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Let p1 > � � � > pn � 0, and �p = detkx
pj
i
kn
i;j=1

. Let Mp be the linear

span of the partial derivatives of �p. Then Mp is a graded Sn-module. We
prove that it is the direct sum of graded left regular representations of Sn.

Speci�cally, set �j = pj � (n� j), and let ��(t) be the Hilbert polynomial of
the span of all skew Schur functions s�=� as � varies in �. Then the graded

Frobenius characteristic of Mp is ��(t) ~H1
n(x; q; t), a multiple of a Macdon-

ald polynomial. Corresponding results are also given for the span of partial
derivatives of an alternant over any complex reection group.

Let (i; j) denote the lattice cell in the i+ 1st row and j + 1st column
of the positive quadrant of the plane. If L is a diagram with lattice cells
(p1; q1); : : : ; (pn; qn), we set �L = detkx

pj
i
y
qj
i
kn
i;j=1

, and let ML be the lin-

ear span of the partial derivatives of �L. The bihomogeneity of �L and its
alternating nature under the diagonal action of Sn gives ML the structure of

a bigraded Sn-module. We give a family of examples and some general conjec-
tures about the bivariate Frobenius characteristic of ML for two dimensional

diagrams.

Key Words: Macdonald polynomials, representations of the symmetric group,

complex reection groups, lattice diagram polynomials

*Work carried out under NSERC and FCAR grant support.
yWork carried out under NSF grant support.

1



2 BERGERON, GARSIA, AND TESLER

1. INTRODUCTION

We review some basic notions; the reader should consult [3] for further
details. The lattice cells of the positive plane quadrant will be assigned
coordinates i; j � 0 as indicated in the �gure below.

...

(2;0) (2;1) (2;2)

(1;0) (1;1) (1;2)

(0;0) (0;1) (0;2) � � �

A collection of distinct lattice cells will be called a \lattice diagram." Given
a partition � = (�1 � �2 � � � � � �k > 0), its \Ferrers diagram" is

f (i; j) : 0 � i � k � 1 and 0 � j � �i+1 � 1 g :

As customary, we will use the symbol � for the partition as well as its
Ferrers diagram.

Given any sequence of lattice cells

L = f(p1; q1) ; (p2; q2) ; : : : ; (pn; qn)g ; (1.1)

we de�ne the \lattice determinant"

�L(x; y) =
1

p! q!
det
xpji yqji ni;j=1

; (1.2)

where p! = p1! p2! � � �pn! and q! = q1! q2! � � �qn!. We can easily see that
�L(x; y) is a polynomial di�erent from zero if and only if L consists of n
distinct lattice cells. Note also that �L(x; y) is bihomogeneous of degree
jpj = p1 + � � �+ pn in x and degree jqj = q1 + � � �+ qn in y.

Given a polynomial P (x; y), the vector space spanned by all the partial
derivatives of P of all orders will be denoted L@(P ). We recall that the
\diagonal action" of Sn on a polynomial

P (x; y) = P (x1; : : : ; xn; y1; : : : ; yn)

is de�ned by setting for a permutation � = (�1; �2; : : : ; �n)

� P (x; y) = P (x�1 ; x�2; : : : ; x�n ; y�1 ; y�2 ; : : : ; y�n ) :
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It is easily seen from the de�nition (1.2) that �L is an alternant under the
diagonal action. This given, it follows that for any lattice diagram L with
n cells, the vector space

ML = L@(�L)

is an Sn-module. Since �L is bihomogeneous, this module a�ords a natural
bigrading. Denoting by Hr;s[ML] the subspace consisting of the bihomo-
geneous elements of degree r in x and degree s in y, we have the direct sum
decomposition

ML =

jpjM
r=0

jqjM
s=0

Hr;s[ML] ;

and the polynomial

FL(q; t) =

jpjX
r=0

jqjX
s=0

tr qs dimHr;s[ML]

gives the \bigraded Hilbert series" of ML. In this vein, since each of the
subspaces Hr;s[ML] is necessarily an Sn-submodule, we can also set

CL(x; q; t) =

jpjX
r=0

jqjX
s=0

tr qs F chHr;s[ML] (1.3)

where chHr;s[ML] denotes the character of Hr;s[ML] and F chHr;s[ML]
denotes the image of chHr;s[ML] under the Frobenius map F which sends
the irreducible character �� into the Schur function s�. In CL(x; q; t), the
\x" is only to remind us that it is a symmetric function in the in�nite
alphabet x1; x2; x3; : : : (as customary in [8]), and we should not confuse it
with the \x" appearing in �L(x; y). This may be unfortunate, but it is too
much of an ingrained notation to be altered at this point.
In [5], one of us (Garsia) and Haiman introduced a conjecture that would

imply Macdonald's conjecture ([7, p. 163] and [8, p. 355]) that the q; t-
Kostka coe�cients are polynomials with nonnegative integer coe�cients:

Conjecture 1.1. (C = ~H Conjecture)When � is the Ferrers diagram
of a partition, we have

C�(x; q; t) = ~H�(x; q; t) ; (1.4)

where ~H�(x; q; t) is a variant of the Macdonald polynomial given plethys-
tically by

~H�(x; q; t) = J�

�
X

1� t�1
; q; t�1

�
tn(�) =

X
�

eK�;�(q; t) s�(x) (1.5)
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where n(�) =
P

i�1(i � 1)�i, and eK�;�(q; t) is related to the ordinary
q; t-Kostka coe�cient by

eK�;�(q; t) = tn(�)K�;�(q; t
�1) :

Given this conjecture, M� is a graded version of the left regular repre-
sentation of Sn, and dimM� = n! (where � ` n). This we refer to as the
\n! conjecture." In [3], we and our coauthors considered a family of lattice
diagrams L with the following property:

Property 1.1. A lattice diagram L with n cells has the \multiple left
regular representation" (MLRR) property when the module ML decom-
poses into a direct sum of left regular representations of Sn. We then have
dimML = k � n! for some integer k.

In dimensions d � 3, there is a family of lower order ideals L of Nd that
do not possess this property; see [12, Thm. 6]. In [3, Conj. I.1], we gave
a family of two dimensional diagrams which conjecturally possessed this
property. We then conjectured that all two dimensional lattice diagrams L
had this property, but have since found counterexamples.
In this paper, we consider both proven and conjectural families of di-

agrams with the MLRR property. In Section 2, we prove that all one
dimensional diagrams have the MLRR property. In fact, for any complex
reection group G and G-alternant �(x), the space L@(�) is a graded
multiple of the left regular representation of G, and we consider examples
involving the wreath product Cm o Sn in Section 3. We provide additional
properties of the one dimensional case in Section 4. In Section 5, we con-
sider two dimensional diagrams consisting of a partition plus an external
cell; this is dual to the diagrams considered in [3], which were constructed
by removing a cell from the diagram of a partition. Finally, in Section 6,
we conclude with additional conjectures for general diagrams that unify
properties of all the cases we've considered.

2. ONE DIMENSIONAL DIAGRAMS

We consider here the special case of diagrams of the form

Lp = f(p1; 0); (p2; 0); : : : ; (pn; 0)g (2.1)

where p 2 Dn = f (p1; : : : ; pn) 2N
n : p1 > p2 > � � � > pn � 0 g. We set

�p(x1; : : : ; xn) = det kx
pj
i k

n
i;j=1 ; (2.2)

(normalized di�erently than (1.2)) and we let L@(�p) denote the vector
space spanned by all partial derivatives of �p. Our goal is to show that
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L@(�p) carries a multiple of the left regular representation of Sn and obtain
an explicit expression for its Frobenius characteristic. Note that when
p = (n � 1; n� 2; : : : ; 0), the polynomial �p reduces to the Vandermonde
determinant, which we shall denote by �n. In that case it is well-known
that L@(�n) is a bigraded version of the left regular representation with
graded Frobenius characteristic given by the polynomial

~H1n(x; q; t) = (1� t)(1� t2) � � � (1� tn) hn

h X

1� t

i
: (2.3)

Note further that we may always write p in the form p = �+ �, where � =
(�1 � �2 � � � � � �n � 0) is a partition, and � = �n = (n�1; n�2; : : : ; 1; 0).
Now for a partition � of length � n, let �� denote the graded vector space
spanned by the skew Schur functions s�=�(x1; : : : ; xn) as � varies in �, and
denote by ��(t) its Hilbert polynomial (which does not depend on n). Our
main result can be stated as follows.

Theorem 2.1.The graded Frobenius characteristic of the space L@(��+�)
is given by the polynomial

F chL@(��+�) = ��(t) ~H1n(x; q; t) : (2.4)

Before we can give the proof, we need some auxiliary facts and obser-
vations. If P (x1; : : : ; xn) is a polynomial, we shall denote by P (@) the
di�erential operator obtained on replacing xi by @xi . This given, we have

Lemma 2.1. For p; q 2 Dn, if

�q(@) �p(x) 6= 0 ; (2.5)

then

q1 � p1 ; q2 � p2 ; � � � ; qn � pn : (2.6)

In particular, the polynomials �p(x) constitute a basis of the alternants in
Q[x], and they are orthogonal with respect to the scalar product



P ; Q

�
= P (@) Q(x)

��
x=0

: (2.7)

Proof. We may write

�q(@)�p(x) =
X
�2Sn

sign(�)
X
�2Sn

@
q�1
x�1

@
q�2
x�2
� � �@

q�n
x�n xp1�1x

p2
�2
� � �xpn�n : (2.8)
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Thus from (2.5) we deduce that there must be at least one permutation �
such that

q�1 � p1 ; q�2 � p2 ; � � � ; q�n � pn ; (2.9)

but if this happens, a fortiori we must have (2.6).
As for the �nal assertion, note that if �p and �q have di�erent degrees

then the orthogonality is trivial. On the other hand, if they have the same
degree, then the non-vanishing of the scalar product implies (2.5) and thus
also (2.6), which in this case forces p = q.

Lemma 2.2. If A(x) is a homogeneous symmetric polynomial then we
have

A(@)�n(@)�p(x) 6= 0

if and only if

A(@)�p(x) 6= 0 ;

and in this case we can always �nd a homogeneous symmetric polynomial
A0(x) giving

A0(@)A(@)�p(x) = c �n(x) (with c 6= 0) : (2.10)

Proof. Set

f(x) = A(@)�p(x) :

Since f is alternating, it factors as f(x) = �n(x)h(x) where h(x) is sym-
metric. Now if f 6= 0 we have f(@)f(x) 6= 0 so

0 6= f(@)f(x) = h(@)�n(@)f(x) = h(@)�n(@)A(@)�p(x) = h(@) g(x) ;

with

g(x) = �n(@)A(@)�p(x) 6= 0 ;

thus

0 6= g(@) g(x) = g(@)�n(@)A(@) �p(x) :

In particular, we have

g(@)A(@) �p(x) 6= 0 : (2.11)

Note further that g(x) is symmetric and

deg(g) = jpj � deg(A)�
�
n
2

�
:
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This gives

deg
�
g(@)A(@)�p(x)

�
= jpj � deg(A) �

�
jpj � deg(A) �

�
n
2

��
=
�
n
2

�
:

Since g(@)A(@)�p(x) must be alternating, from (2.11) we derive that

g(@)A(@)�p(x) = c �n(x) (with c 6= 0) :

Thus we may take A0(x) = g(x) in (2.10) and our proof is complete.

We are now in a position to deal with the special case p = (k+n�1; k+
n � 2; : : : ; k), which is both interesting in its own right and useful in our
further developments.

To begin with note that the orthogonal complement of our space L@(�p)
is the ideal Ip of polynomial di�erential operators that kill �p. In symbols,

Ip = (P (x) : P (@) �p(x) = 0 ) :

In particular, we also have

I?p = L@(�p) : (2.12)

Now it develops that

Proposition 2.1. When p = (k + n� 1; k+ n� 2; : : : ; k),

Ip =
�
hk+1; hk+2; � � � ; hk+n

�
:

Proof. Note that since

hk+i(x)�n(x) = �(n+k+i�1;n�2;:::;1;0)(x) ;

we deduce from Lemma 2.1 that for i � 1,

hk+i(@)�n(@) �(k+n�1;k+n�2;:::;k)(x) = 0 ;

and Lemma 2.2 gives that

hk+i(@) �(k+n�1;k+n�2;:::;k)(x) = 0 :

Thus we must have

hk+i(x) 2 Ip (8 i � 1) :
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In particular, we deduce the inclusion of ideals

Jk;n =
�
hk+1; hk+2; � � � ; hk+n

�
� Jk =

�
hk+1; hk+2; � � �

�
� Ip : (2.13)

Thus

1

(1� x1t) � � � (1� xnt)
=

1X
k=0

hm(x)t
m

�=k;n

kX
m=0

hm(x)t
m +

X
m�k+n+1

hm(x)t
m ;

where the symbol �=k;n represents equality modulo Jk;n. Thus for i =
1; : : : ; n, we must also have

1

(1� xit) � � � (1� xnt)
�=k;n (1� x1t) � � � (1� xi�1t)

�

0
@ kX
m=0

hm(x)t
m +

X
m�k+n+1

hm(x)t
m

1
A :

The coe�cients of tk+i; tk+i+1; � � � ; tk+n on the right all vanish. Equating
coe�cients of tk+i, we get

hk+i(xi; : : : ; xn) �=k;n 0 : (2.14)

This may also be rewritten as

xk+ii
�=k;n �

k+i�1X
l=0

xli hk+i�l(xi+1; : : : ; xn) :

Now, using this relation, we can recursively express (mod Jk;n) any mono-
mial xm1

1 xm2

2 � � �x
mi

i � � �x
mn
n as a linear combination of monomials where

xi is raised to a power less than k + i at the expense of raising the pow-
ers of the variables xj with j > i. Applying this process successively for
i = 1; 2; : : : ; n, and using the fact that, for i = n, (2.14) reduces to

xk+nn
�=k;n 0 ;

we see that every monomial can be expanded (mod Jk;n) in terms of mono-
mials

x�11 x
�2
2 � � �x

�n
n (with 0 � �i � k + i� 1) : (2.15)
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In other words, this collection constitutes a monomial spanning set for the
quotient ring

Q[x]=Jk;n = Q[x1; : : : ; xn]=Jk;n :

Combining this fact with the inclusions in (2.13), we are led to the string
of inequalities

dimQ[x]=Ip � dimQ[x]=Jk � dimQ[x]=Jk;n � (k + 1)(k + 2) � � � (k + n) :

(2.16)

On the other hand note that since for p = (k + n� 1; k+ n� 2; : : : ; k) the
lexicographically leading term of �p is the monomial

xk1 x
k+1
2 � � �xk+n�1n ;

we see that di�erentiating �p by all the submonomials of its leading term
will yield

(k + 1)(k + 2) � � � (k + n)

independent elements of L@(�p). Thus we must also have the inequality

(k + 1)(k + 2) � � � (k + n) � dim L@(�p) : (2.17)

But from from (2.12) we deduce that

dim Q[x]=Ip = dim L@(�p) : (2.18)

Combining (2.16) with (2.18) and (2.17), we are forced to conclude that all
these inequalities must be equalities, forcing the inclusions in (2.13) to be
equalities as well, proving the proposition.

Note that as a byproduct of our argument, we get the following remark-
able fact.

Proposition 2.2. When p = (k + n � 1; k + n � 2; : : : ; k), a basis for
the space L@(�p) is given by the polynomials

@�1x1@
�2
x2
� � �@�nxn�p(x) (with 0 � �i � k + i � 1) : (2.19)

Proof. Any nontrivial vanishing linear combination of the polynomials
in (2.19) would yield that a nontrivial linear combination of the monomials
in (2.15) vanishes modulo the ideal Ip thereby contradicting that these
monomials are a basis for the quotient Q[x]=Ip.

This result has the following beautiful corollary:
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Theorem 2.2. Denoting by Bp the collection of polynomials in (2.19),
we have that every polynomial P 2 Q[x] has an expansion of the form

P (x) =
X
b2Bp

b(x) Ab(hk+1; hk+2; : : : ; hk+n) ; (2.20)

with the polynomials Ab uniquely determined by P .

Proof. It su�ces to prove this for homogeneous P . Write P = P �+P?

where P � 2 Ip and P? 2 I?p . By (2.12), I?p = L@(�p) �= Q[x]=Ip, so

expanding P � and P? by Props. 2.1 and 2.2 gives scalars cb and polynomials
Qi(x) such that

P (x) =

nX
i=1

Qi(x) hk+i(x) +
X
b2Bp

cb b(x) :

Projecting each term of these sums onto its homogeneous component of
degree deg(P ), each cb = 0 when deg(b) 6= deg(P ), and each nonzero Qi

has deg(Qi) = deg(P )� (k+ i). Iterating this result by expanding the Qi's
in the same manner as we have expanded P , we derive that the collection
of polynomials�

b(x) hm1

k+1h
m2

k+2 � � �h
mn

k+n : b 2 Bp and mi � 0
	

(2.21)

spans the polynomial ring Q[x]. However, the generating function of their
degrees is given by the expression

F (t) =

P
b2Bp

tdeg(b)

(1� tk+1)(1� tk+2) � � � (1� tk+n)
;

and from (2.19) we clearly have that

X
b2Bp

tdeg(b) = tk+(k+1)+���+(k+n�1) 1� t�k�1

1� t�1
1� t�k�2

1� t�1
� � �

1� t�k�n

1� t�1

=
(1� tk+1)(1 � tk+2) � � � (1� tk+n)

(1� t)n
:

Thus

F (t) =
1

(1� t)n
;

and since the latter is precisely the Hilbert series of the polynomial ring
Q[x], we must conclude that the collection in (2.21) is necessarily also an
independent set, proving the theorem.
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We are now in a position to prove the following remarkable special case
of Thm. 2.1.

Theorem 2.3. For p = (k+n�1; k+n�2; : : : ; k), the graded Frobenius
characteristic of L@(�p) is given by the polynomial

F chL@(�p) =
hk + n

n

i
t

~H1n(x; q; t) : (2.22)

Proof. The uniqueness of the expansion in (2.20) and the invariance of
the coe�cients under the action of Sn yields that the Frobenius character-
istics of L@(�p) and Q[x] are related by the identity

F chQ[x] =
F chL@(�p)

(1� tk+1)(1� tk+2) � � � (1� tk+n)
: (2.23)

Since it is well-known that

F chQ(x1; : : : ; xn) = hn[
X
1�t

] ;

from (2.23) and (2.3) we deduce that

F chL@(�p) =
(1� tk+1)(1� tk+2) � � � (1� tk+n)

(1� t)(1� t2) � � � (1 � tn)
~H1n(x; q; t) ;

which is another way of writing (2.22).

Remark 2.1. We should mention that for p = (n� 1; n� 2; : : : ; 1; 0), all
these results are known. In particular, we see that Thm. 2.2 is a generaliza-
tion of the well-known classical result (see [2, pp. 39{41]) that asserts that
every polynomial P 2 Q[x1; : : : ; xn] has a unique expansion in the form

P (x) =
X
b2Bn

b(x)Ab(x) ; (2.24)

where Bn is any basis of L@(�n) and the coe�cients Ab are symmetric
polynomials in x1; : : : ; xn. It develops that we only need this special case in
our proof of Thm. 2.1. Thus by pure chance this generalization contributes
to our development here being completely self-contained.

We are now in a position to carry out our �rst step in the proof of
Thm. 2.1:

Proposition 2.3. For an arbitrary p 2 Dn, set

Jp = (A(x1; : : : ; xn) : A is symmetric and A(@)�p(x) = 0 ) :
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Then every polynomial Q(x1; : : : ; xn) in L@(�p) has an expansion of the
form

Q(x) =
X
b2Bn

Ab(@x) b(@x) �p(x) ; (2.25)

with the coe�cients Ab(x) symmetric polynomials in J?p uniquely deter-
mined by Q.

Proof. By hypothesis, Q(x) can be expressed as P (@)�p(x) for some
P (x) (not unique). Expand P (x) as in (2.24). For each b 2 Bn, write
Ab = A�b + A?b where A�b 2 Jp and A?b 2 J

?
p . Then

Q(x) = P (@)�p(x) =
X
b2Bn

A�b(@) b(@) �p(x) +
X
b2Bn

A?b (@) b(@) �p(x) :

The �rst sum vanishes because A�b (@)�p(x) = 0, and we are left with the
second sum, of form (2.25).
To prove this expansion is unique, suppose thatX

b2Bn

Ab(@) b(@)�p(x) = 0 ; (2.26)

with Ab symmetric polynomials in J?p . It su�ces to assume they are ho-
mogeneous and that all nonzero terms in (2.26) have the same degree. We
must show that all Ab = 0, so assume they are not all 0. Choose Ab0 6= 0
of minimum possible degree.
By Lemma 2.2, there is a polynomial A0(x) and scalar cb0 6= 0 for which

A0(@)Ab0 (@)�p(x) = cb0 �n(x) :

In fact, we have

A0(@)Ab(@)�p(x) = cb�n(x)

for scalars cb for all b 2 Bn, because the expression on the left is alternating
and has degree at most

�
n
2

�
; when it has degree equal to

�
n
2

�
, it must be

a scalar multiple of �n(x); and when it has smaller degree, it must be
identically 0, and we take cb = 0.
Apply A0(@) to (2.26):

0 =
X
b2Bn

A0(@)Ab(@) b(@) �p(x) =
X
b2Bn

cb b(@)�n(x) :

The derivatives b(@)�n(x) as b ranges over Bn are linearly independent,
so all coe�cients cb = 0. This violates cb0 6= 0, so the assumption that
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some Ab 6= 0 is false, and the expansion indeed is unique, completing our
proof.

Proposition 2.4. Let A1(x); : : : ; AN (x) be a homogeneous basis of the
symmetric polynomials in J?p . Let

Fp(t) =

NX
i=1

tjpj�(
n

2)�deg(Ai) :

Then Fp(t) =
PN

i=1 t
deg(Ai), and setting Mp = L@(�p), we have

F chMp = Fp(t) ~H1n(x; q; t) = Fp(t)hn

h
X
1�t

i nY
j=1

(1� tj) :

Proof. Let A1(x); : : : ; AN (x) be a homogeneous basis of the symmetric
polynomials in J?p . By (2.25), the collection

fAi(@)b(@)�p(x) : i = 1; : : : ; N and b 2 Bn g

is a basis of Mp. This decomposes Mp into N parts, the ith part being

M(i)
p = span fAi(@)b(@)�p(x) : b 2 Bn g :

For each i there is a homogeneous symmetric polynomial A0i(x) for which
A0i(@)Ai(@)�p(x) = ci�n(x), with ci 6= 0, by Lemma 2.2. Then

Mp
Ai(@)
�����!M(i)

p

A0

i(@)
�����!Mn = L@(�n)

is a composition of surjective, character-preserving homomorphisms that
lower degrees by deg(Ai) and deg(A0i), respectively. Noting that deg(Ai)+
deg(A0i) = jpj �

�
n
2

�
, we therefore have

F chM(i)
p = tjpj�(

n

2)�deg(Ai) � F chMn = tjpj�(
n

2)�deg(Ai) ~H1n(x; q; t) :

Interchanging the roles of Ai(x) and A
0
i(x) in this argument gives Fp(t) =PN

i=1 t
jpj�(n2)�deg(A

0

i) =
PN

i=1 t
deg(Ai).

Remark 2.2. Note that this reduces the problem of �nding F chL@(�p)
to determining the action of symmetric di�erential operators on �p(x). In
particular, we must determine a set of such operators that, when applied
to �p(x), yield a basis of all alternants in L@(�p). The following result
yields a preliminary step in this direction.
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Theorem 2.4. Let � and � be partitions with at most n parts, and
� = (n� 1; n� 2; : : : ; 0). Then

s�(@x1 ; : : : ; @xn)
��+�(x1; : : : ; xn)

d�
=
X
���

c��;�
��+�(x1; : : : ; xn)

d�
; (2.27)

where c��;� are the Littlewood-Richardson coe�cients and for convenience

we have set d� =


��+� ; ��+�

�
and d� =



��+� ; ��+�

�
.

Proof. It follows from Lemma 2.1 that we have the expansion

s�(@)��+�(x) =
X

�`j�j�j�j



s�(@)��+� ; ��+�

� ��+�(x)

d�
: (2.28)

Since di�erentiation is dual to multiplication with respect to the scalar
product in (2.7), we see that we can write



s�(@)��+� ; ��+�

�
=


��+� ; s���+�

�
=


��+� ; s� s� �n

�
: (2.29)

The Littlewood-Richardson rule then gives



��+� ; s� s� �n

�
=
X
�`j�j

c���


��+� ; s��n

�
=
X
�`j�j

c���


��+� ; ��+�

�
;

and the orthogonality of our alternants reduces this to



��+� ; s� s� �n

�
= c��� d� :

Combining this with (2.29) and substituting in (2.28) yields

s�(@)��+�(x) =
X

��� ; �`j�j�j�j

c��;� ��+�(x)
d�

d�
;

which gives (2.27) upon division by d�.

We are �nally in a position to give our

Proof of Thm. 2.1. Note �rst that the map

� : s�(x1; : : : ; xn) �!
��+�(x1; : : : ; xn)

d�

gives an isomorphism of the space of symmetric polynomials onto the space
of alternants that increases the degree by

�
n
2

�
. Thus we derive from (2.27)
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and the Littlewood-Richardson rule for skew Schur functions

s�=� =
X
���

c��;� s� (2.30)

that the dimension of the space of alternants in L@(�p) that are homo-
geneous of degree m +

�
n
2

�
is the same as dimension of the vector space

spanned by the collection of skew Schur functions�
s�=�(x1; : : : ; xn) : � ` j�j �m

	
;

and that is equal to the coe�cient of tm in the polynomial ��(t) that occurs
in (2.4). Thus the Hilbert series of the alternants in L@(�p) is given by

��(t) t
(n2) :

On the other hand, from Prop. 2.4, it follows that for p = �+�, the Hilbert
series of these alternants should also be given by

Fp(t) t
(n2) :

Thus we must have Fp(t) = ��(t) ; and the theorem follows by combining
Prop. 2.4 with Thm. 2.4.

3. DIAGRAMS ARISING FROM COMPLEX REFLECTION

GROUPS

Results similar to those of the previous section hold for complex reection
groups. Let G be a �nite n�nmatrix group generated by reections, acting
on polynomials P (x1; : : : ; xn) via

TA P (x) = P (xA) for A 2 G.

Let R = C[x1; : : : ; xn]. Let R
G be the G-invariant polynomials, and IG =

(RG
+) be the ideal generated by G-invariant polynomials of positive degree.

Replace the scalar product (2.7) by

P ; Q

�
= P (@) Q(x)

��
x=0

: (3.1)

The \harmonics" of G are

HG = I?G =
�
P 2 R :



P ; Q

�
= 0 for all Q 2 IG

	
=
�
P 2 R : Q(@)P = 0 for all Q 2 RG

	
:

The discriminant �G(x) is the product of reecting hyperplanes raised to
one less than their order. Steinberg [10] proved
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Theorem 3.1. HG = L@ (�G(x)), and this yields a graded version of
the regular representation of G.

A polynomial �(x) is a \G-alternant" when

(detA) TA P (x) = P (x) for all A 2 G.

Now let �(x) be any G-alternant and I� = (P : P (@)�(x) = 0) be
the ideal of polynomials that kill �. Then I�G

= IG, and the proofs of
Thm. 2.1 and Prop. 2.4 may be adapted to yield

Theorem 3.2. Let �(x) be any G-alternant. Let A1(x); : : : ; AN (x) be
a homogeneous basis of the G-invariant polynomials in I?� . Then we have
the direct sum decomposition

L@ (�(x)) =

NM
i=1

HG(@) Ai(@) �(x) :

Thus, the graded character of L@ (�(x)) is given by the formula

cht L@ (�(x)) = F�(t) chtHG

where F�(t) =
PN

i=1 t
deg(�)�deg(�G)�deg(Ai) =

PN
i=1 t

deg(Ai) :

We consider the complex reection group formed as the wreath product
Gn;m = Cm o Sn, where Cm is the cyclic group of order m; see [9] and [11].
This group may be identi�ed with the group of n�n \pseudopermutation"
matrices, where the nonzero entries are taken from the group of mth roots
of unity. Its order is n!mn. For each divisor d of m, we also consider the
subgroup Gn;m;d consisting of those matrices in Gn;m in which the product
of the nonzero entries is a dth root of unity; Gn;m;d has order n!mn�1 d.
In this notation, the hyperoctahedral group Bn is Gn;2 = Gn;2;2; the Weyl
group Dn is Gn;2;1; and Gn;m = Gn;m;m.
Fix n;m; d. Let ! = e2�i=m. Let [m]t =

1�tm

1�t = 1 + t + � � �+ tm�1 and
[m]t! = [m]t [m � 1]t � � � [1]t. For each polynomial f(x) = f(x1; : : : ; xn),
we abbreviate f(xm) = f(xm1 ; : : : ; x

m
n ). For each integer sequence q =

(q1; : : : ; qn) 2 Dn, and any number b, we set

mq + b = (mq1 + b; : : : ;mqn + b) :

We �rst focus on Gn;m. The Gn;m-invariants of C[x] are generated by
the symmetric functions e1(x

m); : : : ; en(x
m); the set of all invariants is

ff(xm) : f 2 �g (where � is the set of Sn-symmetric functions in C[x]).
Gn;m has 2-fold reections through the hyperplanes xj � !rxk (for j 6=

k and 0 � r � m � 1), and m-fold reections through each xj , so the
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discriminant is

�n;m(x1; : : : ; xn) = (x1 � � �xn)
m�1

Y
1�j<k�n

m�1Y
r=0

(xj � !rxk)

= det kxj
km�1k1�j;k�n = �p(x1; : : : ; xn)

where p = (nm�1; (n�1)m�1; : : : ;m�1). A basis of the Gn;m-alternating
polynomials in C[x] is given by

�mq+m�1(x) = (x1 � � �xn)
m�1�q(x

m) (with q 2 Dn).

Proposition 3.1. Let m;n � 1. We have the direct sum decomposition

L@(�n;m(x)) =
M
�

e1(@)
�1 e2(@)

�2 � � � en(@)
�nHSn (@) �n;m(x) (3.2)

(with 0 � �1; : : : ; �n � m � 1), from which it follows that

F chL@(�n;m(x)) = [m]t [m]t2 � � � [m]tn ~H1n(x; q; t) (3.3)

and

�(n(m�1);(n�1)(m�1);���;1(m�1))(t) = [m]t [m]t2 � � � [m]tn : (3.4)

Proof. Gallo [4] gives a basis for HGn;m
: fe1(x)

�1 � � �en(x)
�n bg, where

0 � �i � m � 1 and b 2 Bn (see Remark 2.1). This gives (3.2). The
symmetric polynomials within this basis are those with b = 1; Prop. 2.4
then gives (3.3), and comparing this with (2.4) gives (3.4).

Theorem 3.3. Let p = � + � 2 Dn, and q = mp + m � 1 = � + �.
Then the graded multiplicity of the left regular representation of Gn;m for
L@(�q) is ��(t

m). Thus,

��(t) = ��(t
m)

nY
i=1

[m]ti : (3.5)

Moreover,

Iq = (P (xm1 ; : : : ; x
m
n ) : P (x1; : : : ; xn) 2 Ip ) : (3.6)

Proof. Every Sn-alternant in L@(�p) has the form

f(@)�p(x) =
X
u2Dn

afu �u(x) (3.7)
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where f 2 �. Since the �u are orthogonal with respect to the scalar
product (3.1), the coe�cients are

afu =


�u ; f(@)�p

�
=


�u ; �u

�
=


�u ; f(@)�p

�
=u!

with u! = u1! � � �un!. Likewise, the Gn;m-alternants in L@(�q) are

f(@m)�q(x) =
X
u2Dn

bfu �mu+m�1(x) ;

where f 2 � and f(@m) = f(@mx1 ; : : : ; @
m
xn
). The coe�cients are

bfu =


�mu+m�1 ; f(@

m)�q

�
=(mu+m � 1)! :

The two systems of coe�cients are simply related: using adjoints and
termwise expansion of the scalar product (3.1), we obtain



�mu+m�1 ; f(@

m) �mp+m�1

�
=


f(xm) �mu+m�1 ; �mp+m�1

�
=

(mp+m � 1)!

p!
�


f �u ; �p

�
:

Then

bfu =
q!

p!



f�u ; �p

�
(mu+m � 1)!

=
q!

p!

u!

(mu +m � 1)!
afu :

Thus, if we let f1; : : : ; fM be any basis of � up to degree jpj, and u range
over all sequences componentwise bounded by p, the matrices A = [afu]f;u
and B = [bfu]f;u are related by A = BD for an invertible diagonal matrix
D. In particular, choose f1; : : : ; fM so that

fk(@)�p(x) (with k = 1; : : : ; N )

is a basis of the alternants of L@(�p), while

fk(@)�p(x) = 0 (for k = N + 1; N + 2; : : : ;M ).

Then

fk(@
m)�q(x) (with k = 1; : : : ; N )

is a basis of the alternants of L@(�q), giving the multiplicity ��(t
m), while

fk(@
m)�q(x) = 0 (k = N + 1; N + 2; : : : ;M ),

giving (3.6).
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Finally, the graded Frobenius characteristic of L@(�q) is

��(t) ~H1n(x; q; t) = ��(t
m) F chL@(�Gn;m

) ;

where the left side is given by Thm. 2.1 and the right side by Thm. 3.2.
Evaluating F chL@(�Gn;m

) by (3.3) and simplifying gives (3.5).

Next we consider Gn;m;d. Its polynomial invariants are generated by
e1(x

m); : : : ; en�1(x
m) and en(x

d). The set of all Gn;m;d-invariant polyno-
mials has a basis

�
f(xm) (en(x

d))j : f 2 � and j = 0; 1; : : : ; c� 1
	

(3.8)

where we set c = m=d.
The discriminant of Gn;m;d is

�n;m;d(x1; : : : ; xn) = det kxj
(k�1)m+d�1k1�j;k�n = �p(x1; : : : ; xn)

where p = ((n � 1)m + d� 1; (n� 2)m + d� 1; : : : ; d� 1). A basis of the
Gn;m;d-alternating polynomials in C[x] is

f�mq+hd�1(x) : q 2 Dn and 1 � h � c g :

Theorem 3.4. Let p = � + � 2 Dn, and q = mp + hd� 1 = � + � with
djm, c = m=d, h = 1; : : : ; c. Let ~� = (�1 � 1; : : : ; �n� 1). Then the graded
multiplicity of the left regular representation of Gn;m;d for L@(�q) is

[h]tnd��(t
m) + tndh[c� h]tnd�~�(t

m) (3.9)

(interpreting �~� as 0 when pn = 0). Thus,

��(t) =
�
[h]tnd��(t

m) + tndh[c� h]tnd�~�(t
m)
�
[d]tn

n�1Y
j=1

[m]tj : (3.10)

Proof. The proof is similar to that of Thm. 3.3.
The Gn;m;d-alternants in L@(�q) have the form

en(@
d)j f(@m) �q(x) = f(@m)�mp+(h�j)d�1(x) (3.11)

for f 2 � and 0 � j � c. For distinct values of j, the subspaces of alternants
so obtained intersect only trivially, because modulom, the degree of (3.11)
in each variable is congruent to (h � j)d � 1.



20 BERGERON, GARSIA, AND TESLER

For each Sn-alternant in L@(�p) of form (3.7), and 0 � j < h,

en(@
d)j f(@m) �q(x) =

X
u2Dn

q!

p!

u!

(mu+ (h� j)d� 1)!
afu �mu+(h�j)d�1 :

For h � j � c, we have h�j � 0, so when un = 0, we havemu+(h�j)d�
1 62 Dn because its n

th component is negative; thus this expansion is invalid.
When pn = 0, we have no further alternants because en(@

d)j �q(x) = 0 for
j � h. For pn > 0, we set ~p = (p1�1; : : : ; pn�1), so that mp+(h�j)d�1 =
m~p+(c+h� j)d�1 with 1 � c+h� j � c. Then for f 2 �, the expansion

f(@)�~p(x) =
X
u2Dn

~afu �u(x)

gives

en(@
d)j f(@m) �q(x) =

X
u2Dn

q!

~p!

u!

(mu+ (h� j)d� 1)!
~afu �mu+(h�j)d�1 :

The graded multiplicity of the left regular representation of Gn;m;d for
L@(�q) is  

h�1X
j=0

tnd j

!
��(t

m) +

 
c�1X
j=h

tnd j

!
�~�(t

m) :

This equation can be rewritten as (3.9).
Next, from the degrees of the basic invariants of Gn;m;d, the Hilbert

polynomial of L@(�n;m;d) is

[m]t [2m]t � � � [(n� 1)m]t [dn]t

while the Hilbert polynomial of L@(�n) is [n]t!. Since Sn is a subgroup of
Gn;m;d, we have HGn;m;d

is a graded multiple of HSn ; the multiplicity is

[m]t [2m]t � � � [(n� 1)m]t [dn]t
[n]t!

= [m]t � � � [m]tn�1 [d]tn ;

giving (3.10).

As a consequence, we have the following result.

Proposition 3.2. Let a � 0 and b; n � 1 be integers, and

� = (a + (n� 1)(b� 1); a+ (n� 2)(b� 1); � � � ; a+ 0(b� 1)) : (3.12)
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Let division give a = bQ+ R with Q;R integers, 0 � R < b. Then

��(t) =
[a+ 1 + (R+ 1)(n� 1)]t �

Qn�1
i=1 [b(Q+ i)]t

[n]t!
(3.13)

Proof. Applying Thm. 3.4 with m = c = b, d = 1, h = R + 1, p =
(n� 1 + Q;n� 2 +Q; : : : ; Q), q = bp+ R = � + � ; gives that ��(t) is

�
[R+ 1]tn�(Qn)(t

b) + tn(R+1)[b�R� 1]tn�((Q�1)n)(t
b)
�
[b]t � � � [b]tn�1 :

By Thm. 2.3 at k = Q, this becomes

�
[R+ 1]tn

hQ + n

n

i
tb
+ tn(R+1)[b� R� 1]tn

hQ+ n� 1

n

i
tb

�
[b]t � � � [b]tn�1 :

Expanding the binomial coe�cients as products reduces this to

�
[R+ 1]tn[Q+ n]tb + tn(R+1)[b�R� 1]tn[Q]tb

� Qn�1
j=1 [Q+ j]tb [b]tj

[n]tb!
:

(3.14)

The fraction on the right may be simpli�ed using [Q + j]tb [b]tj=[j]tb =
[b(Q+ j)]t=[j]t to get

Qn�1
j=1 [Q+ j]tb [b]tj

[n]tb!
=

Qn�1
j=1 [b(Q+ j)]t

[n]t!

[b]t
[b]tn

:

The parenthesized part of (3.14) equals

[R+ 1]tn [Q+ n]tb + ([b]tn � [R+ 1]tn)[Q]tb

= [R+ 1]tn([Q+ n]tb � [Q]tb) + [b]tn[Q]tb

= tbQ[R+ 1]tn [n]tb + [b]tn[Q]tb

and [b]t=[b]tn times this equals

tbQ[R+ 1]tn [b]t[n]tb=[b]tn + [b]t[Q]tb

= tbQ[R+ 1]tn[n]t + [bQ]t = tbQ[(R+ 1)n]t + [bQ]t

= [(R+ 1)n+ bQ]t = [a+ 1 + (R+ 1)(n � 1)]t :

Combining the parts of (3.14) back together gives (3.13).
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Allen [1] has constructed bases of the modules M�+� pertaining to this
proposition when 0 � a < b, including a di�erent decomposition of (3.2)
than what we presented.

4. FURTHER PROPERTIES OF ONE DIMENSIONAL

DIAGRAMS

Let �m
� = span

�
s�=� : � � � and � ` j�j �m

	
. We give some prop-

erties of its Hilbert polynomial, ��(t) =
Pn

m=0 (dim�m
� ) t

m :

Proposition 4.1. Let N = j�j > 0.

(a) ��0(t) = ��(t)

(b) dim�m
� = rank

c��;��`N�m; �`m
;

where the matrix entries are Littlewood-Richardson coe�cients.

(c) ��(t) = tN��(t
�1)

(d) The coe�cients of t0, t1, tN�1, and tN in ��(t) are always 1.

Proof. (a) The standard involution !s� = s�0 on symmetric functions is
a degree preserving isomorphism of the vector spaces �� and ��0 , so they
have the same Hilbert polynomial.
(b) Expanding the spanning set

�
s�=� : � ` j�j �m

	
of �m

� in terms of
ordinary Schur functions via (2.30) gives the stated transition matrix. The
dimension of �m

� is the rank of this matrix.
(c) The Littlewood-Richardson coe�cients satisfy c��;� = c��;�, so the

matrices evaluated in (b) for �m
� and �N�m

� are transpose to each other.
Thus they have the same rank, so ��(t) is symmetric.
Note that it need not be unimodal; the smallest non-unimodal case is

�(4;2)(t) = �(2;2;1;1)(t) = t6 + t5 + 2t4 + t3 + 2t2 + t + 1.
(d) There is only one subdiagram � of � of each size 0, 1, and N , so that

�N
� , �

N�1
� , and �0

� each have dimension 1. All subdiagrams � of size N�1
have s�=� = s1, so �1

� has dimension 1 as well.

Once a particular ��(t) is computed, the next two results give two in�nite
families of diagrams p for which F chL@(�p) can be computed using the
same value of ��(t).

Proposition 4.2. Let p1 > p2 > � � � > pn � 0 and u1 > u2 >

� � � > ur � 0 be integers with fp1; : : : ; pn;K � 1� u1; : : : ;K � 1� urg =
f0; : : : ;K � 1g, where K = n + r. Let p = � + �n as usual. Then we
have (2.4) and

F chL@(�u) = ��(t) ~H1r(x; q; t) : (4.1)
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Proof. In decreasing order, u1 > u2 > � � � > ur may be written

K � 1;K � 2; � � � ;K � pn;

K � pn � 2;K � pn � 3; � � � ;K � pn�1;

K � pn�1 � 2;K � pn�1 � 3; � � � ;K � pn�2;

� � �

K � p1 � 2;K � p1 � 3; � � � ; 1; 0;

and successively subtracting r� 1; r� 2; : : : ; 0 from these gives u = �+ �r ,
with

� = (npn ; (n� 1)pn�1�pn�1; : : : ; 1p1�p2�1; 0K�p1�1)

= (n�n ; (n� 1)�n�1��n ; : : : ; 1�1��2 ; 0K�p1�1) = �0 :

By Thm. 2.1, F chL@(�u) = ��(t) ~H1r(x; q; t); but ��(t) = ��0(t) = ��(t)
by the preceding proposition.

Because ��(t) does not depend on n so long as n � `(�), the following
is an immediate corollary of Thm. 2.1.

Proposition 4.3. Let p = �n + � 2 Dn and

p(r) = �n+r + � = (p1 + r; p2 + r; � � � ; pn + r; r� 1; r� 2; � � � ; 1; 0):

Then F chL@(�p(r)) = ��(t) ~H1n+r (x; q; t).

We now evaluate ��(t) when � is a hook.

Proposition 4.4. Let � = (a + 1; 1b) be a hook, a; b > 0, and N =
a+ b+ 1. Let c = minfa; bg+ 1. Then

�(a+1;1b) = 1 + tN +

c�1X
m=1

m (tm + tN�m) + c

N�cX
m=c

tm :

Proof. We assume b > a so that b > N=2. The case a > b is simi-
lar, and a = b will be treated separately. We consider partitions � � �

of size m. The cases m = 0; 1; N � 1; N are special and have already
been considered in Prop. 4.1. For 2 � m � N=2 < b, the hooks that
occur are � = (k + 1; 1m�1�k) with k = 0; 1; : : :;minfm� 1; ag, and

s(a+1;1b)=(k+1;1m�1�k) = ha�k eb+1�m+k

=

8<
:
s(a�k+1;1b�m+k) + s(a�k;1b+1�m+k) if k 6= a and k 6= m � b� 1;
s(a�k) if k = m� b� 1;
s(1b+1+m�k ) if k = a.

(4.2)
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The dominant partition in each case is di�erent, so all minfm � 1; ag+ 1
of these are independent.
By Prop. 4.1, when m > N=2, the coe�cients can be deduced from the

fact that ��(t) has symmetric coe�cients. Alternately, we are constrained
to maxf0;m� 1� bg � k � minfa;m� 1g = a in order that � �t within
the leg of � as well as the arm. As k varies, the dominant terms in (4.2) are
all distinct, so there are a�maxf0;m� 1� bg = minfa; a+ b+ 1�mg =
minfa;N + 1�mg linearly independent skew Schur functions.
Finally, in the case a = b, the preceding gives the coe�cients whenever

m 6= a + 1. When m = a+ 1, the shapes � with k = 1; : : : ; a give distinct
dominant partitions in (4.2). But k = 0 corresponds to � = (1a), giving

s(a+1;1a)=(1a) =

aX
m=1

(�1)m�1s(a+1;1a)=(m+1;1a�m) ;

so �m
� only has dimension a, not a+ 1.

5. TWO DIMENSIONAL PARTITIONS PLUS ONE CELL

If � is a partition, we denote by �=[i; j] the lattice diagram obtained by
removing the cell (i; j) from the diagram of �, and refer to the cell (i; j)
as the \hole" of �=[i; j]. We denote by � + [i; j] the diagram obtained by
adding the cell (i; j) to the diagram of �, and refer to (i; j) as a \peb-
ble." In [3], we and our coauthors explored the structure of the module
M�=[i;j] = L@(��=[i;j]); we now briey give analogous results and conjec-
tures for M�+[i;j] = L@(��+[i;j]), where ��=[i;j] and ��+[i;j] are given
by (1.2).
We set �? =

�
(i; j) 2 Z2 : i; j � 0 and (i; j) 62 �

	
. We shall write

(i0; j0) � (i; j) to mean i0 � i and j0 � j. For any s = (i; j) 2 �?, the
collection of cells

�
(i0; j0) 2 �? : (i0; j0) � (i; j)

	
will be called the \antishadow" of (i; j) with respect to �. It is the rotation
and translation of a Ferrers diagram of a partition

� = (j + 1� �i+1; j + 1� �i; j + 1� �i�1; : : : ; j + 1� �i+1�L) (5.1)

where the \dual leg" L�(s) = i� �j+1 is the number of cells strictly south
of s and outside �, and the \dual arm" A�(s) = j � �i+1 is the number of
cells strictly west of s and outside �. All these quantities are illustrated in
Fig. 1.
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(i; j)

�

 ����� �����!A x???
???y
L

� = (242; 224; 193; 154; 114; 64; 22)
(i; j) = (18; 20)

� = (152; 104; 64; 23)
A�(i; j) = 14
L�(i; j) = 12

FIG. 1. Antishadow � of (i; j) relative to �.

For integers h; k � 0 but not both 0, on setting

Dx =

nX
r=1

@xr ; Dy =

nX
r=1

@yr ; Dhk =

nX
r=1

@hxr @
k
yr
;

the following three results for pebbles follow from Prop. I.1 of [3] in the
same way that the analogous results were given there for holes:

Proposition 5.1. For any partition � ` n� 1 and (i; j) 2 �?, we have

Dhk��+[i;j](x; y) =

�
���+[i�h;j�k](x; y) if (i � h; j � k) 2 �?

0 otherwise.

Proposition 5.2. Let � ` n � 1 and i; j; h; k � 0. Then if (i; j); (i �
h; j � k) 2 �?, we have

Dh
x D

k
y M�+[i;j] = Dhk M�+[i;j] = M�+[i�h;j�k] ;

meaning that both Dh
xD

k
y and Dhk are surjective linear maps. In particular

we have the inclusion

M�+[i0 ;j0] �M�+[i;j]

for all cells (i0; j0) in the antishadow of (i; j) with respect to �.

Proposition 5.3. The collection of polynomials�
��+[i0;j0](x; y) : (i0; j0) 2 �? and (i0; j0) � (i; j)
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U0

Z1

U1

Z2

U2

Z3

U3

Z4

U4

� = (174; 142; 93; 54)

u0 = t12q�1 z1 = t12q4

u1 = t8q4 z2 = t8q8

u2 = t5q8 z3 = t5q13

u3 = t3q13 z4 = t3q16

u4 = t�1q16

FIG. 2. Weights of corners of a partition.

forms a basis for the submodule of alternants of M�+[i;j].

Computational evidence leads to a conjectured re�nement of this:

Conjecture 5.1. For any � ` n � 1 and any (i; j) 2 �?, the Sn-module
M�+[i;j] decomposes into the direct sum of k left regular representations of
Sn, where k is the number of cells in the antishadow of (i; j) with respect
to �.

We will give a Frobenius characteristic formulation of this conjecture, but
�rst we must introduce some notation. Let � have m corners Z1; : : : ; Zm la-
belled as we encounter them from upper left to lower right. The coordinates
are Zj = (�j ; �j). Also consider the \concave corner" cells U0; : : : ; Um,
with coordinates Uj = (�j+1; �j), where �m+1 = �0 = �1. The \weight"
of Zj is zj = t�j q�j , and the weight of Uj is uj = t�j+1 q�j . These are
illustrated in Fig. 2.
Let �(i) be the partition obtained on removing Zi from �. In [6, Prop.

I.3], we used the Pieri rules [8, p. 340] for Macdonald polynomials to show

@p1
~H�(x; q; t) =

X
�!�

c�;�(q; t) ~H�(x; q; t) (5.2)

where � ! � means � runs over the �(i); @p1 , di�erentiation by p1, is the
Hall scalar product adjoint to multiplication by p1; and

c�;�(i) (q; t) =
1

(1� 1=q)(1� 1=t)

1

zi

Qm
j=0(zi � uj)Qm

j=1; j 6=i(zi � zj)
: (5.3)

Now let � be a partition as depicted in Fig. 2, and let �(i) be the partition
obtained by adding the cell U 0i = (�i+1 + 1; �i + 1) to �, for i = 0; : : : ;m.
By a similar computation, another of Macdonald's Pieri formulas can be
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written

e1(x) ~H�(x; q; t) =
X
� �

d�;�(q; t) ~H�(x; q; t) ; (5.4)

where � � means � runs over the �(i), and

d�(i);�(q; t) =
1

qt

1

ui

Qm
j=1(ui � zj)Qm

j=0; j 6=i(ui � uj)
: (5.5)

Computations with the modules M�+[i;j] have led us to conjecture the
following analogue of [3, Conj. I.3] as their Frobenius characteristic; the
coe�cients are given by (5.3).

Conjecture 5.2. For any (i; j) 2 �?, we have

C�+[i;j](x; q; t) =
X
(i0;j0)

c�;�=[i�i0;j�j0](q; t) ~H�+[i0;j0](x; q; t) ; (5.6)

where (i0; j0) runs over the cells � (i; j) that can be added to � to yield a
partition.

Theorem 5.1. The validity of the preceding conjecture for all (i; j) 2 �?

is equivalent to

(a) The four term recursion

C�+[i;j] =
tL � qA+1

tL � qA
C�+[i;j�1] +

qA � tL+1

qA � tL
C�+[i�1;j]

�
qA+1 � tL+1

qA � tL
C�+[i�1;j�1] (5.7)

(b) together with the boundary conditions that each of the three terms of
the form C�+[i0;j0] on the right is equal to zero when (i0; j0) 62 �?, and to
~H�+[i0;j0] when (i0; j0) is an exterior corner of �.

A representation theoretic interpretation of (5.7) comes from the fol-
lowing modules. For a �xed � ` n � 1 and varying (i; j) 2 �?, let �Kx

i;j

denote the kernel of the operator Dx as a map ofM�+[i;j] ontoM�+[i�1;j],
and �Ky

i;j denote the kernel of the operator Dy as a map of M�+[i;j] onto
M�+[i;j�1]. Then

�Kx
i;j�1 �

�Kx
i;j and �Ky

i�1;j �
�Kx
i;j :
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All of these spaces are Sn-invariant and the quotients

�Ax
i;j =

�Kx
i;j=

�Kx
i;j�1 and �Ay

i;j =
�Ky
i;j=

�Ky
i�1;j

are well-de�ned bigraded Sn-modules. Denoting the Frobenius character-
istics of these by �Kx

i;j = F ch �Kx
i;j ,

�Ax
i;j = F ch �Ax

i;j, and similarly for forms
with y, we have by a simple algebraic argument

Proposition 5.4.

�Kx
i;j = C�+[i;j] � t C�+[i�1;j] ; �Ky

i;j = C�+[i;j] � q C�+[i;j�1] ;

�Ax
i;j =

�Kx
i;j �

�Kx
i;j�1 ;

�Ay
i;j =

�Ky
i;j �

�Ky
i�1;j :

Hence, the recurrence (5.7) is equivalent to the \crucial identity"

qA �Ax
i;j = tL �Ay

i;j : (5.8)

The detailed proofs of the preceding results for pebbles are completely
analogous to the corresponding proofs for holes in [3].

Next, we consider \adding a pebble at in�nity," which is a possible ana-
logue of removing the cell at the origin. To do this, we require a new
operation on diagrams.
Let L be a lattice diagram that �ts in an a� b box: L � Ba;b where

Ba;b = f (i; j) : 0 � i < a and 0 � j < b g : (5.9)

De�ne the complement of the rotation of L in Ba;b to be

Ra;b(L) = f (i; j) 2 Ba;b : (a � 1� i; b� 1� j) 62 L g : (5.10)

When a; b are known within a problem, we abbreviate L� = Ra;b(L) for all
L � Ba;b. When L is the diagram of a partition �, we have

�� = (b� �a; b� �a�1; : : : ; b� �1) :

In [3, Prop. I.5], we proved C�=[0;0](x; q; t) = @p1C�(x; q; t), which com-

bined with the C = ~H conjecture implies C�=[0;0](x; q; t) = @p1
~H�(x; q; t).

An analogue of this for pebbles is as follows. Let T� = qn(�) tn(�
0) and r

denote the linear operator r ~H� = T� ~H�. Also set M = (1� q)(1� t).

Theorem 5.2. On the validity of Conj. 5.2, we have

lim
a;b!1

F chM�+[a�1;b�1](x; q; t) =
1

M

r

T�

�
e1 ~H�(x; q; t)

�
; (5.11)
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where the limits are in the ring of Laurent series in q; t with qr ; tr ! 0 as
r!1.

Proof. Take a > �01 and b > �1, so that (a � 1; b � 1) 62 � � Ba;b.
Then (5.6) becomes

F chM�+[a�1;b�1] =
X
� �

c��;�� (q; t) ~H�(x; q; t) ;

and we will show (5.13) that we can rewrite this as

=
1

M

X
� �

(qk � ta�h)(th � qb�k)d�;�(q; t) ~H�(x; q; t)

where �=� = (h; k). Then

F chM�+[a�1;b�1] =
1

M

X
� �

(qk � ta�h)(th � qb�k) d�;�(q; t) ~H�(x; q; t)

=
1

M

X
� �

(qk th � qb � ta + qb�kta�h) d�;�(q; t) ~H�(x; q; t)

=
1

M

X
� �

�
r

T�
� qb � ta +

qb ta

r

�
d�;�(q; t) ~H�(x; q; t)

=
1

M

�
r

T�
� qb � ta +

qb ta

r

� �
e1 ~H�(x; q; t)

�
;

and since ta; qb ! 0 as a; b!1, we obtain (5.11).

The computation in this proof that we delayed is as follows.

Lemma 5.1. Fix a; b and � ! � both contained in Ba;b. Let �=� =
(h; k). Then

c�;�(q; t) =
(qb�k�1 � th+1)(ta�h�1 � qk+1)

(1� q)(1 � t)
d��;��(q; t) (5.12)

d�;�(q; t) =
(1 � q)(1� t)

(qk � ta�i)(th � qb�k)
c��;��(q; t) : (5.13)

Proof. It su�ces to prove (5.12). We will assume a > �01 and b > �1;
the cases when a = �01 or b = �1 (or both) are similar, but the labels of
certain corners will be o� by 1 from what we give here.
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Let � be a partition with m corners as depicted in Fig. 2. Then �� has
m+ 1 corners, whose weights are related to �'s corners via

z�j =
qb�2ta�2

um+1�j
for j = 1; : : : ;m+ 1;

u�0 =
ta�1

q
; u�m+1 =

qb�1

t
; u�j =

qb�2ta�2

zm+1�j
for j = 1; : : : ;m:

(5.14)

For convenience we set w = qb�2ta�2, z0 = ta�1=q and zm+1 = qb�1=t so
that u�j = w=zm+1�j for j = 0; : : : ;m + 1.

We have � = �(i) for some i = 1; : : : ;m; then �� is obtained by adding
the (m + 1� i)th corner to ��. Plugging (5.14) into (5.5) for this gives

d��;��(q; t) =
1

qt

1

u�m+1�i

Qm
j=0(u

�
m+1�i � z�m+1�j)Qm+1

j=0; j 6=i(u
�
m+1�i � u�m+1�j)

=
1

qt

zi

w

Qm
j=0(

w
zi
� w

uj
)Qm+1

j=0; j 6=i(
w
zi
� w

zj
)
=

F

qt

Qm
j=0(uj � zi)Qm+1

j=0; j 6=i(zj � zi)
(5.15)

where

F =
zi

w

wm+1

zm+1
i u0 � � �um

�
wm+1zi

zm+1
i z0 � � � zm+1

=
z0 � � � zm+1

w u0 � � �um
= qt

follows from plugging in the de�nition of the u's and z's. Plugging this
into (5.15), separating out the factors j = 0;m+1 in the denominator, and
using zi = thqk and z0; zm+1 from above, gives

d��;��(q; t) =
1

(zm+1 � zi)(z0 � zi)

Qm

j=0(uj � zi)Qm

j=1; j 6=i(zj � zi)

=
zi (M=qt) c�;�(i) (q; t)

(zm+1 � zi)(z0 � zi)
=

M c�;�(i) (q; t)

(qb�1�k � th+1)(ta�1�h � qk+1)
;

which gives (5.12).

6. CONJECTURES FOR TWO DIMENSIONAL DIAGRAMS

Our formulas for special diagrams suggest several conjectures about the
structure of CL(x; q; t) for two dimensional lattice diagrams L. Supporting
evidence for the three conjectures will be given after they are all stated.

A diagram R is a compression of a diagram L when R can be ob-
tained from L by moving squares weakly downward and leftward; equiv-
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alently, there is a numbering of the cells L = f(i1; j1); : : : ; (in; jn)g, R =
f(i01; j

0
1); : : : ; (i

0
n; j
0
n)g for which i

0
k � ik and j0k � jk for all k.

Conjecture 6.1. (Compression Conjecture) Let L be any diagram
with the MLRR property. Then

CL(x; q; t) =
X
�

�L� (q; t)
~H�(x; q; t)

where the sum only runs over partitions � that are compressions of L. Fur-
ther, �L�(q; t) is a rational function that can be expressed as a polynomial

divided by ~h�(q; t) ~h
0
�(q; t), where these are the hook products

~h�(q; t) =
Y
s2�

(qa�(s) � tl�(s)+1) and ~h0�(q; t) =
Y
s2�

(tl�(s) � qa�(s)+1) :

The denominators automatically follow from the fact that (1.3) can be
expressed as a sum of Schur functions with N[q; t] coe�cients, and the
transition matrix between Schur functions and ~H� has these denominators.

Conjecture 6.2. (Rotation Conjecture) Fix a; b, and let L� = Ra;b(L)
for all diagrams L � Ba;b, as in (5.10). If L has the MLRR property, then
L� does too, and for all partitions �, we have �L� (q; t) = �L

�

�� (q; t), that is,

CL(x; q; t) =
X
�

��(q; t) ~H�(x; q; t) (6.1)

i� CL�(x; q; t) =
X
�

��(q; t) ~H��(x; q; t) : (6.2)

Theorem 6.1. On the validity of Conj. 6.2, if L and L� possess the
MLRR property, then dimML = k � jLj! i� dimML� = k � jL�j!.

Proof. Set n = jLj and n� = jL�j = ab�n. The Hilbert series dL(q; t) of
the trivial representation in ML is the coe�cient of sn(x) when CL(x; q; t)
is expanded in Schur functions; by (6.1), this is

dL(q; t) = CL(x; q; t)
���
sn

=
X
�

��(q; t) ~H�(x; q; t)
���
sn

=
X
�

��(q; t) :

Assuming (6.2), the trivial representation in ML� has the same Hilbert
series:

dL�(q; t) = CL�(x; q; t)
���
sn�

=
X
�

��(q; t) ~H��(x; q; t)
���
sn�

=
X
�

��(q; t) :
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Assuming the MLRR property holds,ML is a sum of dL(1; 1) copies of the
regular representation of Sn, while ML� is a sum of dL�(1; 1) copies of the
regular representation of Sn� ; but these multiplicities are equal.

Fix a partition  and one of its concave corners with coordinates (i �
1; j � 1). Set a = 0j � i (but a = 1 if j = 0), and b = i � j (b = 1 if
i = 0). For any �nite diagram L � Ba;b, de�ne

� (L) =  [ f (i + p; j + q) : (p; q) 2 L g : (6.3)

This is the union of the diagram of  with the translation of L by the vector
(i; j).

Conjecture 6.3. (Border Conjecture) A diagram L has the MLRR
property, with

CL(x; q; t) =
X
�`n

��(q; t) ~H�(x; q; t) ;

i� � (L) has the MLRR property, with

C�(L)(x; q; t) =
X
�`n

��(q; t) ~H�(�)(x; q; t) : (6.4)

This would follow from the rotation conjecture by performing a sequence
of 2d rotation operations (5.10) (where d is the number of corners of ) to
L in larger and larger boxes, to add on the border region .
The following theorem is consistent with this conjecture.

Theorem 6.2. Setting n0 = j� (L)j = jj + n, the Hilbert series of the
alternants of ML and M�(L) are related by

C�(L)(x; q; t)
���
s
1n

0

= qn(
0) tn() (ti qj)n � CL(x; q; t)

���
s1n

(6.5)

Proof. Let D
(n)
hk denote the operator Dhk acting on polynomials in

x1; : : : ; xn; y1; : : : ; yn. All alternants inML are obtained by applying poly-
nomials in the Dhk's to �L. By Prop. I.1 of [3], the alternants that arise
this way are linear combinations of various �R(x; y), where R runs over
diagrams that are compressions of L. Similar statements are true for � (L),
and the speci�c linear combinations that occur have the same coe�cients:

D
(n)
hk �R(x1; : : : ; xn; y1; : : : ; yn) =

X
S

cS�S(x1; : : : ; xn; y1; : : : ; yn)



MULTIPLE LEFT REGULAR REPRESENTATIONS 33

D
(n0)
hk ��(R)(x1; : : : ; xn0; y1; : : : ; yn0) =

X
S

cS��(S)(x1; : : : ; xn0; y1; : : : ; yn0)

where R is a compression of L and S runs over diagrams that are compres-
sions of R. The bidegrees of �S and ��(S) di�er by a constant independent
of S, giving the additional factor on the right in (6.5).
Note that there is a sign ambiguity in the de�nition (1.2) due to the or-

dering of the cells, which in [3] was resolved by listing cells in lexicographic
order; for the above pair of equations, we resolve it di�erently. In comput-
ing �S , list the cells of S lexicographically. In computing ��(S), list the
cells of  lexicographically, followed by the cells of S lexicographically.

The evidence in support of these three conjectures includes the following:

(a) All of these conjectures are true for one dimensional diagrams (2.1).
Prop. 4.2 proves the Rotation Conjecture, and Prop. 4.3 proves the Border
Conjecture. Thm. 2.1 proves the Compression Conjecture, because the
only compression of (2.1) is (1n). Similarly,

F chL@(�L
p ) = ��(q) ~Hn(x; q; t) where Lp = f(0; p1); : : : ; (0; pn)g :

(b) The C = ~H conjecture is consistent with all three conjectures. The
only compression of a partition � is � itself, so (1.4) agrees with the Com-
pression Conjecture. For the Border Conjecture, given (1.4) and a partition
� obtained from � by an operation of the form (6.3), both (1.4) and (6.4)
predict C�(x; q; t) = ~H�(x; q; t).

For the Rotation Conjecture, take any partition �, large enough a; b,
and set � = ��. Given (1.4), the Rotation Conjecture says that since
C�(x; q; t) = ~H�(x; q; t), also C�(x; q; t) = ~H�(x; q; t). By taking a = �01,
b = �1, we �nd � has one less corner than �. Indeed, since C;(x; q; t) =
~H;(x; q; t) = 1, the validity of Conj. 6.2 would imply that C�(x; q; t) =
~H�(x; q; t) for all � by performing a sequence of rotations.

(c) For diagrams obtained by adding or removing a cell from the dia-
gram of a partition, the conjectured formula for C�=[i;j](x; q; t) in [3, Conj.
I.3] and the present paper (5.6) are clearly consistent with both the Com-
pression and Border Conjectures, and the relation of these two formulas is
exactly given by the Rotation Conjecture.
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