and 8.12 describe the most important properties required from a partition \mathcal{P} produced by the Regularity Lemma for k-uniform hypergraphs (Theorem 8.14).

For some applications of Szemerédi’s Regularity Lemma, it turned out to be useful to have a version of this lemma that produces an ε-regular partition of vertices satisfying some additional conditions. As an example we mention Lemma 3.7 from [FR02] (see also Remark 8.19) in which a partition produced by Szemerédi’s Regularity Lemma also refines a given initial partition of vertices.

Here we present a version of Theorem 8.14 in which we impose an additional “divisibility” condition on densities d_2, \ldots, d_k in Definition 8.11 and we require \mathcal{P} to “refine” an initial complex \mathcal{G}. This modified regularity lemma is one of the key ingredients in the proof of the Counting Lemma in [NRS].
First, we need some additional notation. Suppose $\mathcal{P} = \mathcal{P}(k, a, \psi)$ is a partition of $\text{Cross}_k(\psi_1)$ and \{\(\mathcal{P}^{(j)} \)\}_{j=1}^k is a system of partitions associated with \mathcal{P} (see Remark 5.5). For an \((\ell, k)\)-complex $\mathcal{G} = \{ \mathcal{G}^{(j)} \}_{j=1}^k$, we say that \mathcal{P} respects \mathcal{G} if for every $j \in [k]$ and every $x^{(j)} \in A(j, a)$ either $\mathcal{P}^{(j)}(x^{(j)}) \subseteq \mathcal{G}^{(j)}$ or $\mathcal{P}^{(j)}(x^{(j)}) \cap \mathcal{G}^{(j)} = \emptyset$.

Then, our modified regularity lemma reads as follows:

Corollary 13.1. For all integers $\ell \geq k \geq 2$ and all positive numbers $\lambda_2, \ldots, \lambda_k, \delta_{k+1}$ and μ, and any non-negative functions $\delta_k(d_k)$, $\delta_{k-1}(d_k)$, \ldots, $\delta_2(d_2, \ldots, d_k)$, and $r = r(t, d_2, \ldots, d_k)$, there exist integers n_{k+1} and L_{k+1} such that the following holds.

For every $(k+1)$-uniform hypergraph \mathcal{H} and an (ℓ, k)-complex $\mathcal{G} = \{ \mathcal{G}^{(j)} \}_{j=1}^k$ with common vertex set of size at least n_{k+1}, there exists a partition $\mathcal{P} = \mathcal{P}(k, a, \psi)$ of $\text{Cross}_k(\psi_1)$ and a vector $\pi = (\pi_2, \ldots, \pi_k)$, so that

(i) \mathcal{P} is an equitable $(\mu, (\delta, r))$-partition,
(ii) \mathcal{P} is (δ_{k+1}, r)-regular with respect to $\mathcal{H},$
(iii) $\text{rank}(\mathcal{P}) = |A(k, a)| \leq L_{k+1},$
(iv) \mathcal{P} respects \mathcal{G}, and
(v) λ_j/π_j is an integer for $j = 2, \ldots, k$.

Remark. The difference between Corollary 13.1 and Theorem 8.14 is that

1. in Corollary 13.1, we have additional input parameters
 a. numbers λ_j, $j = 2, \ldots, k$, and
 b. an (ℓ, k)-complex $\mathcal{G} = \{ \mathcal{G}^{(j)} \}_{j=1}^k$;
2. in Corollary 13.1, we impose additional conditions (iv) and (v) on the output partition \mathcal{P}.

The proof of Corollary 13.1 closely follows the proof of Theorem 8.14. Here we point out only the differences between these proofs:

(D1) As the induction assumption we do not use Lemma 11.1 but the above corollary stated for \mathcal{H} replaced by a family of hypergraphs $\mathcal{G}_1, \ldots, \mathcal{G}_s$.

Lemma 13.2. For all integers $s \geq 1$, $\ell \geq k \geq 2$ and all positive numbers $\lambda_2, \ldots, \lambda_{k-1}, \delta_k'$ and μ', and any non-negative functions $\delta_k'(d_k)$, $\delta'_{k-1}(d_k)$, \ldots, $\delta_2(d_2, \ldots, d_{k-1})$, and $r' = r'(t, d_2, \ldots, d_{k-1})$, there exist integers n'_k and L'_k such that the following holds.

For all k-uniform hypergraphs $\mathcal{G}_1, \ldots, \mathcal{G}_s$ and an $(\ell, k-1)$-complex $\mathcal{G} = \{ \mathcal{G}^{(j)} \}_{j=1}^{k-1}$ with common vertex set of size at least n_k, there exists a partition $\mathcal{R} = \mathcal{R}(k-1, a^{\#}, \psi^{\#})$ of $\text{Cross}_{k-1}(\psi_1^{\#})$ and a vector $\rho = (\rho_2, \ldots, \rho_{k-1})$, so that

(i) \mathcal{R} is an equitable $(\mu', (\delta', r'))$-partition,
(ii) \mathcal{R} is $(\delta', r'(a^{\#}, \rho))$-regular (w.r.t. \mathcal{H}),
(iii) $\text{rank}(\mathcal{R}) = |A(k-1, a^{\#})| \leq L'_k,$
(iv) \mathcal{R} respects \mathcal{G}, and
(v) λ_j/ρ_j is an integer for $j = 2, \ldots, k - 1$.

(D2) In the proof of the Pumping Lemma, we start with an equitable $(\mu, \delta(\pi), \pi, r(a^1, \pi))$-partition $\mathcal{P} = \mathcal{P}(k, a^\mathcal{P}, \psi^\mathcal{P})$ which is $(\delta_k, r(a^1, \pi))$-irregular and satisfies (13.29)(iii)-(v). Using the witnesses of irregularity (12.1a), (12.1b), we construct a system of k-uniform hypergraphs $\mathcal{G}_1, \ldots, \mathcal{G}_s$ that form a partition of $\text{Cross}_k(\psi^\mathcal{P}_1)$ that refines \mathcal{P}.

This implies that every \mathcal{G}_i, $i \in [s]$, respects the given $\mathcal{G}^{(k)} \in \mathcal{G}$, that is, either $\mathcal{G}_i \subset \mathcal{G}^{(k)}$ or $\mathcal{G}_i \cap \mathcal{G}^{(k)} = \emptyset$.

(D3) For Step 1., we define ρ_k by

$$\mu/16s(k+1)^2 \leq \rho_k \leq \mu/8s(k+1)^2$$

and $\lambda_k/\rho_k \in \mathbb{N}$ (13.30) instead of (12.6a). Note that (13.30) is possible by setting $\rho_k = \lambda_k/L$, where L is an integer such that $\lambda_k/L \leq \mu/8s(k+1)^2 < \lambda_k/(L-1)$.

Then, instead of Lemma 11.1, we apply Lemma 13.2 with input parameters given by (13.30), (12.6b)-(12.6e), and with additional parameters $\lambda_2, \ldots, \lambda_{k-1}$ and the $(\ell, k-1)$-complex $\{\mathcal{G}^{(j)}\}_{j=1}^{k-1}$.

This yields a partition \mathcal{A} of $\text{Cross}_{k-1}(\psi^\mathcal{P}_1)$ satisfying (12.7). Moreover, \mathcal{A} respects $\{\mathcal{G}^{(j)}\}_{j=1}^{k-1}$ and λ_j/ρ_j is an integer for $j = 2, \ldots, k - 1$.

(D4) The partition \mathcal{S} defined by (12.8a) and (12.10) satisfies (12.5) again. Moreover, vector $\sigma = (p_2, \ldots, p_k)$ (see the proof of (12.5)(a)) satisfies $\lambda_j/\rho_j \in \mathbb{N}$ for $j = 2, \ldots, k$. For $j = 2, \ldots, k-1$ this comes from applying Lemma 13.2 and for $j = k$ from the definition of ρ_k (see (13.30)).

Finally, since \mathcal{A} respects $\{\mathcal{G}^{(j)}\}_{j=1}^{k-1}$ (see (D3)) and every \mathcal{G}_i, $i \in [s]$, respects $\mathcal{G}^{(k)} \in \mathcal{G}$ (see (D2)), (12.8a) implies that \mathcal{S} respects $\mathcal{G} = \{\mathcal{G}^{(j)}\}_{j=1}^{k}$.

(D5) While defining the partition \mathcal{S} (see (T1)-(T3), (12.25), (12.26)), we have (k, k)-cylinders

$$\mathcal{T}^{(k)}(i, \xi, \hat{\gamma}) \subseteq \mathcal{S}^{(k)}(\xi, \hat{\gamma})$$

for $i = 0, 1, \ldots, u(\xi, \hat{\gamma})$ (or $i = 0$ only), $\xi \in [s]$, and $\hat{\gamma} \in \hat{A}(k-1, a^\mathcal{P})$. Since \mathcal{S} respects \mathcal{G} (see (D4)), the partition \mathcal{S} defined by (12.26) also respects \mathcal{G}. Note that calculations in parts (A)-(C) remain the same.

References

We first give a proof of the Slicing Lemma.

Proof of Lemma 11.2. For every edge $e \in \mathcal{H}$, we define a random variable X_e with values in $\{0, 1, \ldots, u\}$ by

\[
\P(X_e = i) = p \quad \text{for } i \in [u],
\P(X_e = 0) = 1 - pu.
\]

Then, we define \mathcal{H}_i by putting $e \in \mathcal{H}$ into \mathcal{H}_i if and only if $X_e = i$. Clearly, $|\mathcal{H}_i|$ is a random variable with binomial distribution $\Bi(|\mathcal{H}|, p)$.

Let $\mathcal{G}_1, \ldots, \mathcal{G}_r$ be subcylinders of \mathcal{G} such that

\[
\left| \bigcup_{j=1}^{r} \mathcal{K}_k(\mathcal{G}_j) \right| \geq 3\delta |\mathcal{K}_k(\mathcal{G})|.
\] \hspace{1cm} (A.1)

Then, due to (δ, α, r)-regularity of \mathcal{H}, we have

\[
|\mathcal{H} \cap \bigcup_{j=1}^{r} \mathcal{K}_k(\mathcal{G}_j)| = (\alpha \pm \delta) \left| \bigcup_{j=1}^{r} \mathcal{K}_k(\mathcal{G}_j) \right|.
\]

Subsequently, for every $i \in [u]$, the expected number of edges of \mathcal{H}_i in $\bigcup_{j=1}^{r} \mathcal{K}_k(\mathcal{G}_j)$ is

\[
E_i = \E \left(|\mathcal{H}_i \cap \bigcup_{j=1}^{r} \mathcal{K}_k(\mathcal{G}_j)| \right) = (\alpha \pm \delta) p \left| \bigcup_{j=1}^{r} \mathcal{K}_k(\mathcal{G}_j) \right|.
\] \hspace{1cm} (A.2)
Set $\gamma = \delta / pa$, and observe that
\[p\alpha - 3\delta \leq (1 - \gamma)p(\alpha - \delta), \quad (A.3a) \]
\[p\alpha + 3\delta \geq (1 + \gamma)p(\alpha + \delta). \quad (A.3b) \]

Suppose that for some $i \in [u]$ we have
\[|H_i \cap \bigcup_{j=1}^{r} K_k(G_j)| - p\alpha \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg| \geq 3\delta \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg|. \]

Then, using (A.2) and (A.3b), we obtain
\[|H_i \cap \bigcup_{j=1}^{r} K_k(G_j)| \geq (p\alpha + 3\delta) \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg| \quad (A.3b) \]
\[\geq (1 + \gamma)p(\alpha + \delta) \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg| \quad (A.2) \]
\[\geq (1 + \gamma)E_i. \]

Consequently,
\[|H_i \cap \bigcup_{j=1}^{r} K_k(G_j)| - E_i \geq \gamma E_i. \]

Similarly, assuming
\[|H_i \cap \bigcup_{j=1}^{r} K_k(G_j)| - p\alpha \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg| \leq -3\delta \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg|, \]
we obtain $|H_i \cap \bigcup_{j=1}^{r} K_k(G_j)| - E_i < -\gamma E_i$. As a result, we have
\[\mathbb{P} \left(\left| H_i \cap \bigcup_{j=1}^{r} K_k(G_j) \right| - p\alpha \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg| \geq 3\delta \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg| \right) \]
\[\leq \mathbb{P} \left(\left| H_i \cap \bigcup_{j=1}^{r} K_k(G_j) \right| - E_i \geq \gamma E_i \right) . \quad (A.4) \]

Using the Chernoff inequality, we estimate the right-hand side of (A.4) by $2 \exp(-\gamma^2 E_i / 3)$. Moreover, from (A.1), (A.2), and $|K_k(G)| \geq m^k / \ln m$, we conclude
\[E_i > (\alpha - \delta)p \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg| > \alpha \delta p \frac{m^k}{\ln m}. \]

Thus,
\[\mathbb{P} \left(\left| H_i \cap \bigcup_{j=1}^{r} K_k(G_j) \right| - p\alpha \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg| \geq 3\delta \bigg| \bigcup_{j=1}^{r} K_k(G_j) \bigg| \right) \]
\[\leq 2 \exp(-(\delta^3 m^k / 3\alpha p \ln m)) \leq 2 \exp(-(\ln 4) kr m^{k-1}) = 2 \times 4^{-kr m^{k-1}}. \]
There are at most \(2^{krm^{k-1}}\) ways of selecting \((k, k-1)\)-cylinders \(G_1, \ldots, G_r \subseteq G\). Hence, the probability that at least one of \((k, k)\)-cylinders \(H_i \subseteq G\) is \((3\delta, p\alpha, r)\)-irregular is bounded by \(u \times 2^{krm^{k-1}} \times 2 \times 4^{-krm^{k-1}} < 1\) for \(r \geq 1\). Thus, we infer that there exists a choice of \((k, k)\)-cylinders \(H_1, \ldots, H_u\) so that every \(H_i\) is \((3\delta, p\alpha, r)\)-regular. \(\square\)

Proof of Lemma 11.3. For each polyad \(\hat{S}^{(k)} \in \hat{\mathcal{S}}\) with \(|K_{k+1}(\hat{S}^{(k)})| > 0\), and for every polyad \(\hat{T}^{(k)} \subseteq \hat{S}^{(k)}\), we set

\[
\sigma_{\hat{T}^{(k)}} = \frac{|K_{k+1}(\hat{T}^{(k)})|}{|K_{k+1}(\hat{S}^{(k)})|} = \frac{\text{Vol}(\hat{T}^{(k)})}{\text{Vol}(\hat{S}^{(k)})}.
\]

Since partition \(\mathcal{T}\) refines \(\mathcal{S}\), similarly to the proof of (12.5)\(c\) (see also (12.14a) – (12.15)), we obtain

\[
d^2_H(\hat{S}^{(k)}) \leq \sum_{\hat{T}^{(k)} \subseteq \hat{S}^{(k)}} \sigma_{\hat{T}^{(k)}} d^2_H(\hat{T}^{(k)}) \quad (A.5)
\]

for every polyad \(\hat{S}^{(k)} \in \hat{\mathcal{S}}\). We use this to estimate \(\text{ind} \mathcal{S}\). Since \(\sigma_{\hat{T}^{(k)}} = \text{Vol}(\hat{T}^{(k)})/\text{Vol}(\hat{S}^{(k)})\), we have

\[
\text{ind} \mathcal{S} \overset{\text{(A.5)}}{\leq} \sum_{\hat{S}^{(k)} \in \hat{\mathcal{S}}} \text{Vol}(\hat{S}^{(k)}) \sum_{\hat{T}^{(k)} \subseteq \hat{S}^{(k)}} \sigma_{\hat{S}^{(k)}} d^2_H(\hat{T}^{(k)})
\]

\[
= \sum_{\hat{S}^{(k)} \in \hat{\mathcal{S}}} \sum_{\hat{T}^{(k)} \subseteq \hat{S}^{(k)}} \text{Vol}(\hat{T}^{(k)}) d^2_H(\hat{T}^{(k)}) \leq \text{ind} \mathcal{T}.
\]

\(\square\)

Department of Mathematics and Computer Science, Emory University, Atlanta, GA, 30322, USA

E-mail address: rodl@mathcs.emory.edu

Department of Mathematics, MC-382, University of Illinois at Urbana–Champaign, 1409 W. Green Street, Urbana, IL, 61801, USA and Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-900 São Paulo, Brazil

E-mail address: jozef@member.ams.org