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The q; t-Macdonald polynomials are conjectured by Garsia and Haiman to have a represen-

tation theoretic interpretation in terms of the Sn-module M� spanned by the derivatives

of a certain polynomial ��(x1; x2; : : : ; xn; y1; y2; : : : ; yn). The diagonal action of a permu-

tation � 2 Sn on a polynomial P = P (x1; x2; : : : ; xn; y1; y2; : : : ; yn) is de�ned by setting

�P = P (x�1 ; x�2 ; : : : ; x�n; y�1 ; y�2 ; : : : ; y�n). Since the polynomial �� alternates under the

diagonal action,M� is Sn-invariant. We analyze here the diagonal action of Sn onM� and

show that its decomposition into irreducibles is equivalent to a certain isotypic expansion for

the translate ��(x1+x0

1
; x2+x0

2
; : : : ; xn+x0

n
; y1+y0

1
; y2+y0

2
; : : : ; yn+y0

n
) of the polynomial

��.

1. Introduction

A lattice diagram is a �nite set L = f(h1; k1); : : : ; (hn; kn)g of cells in the positive plane quadrant

(or a positive orthant in higher dimensions). Of particular interest is the Ferrer's Diagram of a

partition � = (�1; �2; : : : ; �k) of an integer n:

L� = f (i; j) : 0 � i � k � 1; 0 � j � �i+1 � 1 g :

The lattice determinant of L is

�L(x1; : : : ; xn; y1; : : : ; yn) = �L(x;y) = det[xi
hj yi

kj ]ni;j=1 : (1)

This is well-de�ned aside from an overall sign determined by the ordering of the cells. Note that

we abbreviate the parameter lists x = (x1; : : : ; xn) and y = (y1; : : : ; yn). This polynomial is

homogeneous under the bidegree grading on polynomials

bideg P (x;y) = (

nX
i=1

degxi P ;

nX
i=1

degyi P ) :

In particular, the degree of (1) is ~n(L) where

~n(L) = (h1 + � � �+ hn; k1 + � � �+ kn) ;

and for partitions, ~n(�) = (n(�); n(�0)) where n(�) =
P

i>1(i� 1)�i:

We adopt the French notation for partitions and a reverse-Cartesian notation for the coordinates

of the cells to be consistent with the literature on �� by Garsia; the cells of partition (3; 2) and

the lattice determinant �(3;2) are as follows.

(1; 0) (1; 1)

(0; 0) (0; 1) (0; 2)
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Let K be a �eld of characteristic 0. We consider two vector spaces associated with �L(x;y); the

space ML spanned by all partial derivatives of �L, and the space M+
L spanned by all translates of

�L. For partitions we write M� in place of ML�.

ML = span
n
@a1x1 � � �@

an
xn@

b1
y1
� � �@bnyn �L(x;y) : a1; : : : ; bn � 0

o
(2)

M+
L = span

�
�L(x+ x0;y+ y0) : x0;y0 2 Kn

	
(3)

It can be seen by Taylor's theorem (Section 2) that these spaces are equal. There is an action of the

symmetric group Sn on these two spaces called the diagonal action (Section 3), de�ned by setting,
for � 2 Sn,

�f(x1; : : : ; xn; y1; : : : ; yn) = f(x�(1); : : : ; x�(n); y�(1); : : : ; y�(n)) :

The spaces can be decomposed (Section 4) into their isotypic components under the diagonal action,

and further be decomposed into components that are homogeneous under the bidegree grading.

Our main result is a more precise relationship between the two spaces; speci�cally, in Section 5,

we expand the translates in terms of the derivatives:

�L(x+ x0;y+ y0) =
X
r;s�0

X
�`n

X
T2SY T (�)

NL(r;s;�)X
m=1

�r;s;Tm (x;y) �  r;s;T
m (x0;y0) ; (4)

where for integers r; s � 0 and a partition � of n,

�
�r;s;Tm : T 2 SY T (�) ; 1 � m � NL(r; s;�)

	
is a basis of the homogeneous (degree (r; s)) isotypic component (type �) of ML, and

�
 r;s;T
m : T 2 SY T (�) ; 1 � m � NL(r; s;�)

	
is a basis of the complementary degree and conjugate character component. Note that SY T (�) is

the set of Standard Young Tableaux of shape �.

It develops that in the case of partitions �, the \n!-conjecture" [3] identi�es the dimensions

N�(r; s;�) of these components as the coe�cients that arise in Macdonald's \2-parameter polyno-

mials," and in particular gives a combinatorial explanation of Macdonald's conjecture that these

coe�cients are positive ([4, p. 355]). If the n!-conjecture is true, the Macdonald Polynomials are a

generating function for the dimensions of these homogeneous isotypic components ofM�, while (4)

may be viewed as a generating function of bases of these components of M�.

In Section 6, we generalize expansion (4) to multidimensional lattice diagrams; permanents; mul-

tiple summands; and \delivation," an analogue of di�erentiation. In Section 7 we describe a method

of computing these decompositions. And �nally, in Section 8, we work out the decomposition (4)

for a family of multidimensional partitions.

Example 1. Let � = (2; 1). Then �(2;1)(x + x0;y + y0) is a sum of six terms; the term in (4)

indexed by r; s; �; T is shown as tr qs T .
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t0 q0
�
1 2 3

�
(1) (x02 y

0
3 � x03 y

0
3 � x03 y

0
3 + x01 y

0
2 + y01 x

0
3 � y01 x

0
2)

t0 q1
�
3

1 2

�
(y3 � y1) (x

0
2 � x01)

t0 q1
�
2

1 3

�
(y1 � y2) (x

0
3 � x01)

t1 q0
�
3

1 2

�
(x1 � x3) (y

0
2 � y01)

t1 q0
�
2

1 3

�
(x2 � x1) (y

0
3 � y01)

q1 t1

24 3

2

1

35 (x2 y3 � x3 y2 � x1 y3 + x1 y2 + y1 x3 � y1 x2) (1)

Note that there is a degree-complementing, sign-twisting automorphism of M� de�ned by

f lip�(f) = f(@x1 ; : : : ; @xn; @y1 ; : : : ; @yn)��:

Even though � and  in each term have complementary degrees and conjugate characters, they are

not related by 
ip:

(@y3 � @y1)��(x;y) = 2x2 � x1 � x3 :

Further, if we replace di�erentiation by delivation (Section 6), this same example will show that

neither � nor  is the 
ip of the other.

2. Taylor expansion of translates

We shall work in a �eld K of characteristic 0.

Let x1; : : : ; xn be indeterminates.

Let f(x1; : : : ; xn) 2 K[x1; : : : ; xn] be a polynomial.

Let Mf = span
�
@r1x1 � � �@

rn
xnf : r1; : : : ; rn � 0

	
.

Theorem 1. Let f�1; : : : ; �Ng be a basis of Mf . There exist unique polynomials  1; : : : ;  N 2

K[x1; : : : ; xn] such that

f(x1 + x01; : : : ; xn + x0n) =

NX
m=1

�m(x1; : : : ; xn) m(x
0
1; : : : ; x

0
n):

Further, f 1; : : : ;  Ng is also a basis of Mf .

Proof: By Taylor's theorem we may write

f(x1 + x01; : : : ; xn + x0n) =
X

r1;::: ;rn�0

x01
r1 � � �x0n

rn

�
@x1
r1!

� � �
@xn
rn!

f(x1; : : : ; xn)

�
: (5)

The bracketed expression is in Mf and hence may be expressed in terms of the �m's;

@x1
r1!

� � �
@xn
rn!

f(x1; : : : ; xn) =

NX
m=1

dm(r1; : : : ; rn)�m(x1; : : : ; xn) ; (6)
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where dm(r1; : : : ; rn) 2 K are unique because the �m's form a basis. Substituting (6) into (5), we

obtain

f(x1 + x01; : : : ; xn + x0n) =
X

r1;::: ;rn�0

x01
r1 � � �x0n

rn
NX

m=1

dm(r1; : : : ; rn)�m(x1; : : : ; xn)

=

NX
m=1

�m(x1; : : : ; xn)
X

r1;::: ;rn�0

dm(r1; : : : ; rn)x
0
1
r1 � � �x0n

rn

=

NX
m=1

�m(x1; : : : ; xn) m(x
0
1; : : : ; x

0
n) ; (7)

where we have de�ned

 m(x
0
1; : : : ; x

0
n) =

X
r1;::: ;rn�0

dm(r1; : : : ; rn)x
0
1
r1 � � �x0n

rn :

We must show that each  m(x1; : : : ; xn) 2Mf . To do this, we expand �m,

�m(x1; : : : ; xn) =
X

r1;::: ;rn�0

d0m(r1; : : : ; rn)x1
r1 � � �xn

rn (8)

and plug this into (7).

f(x1 + x01; : : : ; xn + x0n) =

NX
m=1

 m(x
0
1; : : : ; x

0
n)

X
r1;::: ;rn�0

d0m(r1; : : : ; rn)x1
r1 � � �xn

rn

=
X

r1;::: ;rn�0

x1
r1 � � �xn

rn

NX
m=1

d0m(r1; : : : ; rn)  m(x
0
1; : : : ; x

0
n)

Compare this with the other Taylor expansion of f :

f(x1 + x01; : : : ; xn + x0n) =
X

r1;::: ;rn

x1
r1 � � �xn

rn

�
@x01
r1!

� � �
@x0n
rn!

f(x01; : : : ; x
0
n)

�
: (9)

Equating the coe�cients of like powers of x1; : : : ; xn, we have

@x0
1

r1!
� � �

@x0n
rn!

f(x01; : : : ; x
0
n) =

NX
m=1

d0m(r1; : : : ; rn)  m(x
0
1; : : : ; x

0
n) ;

so Mf � span f 1; : : : ;  Ng. But f 1; : : : ;  Ng spans a space of dimension at most N , while Mf

has dimension N , so in fact, f 1; : : : ;  Ng is a basis of Mf .

We have actually proved an additional result that merits its own statement.

Proposition 1. If there is an expansion

f(x1 + x01; : : : ; xn + x0n) =

NX
m=1

�m(x1; : : : ; xm) m(x
0
1; : : : ; x

0
m)

with �m and  m polynomials over K, then span f�1; : : : ; �Ng and span f 1; : : : ;  Ng both contain

Mf , and N � dimMf .
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Remark. Let
nb�1; : : : ; b�No be a second basis of Mf related to the �'s by a K-linear transfor-

mation U where b�m = U�m. On setting b m = U�1 m, we obtain

f(x1 + x01; : : : ; xn + x0n) =

NX
m=1

b�m(x1; : : : ; xn) b m(x01; : : : ; x0n) :
Remark. Theorem 1 shows that M+

f � Mf . Let E
(x0)
x be the operator E

(x0)
x f(x) = f(x + x0).

In operator notation, Taylor's theorem may be expressed

Ex
(x0)f(x) = f(x+ x0) = ex

0 @xf(x) :

On formally inverting this, we obtain for any x0 6= 0,

@x =
1

x0
ln(E(x0)

x ) =
1

x0
ln(1� (1�E(x0)

x )) = �
1

x0

X
k>0

(1� E(x0)
x )k=k :

This expands derivatives in terms of translates, so that Mf � M+
f . Note that the sum may be

terminated at any k larger than the degree of the polynomial to which it is applied, because the

operator (1�E
(x0)
x ) lowers the x-degree of a polynomial by 1.

3. Actions of Sn on polynomials

For a permutation � 2 Sn, we de�ne several actions on polynomials

f = f(x;y;x0;y0) = f(x1; : : : ; xn; y1; : : : ; yn; x
0
1; : : : ; x

0
n; y

0
1; : : : ; y

0
n) :

They are

�f = f(x�(1); : : : ; x�(n); y�(1); : : : ; y�(n); x
0
1; : : : ; x

0
n; y

0
1; : : : ; y

0
n) (10)

�0f = f(x1; : : : ; xn; y1; : : : ; yn; x
0
�(1); : : : ; x

0
�(n); y

0
�(1); : : : ; y

0
�(n)) (11)

�(4)f = f(x�(1); : : : ; x�(n); y�(1); : : : ; y�(n); x
0
�(1); : : : ; x

0
�(n); y

0
�(1); : : : ; y

0
�(n)) (12)

The �rst of these is called the diagonal action. These notations extend to elements

� =
X
�2Sn

��� (13)

of the group algebra KhSni (where �� 2K) via �f =
P

� �� �f , and so forth.

Alain Lascoux (private communication) has found a critical relationship between diagonal actions

on (x;y) and on (x0;y0) in the context of alternating polynomials. For any � as in (13), de�ne

�� =
X
�2Sn

sign(�)���
�1 : (14)

Note that for products in the group algebra,

�� = �� �� (15)

because taking inverse permutations reverses the order of multiplication.

Proposition 2 (Lascoux). Let f(x;y) be alternating under the diagonal action of Sn. For any

� 2 KhSni, we have

�f(x+ x0;y+ y0) = ��0f(x+ x0;y+ y0) : (16)
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Proof: By linearity in the group algebra, it su�ces to prove this for � = �, a single permutation.

Since f(x;y) is alternating under the diagonal action (10) of Sn, we have under the action (12)

that

�(4)f(x+ x0;y+ y0) = sign(�) f(x+ x0;y+ y0) :

However, �(4) = � �0 = �0 �, so we have

�0 �f(x+ x0;y+ y0) = sign(�) f(x+ x0;y+ y0) ;

whence

�f(x+ x0;y+ y0) = sign(�) (��1)0 f(x+ x0;y+ y0) = ��0 f(x+ x0;y+ y0) :

4. Young's natural representation of Sn

We review Young's natural representation of Sn so that we may apply it to decompose ��(x+

x0;y+ y0). See [8, pp. 260{266], [5, p. 133], [6, p. 362], [7, p. 16], and [9, pp. 256{258], all of which

are in [10]. This presentation of it is in Garsia [2].

Let f� be the number of standard tableaux of shape �. Let S�i (i = 1; : : : ; f�) be the standard

tableaux of shape � in Young's First Letter Order: T1 < T2 when the smallest number that is in a

di�erent cell of the two tableaux is in a higher numbered row of T1 than in T2. So S
�
1 is the column

superstandard tableau and S�f� is the row superstandard one. Let ��ij be the permutation such that

S�i = ��ijS
�
j , where the action �T denotes replacing k in T by �(k).

For any tableau T , let N(T ) =
P

� sign(�)� where � runs over all permutations that leave the

entries in the same column, and P (T ) =
P

� � where � runs over all permutations that leave the

entries in the same row. Let hT be the product of the hook lengths of the shape � of T . Let


T = N(T )P (T )=hT and 
�i = 
S�i
. Let

e�ij = ��ij

�
j (1� 
�j+1) � � �(1� 
�f�) : (17)

Theorem 2 (Young).

1. For two standard young tableaux on 1; : : : ; n, 
T1
T2 = 0 when the tableaux have di�erent

shapes, or when they have the same shape and there is a row of T1 and a column of T2 that

share two or more entries in common. As a special case, when T1 > T2 in Young's First

Letter Order, this product is 0.

Otherwise, 
T1
T2 = ��T1;T2
T2, and in particular, 
T
T = 
T .

2.
n
e�ij : � ` n ; 1 � i; j � f�

o
is a basis of KhSni.

3. e�ij e
�
rs =

(
e�is if � = � and j = r;

0 otherwise.

4. The operator that projects into the isotypic component of type � is �� =
Pf�

i=1 e
�
ii.

5. The identity permutation is 1 =
P

�`n

Pf�
i=1 e

�
ii.

When we apply (14) to N(T ), P (T ), and 
T , we obtain the following simple forms.

Proposition 3. For any injective tableau T ,

P (T ) = N(T t) ; N(T ) = P (T t) ; 
T = 
T t ;

where T t is the transpose of T .

Proof: The permutations that occur in the summation for P (T ) and P (T ) do not change, because

when a permutation �xes the rows of T , so does its inverse. However, a sign is placed onto each

term, resulting in P (T ) = N(T t). The second statement is proved similarly.

For the third, we have


T = hT
�1
�
N(T )P (T )

�
= hT

�1
�
P (T )

��
N(T )

�
= hT t

�1N(T t)P (T t) = 
T t :
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5. Decomposing the translates by Sn

Theorem 3. Consider Hr;s(e
�
iiML), the component of ML that is homogeneous of bidegree (r; s)

and invariant under the idempotent e�ii. Let NL(r; s;S
�
i ) denote its dimension, and �

r;s;S�i
m (x;y)

(m = 1; : : : ; NL(r; s;S
�
i )) be a basis of this component. Then there exist unique polynomials  

r;s;S�i
m

such that

�L(x+ x0;y+ y0) =
X
r;s

X
�`n

f�X
i=1

NL(r;s;S
�
i )X

m=1

�
r;s;S�i
m (x;y) 

r;s;S�i
m (x0;y0) : (18)

Further,  
r;s;S�i
m (x0;y0) has bidegree ~n(L) � (r; s) complementary to (r; s), and is in the isotypic

component of character �0. In particular,

(e�ii)
0 

r;s;S�i
m (x0;y0) =  

r;s;S�i
m (x0;y0) :

Proof: By Theorem 1, there is a decomposition of the form (18), and the polynomials  are

unique. We must establish that they have the stated properties. The left side of the equation is

bihomogeneous in total x+ x0 degree and total y + y0 degree; therefore, restricting every term on

the right side to its component of these degrees would maintain the equality, but since the  's are

unique, the restriction doesn't actually change any term. So the  's have complementary bidegree

to the �'s.

Next, we apply the idempotent e�ii to equation (18), and restrict to the component of (x;y)

bidegree (r; s). We de�ne

ar;s;S
�
i (x;y;x0;y0) = e�ii�L(x+ x0;y+ y0)

���
(x;y)-bidegree (r; s)

: (19)

Each �
r;s;S�j
m satis�es �

r;s;S�j
m = e�jj�

r;s;S�j
m , so that

e�ii�
r;s;S�j
m = e�iie

�
jj�

r;s;S�j
m =

(
�
r;s;S�j
m if � = � and i = j;

0 otherwise,

because the idempotents e�ii are orthogonal. On substituting (18) into (19), we obtain

ar;s;S
�
i (x;y;x0;y0) =

NL(r;s;S
�
i )X

m=1

�
r;s;S�i
m (x;y) 

r;s;S�i
m (x0;y0) (20)

as the innermost summation. However,

ar;s;S
�
i = e�iie

�
ii�L(x+ x0;y+ y0)

��
(r;s)

= e�ii(e
�
ii)

0�L(x+ x0;y+ y0)
��
(r;s)

= (e�ii)
0e�ii�L(x+ x0;y+ y0)

��
(r;s)

= (e�ii)
0ar;s;S

�
i ;

so each  in (20) must be invariant under (e�ii)
0.

Now, it turns out that the quantities NL(r; s;S
�
i ) depend on � but not on S�i . Let NL(r; s;�) =

NL(r; s;S
�
1).

Proposition 4. Fix r; s; �; i, and any decomposition of the form (20). Pick any 1 � j � f�. Then

ar;s;S
�
j (x;y;x0;y0) =

NL(r;s;�)X
m=1

�
e�ji�

r;s;S�i
m (x;y)

� �
(e�ij)

0 
r;s;S�i
m (x0;y0)

�
: (21)
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Proof: We have

ar;s;S
�
j = e�jj �L(x+ x0;y+ y0)

��
(r;s)

= e�ji e
�
ii e

�
ij �L(x+ x0;y+ y0)

��
(r;s)

= e�ji e
�
ii (e

�
ij)

0�L(x+ x0;y+ y0)
��
(r;s)

= (e�ij)
0 e�ji e

�
ii�L(x+ x0;y+ y0)

��
(r;s)

= (e�ij)
0 e�jia

r;s;S�i

=

NL(r;s;S
�
i )X

m=1

�
e�ji�

r;s;S�i
m (x;y)

� �
(e�ij)

0 
r;s;S�i
m (x0;y0)

�
:

In view of Proposition 1 we then have NL(r; s;S
�
i ) � NL(r; s;S

�
j ) for all i; j, and hence these

numbers are equal.

Let Hr;s(M) be the component of the graded module M that is homogeneous of total degree

r in x and total degree s in y. The t; q-graded Frobenius characteristic of an Sn module M is

the generating function of the dimensions of M split into these components and further split into

isotypic components:

F chM =
X
r;s

X
�`n

dimHr;s(

�
f�
M)trqss� =

X
r;s

X
�`n

dimHr;s(��ML)

f�
trqss� ;

where s� are Schur functions.

Corollary 1. The quantities NL(r; s;�) are given by

F chML =
X
r;s

X
�`n

NL(r; s;�)t
rqs s� :

This leads us to conjectured values of NL(r; s;�) for partitions and partitions with one cell

removed. The \n!-conjecture" [3] is that for all partitions � of n, dimM� = n!, and further,

F chM� = ~H�(x; q; t) =
X

j�j=j�j

~K�;�(q; t)s�(x) ;

where ~H�(x; q; t) and ~K�;�(q; t) are variants of Macdonald's \2-parameter polynomials" and the

\q; t-Kostka coe�cients" that arise in their expansion. These are related to Macdonald's q; t-Kostka

coe�cients K�;�(q; t) via
~K�;�(q; t) = tn(�)K�;�(q; t

�1) :

The following is therefore equivalent to the n!-conjecture.

Conjecture 1. The variant Macdonald Polynomials and q; t-Kostka coe�cients are given by

~H� =
X
r;s;�

N�(r; s;�)t
rqs s� and ~K�;�(q; t) =

X
r;s

N�(r; s;�) t
rqs : (22)

An extension of the n!-conjecture has been developed for punctured diagrams �=ij formed by

removing one cell (i; j) from a two-dimensional partition �; see [1].

Conjecture 2. Let �=ij be a punctured diagram. Then N�=ij(r; s;�) is given by

C�=ij =
X
r;s;�

N�=ij(r; s;�)t
rqs s� ;

where conjectural formulas for C�=ij are given in [1].
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6. Generalizations

Multidimensional lattice diagrams. The results of the preceding section extend to multidi-

mensional lattice diagrams, but we do not have conjectured values of NL's in this case. Let L be a

subset of Nd with n cells, and ~n(L) be the component-wise sum of all the coordinates:

L = f(h1; k1; : : : ; m1); : : : ; (hn; kn; : : : ; mn)g

~n(L) = (h1 + h2 + � � �+ hn; : : : ; m1 +m2 + � � �+mn) :

Introduce d n-tuples of variables x;y; : : : ; z, and extend all de�nitions from two sets of variables

to d sets of variables accordingly.

The full multi-dimensional form of Theorem 3, applicable to any �nite lattice diagram L in Nd,

is as follows. Note that we have chosen i = f� in Proposition 4 in order to simplify the form of e�ij
in the results.

Theorem 4. Let �
r;s;��� ;v;�
m (m = 1; : : : ; NL(r; s; � � � ; v;�)) be a basis of Hr;s;��� ;v(


�
f�
ML). Then

there exist unique polynomials  
r;s;��� ;v;�
m (m = 1; : : : ; NL(r; s; � � � ; v;�)) in ML, such that

�L(x+ x0;y+ y0; � � � ; z+ z0) =X
r;s;::: ;v

X
�`n

f�X
i=1

NL(r;s;��� ;v;�)X
m=1

�
��i;f��

r;s;��� ;v;�
m (x;y; � � � ; z)

��
e�f�;i

0  r;s;��� ;v;�
m (x0;y0; � � � ; z0)

�
:

The  's have complementary degrees and conjugate characters to the �'s; in particular, the  's are

a basis of Hr0;s0;::: ;v0(
S�01
ML) where (r + r0; s+ s0; : : : ; v + v0) = ~n(L).

For a 2-dimensional partition �, (22) and the Kostka polynomial symmetry

~K�;�(q; t) = ~K�0;�(q
�1; t�1)tn(�)qn(�

0)

suggest that

N�(n(�)� r; n(�0)� s; �0) = N�(r; s;�) :

For multidimensional lattice diagrams, the �'s and  's form bases of complementary degree, con-

jugate character components, so this symmetry goes through in the following form.

Proposition 5. Let L be a lattice diagram in Nd. Then

NL(r
0; s0; : : : ;�0) = NL(r; s; : : : ;�) ; (23)

where (r + r0; s+ s0; : : :) = ~n(L).

The other symmetry of the Kostka polynomials in the two-dimensional partition case is

~K�;�(q; t) = ~K�;�0(t; q) :

This can be interpreted as saying that any decomposition of ��(x+x0;y+y0) of the form (4) also

yields a similar one for �0 simply by switching x;x0 with y;y0. This generalizes to multidimensional

lattice diagrams in the obvious way: if L1 is obtained from L2 by permuting the coordinate axes, a

decomposition for L2 is obtained from any one for L1 by permuting the variable sets representing

those coordinate axes, in the same way.

Permanents. Let f(x;y) be invariant under the diagonal action of Sn. On replacing equa-

tion (14) by

~� =
X
�2Sn

���
�1 ; (24)

we have that �f(x + x0;y+ y0) = ~�0f(x+ x0;y+ y0). However, for a tableau T of shape �, N(T )

and P (T ) are invariant under the transformation (24), so f
T = hT
�1P (T )N(T ), which projects
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into the isotypic component of type � rather than �0 as did (14). Theorem 3 goes through when

we replace the lattice determinant (1) by the lattice permanent

�L(x;y; � � � ; z) = per[xi
hj yi

kj � � � zi
mj ]ni;j=1 ;

with the exception that the characters of the �'s and  's are equal, not conjugate. De�ne ML,

NL(r; s;�), and so on in terms of �L analogously to how their counterparts were de�ned for �L.

Theorem 5. Let �
r;s;��� ;v;�
m (m = 1; : : : ; NL(r; s; � � � ; v;�)) be a basis of Hr;s;��� ;v(


�
f�
ML). Then

there exist unique polynomials  
r;s;��� ;v;�
m (m = 1; : : : ; NL(r; s; � � � ; v;�)) in ML, such that

�L(x+ x0;y+ y0; � � � ; z+ z0) =X
r;s;::: ;v

X
�`n

f�X
i=1

NL(r;s;��� ;v;�)X
m=1

�
��i;f��

r;s;��� ;v;�
m (x;y; � � � ; z)

��ge�f�;i 0  r;s;��� ;v;�
m (x0;y0; � � � ; z0)

�
:

The  's have complementary degrees and the same characters as the �'s; in particular, the  's are

a basis of are a basis of Hr0;s0;::: ;v0(g
S�
f�

ML) where (r+ r0; s+ s0; : : : ; v + v0) = ~n(L).

Also note that the symmetry (23) is replaced by NL(r0; s0; : : : ;�) = NL(r; s; : : : ;�). At present

there are no conjectured values of any families of NL.

Multiple summands. We may expand

f(x+ x0 + x00;y+ y0 + y00) =

NX
m1=1

NX
m2=1

�m1
(x;y) m2

(x0;y0)�m1;m2
(x00;y00) ;

where the �'s are determined from the � and  's. They may be 0 or have other linear dependencies,

though. The number of factors is the number of summands replacing each variable; in general, if

there are k summands, we choose bases of the �rst k� 1 of them, and this determines the last one

uniquely.

Delivation. We may generalize everything up to this point to \delivation," which generalizes

di�erentiation and translates. The advantages of delivation are that the Taylor expansion formula

can be stated in �elds of prime characteristic (although the natural representation of Sn has de-

nominators hT that still require characteristic 0), and that we gain new indeterminates that carry

combinatorial statistics on \how much di�erentiation of each order" was done.

Let �k , �k (k � 1) be indeterminates or non-zero elements of K. These are called the constants

of delivation. We replace our di�erentiation operators @xi by delivation operators:

@�xixi
k =

(
�kxi

k�1 if k � 1,

0 if k = 0;
@�yiyi

k =

(
�kyi

k�1 if k � 1,

0 if k = 0;

and in each case extend linearly w.r.t. all other variables. We also de�ne

[k]�! = �1�2 : : :�k [k]�! = �1�2 : : : �k�
k

j

�
�

=
[k]�!

[j]�! [k� j]�!

�
k

j

�
�

=
[k]�!

[j]�! [k� j]�!

(a� b)k� =

kX
j=0

�
k

j

�
�

ajbk�j (a� b)k� =

kX
j=0

�
k

j

�
�

ajbk�j

Given any f 2 K[x1; : : : ; xn; y1; : : : ; yn], with expansion

f(x;y) =
X

r1;::: ;rn�0

X
s1;::: ;sn�0

ar1;::: ;rn;s1;::: ;sn x1
r1 � � �xn

rn y1
s1 � � �yn

sn ;
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we de�ne

f(x� x0;y� y0) =
X
r;s

ar;s (x1 � x01)
r1
� � � � (xn � x0n)

rn
� (y1 � y01)

s1
� � � �(yn � y0n)

sn
� :

On replacing all di�erentiations, factorials, and shifts by the delivation counterparts, everything

goes through. We may expand �L(x�x0;y�y0) as in (4), and the � and  's will have coe�cients

that depend on the �'s and �'s. For suitable bases, the denominators of the � and  's are monomials

in the �k and �k's.

Note that Theorem 1 goes through if each variable and its prime counterpart has its own constants

of delivation, but to have an Sn action, we need the same constants for all x's, and the same

constants for all y's, which is why we have only two families of constants (�k and �k) instead of 2n

families.

Note that if �k and �k are treated as indeterminates, the problems of non-zero characteristic go

away for the Taylor expansion theorem, but the group algebra elements still have denominators hT
that don't go away.

Example 2. The expansion of �(2;1)(x+ x0;y+ y0) in Example 1 turns out to be the expansion

of �(2;1)(x � x0;y � y0) as well. Now we consider �(1;1;1)(x � x0;y � y0); this is a sum of six

terms, and again, the term in (4) indexed by r; s; �; T is shown as tr qs T . We take �(1;1;1)(x;y) =

det[xi
j�1]1�i;j�3.

t0 q0
�
1 2 3

�
(1) �(1;1;1)(x

0;y0)

t1 q0
�
3

1 2

�
(x3 � x1)

�
(x02 � x01)(�(x

0
1 + x02) +

�2
�1
x03)

�

t1 q0
�
2

1 3

�
(x2 � x1)

�
(x03 � x01)(�(x

0
1 + x03) +

�2
�1
x02)

�

t2 q0
�
3

1 2

� �
(x3 � x1)(�(x1 + x3) +

�2
�1
x2)

�
(x02 � x01)

t2 q0
�
2

1 3

� �
(x2 � x1)(�(x1 + x2) +

�2
�1
x3)

�
(x03 � x01)

t3 q0

24 3

2

1

35 �(1;1;1)(x;y) (1) = (x3 � x2)(x3 � x1)(x2 � x1) (1)

7. Algorithm to compute a's

While studying the main equation (4), we used computer explorations to compute the values

ar;s;S
�
i of equation (19). An e�cient algorithm for computing these values is as follows.

1. Let

H := ��(x+ x0;y+ y0)
��
(x;y)-bidegree (r; s):

2. For each partition � of n, do the following. The partitions may be traversed in any order.
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2�. For i = f�; f� � 1; : : : ; 1, let

2a: ar;s;S
�
i = 
�i H

2b: H := H � ar;s;S
�
i

Proposition 6. This algorithm is equivalent to computing the a's by equation (19).

Proof: Each iteration of i in step 2� is equivalent to multiplying H on the left by (1�
�i ); as we

iterate i = f�; f� � 1; : : : ; 1, we obtain all of the factors in e�ii in equation (17) except for the two

leading factors. The missing factor 
�i is introduced in step 2a, and the missing factor ��ii = 1 may

be omitted.

As we let � vary in step 2, the particular order in which it varies is of no relevance, because the

components subtracted o� in step 2b for partitions � di�erent from � are annihilated by 
�i since

they lie in a di�erent isotypic component. In terms of the 
's, 
�i 

�
j = 0 when � 6= �.

8. Multidimensional small hook

Notation. We work with (n+1)-celled diagrams in n dimensions. In place of x = (x1; : : : ; xn+1),

y = (y1; : : : ; yn+1), etc., we use x1 = (x11; : : : ; x1;n+1) through xn = (xn;1; : : : ; xn;n+1).

Theorem 6. The \small hook" Hn in Nn with n+ 1 cells

Hn = f(0; : : : ; 0); (1; 0; : : : ; 0); (0; 1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)g

has dimMHn =
�
2n
n

�
and (q; t; : : : ; u)-graded Frobenius characteristic

F chMHn =

nX
r=0

er(q; t; � � � ; u) s(n+1�r;1r) : (25)

Further, ��(x1 + x01; � � � ;xn + x0n) expands as

nX
k=0

X
�

���������
1 1 � � � 1

xi1;1 xi1;a1 � � � xi1;ak
...

...

xik;1 xik;a1 � � � xik;ak

��������� �
���������

1 1 � � � 1

x0j1;1 x0j1;b1 � � � x0j1;bn�k

...
...

x0jn�k;1
x0jn�k ;b1

� � � x0jn�k;bn�k

��������� (26)

in which the inner sum runs over all partitions of f2; 3; : : : ; n+ 1g into complementary subsets

fa1 < : : : < akg and fb1 < : : : < bn�kg and partitions of f1; 2; : : : ; ng into complementary subsets

fi1 < : : : < ikg and fj1 < : : : < jn�kg, and � is the product of the signs of the 1-line permutations

[a1; : : : ; ak; b1; : : : ; bn�k] and [i1; : : : ; ik; j1; : : : ; jn�k].

Proof. Form the (n+ 1)� (n+ 1) determinant

� = �Hn = det

2666664
1 1 � � � 1

x1;1 x1;2 � � � x1;n+1
x2;1 x2;2 � � � x2;n+1
...

...
...

xn;1 xn;2 � � � xn;n+1

3777775 : (27)

Di�erentiating two or more times with respect to any variable kills �. Di�erentiating with respect

to two or more variables in any row or column kills �. Di�erentiating with respect to k variables,

no two in the same row or column, is (up to sign) the minor obtained by deleting the k rows and

k columns containing those variables. Di�erentiating by any variable in the �rst column can be

replaced by a linear combination of derivatives in other columns because

@xi;1� = �(@xi;2 + � � �+ @xi;n+1 )� :
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We therefore assert that the minors

det

26664
1 1 � � � 1

xi1;1 xi1;a1 � � � xi1;ak
...

...
...

xik;1 xik;a1 � � � xik;ak

37775
0 � k � n

1 < a1 < � � � < ak � n+ 1

1 � i1 < � � �< ik � n
(28)

form a basis of MHn . By the preceding paragraph, they form a spanning set. Let b1 < b2 < : : : <

bn�k be the complement of fa1; : : : ; akg in f2; 3; : : : ; n+ 1g. Then the matrix (28) has degree 1

in variable sets xi1 ;xi2 ; : : : ;xik and 0 in the others, and is invariant under the Young idempotent


T = N(T )P (T )=hT where

T =

ak
ak�1
...

a1
1 b1 b2 � � �bn�k

:

The degree is clear. For invariance, we have

P (T )xi1;a1 � � �xik;ak = (n+ 1� k)! xi1;a1 � � �xik;ak

because variables indexed by a1; : : : ; ak are invariant under P (T ); and so

N(T )P (T )

hT
xi1;a1 � � �xik;ak =

(n + 1� k)!

hT
det

26664
1 1 � � � 1

xi1;1 xi1;a1 � � � xi1;ak
...

...
...

xik;1 xik;a1 � � � xik;ak

37775
because the alternation from N(T ) gives the determinant; and �nally, applying 
T again leaves

this invariant because 
T
T = 
T in the group algebra. Now since each matrix in (28) has a pair

(degree, Young idempotent) uniquely associated to it, they are all linearly independent, and hence

a basis. The dimension of MHn is

nX
k=0

�
n

k

��
n

k

�
=

�
2n

n

�
:

Note that this is smaller than (n+ 1)! in dimensions larger than 2, so the \n!-conjecture" does not

go through to multiple dimensions. We can re�ne this sum into the Frobenius characteristic (25).

The isotypic component of MHn of character � = (n + 1 � k; 1k) has a distribution of degree

weights er(q; t; : : : ; u), with each of these degree graded subspaces having dimension given by the

hook formula

f� =
(n+ 1)!

k!(n� k)!(n+ 1)
=

�
n

k

�
:

Finally, we expand �Hn(x1 + x01; : : : ;xn + x0n). The determinant (27) may be rewritten

�Hn =

�����������

1 0 � � � 0

x1;1 x1;2 � x1;1 � � � x1;n+1 � x1;1
x2;1 x2;2 � x2;1 � � � x2;n+1 � x2;1
...

...
...

xn;1 xn;2 � xn;1 � � � xn;n+1 � xn;1

�����������
=

���������
x1;2 � x1;1 � � � x1;n+1 � x1;1
x2;2 � x2;1 � � � x2;n+1 � x2;1

...
...

xn;2 � xn;1 � � � xn;n+1 � xn;1

��������� (29)
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The translate �Hn(x1 + x01; : : : ;xn + x0n) may be written as

nX
k=0

X
1�i1<:::<ik�n

1�j1<:::<jn�k�n

�

��������������

xi1;2 � xi1;1 � � � xi1;n+1 � xi1;1
...

...

xik;2 � xik;1 � � � xik;n+1 � xik;1
x0j1;2 � x0j1;1 � � � x0j1;n+1 � x0j1;1

...
...

x0jn�k;2
� x0jn�k ;1

� � � x0jn�k;n+1
� x0j1;1

��������������
(30)

where [i1; : : : ; ik; j1; : : : ; jn�k] is a 1-line permutation and � is its sign. Use Laplace expansion

of the determinants in (30) on the �rst k rows to write this sum as a product of determinants in

unprimed and primed variables; each factor has form similar to the rightmost determinant in (29)

and hence in (27), giving (26).
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