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Macdonald q; t-Kostka Coe�cients
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ABSTRACT.

This work is concerned with the Macdonald q; t-analogue of the Kostka matrix. This matrix relates

the two parameter Macdonald basis fP�(x; q; t)g to the modi�ed Schur basis fS�[X(1� t)]g. The entries

in this matrix, which have come to be denoted by K�;�(q; t), have been conjectured by Macdonald to be

polynomials in q; t with positive integral coe�cients. Our main main result here is an algorithm for the

construction of explicit formulas for the K�;�(q; t). It is shown that this algorithm yields expressions which

are polynomials with integer coe�cients. Recent work of J. Remmel shows that the resulting formulas do

also yield positivity of the coe�cients for a wide variety of entries in the Macdonald q; t-Kostka matrix. We

also obtain in this manner new explicit expressions for the Macdonald polynomials.

Introduction

Given a partition � we shall represent it as customary by a Ferrers diagram. We shall use

the French convention here and, given that the parts of � are �1 � �2 � � � � � �k > 0, we let

the corresponding Ferrers diagram have �i lattice squares in the ith row (counting from the bottom

up). We shall also adopt the Macdonald convention of calling the arm, leg, coarm and coleg of a

lattice square s the parameters a�(s); l�(s); a
0
�(s) and l

0
�(s) giving the number of cells of � that are

respectively strictly EAST, NORTH, WEST and SOUTH of s in �. We recall that Macdonald in [13]

de�nes the symmetric function basis fP�(x; q; t)g� as the unique family of polynomials satisfying

the following conditions:

a) P� = S� +
X
�<�

S� ���(q; t)

b) hP� ; P�iq;t = 0 for � 6= � ;

where fS�g� is the Schur basis and h ; iq;t denotes the scalar product of symmetric polynomials

de�ned by setting for the power basis fp�g

hp�(1) ; p�(2) iq;t =

�
z�
Q

i
1�q�i

1�t�i
if �(1) = �(2) = � and

0 otherwise

with z� the integer that makes n!=z� the number of permutations with cycle structure �. Macdonald

shows that the basis fQ�(x; q; t)g� , dual to fP�(x; q; t)g� with respect to this scalar product, is

given by the formula

Q�(x; q; t) = d�(q; t) P�(x; q; t) ;

where

d�(q; t) =
h�(q; t)

h0�(q; t)
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and

h�(q; t) =
Y
s2�

(1� qa�(s)tl�(s)+1) ; h0�(q; t) =
Y
s2�

(1� qa�(s)+1tl�(s)) : I:1

Macdonald sets

J�(x; q; t) = h�(q; t) P�(x; q; t) = h0�(q; t) Q�(x; q; t) ; I:2

and then de�nes his q; t-analogues of the Kostka coe�cients by means of an expansion that in �-ring

notation may be written as

J�(x; q; t) =
X
�

S�[X(1� t)]K��(q; t) : I:3

This paper is concerned with the modi�ed basis f ~H�(x; q; t)g� de�ned by letting

~H�(x; q; t) =
X
�

S�(x) ~K��(q; t) ; I:4

where we have set
~K��(q; t) = K��(q; 1=t)t

n(�) I:5

with

n(�) =
X
s2�

l�(s) :

If s is a cell of � we shall refer to the monomial w(s) = qa
0
�
(s)tl

0
�
(s) as the weight of s. The sum of

the weights of the cells of � will be denoted by B�(q; t) and will be called the biexponent generator

of �. Note that we have

B�(q; t) =
X
s2�

qa
0
�
(s)tl

0
�
(s) =

X
i�1

ti�1
1� q�i

1� q
: I:6

If  ` k and n � k � max(), the partition of n obtained by prepending a part n � k to  will be

denoted by (n � k; ). Our main result here may be stated as follows.

Theorem I.1

There is an algorithm which for any given  ` k constructs a symmetric polynomial

k(x; q; t) such that

~K(n�k;);�(q; t) = k [ B�(q; t) ; q; t] ( 8 � ` n � k +max() ) : I:7

This algorithm yields that the polynomials k(x) have a Schur function expansion of the form

k(x; q; t) =
X
j�j�k

S� k�(q; t) I:8

with coe�cients k� (q; t) Laurent polynomials in q; t with integer coe�cients. Moreover, each poly-

nomial k is uniquely determined by I.7 and I.8 .
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Surprisingly this result shows that the coe�cients ~K��(q; t) depend on � in a relatively sim-

ple manner, allowing in particular the encapsulation of a whole family of q; t-Kostka tables into a few

symmetric polynomials. For instance, in view of the identity ~K�;�(q; t) = ~K�0;�(1=q; 1=t)t
n(�)qn(�

0)

we see that all of the q; t-Kostka tables up to n = 8 can be constructed from the 12 symmetric

polynomials

k211 ; k111 ; k32 ; k22 ; k31 ; k21 ; k11 ; k4 ; k3 ; k2 ; k1 ; k;

that are given at the end of the paper. The 40 polynomials needed to compute the q; t-Kostka tables

up to n = 12 can be obtained (in MAPLE input format) by anonymous FTP frommacaulay.ucsd.edu.

We show in section 1 that the denominators t�q� that appear in the formulas giving the

Schur expansions of polynomials k do in fact disappear when any k is plethystically evaluated at

a biexponent generator. Thus Theorem I.1 in particular implies that the coe�cients ~K��(q; t) are

polynomials with integer coe�cients. We thus obtain part of the Macdonald conjecture concerning

the ~K��(q; t). Our formulas have also been used with some success in [10] to prove positivity of the

coe�cients in ~K��(q; t) for several classes of partitions �.

We recall that in [3] it is conjectured that ~H�(x; q; t) is (for a given � ` n) the bivariate

Frobenius characteristic of a certain Sn-module H� yielding a bigraded version of the left regular

representation of Sn. In particular this would imply that the expression

F�(q; t) =
X
�

f� ~K��(q; t)

should be the Hilbert series of H�. Here, f� denotes the number of standard tableaux of shape �.

Since Macdonald proved that

K��(1; 1) = f� ; I:9

we see that we must necessarily have

F�(1; 1) =
X
�

f2� = n! I:10

According to our conjectures in [3] the polynomial

@p1
~H�(x; q; t)

should give the Frobenius characteristic of the action of Sn�1 on H�.

Using the fact that the operator @p1 is the Hall scalar product adjoint to multiplication by

the elementary symmetric function e1, we can transform one of the Pieri rules given by Macdonald

in [13] into the expansion of @p1
~H�(x; q; t) in terms of the polynomials ~H�(x; q; t) whose index �

immediately precedes � in the Young partial order. More precisely we obtain

@p1
~H�(x; q; t) =

X
�!�

c��(q; t) ~H�(x; q; t) I:11
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with

c��(q; t) =
Y

s2R�=�

tl�(s) � qa�(s)+1

tl� (s) � qa�(s)+1

Y
s2C�=�

qa�(s) � tl�(s)+1

qa�(s) � tl� (s)+1
; I:12

where R�=� (resp. C�=�) denotes the set of lattice squares of � that are in the same row (resp. same

column) as the square we must remove from � to obtain �. This given, an application of @n�1p1
to

both sides of I.11 yields the recursion

F�(q; t) =
X
�!�

c��(q; t) F�(q; t) ; I:13

which together with the initial condition F(1)(q; t) = 1 permits the computation of extensive tables

of F�(q; t). It was a close study of this recursion, by means of the probabilistic interpretation given in

[8], that led the �rst named author to discover the existence of plethystic formulas for the ~K��(q; t).

The crucial tool in this discovery was the following basic result

Theorem I.2

Let � be the linear operator on symmetric polynomials de�ned by setting

� S�[X] = e1 S� +
X

�6=�;�=�2V

S�[X] (
�1

tq
)j���j

hj���j+1[ (1� t)(1� q) X � 1]

(1� t)(1� q)
(y) I:14

Then for any symmetric polynomial P [X] and any partition � we have

X
�!�

c��(q; t) P [B�(q; t)] = (�P )[B�(q; t)]

Remarkably, it can be shown [10] that all the polynomials k can be constructed by suc-

cessive applications of the operator � alternated by successive multiplications by the elementary

symmetric function e1. However, this approach leaves the possibility that the coe�cients c�; in I.8

may have denominators with factors of the form (1� tr)(1� qs). To remove this possibility we are

forced to extend Theorem I.2 to all higher order dual Pieri coe�cients. To be precise, for an integer

r � 1 let +@(r) be the operator which is adjoint to multiplication by hr[X=(1� t)] with respect to

the scalar product

hp�(1) ; p�(2) i� =

�
sign(�)z�

Q
i (1� q�i)(1� t�i) if �(1) = �(2) = � and

0 otherwise
I:15

and set
+@(r) ~H�(x; q; t) =

X
�=�2Vr

~H�(x; q; t)
+c(r)�� (q; t) : I:16

We have the following extension of Theorem I.2.

(y)Here and after the symbol �=� 2 V is to represent that �=� is a vertical strip. Likewise

we will write �=� 2 Vr to express that �=� is a vertical r-strip
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Theorem I.3

For each r � 1, we can construct a linear operator +�r on symmetric polynomials such

that for any symmetric polynomial P [X], we have

X
�: �=�2Vr

+c(r)�� (q; t) P [B�(q; t)] = ( +�rP )[B�(q; t)] : ( 8� ) I:17

Our construction yields +�r in the form

+�r S�[X] =
X

j�j�j�j+r

S� ��;�(q; t) I:18

with the ��;�(q; t) Laurent polynomials in q; t with integer coe�cients. Moreover, +�r is uniquely

determined by I.17 and I.18.

The contents of this paper are divided into four sections. To make our presentation as

self contained as possible, in section 1, after a brief review of �-ring notation, we derive all of the

identities involving the modi�ed basis f ~H�(x; q; t)g� that are needed in our proofs. These derivations

necessarily have to take for granted identities whose proofs can be found in Chapter VI of the new

edition of Macdonald's monograph. In section 2 we establish Theorem I.2 and derive from it some

plethystic formulas for the ~K��(q; t). We also give there the embryonic form of the algorithm which

eventually yielded Theorem I.1. In this section we follow closely the path which led to the discovery

of formula I.14 even though a di�erent path is now available by specializing our present proof of

Theorem I.3 to the case r = 1. The reason for this is that the connections between the identities

in this paper and those obtained in [8] via the q; t-hook walk lead to some interesting questions.

Section 3 is dedicated to the proof of Theorem I.3 and its various rami�cations. Finally, in section

4, we put everything together into the proof of Theorem I.1. We terminate this section with some

comments relating the hook-walk paper [8] to the present one and some tables of the polynomials

k .

Acknowledgement

We want to express our indebtedness here to J. Stembridge who through the creation of the

MAPLE \SF" package has been of immeasurable help to us throughout all our preliminary computer

explorations.

1. Some auxiliary identities.

In this section we need to derive a few identities for the symmetric functions ~H�(x; q; t).

Our presentation will be greatly simpli�ed if we make use of a formalism which has come to be

referred to as "�-ring" notation. We give here a brief informal review of the basic constructs. The

reader is referred to [1], [2] and [6] for further examples.

Our main need is to be able to represent in a convenient and helpful way the operation of

substitution of a polynomial Q with integer coe�cients into a symmetric function P . To make

sure that we remember what goes in and what stays out we denote here the result of this operation



Plethystic Formulas 6

by the symbol P [Q]. This operation is restricted to formal series Q with integer coe�cients. Clearly,

we can represent such a Q in the form

Q = Q+ � Q� ;

where

Q� =
X

xp2M�

xp

and M+ and M� are two multisets of monomials. For instance, if

Q = 3x21y2 + 2x1x2x3 � 2x2y
2
3 � 3y23

then
M+ = fx21y2; x

2
1y2; x

2
1y2; x1x2x3; x1x2x3g

M� = fx2y
2
2 ; x2y

2
3; y

2
3; y

2
3; y

2
3g :

When Q� = 0 then P [Q] has a very natural de�nition. Indeed, if

M+ = fm1;m2; : : : ;mNg

then P [Q] is the polynomial obtained by substituting the monomials of M for the variables of P .

More precisely, we �rst write P as a polynomial in N variables

P = P (y1; y2; : : : ; yN )

and then let

P [Q] = P (y1; y2; : : : ; yN )
���
yi=mi

: 1:1

We can easily see from this that if P and Q are both symmetric in the variables x1; x2; : : : ; xn,

then P [Q] will also be symmetric; moreover, P [Q] will be homogeneous of degree p � q if P and Q

themselves are homogeneous of degrees p and q respectively.

Note that when P is the power symmetric function ps, formula 1.1 reduces to

ps[Q] =

NX
i=1

(mi)
s : 1:2

From this, we easily deduce the two basic properties

(i) ps[Q1 + Q2] = ps[Q1] + ps[Q2]

(ii) ps[Q1Q2] = ps[Q1] ps[Q2] : 1:3

The idea is to use these properties as the starting point for extending the de�nition of P [Q] to the

general case. In other words we shall simply let our de�nition be a consequence of the requirement

that 1.3 (i) and (ii) be valid in full generality. In particular, (i) forces

ps[0] = 0 and ps[�Q
�] = �ps[Q

�] :
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Thus we must take

ps[Q
+ �Q�] = ps[Q

+]� ps[Q
�] 1:4

This given, the evaluation of P [Q] can be routinely carried out by expanding P in terms of the

power symmetric function basis and then using 1.4.

It is best to illustrate all this with the examples we need in the sequel. For instance, let us

see what we get if P = hn and Q = (1� t)X with X = x1 + x2 + � � �+ xm. Now the expansion of

the homogeneous symmetric function hn in terms of the power basis may be written as

hn =
X
�`n

p�=z� 1:5

with

z� = 1m12m23m3 : : :m1!m2!m3! : : : (if � = 1m12m23m3 : : :) :

Thus, 1.4 gives

ps
�
(1� t)X

�
= (1� ts)

mX
i=1

xsi ;

and we must have

hn
�
(1� t)X

�
=
X
�`n

p�(x1; : : : ; xm)

z�

Y
i

(1 � t�i) : 1:6

Interpreting X=(1� q) as the formal power series

1X
i=0

qiX

we are, in the same manner, led to the expansion

hn
�
X
1�q

�
=
X
�`n

p�(x1; : : : ; xn)

z�

Y
i

1

1� q�i
: 1:7

In our operation we need not restrict P itself to be a polynomial. For instance, it is customary to

let 
 denote the basic symmetric function kernel


(x1; : : : ; xm) =

mY
i=1

1

1� xi
: 1:8

Note that since we may write


 =
X
n�0

hn =
X
�

p�

z�
= exp

�X
s�1

1

s
ps

�
;

a simple calculation based on 1.4 leads to the direct formula


[Q+ � Q�] =
Y

m2M+

1

1�m

Y
m2M�

(1 �m) : 1:9
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Thus we can easily see that we must have for X = x1 + x2 + � � �+ xM ; Y = y1 + y2 + � � �+ yN



�
(1� t)X Y

�
=

MY
i=1

NY
j=1

1� txiyj

1� xiyj
: 1:10

The latter is usually referred to as the Hall-Littlewood kernel.

Allowing both P and Q to be formal power series, the Macdonald kernel [13]


qt(x; y) =
Y
ij

Y
k�0

1� txiyjq
k

1� xiyjqk
1:11

may simply be written in the form


qt = 

�
1�t
1�q

X Y
�
: 1:12

We should also note that 1.3 (ii) allows us to extend the identity


(x; y) =
Y 1

1� xiyj
=
X
�

S�(x)S�(y)

to


[PQ] =
X
�

S�[P ]S�[Q] ;

which we shall here and after refer to as the general Cauchy Identity.

In particular, we also have

hn[PQ] =
X
�`n

S�[P ]S�[Q] :

This given, our �rst auxiliary result may be stated as follows.

Theorem 1.1

The polynomials ~H�(x; q; t) form an orthogonal basis with respect to the scalar product in

I.15. More precisely, the following \Cauchy type" identity holds for all n � 1:

en[
XY

(1�t)(1�q)
] =

X
�`n

~H�[X; q; t] ~H�[Y ; q; t]

~h�(q; t)~h0�(q; t)
: 1:13

Equivalently we must have

h ~H� ; ~H�i� =

8<
:
~h�(q; t)~h

0
�(q; t) if � = � and

0 otherwise ,

1:14
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where

~h�(q; t) =
Y
s2�

(qa�(s) � tl�(s)+1) and ~h0�(q; t) =
Y
s2�

(tl�(s) � qa�(s)+1) 1:15

Proof

Note that since the power sum expansion of the kernel on the left of 1.13 may be written in

the form

en[
XY

(1�t)(1�q)
] =

X
�`n

sign(�)
p�[X] p�[X]

z�p�[(1� t)(1� q)]
; 1:16

we see from the de�nition in I.15 that 1.13 and 1.14 are equivalent. So we need only establish 1.13.

Our starting point is the Macdonald \Cauchy formula" (*)


[XY 1�t
1�q

] =
X
�

P�[X; q; t]Q�[Y ; q; t] : 1:17

Using I.2 we may rewrite this as


[XY 1�t
1�q

] =
X
�

J�[X; q; t] J�[Y ; q; t]

h�(q; t) h0�(q; t)
:

Making the plethystic substitutions X! X
1�t

and Y! Y
1�t

, we obtain


[ XY
(1�t)(1�q)

] =
X
�

H�[X; q; t]H�[Y ; q; t]

h�(q; t) h0�(q; t)
; 1:18

where for convenience we have set

H�[X; q; t] = J�[
X
1�t

; q; t] =
X
�

S�[X]K��(q; t) : 1:19

Now I.4, I.5 and 1.19 give that

~H�[X; q; t] = H�[X; q; 1=t] tn(�) : 1:20

Replacing t by 1=t in 1.18 and using 1.20, we get


[ XY
(1�1=t)(1�q)

] =
X
�

~H�[X; q; t] ~H�[Y ; q; t]

tn(�)h�(q; 1=t) tn(�)h0�(q; 1=t)
:

Now, we can easily verify that

(�1)j�j tn(�)+j�j h�(q; 1=t) = ~h�(q; t) and tn(�) h0�(q; 1=t) =
~h0�(q; t) : 1:21

(*) [14] (4.13) p. 324
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Thus, equating terms of degree 2n in the X;Y -variables we �nally obtain that

hn[
XY

(1�1=t)(1�q)
] = (�t)n

X
�`n

~H�[X; q; t] ~H�[Y ; q; t]

~h�(q; t) ~h0�(q; t)
:

However, this proves 1.13, since

hn[
XY

(1�1=t)(1�q)
] = (�t)n en[

XY
(1�t)(1�q)

] :

The polynomials ~H�(x; q; t) have a useful special evaluation, namely

Proposition 1.1

~H�[1� u; q; t] =
Y
s2�

(1� qa
0

tl
0

u) : 1:22

Proof

Rewriting in �-ring notation formula 6.17 page 338 of [14], we get

P�[
1�u
1�t

; q; t] =

Q
s2�(t

l0 � qa
0

u)Q
s2�(1� qatl+1)

: 1:23

Multiplying both sides by h�(q; t) and using I.2 and I.3 gives

H�[1� u; q; t] = J�[
1�u
1�t

; q; t] =
Y
s2�

(tl
0

� qa
0

u) :

Replacing t by 1=t and multiplying by tn(�), from 1.20 we get

~H�[1� u; q; t] = tn(�)
Y
s2�

(t�l
0

� qa
0

u) =
Y
s2�

(1� tl
0

qa
0

u) ;

as desired.

An immediate consequence of 1.22 is the special case  = 1k of Theorem I.1

Theorem 1.2

For any � ` n, we have

~K(n�k;1k);�(q; t) = ek[B� � 1] ; 1:24

equivalently,

k1k(x) =

kX
s=0

(�1)k�s es(x) : 1:25

Proof
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Using I.4, 1.22 may be rewritten as

X
�

S�[1� u] ~K��(q; t) =
Y
s2�

(1� tl
0

qa
0

u) : 1:26

However, it is well known and easy to show that

S�[1� u] =
n
(�u)r (1� u) if � = (n � r; 1r)
0 otherwise .

1:27

Thus 1.26 reduces to

n�1X
r=0

(�u)r(1� u) ~K(n�r;1r);�(q; t) =
Y
s2�

(1� tl
0

qa
0

u) :

Dividing both sides by 1� u and changing the sign of u gives

n�1X
r=0

ur ~K(n�r;1r);�(q; t) =
Y

(l0;a0)6=(o;o)

(1 + tl
0

qa
0

u) ;

and 1.24 follows by equating the coe�cients of uk.

Note that the �-ring version of the addition formula for ek gives

ek[X � Y ] =

kX
s=o

es[X] (�1)k�s hk�s[Y ] : 1:28

Thus 1.25 follows from 1.24 by setting X = B�(q; t) and Y = 1.

A crucial role in the next section will be played by the linear operator �1, de�ned by setting

for every symmetric polynomial P (x)

�1 P (x) = P [X]� P [X + (1�q)(1�t)

z
] 
[�zX] jzo : (y) 1:29

This is due to the fact (already noted in [14]) that �1 has the basis f ~H�(x; q; t)g� as its complete

system of eigenfunctions.

More precisely we have

Theorem 1.3

The polynomial ~H�(x; q; t) is uniquely determined by the two identities

a) �1
~H�(x; q; t) = (1� t)(1� q)B�(q; t) ~H�(x; q; t)

b) ~H�(x; q; t) jSn(x) = 1 :
1:30

(y) Here and after the symbol \j" is to denote the operation of taking a coe�cient. In

particular jzo denotes the operation of taking a constant term
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Proof

We follow very closely the proof of 1.30 a) given in [6]. We include this here for sake of

completion. The starting point is a plethystic rewriting of the corresponding Macdonald operator.

We recall that the Macdonald operatorD1
n acts on polynomials in x1; : : : ; xn according to the formula

(*)

D1
n P (x) =

nX
i=1

�Y
j 6=i

txi � xj

xi � xj

�
P [X + (q � 1)xi] ; 1:31

where X = x1 + x2 + � � �+ xn. Our �rst step is to show that we can also write

D1
n P (x) =

1

1� t
P (x) +

tn

t� 1
P [X + q�1

tz
] 
[zX(t � 1)] jzo : 1:32

Using the Cauchy kernel 
[XY ] as the the generating function of the Schur basis, formula 1.32 will

necessarily follow if we verify that for an arbitrary alphabet Y we have

D1
n 
[XY ] =

1

1� t

[XY ] �

tn

1� t

[(X + q�1

tz
)Y ] 
[z X(t � 1)] jzo :

Or, equivalently that

D1
n 
[XY ]


[XY ]
=

1

1� t
�

tn

1� t

[ q�1

tz
Y ] 
[z X(t � 1)] jzo : 1:33

Applying D1
n to 
[XY ] according to the de�nition 1.31, we get

D1
n 
[XY ]


[XY ]
=

nX
i=1

Y
j 6=i

txi � xj

xi � xj

[(q � 1)xiY ] : 1:34

Now, expanding the kernel 
[(q � 1)xiY ] into powers of xi, we obtain


[(q � 1)xiY ] = 1 +
X
p�1

hp[(q � 1)Y ] xpi :

Substituting this in 1.34 and setting for convenience

Ai(x; t) =
Y
j 6=i

txi � xj

xi � xj
;

we get that

D1
n 
[XY ]


[XY ]
=

nX
i=1

Ai(x; t) +
X
p�1

hp[(q � 1)Y ]

nX
i=1

Ai(x; t) x
p
i : 1:35

Now from the partial fraction expansion


[zX(t � 1)] =

nY
i=1

1� zxi

1� ztxi
=

1

tn
+

t� 1

tn

nX
i=1

Ai(x; t)
1

1� tzxi
; 1:36

(*) (3.4) p. 315 of [14]
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we easily derive that
nX
i=1

Ai(x; t) =
tn � 1

t� 1

and for p � 1:
nX
i=1

Ai(x; t) x
p
i =

1

tp
tn

t� 1

[zX(t � 1)] jzp

where the symbol \jzp" denotes the operation of taking the coe�cient of zp in the preceding expres-

sion. Substituting these two identities in 1.35 we �nally obtain that

D1
n 
[XY ]


[XY ]
=

tn � 1

t� 1
+
X
p�1

hp[(q � 1)Y ]

tp
tn

t� 1

[zX(t � 1)] jzp

=
tn � 1

t� 1
+

tn

t� 1

X
p�1

hp[(q � 1)Y ]

(tz)p

[zX(t � 1)] jzo

=
tn � 1

t� 1
+

tn

t� 1

�

[ q�1

tz
Y ]� 1

�

[zX(t � 1)] jzo

and this is 1.33.

Recall that in [14] ((5.15) p 3.24) Macdonald proves that

D1
nP�[X; q; t] =

� nX
i=1

tn�iq�i
�
P�[X; q; t]

Using 1.32 with P = P�, we may rewrite this as

1
1�t

P�[X; q; t] +
tn

t � 1
P�[X + q�1

tz
; q; t] 
[zX(t � 1)] jzo =

� nX
i=1

tn�iq�i
�
P�[X; q; t] :

Multiplying both sides by h�(q; t) and making the replacement X! X
1�t

, formulas I.2 and 1.19 give

1
1�t

H�[X; q; t] +
tn

t � 1
H�[X + (1=t�1)(q�1)

z
; q; t] 
[�zX] jzo =

� nX
i=1

tn�iq�i
�
H�[X; q; t] :

Changing t into 1=t and multiplying both sides by tn�1+n(�)(1� t) brings us to

�tn ~H�[X; q; t] + ~H�[X + (t�1)(q�1)

z
; q; t]
[�zX] jzo =

�
(1� t)

nX
i=1

ti�1q�i
�
~H�[X; q; t] : 1:37

Now, assuming �i = 0 for i > n, the de�nition in I.6 gives that

(1� t)(1� q) B�(q; t) = (1� t)

nX
i=1

ti�1 � (1� t)

nX
i=1

ti�1q�i
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or equivalently

(1� t)

nX
i=1

ti�1q�i = 1� tn � (1� t)(1 � q) B�(q; t) : 1:38

Substituting 1.38 into 1.37 gives 1.30 a) with �1 given by 1.29. We have thus established that the
~H�(x; q; t) form a complete system of eigenfunctions for the operator �1. Since the polynomials

(1 � t)(1 � q) B�(q; t) are distinct for q and t generic, we can see that the ~H�(x; q; t) are uniquely

determined by any one of the coe�cients in their Schur function expansion. Now to obtain 1.30

b) we need only observe that I.4 gives ~H�(x; q; t)jSn = ~K(n);�(q; t) and 1.24 (for k = 0) gives
~K(n);�(q; t) = 1. This completes our proof.

Our next task is to show that the coe�cients c��(q; t) occurring in I.11 are given by I.12.

To do this we need two auxiliary results.

Proposition 1.2

The adjoint of the operator @p1 with respect to the scalar product h ; i� is multiplication

by e1[
X

(1�t)(1�q)
] .

Proof

Note �rst that the scalar product introduced in I.15 can be rewritten in terms of the cus-

tomary Hall scalar product h ; i. More precisely, for any two homogeneous symmetric polynomials

P;Q of degree n, we have

h P [X] ; Q[X] i� = (�1)n h P [X] ; Q[(t� 1)(1� q)X] i 1:39

Now it is well known and easy to show that @p1 is the Hall scalar product adjoint of multiplication

by e1. Thus if P and Q are symmetric and homogeneous of degrees n and n � 1 respectively, we

have (using 1.39 twice)

h @p1 P [X] ; Q[X] i� = (�1)n�1 h @p1 P [X] ; Q[(t� 1)(1� q)X] i

= (�1)n�1 h P [X] ; e1 Q[(t� 1)(1 � q)X] i

= h P [X] ; e1[ X

(1�t)(1�q) ] Q[X] i� ;

1:40

and this is what we wanted to show.

Proposition 1.3

The coe�cients c��(q; t) and d��(q; t) de�ned by the equations

a) @p1
~H�(x; q; t) =

X
�!�

c��(q; t) ~H�(x; q; t)

b) e1(x) ~H�(x; q; t) =
X
� �

~H�(x; q; t) d��(q; t)
1:41

are related by the identity

c�� =
d��

(1� t)(1� q)

~h�~h
0
�

~h�~h0�
: 1:42
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Proof

Taking the �-scalar product of both sides of 1.41 a) with ~H�(x; q; t) and using 1.14, we get

h @p1
~H� ; ~H� i� = c�� ~h�~h

0
�

Similarly, taking the �-scalar product of both sides of 1.41 b) with ~H�(x; q; t) we get

h ~H� ; e1 ~H� i� = d�� ~h�~h
0
� ;

and 1.42 follows from 1.40 since it implies that

h @p1
~H� ; ~H� i� = h ~H� ; e1[ X

(1�t)(1�q) ]
~H� i� =

1

(1 � t)(1� q)
h ~H� ; e1 ~H� i� :

Theorem 1.4

d��(q; t) =
Y

s2R�=�

qa�(s) � tl� (s)+1

qa�(s) � tl�(s)+1

Y
s2C�=�

tl� (s) � qa� (s)+1

tl�(s) � qa�(s)+1
; 1:43

c��(q; t) =
Y

s2R�=�

tl�(s) � qa�(s)+1

tl� (s) � qa�(s)+1

Y
s2C�=�

qa�(s) � tl�(s)+1

qa� (s) � tl� (s)+1
: 1:44

Proof

It is su�cient to prove 1.43 since 1.44 then follows easily from 1.42.

Our point of departure is the Pieri rule 6.24 (iv) (given in page 340 of [14]), which in the

particular case r = 1 may be written in the form

e1 P�(x; q; t) =
X
� �

 0�=�(q; t) P�(x; q; t) 1:45

with

 0�=�(q; t) =
Y

s2C�=�

h�(s)

h0�(s)

h0�(s)

h�(s)
1:46

where for a cell s of a partition � we set

h�(s) = (1� qa�(s)tl�(s)+1) and h0�(s) = (1� tl�(s)qa�(s)+1) : 1:47

Now using I.2, we may rewrite 1.45 as

e1 J�(x; q; t) =
X
� �

 0�=�(q; t)
h�(q; t)

h�(q; t)
J�(x; q; t) : 1:48

Now (taking account of the corner square of � that is not in �) we can easily derive from 1.46 that

(1� t)  0�=�(q; t)
h�(q; t)

h�(q; t)
=

Y
s2R�=�

h�(s)

h�(s)

Y
s2C�=�

h0�(s)

h0�(s)
: 1:49
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Calling the right-hand side of this equation ��=�(q; t) for a moment , we can write

e1(x) J�(x; q; t) =
1

1� t

X
� �

��=�(q; t) J�(x; q; t) :

Making the plethystic replacementX ! X
1�t

, cancelling from both sides the resulting common factor

1� t and using 1.19, we derive that

e1(x)H�(x; q; t) =
X
� �

��=�(q; t)H�(x; q; t) :

Making the replacement t! 1=t and using 1.20, we get

e1(x) ~H�(x; q; t) t
�n(�) =

X
� �

��=�(q; 1=t) ~H�(x; q; t) t
�n(�) : 1:50

Now note that from 1.47 and 1.49 we get that

��=�(q; t) =
Y

s2R�=�

1� qa�(s)tl� (s)+1

1� qa�(s)tl�(s)+1

Y
s2C�=�

1� tl�(s)qa�(s)+1

1� tl�(s)qa�(s)+1
:

This given, straightforward manipulations yield that

��=�(q; 1=t) = tn(�)�n(�)
Y

s2R�=�

qa�(s) � tl� (s)+1

qa�(s) � tl�(s)+1

Y
s2C�=�

tl� (s) � qa�(s)+1

tl�(s) � qa�(s)+1
:

Substituting this in 1.50 gives 1.43 as desired.

The next two theorems express useful symmetries of the polynomials ~H�(x; ; q; t).

Theorem 1.5

~H�(x; q; t) = tn(�)qn(�
0) ! ~H�(x; 1=q; 1=t) 1:51

Proof

Our point of departure is the �rst formula in (4.14) (iv) p. 324 of [14], namely

P�(x; 1=q; 1=t) = P�(x; q; t) : 1:52

Now, from the de�nitions I.1 we can easily derive that

h�(1=q; 1=t) =
(�1)n

qn(�
0)tn(�)+n

h�(q; t) : 1:53

Thus, multiplying both sides of 1.52 by h�(1=q; 1=t) and using I.2, we deduce that

J�(x; 1=q; 1=t) =
(�1)n

qn(�
0)tn(�)+n

J�(x; q; t) :
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Making the plethystic substitution X! X
1�1=t

, 1.19 gives

H�(x; 1=q; 1=t) =
(�1)n

qn(�
0)tn(�)+n

J�[ X

1�1=t ; q; t]

=
1

qn(�
0)tn(�)

!H�(x; q; t) :

1:54

Multiplying both sides by qn(�
0)tn(�) and using 1.20 gives

qn(�
0) ~H�(x; 1=q; t) = !H�(x; q; t) :

Replacing t by 1=t, multiplying by tn(�) and using 1.20 again we get

tn(�)qn(�
0) ~H�(x; 1=q; 1=t) = ! ~H�(x; q; t) ;

which is another way of writing 1.51.

Theorem 1.6

~H�(x; t; q) = ~H�0(x; q; t) : 1:55

Proof

We start here with the second \duality" formula in (5.1) p. 327 of [14]. Using �-ring notation,

this may be written as

P�(x; t; q) = !Q�0 [X 1�q
1�t ; q; t] : 1:56

Now it is easily veri�ed from the de�nitions in I.1 that

h�(t; q) = h0�0(q; t) : 1:57

Thus, multiplying both sides of 1.56 by h�(t; q) and using I.2, we get

J�(x; t; q) = !J�0 [X 1�q
1�t ; q; t] :

Making the plethystic substitution X! X
1�q

gives

J�[ X

1�q ; t; q] = !J�0 [ X

1�t ; q; t] ;

which may also be written as

H�(x; t; q) = !H�0(x; q; t) :

But now the identity in 1.54 gives that

H�(x; t; q) = qn(�)tn(�
0) H�0(x; 1=q; 1=t) :

Replacing q by 1=q, we are �nally led to

H�(x; t; 1=q) = q�n(�)tn(�
0) H�0(x; q; 1=t) ;
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which, by means of 1.20, can be immediately transformed into 1.55.

2. The algorithm

The mechanism that constructs of our plethystic formulas will be better understood if we

follow closely the developments that led us to its discovery. To present it we need some notation.

Since the monomial tn(�)qn(�
0) will appear quite often in our treatment it will be helpful to

have a special symbol for it. We shall denote it by T�. It will also be convenient to let T�=� = T�=T�.

Of course when �!� then T�=� is simply the \weight" of the corner cell that we must remove from

� to get �. For any given symmetric polynomial P [X] it will also be convenient to let P � denote

the polynomial

P �[X] = P [ X
(1�t)(1�q)

] :

This given, the q; t-Kostka coe�cients can be computed from the following basic identity.

Proposition 2.1

~K��(q; t) = h S��0 ;
~H� i� 2:1

Proof

From the classical Cauchy identity we can easily derive that for any integer n � 1 we have

en[
XY

(1�t)(1�q)
] =

X
�`n

S�[X] S�0 [
Y

(1�t)(1�q)
] : 2:2

Now, in view of 1.17, this says that the bases fS�g�`n and fS��0g�`n are \dual" with respect to the

�-scalar product given by I.15. Thus 2.1 follows immediately upon �-scalar multiplication by S��0 on

both sides of the relation in I.4, which is

~H�(x; q; t) =
X
�

S�(x) ~K��(q; t) : 2:3

As a corollary we obtain the following basic recursion.

Theorem 2.1

For any pair of partitions � ` n� 1 and � ` n we haveX
� �

~K�;�(q; t) =
X
�!�

c��(q; t) ~K�;� : 2:4

Proof

Taking the �-scalar product by S��0 on both sides of the relation in I.11 and using 2.1 gives

h @p1
~H� ; S

�
�0 i� =

X
�!�

c��(q; t) h ~H� ; S
�
�0 i� =

X
�!�

c��(q; t) ~K�;� : 2:5

On the other hand, from Proposition 1.2 we derive that

h @p1
~H� ; S

�
�0 i� = h ~H� ; e

�
1S
�
�0 i�
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and 2.4 then follows from 2.1 and the standard Pieri rule

e�1 S
�
�0 =

X
� �

S��0 :

Before going any further we should note that even the trivial case � = (n� 1) of 2.4 yields

something surprising. In this case it reduces to

~K(n�1;1);� + ~K(n);� =
X
�!�

c�� ~K(n�1);� ; 2:6

and since 1.24 for k = 0 and k = 1 gives that for any � and � we have

~K(n);� = ~K(n�1);� = 1 and ~K(n�1;1);�(q; t) = B�(q; t)� 1 ;

we see that 2.6 yields the remarkable fact that

X
�!�

c��(q; t) = B�(q; t) : 2:7

E�orts to give a combinatorial proof of this identity led to the discovery in [8] of a q; t-analogue of the

hook walk introduced by C. Greene, Nijenhuis and Wilf in ([11],[12]). More remarkably, computer

explorations involving the q; t-hook walk led to the conjecture that 2.7 is but a special case of a

general identity asserting that for each integer k � 0, there is a symmetric polynomial gk such that

for any partition � we have

X
�!�

c��(q; t) T
k
�=� = gk[B�(q; t)] : 2:8

It develops that the validity of this conjecture allows us to recursively transform formulas expressing

the ~K��(q; t) as plethysms with B� into formulas expressing the ~K��(q; t) as plethysms with B�. To

see how all this comes about it is best to have a close look at some examples. Now the next simplest

case of 2.4 is obtained by choosing � to be a hook shape. This yields a formula for ~K��(q; t) for �

arbitrary and � an augmented hook. More precisely we get

Proposition 2.2

For any k � 1 and � ` n with n� k � 1 � 2 we have

~K(n�k�1;2;1k�1);�(q; t) =
X
�!�

c��(q; t) ek[B� � 1] � ek+1[B�] : 2:9

Proof

Setting � = (n� k � 1; 1k) in 2.4 we get

~K(n�k�1;1k+1);� + ~K(n�k�1;2;1k�1);� + ~K(n�k;1k);� =
X
�!�

c�� ~K(n�k�1;1k);� :
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Using 1.24 we can rewrite this as

~K(n�k�1;2;1k�1);� =
X
�!�

c�� ek[B� � 1] � ek+1[B� � 1] � ek[B� � 1]

and this is 2.9 because

ek+1[B�] = ek+1[B� � 1] + ek[B� � 1] :

Note next that since we can write

B� � 1 = B� � 1� T�=� ; 2:10

we have the expansion

ek[B� � 1] =

kX
s=0

ek�s[B� � 1] (�T�=�)
s :

Substituting this into 2.9 we get

~K(n�k�1;2;1k�1);�(q; t) = �ek+1[B�] +

kX
s=0

ek�s[B� � 1] (�1)s
X
�!�

c��(q; t) T
s
�=� : 2:11

Note further, that using 2.8 we can rewrite this in the form

~K(n�k�1;2;1k�1);�(q; t) = �ek+1[B�] +

kX
s=0

ek�s[B� � 1] (�1)s gs[B�] : 2:12

In other words, by means of this mechanism, we can convert our plethystic formula for ~K�� for � a

hook into a plethystic formula for � an augmented hook. This is but the embryo of a procedure that

can be used to construct plethystic formulas for all ~K��. We can thus see the importance of proving

the existence of a polynomial gk giving 2.8. Remarkably, we can not only prove that gk exists but

we can give it a surprisingly simple explicit formula. Namely,

Theorem 2.2

For all k � 1 we have

X
�!�

c�� T
k
�=� =

1

(1 � t)(1� q)tkqk
hk+1[(1� t)(1� q)B� � 1] : 2:13

In other words, in view of 2.7, we can set

gk[X] =

8<
:

1
(1�t)(1�q)tkqk

hk+1[(1� t)(1� q)X � 1] for k > 0

h1[X] for k = 0.

2:14

To prove 2.13 we need to establish three auxiliary results which should be of independent

interest. To state them we need some notation. Let � have m corners A1; A2; : : : ; Am labelled as we
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encounter them from left to right. For convenience let us set Ai = (�i; �i) with �i and �i respectively

giving the coleg and coarm of Ai in �. Similarly, for i = 1; 2; : : :;m � 1, let Bi = (�i+1; �i) denote

the cell of � with coleg �i+1 and coarm �i. Finally, set �m+1 = �o = �1 and let Bo = (�1; �o),

Bm = (�m+1; �m) denote the cells that are respectively immediately to the left of the highest row

of � and immediately below the last column of �. In the �gure below we illustrate the case of a

4-corner partition and the location of the cells A1; A2; A3; A4 and Bo; B1; B2; B3; B4.

B4

A4

B3

A3

B2

A2

B1

A1

B0

This given, setting xi = t�iq�i and ui = t�i+1q�i , we have the following curious identity.

Proposition 2.3

x1 + x2 + � � �+ xm � uo � u1 � � � � � um = (1� 1=t)(1� 1=q) B�(q; t) �
1

tq
2:15

Proof

If � has k parts we may rewrite I.6 in the form

(1 � t)(1� q) B�(q; t) = (1� t)

kX
i=1

ti�1 (1� q�i) = 1� tk � (1� t)

kX
i=1

ti�1q�i :

Dividing bt tq and reorganizing terms gives

(1� 1=t)(1� 1=q) B�(q; t)�
1

tq
= �tk�1q�1 � t�1q�1�1 �

kX
i=2

ti�2q�i�1 +

kX
i=1

ti�1q�i�1

= �tk�1q�1 � t�1q�1�1 +

k�1X
i=1

ti�1(q�i�1 � q�i+1�1) + tk�1q�k�1 :

Clearly, the only terms that contribute to the sum on the right are those corresponding to the rows

which contain a corner of �, since for all the other terms we have �i = �i+1. Since the row containing

Ai contributes xi � ui�1, rewriting all the other terms in terms of weights, we are reduced to

(1� 1=t)(1� 1=q) B�(q; t)�
1

tq
= �uo � um +

mX
i=2

(xi � ui�1) + x1 ;

and this is a rearrangement of 2.15.

The next result gives an expression for the coe�cient c��(q; t) in terms of the weights

x1; x2; : : : ; xm, uo; u1; : : : ; um.
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Proposition 2.4

If �(i) (for i = 1; ::;m) denotes the partition obtained by removing from � the cell Ai then

c��(i) =
1

(1� 1=t)(1� 1=q)

1

xi

Qm
s=0 (us � xi)Qm

s=1 ; s6=i(xs � xi)
: 2:16

Proof

For convenience let Ri (resp. Ci) denote the row (column) of cells of �(i) that are directly

west (south) of Ai. Note that since

l�(i) (s) =

�
l�(s) for s 2 Ri

l�(s) � 1 for s 2 Ci
and a�(i) (s) =

�
a�(s) � 1 for s 2 Ri

a�(s) for s 2 Ci

we can rewrite our formula 1.44 in the form

c��(i) =
Y
s2Ri

tl�(s) � qa�(s)+1

tl�(s) � qa�(s)

Y
s2Ci

qa�(s) � tl�(s)+1

qa�(s) � tl�(s)
: 2:17

It is easy to see from this that the horizontal pieces of the boundary of � that lie above Ri produce

massive cancellations in the �rst product in 2.17. Similarly, the vertical pieces of the boundary that

are to the right of Ci cause massive cancelations in the second product. To be consistent with our

way of representing the corners Ai, it is best to keep using the convention of representing a cell s

by a pair (�; �) consisting of the coleg and coarm of s with respect to �. This given, to carry out

these cancellations, we only need to compute these products by grouping their factors according to

the following decompositions.

Ri + fAig =

iX
j=1

Ri(j) with Ri(j) = f(�i; �) : �j�1 < � � �jg ;

Ci + fAig =

mX
j=i

Ci(j) with Ci(j) = f(�; �i) : �j+1 < � � �jg :

Now we see that for j < i

Y
s2Ri(j)

tl�(s) � qa�(s)+1

tl�(s) � qa�(s)
=

Y
�j�1<���j

t�j��i � q�i��+1

t�j��i � q�i��
=

t�j��i � q�i��j�1

t�j��i � q�i��j

and for j > i

Y
s2Ci(j)

qa�(s) � tl�(s)+1

qa�(s) � tl�(s)
=

Y
�j�1<���j

q�j��i � t�i��+1

q�j��i � t�i��
=

q�j��i � t�i��j+1

q�j��i � t�i��j
;

while

Y
s2Ri(i)�fAig

tl�(s) � qa�(s)+1

tl�(s) � qa�(s)
=

1� q�i��i�1

1� q
;

Y
s2Ci(i)�fAig

qa�(s) � tl�(s)+1

qa�(s) � tl�(s)
=

1� t�i��i+1

1� t
:
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Putting all this together, we obtain that

c��(i) =

i�1Y
j=1

t�j��i � q�i��j�1

t�j��i � q�i��j
�

1� q�i��i+1

1� q
�

1� t�i��i+1

1� t
�

mY
j=i+1

q�j��i � t�i��j+1

q�j��i � t�i��j
:

Regrouping the factors we can write

(1� t)(1� q) c��(i) =

Qi
j=1(t

�j��i � q�i��j�1 )Qi�1
j=1(t

�j��i � q�i��j )

Qm
j=i(q

�j��i � t�i��j+1 )Qm

j=i+1(q
�j��i � t�i��j )

;

and getting rid of the negative exponents, we �nally derive that

(1� t)(1� q) c��(i) =

Qi
j=1(t

�jq�j�1 � t�iq�i)Qi�1
j=1(t

�jq�j � t�iq�i)
�

Qm
j=i(t

�j+1q�j � t�iq�i)Qm
j=i+1(t

�j q�j � t�iq�i)
�

1

t�iq�iq�ot�m+1

Rewriting this in terms of the weights xi, uj we get

(1� t)(1� q) c��(i) =

Qi

j=1(uj�1 � xi)Qi�1

j=1(xj � xi)
�

Qm

j=i(uj � xi)Qm
j=i+1(xj � xi)

�
1

xi
�

1

q�1t�1

which is another way of writing 2.16. This completes our proof.

Proposition 2.5

For any two alphabets X = x1 + x2 + � � �+ xm and U = uo + u1 + � � �+ um, we have

X
m�0

tm hm[X � U ] = 1 +

mX
i=1

1

xi

Qm

s=0(xi � us)Qm
s=1;s6=i(xi � xs)

�
t

1� txi
�

uou1 � � �um

x1x2 � � �xm
t 2:18

Proof

Note that since X
m�0

tm hm[X � U ] =

Qm
s=0(1� tus)Qm

s=1(1� txs)
; 2:19

we need only determine the unknown coe�cients in the partial fraction decomposition

Qm
s=0(1� tus)Qm
s=1(1� txs)

=

mX
i=1

Ai

1

1� txi
+ co + c1 t : 2:20

Multiplying 2.20 by 1� txi and setting t = 1=xi yields that

Ai =
1

x2i

Qm
s=0(xi � us)Qm

s=1 ; 6=i(xi � xs)
: 2:21

Setting t = 0 in 2.20 gives

1 =

mX
i=1

Ai + co ; 2:22
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while dividing by t and letting t!1 gives

c1 = �
uou1 � � �um

x1x2 � � �xm
: 2:23

Now substituting 2.21 in 2.20, we obtainQm

s=0(1� tus)Qm
s=1(1� txs)

= 1 +

mX
i=1

Ai

txi

1� txi
+ c1 t ;

and 2.18 follows from 2.19, 2.21 and 2.23.

Proof of Theorem 2.2

Equating coe�cients of tk+1 in 2.18 gives that for any distinct nonvanishing values of

x1; x2; : : : ; xm, we have

mX
i=1

1

xi

Qm
s=0(xi � us)Qm
s=1

s6=i
(xi � xs)

xki =

8<
:
hk+1[x1 + � � �+ xm � uo � � � � � um] for k � 1 ,

x1 + � � �+ xm � uo � � � � � um + uo���um
x1���xm

for k = 0 .
2:24

Now, combining 2.15 and 2.16 with 2.24 (interpreting the xi, uj as weights of the cells Ai, Bj) we

derive that for k � 1

X
�!�

c�� (T�=�)
k =

1

(1� 1=t)(1� 1=q)

mX
i=1

1

xi

Qm
s=0(xi � us)Qm
s=1

s6=i
(xi � xs)

xki

=
1

(1� 1=t)(1� 1=q)
hk+1

h
(1� 1=t)(1� 1=q)B� �

1

tq

i
and this is easily changed into 2.13.

We should note that from 2.24 we can also obtain another proof of 2.7. In fact, it is easily

derived from our de�nition of the weights xi, uj that

uou1 � � �um

x1x2 � � �xm
=

1

tq
:

So the case k = 0 of 2.24 givesX
�!�

c�� =
x1 + x2 + � � �+ xm � uo � u1 � � � � � um

(1� 1=t)(1� 1=q)
+

1

(1� 1=t)(1� 1=q)

1

tq
;

which reduces to 2.7 by means of 2.15.

An immediate corollary of Theorem 2.2 is an explicit plethystic formula for ~K��(q; t) when

� is an extended hook.

Theorem 2.3

For any k � 1 and � ` n with n� k � 1 � 2; we have

~K(n�k�1;2;1k�1);�(q; t) = �ek+1[B�]

+ tq
(1�t)(1�q)

ek+1[B� +
1�tq
tq

]

�
tq

(1�t)(1�q)
ek+1[

t+q�1
tq

B� +
1�tq
tq

] :

2:25
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Proof

Using 2.14 in 2.12 gives

~K(n�k�1;2;1k�1);�(q; t) = �ek+1[B�] + ek[B� � 1] B� +

+ tq
(1�t)(1�q)

kX
s=1

ek�s[B� � 1](�1)shs+1[
(1�t)(1�q)

tq
B� �

1
tq
] :

2:26

Working on this sum we successively obtain

�

k+1X
s=2

ek+1�s[B� � 1](�1)shs[
(1�t)(1�q)

tq
B� �

1
tq
] =

= �

k+1X
s=2

ek+1�s[B� � 1]es[�
(1�t)(1�q)

tq
B� +

1
tq
]

= � ek+1[B� � 1� (1�t)(1�q)

tq
B� +

1
tq
] + ek+1[B� � 1] +

+ ek[B� � 1](�
(1�t)(1�q)

tq
B� +

1
tq
) :

Using the �nal expression in 2.26, our desired formula 2.25 can be derived with a few routine

manipulations.

Remark 2.1

We should note that Theorem 2.3 establishes the particular case  = (2; 1k�1) of Theorem

I.1. Indeed, formula 2.25 simply asserts that we may take (for any k � 1)

k2;1k�1(x; q; t) = �ek+1(x) +
tq

(1�t)(1�q)

�
ek+1[X + 1�tq

tq
]� ek+1[

t+q�1
tq

X + 1�tq
tq

]
�

2:27

We should also mention that regardless of the presence of minus signs in 2.27, J. Remmel (see [10])

was able to show that the plethystic evaluation of k2;1k�1(x) at B�(q; t) always yields a polynomial

in q; t with positive integer coe�cients for any � ` n � k + 3.

Remark 2.2

We should note that the only denominators that are introduced by uses of formula 2.13 are

powers of qt. In fact, using the addition formula for hk+1, we may rewrite 2.13 as

X
�!�

c�� T
k
�=� = 1

(1�t)(1�q)tkqk

�
hk+1[(1� t)(1� q)B�] � hk[(1� t)(1� q)B�]

�
;

and it can be easily seen (by passing to a power sum expansion) that the factor (1� t)(1� q) in the

denominator is cancelled out by multiples of it produced by the numerator.

The experience that was acquired in the study of the Kostka-Foulkes polynomials ~K��(t)

(see for instance [9] and [5]) strongly suggests that to obtain a proof of Theorem 2.1 in full generality

we should make use of higher order Pieri rules than the one expressed by 1.41. And this is precisely

what we shall do in the next section. Nevertheless, we have overwhelming evidence that things are

quite di�erent in the q; t-case and that in fact, one single Pieri rule should be su�cient. What is
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fundamentally di�erent in the q; t case is that the Macdonald operator, as well as the operator �1

given in 1.29, have distinct eigenvalues for q and t generic. This allows the construction of formulas

for the coe�cients ~K��(q; t) by judiciously combined uses of Theorems 1.3 and 2.2. The point we

try to get across here will be better understood after we examine some further examples.

But before we do that we shall study the nature of the rational expressions for the ~K��(q; t)

that may be derived from one of the originally available algorithms. To this end let us recall that

Macdonald established the following

Pieri Rule ((6.13) p. 336 of [14] )

Let � and � be partitions and let � = � + 1k, for some integer k � 1. Then we have

ek(x)P�(x; q; t) = P�(x; q; t) +
X
�<�

�=�2Vk

 0�=�(q; t) P�(x; q; t) ;

where the inequality sign \<" in � < � represents dominance and

 0�=�(q; t) =
Y
i<j

�i=�i ; �j=�j+1

(1� q�i��j tj�i�1)(1 � q�i��j tj�i+1)

(1 � q�i��j tj�i)(1 � q�i��j tj�i)
2:29

This rule has two immediate corollaries that are important for us here.

Proposition 2.6

The coe�cients ���(q; t) in the Schur function expansion

P�(x; q; t) =
X
���

S�(x) ���(q; t) 2:30

have rational expressions with denominators containing only factors of the form

(1� qrts) ( with r + s � 1 ) : 2:31

In particular, we may construct rational expressions for the ~K��(q; t) having in the denominators

only factors of the form

(qr � ts) ( with r + s � 1 ) : 2:32

Proof

Note that we may rewrite 2.28 in the form

P�(x; q; t) = ek(x)P�(x; q; t)�
X

�: �<�

�=�2Vk

 0�=�(q; t) P�(x; q; t) : 2:33

Thus, having computed all the P� with j�j < j�j and all P� with � < �, this formula may be

used to compute P�. This gives us a fast algorithm for a recursive construction of the Macdonald

polynomials in any total order that is compatible with degree and dominance. Now, at any given

degree m we must start with � = 1m, and it is shown in [13] that

P1m(x; q; t) = em(x) :
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This given, we see that successive applications of 2.33 will yield a Jacobi-Trudi-like expansion for

P� of the form

P�(x; q; t) =
X
���

e�0(x) ���(q; t) 2:34

with the coe�cients ���(q; t) integral polynomials in q; t divided by products of factors as given in

2.31. Thus the assertion concerning the coe�cients ���(q; t) in 2.30 is obtained by replacing the

e�0(x)'s in 2.34 by their Schur function expansions.

To transform the Schur function expansion of P�(q; t) into the Schur function expansion of
~H�(x; q; t), we need to go through the following sequence of steps:

(1) P�(x; q; t) ! h�(q; t)P�(x; q; t) = J�(x; q; t) ;

(2) J�(x; q; t) ! J�[
X
1�t

; q; t] = H�(x; q; t) ;

(3) H�(x; q; t) ! H�(x; q; 1=t) t
n(�) = ~H�(x; q; t) :

Now starting with denominator factors (1 � qrts) the �rst step should, if anything, cancel some of

them. The second step could at the worst produce some additional denominator factors (1� tr) in

the Schur function expansion of H�(x; q; t). Finally, the last step changes the denominator factors

1�qrts into factors of the form ts�qr and at the worst could also introduce denominator factors tk.

In summary, by this process, the coe�cient ~K��(q; t) in the Schur function expansion of ~H�(x; q; t)

may be given a tentative �rst expression as an integral polynomials in q; t divided by products of

factors of the form

tk ( with k � 1 ) and (qr � ts) ( with r + s � 1 ) : 2:35

However, the identity in 1.55 yields that

~K��(q; t) = ~K��0(t; q) : 2:36

But then, applying our results to ~K��0(t; q), we derive from 2.36 that ~K��(q; t) may also be given a

second expression as an integral polynomial in q; t with denominator factors

qk ( with k � 1 ) and (tr � qs) ( with r + s � 1 ) : 2:37

Comparing 2.35 and 2.37 we come to the conclusion that the denominator factors tk in the �rst

expression and the denominator factors qk in the second expression must cancel out when we reduce

those expressions to their normal form. This leaves as the only possible denominator factors for
~K��(q; t) those appearing in the list in 2.32.

The Macdonald Pieri rule yields a Pieri rule for the polynomial ~H�(x; q; t) which may be

stated as follows.
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Proposition 2.7

For any k � 0 we have

hk[
X
1�t

] ~H� [X; q; t] =
X

�=�2Vk

+d��(q; t) ~H�[X; q; t] ; 2:38

with

+d��(q; t) =
 0�=�(q; 1=t)

~h�(q; t)

~h�(q; t)
: 2:39

Proof

Multiplying both sides of 2.28 by h�(q; t) and setting for convenience  0
�=�

(q; t) = 1, we can

rewrite 2.28 as

ek[X]J� [X; q; t] =
X

�=�2Vk

 0�=�(q; t)h�(q; t)

h�(q; t)
J�[X; q; t] :

Making the plethystic substitution X! X
1�t

gives

ek[
X
1�t

]H�[X; q; t] =
X

�=�2Vk

 0�=�(q; t)h�(q; t)

h�(q; t)
H�[X; q; t] :

Replacing t by 1=t and multiplying both sides by tn(�) we get

ek[
�tX
1�t

] ~H�[X; q; t] =
X

�=�2Vk

 0�=�(q; 1=t) h�(q; 1=t) t
n(�)

h�(q; 1=t) tn(�)
~H�[X; q; t] :

Making the replacement ek[
�tX
1�t

]!(�t)khk[
X
1�t

] and using the �rst equality in 1.21 yields

hk[
X
1�t

] ~H�[X; q; t] =
X

�=�2Vk

 0�=�(q; 1=t)
~h�(q; t)

~h�(q; t)
~H�[X; q; t] ;

and this is what we wanted to show.

The basic result which plays a key role in our algorithm for computing the coe�cients
~K��(q; t) may be stated as follows.

Theorem 2.4

The multiplication of a polynomial ~H�(x; q; t) by e
�
k(x) may be expressed in the form

e�k(x)
~H�(x; q; t) =

X
��k�

�d(k)�� (q; t)
~H�(x; q; t) ; 2:40

where the symbol \� �k �" is to mean that the sum runs over partitions � whose diagram contains

the diagram of � and di�ers from it by exactly k cells. Moreover, the coe�cients �d
(k)
�� (q; t) may be

computed by successive applications of 2.38 via the formula

ek[
X

(1�t)(1�q)
] =

X
�`k

h�[
X
1�t

] f�[
1

1�q
] : (y) 2:41

(y) As is customary, f� denotes the forgotten basis element corresponding to �
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Finally, denoting by �@(k) the adjoint of multiplication by e�k with respect to the �-scalar product,

we have
�@(k) ~H�(x; q; t) =

X
��k�

�c(k)�� (q; t)
~H�(x; q; t) 2:42

with

�c(k)�� =
1

(1� t)(1� q)

~h�~h
0
�

~h�~h0�
: 2:43

Proof

We need only observe that each time we use 2.38 on a polynomial ~H�, we produce polyno-

mials ~H� indexed by partitions whose diagram contains the diagram of �. As for 2.43, we can derive

it from 2.41 in exactly the same manner 1.42 was derived from 1.41 a).

Here and after, by an integral polynomial we mean a polynomial with integer coe�cients.

The ratio of two integral polynomials in q; t will be simply referred to as a rational function of

q; t We shall say that a rational function f(q; t) is Laurent if it is given by an integral polynomial

in q; t; 1=q; 1=t We shall say that f(q; t) is pure-Laurent if it is equal to an integral polynomial

in 1=q; 1=t. A function f�[q; t] will be called m-rational if it evaluates to a rational function of q

and t, for each � ` n � m. An m-rational function is said to be plethystic if it is of the form

f�[q; t] = P [B�(q; t); q; t] with P (x; q; t) a symmetric polynomial with coe�cients rational functions

of q and t. In this case we shall say that P generates f . If the coe�cients of P (x; q; t) are Laurent

or pure-Laurent we shall call f�[q; t] = P [B�(q; t); q; t] plethystic Laurent or plethystic pure-Laurent

as the case may be. The collections of m-rational functions will be denoted by R�m.

For f 2 R�m and for a given � ` n � m + k, set

g�(q; t) =
X
��k�

�c(k)�� (q; t) f�(q; t) : 2:44

It will be convenient to express this relation by writing

g = Ckf 2:45

and viewing Ck as a linear operator mapping R�m into R�m+k . Of course these operators may

composed in any order, and to express that a certain g 2 R�k1+k2+���+kr is obtained by applying

successively Ck1 ;Ck2 ; : : : ;Ckr to a given f 2 R�m, we write

g = Ckr � � �Ck2Ck1 f :

To make explicit the dependence on �, we shall write

g� = Ckr � � �Ck2Ck1 f j[�] :

The relevancy of this apparatus to the computation of the Kostka-Macdonald coe�cients is

due to the fact that each ~K�� may be simply expressed as a polynomial in the operators Ck applied
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to the function f � 1. Before we state the precise result, it will be good to look at some particular

cases. To this end, suppose we want ~K(n�7;3;2;2);�(q; t) for a given � ` n. Our starting point is

formula 2.1, which in this case gives

~K(n�6;3;2;1);� = h S�(n�6;3;2;1)0 ;
~H� i� : 2:46

Now, expanding S�(n�6;3;2;1)0 by Jacobi-Trudi, we get

S�(n�6;3;2;1)0 = e�n�6e
�
3e
�
2e
�
1 � e�n�6e

�2
3 � e�n�6e

�
4e
�2
1 + e�n�6e

�
5e
�
1

� e�n�5e
�2
2 e
�
1 + e�n�5e

�
3e
�
2 + e�n�4e

�
2e
�2
1 � e�n�3e

�
2e
�
1

+ e�n�5e
�
4e
�
1 � e�n�5e

�
5 � e�n�4e

�
3e
�
1 + e�n�3e

�
3 :

2:47

Before we substitute this into 2.46, note that we can write

h e�n�6e
�
3e
�
2e
�
1 ;

~H� i� = h e�n�6 ;
�@(3) �@(2) �@(1) ~H� i : 2:48

But
�@(1) ~H� =

X
��1�

�c(1)��
~H� ;

so
�@(2) �@(1) ~H� =

X
��1�

�c(1)��

X
��2�

�c
(2)

��
~H� ;

and �nally,
�@(3) �@(2) �@(1) ~H� =

X
��1�

�c(1)��

X
��2�

�c
(2)

��

X
�3�

�c
(2)

�
~H :

Substituting this in 2.48 gives

h e�n�6e
�
3e
�
2e
�
1 ;

~H� i� =
X
��1�

�c(1)��

X
��2�

�c
(2)

��

X
�3�

�c
(3)

� h e�n�6 ;
~H i� :

Now since  is necessarily a partition of n� 6, from 1.13 and 1.14 we derive that for any  we have

h e�n�6 ;
~H i� = 1 :

Thus, in view of the de�nition of our operators Ck, we may write

h e�n�6e
�
3e
�
2e
�
1 ;

~H� i� =
X
��1�

�c(1)��

X
��2�

�c
(2)

�� :
X
�3�

�c
(3)

� = C1C2C3 1 j[�] : 2:50

We should note that this identity reveals the non-trivial fact that these operators do commute when

applied to the function that is identically 1.
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Thus, rewriting in this manner each of the terms that result from substituting 2.47 into 2.46

we derive that for any � ` n � 9 we have

~K(n�6;3;2;1);� =
h
C1C2C3 �C3C3 �C1C1C4 +C1C5

�C1C2C2 +C2C3 +C1C1C2

�C1C2 +C1C4 �C5 �C1C3 +C3

i
1 j[�] :

This example should be su�cient to convince the reader that we have the following general result.

Theorem 2.5

Let � = (n � k; 1; 2; : : : ; r) with  = (1; 2; � � � ; r) a partition of k. Then for any

� ` n � k + 1 we have

~K(n�k;1;2;:::;r);� =
h X
�2Sr+1

sign(�) C1+�2�2C2+�3�3 � � �Cr+�r+1�r�1

i
1 j[�] ; 2:51

with the convention that Ck with a negative k is the zero operator and Co is the identity.

Proof

From 2.1 we get

~K(n�k;1;2;:::;r);� = h S�(n�k;1;2;:::;r)0 ;
~H� i� :

Thus using the expansion

S�(n�k;1;2;:::;r)0 =
X

�2Sr+1

sign(�) e�n�k+�1�1e
�
1+�2�2

e�2+�3�3 � � �e
�
r+�r+1�r�1

and the de�nition of the operators �@(k) gives

~K(n�k;1;2;:::;r);� =

=
X

�2Sr+1

sign(�)h e�n�k+�1�1;
�@(1+�2�2) �@(2+�3�3) � � � �@(r+�r+1�r�1) ~H� i� ;

2:52

where we should use the convention that �@(k) with k negative is the zero operator and that �@(0)

is the identity. But now 2.52 gives 2.51 since by the same sequence of steps we used to derive 2.49

from 2.48 we obtain that

h e�n�k+�1�1;
�@(2+�2�2) �@(3+�3�3) � � � �@(r+�r+1�r�1) ~H� i�

= C2+�2�2C3+�3�3 � � �Cr+�r+1�r�11j[�] :

Of course the surprising feature of 2.51 is that the parameter n does not occur explicitly on

the right hand side. Thus in the computation of ~K(n�k;1;2;:::;r);�, the information as to the value
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of n is carried by the partition �. However, more surprises are in store as we closely examine further

examples.

To begin with note that, since for any p1 + p2 + � � �+ pr = k and � ` n � k we have

Cp1Cp2 � � �Cpr 1 j[�] = h e�n�ke
�
p1
e�p2 � � �e

�
pr
; ~H� i� ; 2:53

we see that the function

Cp1Cp2 � � �Cpr 1 2:54

does not change as we permute the factors. So there is no loss in restricting (p1; p2; : : : ; pn) to be a

partition. This given, we see that the �rst six simplest cases are

C1 1 ; C1C11 ; C2 1 ; C1C1C1 1 ; C2C1 1 ; C3 1 : 2:55

We shall dedicate the remaining part of this section to working out these cases in full detail and

induce from our �ndings the results we need to prove in the rest of this paper.

To begin with, we can deal with C11, C1C1 1 and C1C1C11 all at the same time by using

the following general result.

Theorem 2.6

If the m-rational function f is plethystic and generated by P [x; q; t] then the m+1-rational

function g = C1f is also plethystic and is generated by �P where � is the linear operator on

symmetric polynomials de�ned by setting

�P = 1
(1�t)(1�q)

P + 1
(1�1=t)(1�1=q)

P [X � z; q; t] 

h
(1�t)(1�q)X�1

tqz

i
jz�1 : 2:56

In particular, if f is Laurent or pure-Laurent, so is g = C1f .

Proof

By assumption, we have for every � ` n � m + 1

g�(q; t) =
X
�!�

c��(q; t) f�(q; t) :

Now if f is generated by P (x; q; t) then we may rewrite this in the form

g�(q; t) =
X
�!�

c��(q; t) P [B� ; q; t] : 2:57

Thus we need to show that for any P we haveX
�!�

c��(q; t) P [B�; q; t] = Q[B�; q; t] ( with Q = �P ) : 2:58

However, by linearity, we only need to verify this when P = S� with � arbitrary. But since we can

write

S�[B�] = S�[B� � T�=� ] =
X

�=�2V

S�[B�](�T�=�)
j�=�j ;
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setting P = S� in the left hand side of 2.58 gives

LHS(2:58) =
X
�!�

c��(q; t) S�[B� ; q; t] =
X

�=�2V

S�[B�](�1)
j�=�j

X
�!�

c��(q; t) T
j�=�j

�=�
:

Grouping terms according to the size of �=� and using 2.7 and 2.13, we get

LHS(2:58) = S�[B�]
X
�!�

c�� +
X
k�1

(�1)k
� X
�=�2Vk

S�[B�]

�X
�!�

c�� T
k
�=�

= S�[B�] B� +
1

M

X
k�1

(�1)k
� X
�=�2Vk

S�[B�]

�
hk+1[MB� � 1=tq] ;

where for convenience we have set

M = (1� 1=t)(1� 1=q) : 2:59

Thus 2.58 will be established if we show that

S�[X] e1[X] +
1

M

X
k�1

(�1)k
� X
�=�2Vk

S�[X]

�
hk+1[MX � 1=tq] = �S� : 2:60

Note that from the expansion

S�[X � z] =
X

�=�2V

S�[X] (�z)j�j�j�j

we get that

(�1)k
X

�=�2Vk

S�[X] = S�[X � z] jzk : 2:61

Substituting this into the left hand side of 2.60 gives

LHS(2:60) = S�[X] e1[X] + 1
M

X
k�1

S�[X � z] jzk hk+1[MX � 1=tq]

= S�[X] e1[X] + 1
M

X
k�1

S�[X � z] hk+1[
MX�1=tq

z
] jz�1

= S�[X] e1[X] + 1
M
S�[X � z]

X
k�1

hk+1[
MX�1=tq

z
] jz�1 :

However, we may writeX
k�1

hk+1[
MX�1=tq

z
] = 
[

MX�1=tq

z
] � 1 �

Me1[X]�1=tq

z
;

and we �nally derive that

LHS(2:60) = S�[X] e1[X] + 1
M
S�[X � z]

�

[

MX�1=tq

z
]� 1�

Me1[X]�1=tq

z

�
jz�1 :

= S�[X] e1[X] + 1
M
S�[X � z] 
[

MX�1=tq

z
] jz�1 � S�[X]e1[X] + 1

Mtq
S�[X]

= 1
Mtq

S�[X] + 1
M
S�[X � z] 
[

MX�1=tq

z
] jz�1

:
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Now we can easily see (recalling 2.59) that this is another way of writing the right-hand side of

2.56 with P = S�. This proves 2.60 and completes the proof of 2.56. We should note that these

manipulations show that the operator � may also be written in the form

� P = P [X]e1[X] +
X
k�1

P [X � z] jzk
1

(1�t)(1�q)tkqk
hk+1[(1� t)(1 � q)X � 1] : 2:62

This follows by substituting 2.61 into 2.60 and extracting the factor 1=tq out of hk+1[MX � 1=tq].

This given, we see from the observations made in Remark 2.2 that the only additional denominator

factors introduced by an application of � are powers of qt. This establishes our assertions concerning

the plethystic nature of g = C1f .

Formula 2.62 is perhaps the easiest to program using Stembridge's \SF" MAPLE package.

If we do so, three successive applications of � yield that C11 , C1C11 and C1C1C11 are plethystic

and respectively represented by the following three symmetric polynomials.

�1 = �1 = e1

�11 = ��1 =
1

tq
e1 �

1

tq
e21 + b

1

tq
e2

�111 = ���1 =
1

t2q2
e1 �

b� 1 + 2tq

t3q3
e21 +

b(b� 1 + tq)

t3q3
e2

+
b� 1 + tq

t3q3
e31 �

b2 � 1 + (1� tq)tq

t3q3
e1e2 +

(b� 1)[3]t[3]q
t3q3

e3 ;

2:63

where for convenience we have set b = (1 + t)(1 + q), [3]t = 1 + t+ t2 and [3]q = 1 + q + q2.

Of course this process can be continued to obtain pure-Laurent plethystic formulas for any

desired Ck
11. However, to obtain a similar result for

C2 1 j[�] =
X
��2�

�c(2)�� (q; t) and C3 1 j[�] =
X
��3�

�c(3)�� (q; t) 2:64

we need altogether another ingredient. Of course, the most natural thing to do is to obtain for

each operator Ck a result analogous to the one we obtained for C1 (as expressed by Theorem 2.6).

Now the di�culties encountered by the �rst author in carrying this out in the early stages of the

investigation led to the discovery that every one of the m-rational functions Cp1Cp2 � � �Cpk1 can be

expressed by alternating applications of C1 with multiplication by the symmetric polynomial e1[X].

It develops that the additional ingredient that makes this possible is the operator �1 itself. We can

understand how this comes about by working on C21 and C31.

Let us begin by noting that formula 1.29 gives

�1 e
�
1e
�
n�1 = e�1e

�
n�1 � (e�1 +

1
z
)(e�n�1 +

1
z
e�n�2)
[�zX] jzo

= e�1e
�
n�1 � (e�1e

�
n�1 + e�1

1
z
e�n�2 + 1

z
e�n�1 + 1

z2
e�n�2)
[�zX] jzo

= e�1e1e
�
n�2 + e1e

�
n�1 � e2e

�
n�2 :

Expanding the last expression in terms of the e� basis we �nally obtain

1
M
�1 e

�
1e
�
n�1 = e�1e

�
n�1 + (1 + t + q) e�1e

�
1e
�
n�2 � (1 + t)(1 + q) e�2e

�
n�2 ;
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where for convenience we have set M = (1 � t)(1 � q). We next take the �-scalar product of both

sides ~H�[X; q; t] for a given � ` n, getting

1
M
h�1 e

�
1e
�
n�1 ;

~H� i� = h e�1e
�
n�1 ;

~H� i�

+ (1 + t+ q) h e�1e
�
1e
�
n�2 ;

~H� i�

� (1 + t)(1 + q) h e�2e
�
n�2 ;

~H� i� :

Now the \Cauchy" formula in 1.13 together with 1.30 a) imply that the operator �1 is self-adjoint

with respect to the �-scalar product. Combining this fact with 1.30 a) and 2.53, we can convert this

identity into the following equation:

B�(q; t)C11 j[�] = C11 j[�]

+ (1 + t+ q)C1C11 j[�]

� (1 + t)(1 + q) C2 1 j[�] :

Solving for C21 j[�] yields

C2 1 j[�] =
1

(1 + t)(1 + q)

�
(1� B�) C11 j[�] + (1 + t+ q) C1C11 j[�]

�
:

In view of our results concerning C11 and C1C11, we see that this identity shows that C21 is

plethystic and is represented by the symmetric polynomial

�2[X; q; t] =
1

(1 + t)(1 + q)

�
(1 � e1) � 1 + (1 + t+ q) �� 1

�
:

To discover the true nature of this polynomial we need only use the formulas given in 2.63. This

gives (recalling that b = (1 + t)(1 + q))

�2 =
1

(1 + t)(1 + q)

�
(1� e1) e1 + (1 + t+ q)

� 1
tq
e1 �

1

tq
e21 + b

1

tq
e2

��

=
1

(1 + t)(1 + q)

�
e1
�
1 +

1 + t + q

tq

�
� e12

�
1 +

1 + t+ q

tq

�
+

(1 + t + q)

tq
b e2

�

=
e1

tq
�

e21
tq

+
1 + t+ q

tq
e2 ;

and we have witnessed the surprising disappearance of the denominator factor (1+t)(1+q), yielding

that C2 1 is pure-Laurent. Moreover, we can also apply Theorem 2.6 and deduce that C1C2 1 is

plethystic pure-Laurent and represented by the symmetric polynomial

�12 = �
� e1
tq

�
e21
tq

+
1 + t+ q

tq
e2
�
:

Carrying out this computation using the SF MAPLE package yields

�12 =
1

t2q2
e1 �

(tq + b� 1)

t3q3
e21 +

b(b� 1)

t3q3
e2

+
b� 1

t3q3
e31 �

b2 � tqb� 1

t3q3
e1e2 +

(t+ q)[3]t[3]q

t3q3
e3

2:65
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To complete our exploration, we are left with the computation of C3 1. In this case we begin with

�1 e
�
1
2
e�n�2 = e�1

2
e�n�2 � (e�1 +

1
z
)2(e�n�2 +

1
z
e�n�3) 
[�zX] jzo

= e�1
2
e�n�2 �

�
e�1

2
+ 21

z
e�1 +

1
z2

�
e�n�2
[�zX] jzo �

�
e�1

2
+ 21

z
e�1 +

1
z2

�
e�n�3
[�zX] jz1

= (2e�1e1 � e2) e
�
n�2 + (e�1

2
e1 � 2e�1e2 + e3) e

�
n�3 :

Expanding the last expression in terms of the e� basis, we obtain

1
M
�1 e

�
1
2
e�n�2 = (2 + t+ q) e�1

2
e�n�2 � b e�2e

�
n�2

+ (b+ t+ q + t2 + q2) e�1
3
e�n�3

� (3b� 1 + tq2 + 2t2 + 2q2 + t2q) e�1e
�
2e
�
n�3

+ [3]t[3]q e
�
3e
�
n�3 :

Taking the �-scalar product of both sides with ~H� with � ` n and using the �-self-adjointness of �1

together with 1.30 a) we get the equation

B�C1C1 1 j[�] =
�
(2 + t+ q)C1C1 1� b C2 1

+ (b+ t+ q + t2 + q2) C1C1C1 1

� (3b� 1 + tq2 + 2t2 + 2q2 + t2q) C1C2 1

+ [3]t[3]q C3 1
�
j[�] :

2:66

This shows that C3 1 is plethystic and that it is represented by the symmetric polynomial

�3 =
1

[3]t[3]q

�
(e1 � 2� t�q)�11 + b�2

� (b+ t+ q + t2 + q2)�111

+ (3b� 1 + tq2 + 2t2 + 2q2 + t2q)�12

�

Substituting into this the expressions that we have already obtained for�11;�2;�111 and�12 gives

that

�3 =
e1

t2q2
�
b� 1

t3q3
e21+

b(t+ q)

t3q3
e2

+
t + q

t3q3
e31 �

2(b� 1) + t2 + q2 � tq

t3q3
e1e2

+
b2 � b(1 + tq)� tq(1� tq) + t3 + q3

t3q3
e3 ;

and we see that the denominator [3]t[3]q has again disappeared, yielding once again that our desired

m-rational function is not only plethystic but pure-Laurent as well. This circumstance has repeated

itself on all the data we have been able to obtain. We are thus led to the following:
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Pure Laurent Conjecture

For each  ` k we have two symmetric polynomials� (x; q; t) and k (x; q; t) of degree � k

in x with pure-Laurent coe�cients such that for any � ` n � k we have

h e�e
�
n�k ;

~H� i� = � [B�; q; t] ; 2:67

while for � ` n and n � k +max() we have

~K(n�k;);�(q; t) = k [B�; q; t] : 2:68

We should begin by noting that the polynomials k[x; q; t], as we have seen, may be easily

obtained from the � 's via the relation in 2.51. So we need only be concerned about the �'s.

Now it is shown in [10] that the calculations given above can be extended to a general algorithm

for constructing all the polynomials � . However, this algorithm, as we have already seen in the

examples above, produces denominator factors of the form 1� qr and 1� ts, and we have not been

able to explain through this approach why these factors disappear when we pass to normal forms.

In this paper we have been able to get around this problem by proving a variant of Theorem 2.1 that

applies to all the operators Ck. The precise nature of the results we have have obtained is given

in the last section. Here it is su�cient to say that we have come pretty close to proving the above

conjecture in that we have shown it to be true if pure-Laurent is simply replaced by Laurent.

Although the algorithm given in the last section di�ers considerably from the one we have

sketched above, we can show that it yields exactly the same polynomials. This is a consequence of

the following basic fact.

Theorem 2.7

Let P (x; q; t) be a symmetric polynomial of degree d in x with coe�cients rational functions

of q and t. Then the equalities

P [B�(q; t); q; t] = 0 ( 8 j�j � d ) 2:69

force P to vanish identically.

Proof

For any partition � = (�1 � �2 � � � � � �d � 0) set

D�(q; t) =

dX
i=1

td�i q�i : 2:70

Note that from I.6 we derive that

B�(q; t) = 1�td

(1�t)(1�q)
� 1�td�1

1�q
D�(q; 1=t) :

Thus, from 2.69 we derive that the polynomial

Q[Y ; q; t] = P [ 1�td

(1�t)(1�q)
� 1�td�1

1�q
Y ; q; t]
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satis�es the equalities

Q[D�(q; 1=t); q; t] = 0 ( 8 j�j � d ) : (y) 2:71

Since Q is also symmetric and of degree d in y it has an expansion of the form

Q(y; q; t) =
X
j�j�d

m�(y) c�(q; t)

with coe�cients c�(q; t) rational functions of q and t. This given, the equalities in 2.71 will force Q

and P as well to be zero if we can show the nonsingularity of the matrix

km�[D�(q; 1=t)] kj�j;j�j�d : 2:72

Now the nonsingularity of the matrix

k m�[D�(q; t)] kj�j;j�j�d 2:73

can be established by means of an argument used by Macdonald in an analogous situation (see [14]

p. 334). We sketch it here for sake of completion. The �rst step is to recognize that the term of

highest t-degree in m�[D�(q; 1=t] is

th�;�i qh�;�i ;

where for convenience we have set

� = (d� 1; d� 2; : : : ; 1; 0) and ha; bi = a1b1 + a2b2 + � � �+ adbd :

Thus it is su�cient to show that

det k qh�;�ikj�j;j�j�d 6= 0 : 2:74

Now, it develops that given any collection of integral vectors v(1); v(2); : : : ; v(m), the highest degree

term in the polynomial

det k qhv
(i);v(j)i

k1�i;j�m =
X
�2Sm

sign(�) qhv
(�1);v(1)i+hv(�2);v(2)i+���+hv(�m );v(m)i

is given by the term corresponding to � = id, namely

qhv
(1);v(1)i+hv(2) ;v(2)i+���+hv(m);v(m)i :

This is because the strict inequality (see [14] Ex. 1 p. 341)

hv(1); v(1)i+ hv(2); v(2)i + � � �+ hv(m) ; v(m)i > hv(�1 ); v(1)i + hv(�2); v(2)i+ � � �+ hv(�m ); v(m)i

(y) We tacitly assume here that the partitions j�j � d are expressed as vectors with d greater or

equal to zero components.
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valid for � 6= id shows that all the other terms in the expansion of this determinant produce lesser

powers of q. In particular this shows that the determinant in 2.74 cannot vanish identically. This

establishes the nonsingularity of the matrix in 2.73 as well as that in 2.72, completing the proof.

The following corollary will be needed in the sequel.

Theorem 2.8

If R(x; q; t) is a symmetric polynomial in x with coe�cients rational functions of q and t

and for all but a �nite number of � we have

R[B�(q; t); q; t] = 0 ; 2:75

then R vanishes identically.

Proof

Choose m large enough to assure that 2.75 holds true for all j�j � m. Note that we must

then have

em[B�(q; t)]R[B�(q; t); q; t] = 0 ( 8� ) 2:76

This is because em[B�(q; t)] = 0 when j�j < m and R[B�(q; t); q; t] = 0 when j�j � m. Thus the

hypotheses of Theorem 2.7 are satis�ed for

P (x; q; t) = em(x)R(x; q; t)

and with d = m + degree R. This gives that P and therefore also R must vanish identically as

asserted.

Remark 2.3

We should point out that the assumption that R(x; q; t) be a polynomial is essential for

uniqueness. In fact, the function e1[X] 
[�X] is not identically 0, and has in�nite degree, but it

does vanish at all X = B�. To see this, note that if � = ; then B; = 0 so e1[B;] = 0, while if � is

any other partition, then 
[�B�] =
Q

s2�(1 � qa
0

tl
0

) is 0 because the bottom leftmost cell of � has

a0 = l0 = 0.

3. Plethystic formulas for higher order Pieri coe�cients. .

This section is dedicated to the proof of Theorem I.3. To this end, our �rst goal will be the

establishment of higher order analogues of Theorems 2.2 and 2.6. We recall that we de�ned +@(r)

to be the adjoint of multiplication by hr

h
X
1�t

i
with respect to the scalar product h ; i�, that is, the

operator +@(r) for which D
hr

h
X
1�t

i
P ; Q

E
�

=
D
P ; +@(r)Q

E
�
: 3:1

We have also set for a given partition �

+@(r) ~H�(x; q; t) =
X

�=�2Vr

+c(r)�� (q; t)
~H�(x; q; t) : 3:2
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We have to work here with sums of the form

g�(q; t) =
X

� :�=�2Vr

+c(r)�� (q; t) f�(q; t) :

To be consistent with the notation introduced in the last section, and to take account of the fact

that we are working with the coe�cients +c
(r)
�� , we should be writing this as

g = +Cr f or g� =
+Cr f j[�] :

However, we shall systematically only work with plethystic functions

f�(q; t) = P [B�(q; t); q; t] ;

with P a symmetric polynomial with coe�cients Laurent in q; t, and it is more convenient to view
+Cr as a linear operator acting on P rather than on f . Therefore we shall write instead

g�(q; t) = +Cr P j[�]

as a short hand for

g�(q; t) =
X

� :�=�2Vr

+c(r)�� (q; t) P [B�(q; t); q; t] : 3:3

Now in complete analogy with our derivation of Theorem I.1 from Theorem 2.2, we can reduce the

computations of these sums to sums of the form

~g�(q; t) =
X

� :�=�2Vr

+c(r)�� (q; t) P [B�=�(q; t); q; t] ; 3:4

where we have set

B�=�(q; t) = B�(q; t)� B�(q; t) : 3:5

This given, we shall write 3.4 as

~g�(q; t) = +eCr P j[�] ; 3:6

and consider +eCr as a linear operator acting on symmetric polynomials and yielding m-rational

functions.

Comparing 3.4 with the sum appearing in 2.13, we see that T�=� = B�=� for r = 1 and,

taking an arbitrary kth power of T�=� , is the one-variable case of plethystic evaluation of an arbitrary

symmetric polynomial P at B�=� . Adopting the usual convention of denoting the Kostka-Foulkes

polynomials by K��(t), our basic result concerning the sums in 3.3 may be stated as follows:

Theorem 3.1

Let e�r be the linear operator on symmetric polynomials de�ned by setting for the Schur

function basis

e�rS� = t(
r

2)
X

� : �=�2V
l(�)�r

(�qt1�r)j�=�j
X

� : j�j=j�j

S�

h
(1 � q�1)X + q�1[r]t

iX
 : jj=j�j
l()�r

K� (t
�1)K�1� (t

�1) : 3:7
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Then for any symmetric polynomial P = P (x; q; t) we have

X
� :�=�2Vr

+c(r)�� (q; t) P [B�=�(q; t); q; t] = (e�r P )�B�] : 3:8

We should note that if l(�) � r, then e�rS� is in general a nonhomogeneous symmetric polynomial

of degree j�j+ r, and if l(�) > r, then e�rS� = 0.

The proof of this theorem will be the culmination of a sequence of results, some of which

have rather intricate proofs. In order not to get mired into technicalities and lose sight of the line of

reasoning we have arranged our presentation so that results of independent interest come �rst and

di�cult but purely auxiliary identities come last. But before proceeding with our arguments it will

be good to prove two immediate and most important consequences of Theorem 3.1.

Theorem 3.2

Let +�r be the linear operator de�ned by setting

+�rS� =
X
���

(�1)j�jS�=� � e�rS�0 : 3:9

Then, on the validity of Theorem 3.1, for any symmetric polynomial P = P (x; q; t) we have

X
� :�=�2Vr

+c(r)��P [B�] = (+�r P )
�
B�

�
; 3:10

and the polynomial Q = +�r P is the unique �nite degree symmetric function satisfying Q[B�] =
+CrP

��
[�]
.

Proof

By linearity, we need only verify 3.10 for P = S�. This given, we have

+CrS�
��
[�]

=
X

� :�=�2Vr

+c(r)�� S�[B� ] =
X

� :�=�2Vr

+c(r)��S�
�
B� �B�=�

�

=
X

� :�=�2Vr

+c(r)��

X
���

S�=�[B�]S�
�
�B�=�

�

=
X
���

(�1)j�jS�=�[B�]
X

� :�=�2Vr

+c(r)��S�0
�
B�=�

�
=
X
���

(�1)j�jS�=�[B�] �
+eCrS�0

��
[�]

:

Thus from 3.8 we deduce that

S�
��
[�]

=

0
@X
���

(�1)j�jS�=�[X]e�rS�0 [X]

1
A���

X=B�

;

and this is 3.10 for P = S�. Finally, the uniqueness follows from Theorem 2.7.

Likewise, on the validity of Theorem 3.1 we derive
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Theorem 3.3

If P [X] is a symmetric polynomial in X and a Laurent polynomial in q and t, then so

are e�rP [X] and +�rP [X]. In other words, the operators +eCr and +Cr send plethystic Laurent

m-rational functions into plethystic Laurent (m + r)-rational functions.

Proof

The only denominators introduced by 3.7 are powers of t and q (noting that K(t) is a uni-

triangular matrix of polynomials, see [14] (III.6, p. 243 ), and 3.9 does not introduce any further

denominators. Linearly extending these to all symmetric functions introduces no further denomina-

tors.

We should note that, once we have established Theorem 3.1, by substituting 3.7 into 3.9 we

obtain an explicit albeit intricate formula for the coe�cients ���(q; t) in I.18. In particular we see

that Theorem 3.3 together with Theorem 2.7 would then complete the proof of Theorem I.3.

The point of departure in the proof of Theorem 3.1 is a plethystic formula for the coe�cients
+c

(r)
�� . To state it we need to introduce some notation. Let n be a �xed nonnegative integer.

Throughout this section, we will consider partitions � of length at most n; many of the formulas

derived will be expressed in terms of the auxiliary parameter n, but they are stabilized so that their

values are actually independent of n, provided the partitions involved have length at most n.

Although ultimatelywe are to determine symmetric functions plethystically at B� = B�(q; t),

some expressions will more naturally be expressed in terms of the generator of the weights of the

ends of the �rst n rows of �, namely

Zn;� =

nX
i=1

q�i�1ti�1 :

The relation of this to B� may be stated as follows.

Lemma 3.1

For all n � l(�), we have Zn;� = (1 � q�1)B� + q�1
Pn

i=1 t
i�1:

Proof

As long as n � l(�),

B� =

nX
i=1

ti�1(1 + q + � � �+ q�i�1) =

nX
i=1

ti�1
q�i � 1

q � 1

=
q

q � 1

nX
i=1

ti�1q�i�1 �
1

q � 1

nX
i=1

ti�1 =
1

1� q�1
Zn;� �

q�1

1� q�1

nX
i=1

ti�1 ;

and solving for Zn;� yields the stated result.

We therefore de�ne

Zn = (1� q�1)X + q�1
nX
i=1

ti�1 3:11
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for arbitrary X. Plethystic expressions in terms of either X or Zn can always be transformed to

expressions in terms of the other by means of this equation, and when X = B� with l(�) � n, we

may interpret Zn as the n letter alphabet z1 + � � �+ zn where zi = q�i�1ti�1:

It will be convenient to specify vertical strips �=� by the set of rows of � from which the

�nal square is removed to obtain �, that is,

I�=� = f i : �i > �i g :

With this notation, the biexponent generator of a vertical strip is

B�=�(q; t) =
X

i2I�=�

zi :

We'll consider arbitrary subsets I of f1; : : : ; ng, not all of which correspond to vertical strips, and

their complements Ic = f1; : : : ; ng n I. Using Macdonald's notation, for any y = (y1; : : : ; yn) and

any r-subset I , we de�ne

AI(y; t) = t(
r

2)
Y

i2I;j 62I

t yi � yj

yi � yj

and set

YI =
X
i2I

yi :

We have the following basic formula.

Theorem 3.4

Let �=� be a vertical strip and let I = I�=� . Then for all n � l(�), we have (on specializing

Zn to Zn;�)
+c(r)�� = AI(Zn; t)


�
�qt1�nZI

�
: 3:12

The proof of 3.12 involves manipulating identities given by Macdonald in [14] and since it

is quite intricate we postpone it to the end of the section.

Remark 3.1

We should note that the expression in 3.12 is actually independent of n as long as n � l(�).

This follows from the n-free expression for +c
(r)
�� given in 3.19 (below), but can also be seen directly.

In fact, since l(�) < n+ 1, we have n + 1 62 I and zn+1 = q�1tn. Thus

AI(Zn+1; t)

AI(Zn; t)
=
Y
i2I

tzi � zn+1

zi � zn+1

=
Y
i2I

1� tzi=zn+1

1� zi=zn+1

= 

h

1�t
zn+1

ZI

i
=



�
�qt1�n�1ZI

�


�
�qt1�nZI

� :

So the independence follows.

This theorem motivates us to de�ne

+c
(r)
I = AI (Zn; t)


�
�qt1�nZI

�
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for any subset I of f1; : : : ; ng. The following fact, already noticed by Macdonald in [14] (Ch. VI.6

p. 332), will considerably simplify the evaluation of some of our sums.

Lemma 3.2

Let n and � be given, with n � l(�). If I � f1; : : : ; ng is not of the form I�=� for any vertical

strip �=�, then +c
(r)
I = 0.

Proof

For such a subset I, there is i 2 I with i + 1 62 I such that �i = �i+1. Thus, t zi = zi+1.

Since the product expansion of AI(Zn; t) contains the factor t zi � zi+1 = 0, the result follows.

In view of 3.12 the next step in proving Theorem 3.1 is to determine how to perform

summations involving AI(Zn; t). To this end, we have the proposition given below, which should

also be of independent interest.

Let us recall that in [14] (Ch. VI.3) Macdonald de�nes an operator that in plethystic notation

may be written

Dr
n(q; t)P [X] =

X
jIj=r

AI(x; t)P [X + (q � 1)XI ] ;

where X is an n letter alphabet and for any r-subset I of f1; : : : ; ng, we set XI =
P

i2I xi. A

generating function for these operators is

Dn(u; q; t) =

rX
k=0

urDr
n(q; t) ;

where we have used u in place of Macdonald's X because we use X to denote our alphabet. He

shows [VI.4, p. 324] that for l(�) � n, we have

Dn(u; q; t)P�(x; q; t) =

nY
i=1

(1 + u q�itn�i) P�(x; q; t) :

By taking the coe�cient of ur on both sides, we obtain

Dr
n(q; t)P�(x; q; t) = er

�Pn

i=1 q
�itn�i

�
P�(x; q; t) : 3:13

This given, we have

Proposition 3.1 For all r; n; � with r � n,

X
jIj=r

AI (x; t)P�
�
XI ; 0; t

�1
�

= t(
r

2)+(n�r)l(�)

�
n� l(�)

r � l(�)

�
t

P�
�
X; 0; t�1

�
: 3:14

Furthermore, this sum is 0 when r < l(�). The same holds when P� is replaced by Q� or J� on both

sides of the equation.

Proof

By I.2 it su�ces to prove the result for P�, as Q� and J� are each scalar multiples of P�.

When n < l(�), also r < l(�), so that P� is evaluated at fewer than l(�) variables on both sides of

3.12. Thus both sides of the equation are 0.
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So take n � l(�). If r < l(�), then P�
�
XI ; 0; t

�1
�
= 0 for every term in the summation,

and again the summation is 0. The right hand side of the equation is also 0 if we observe the usual

convention that the t-binomial coe�cient is 0 when its upper number is nonnegative and its lower

number is negative.

Finally, take l(�) � r � n. Then, using 3.13, we have

er
�Pn

i=1 q
�itn�i

�
P�[X; q; t] = Dr

n(q; t)P�[X; q; t] =
X
jIj=r

AI(x; t)P�[X + (q � 1)XI ; q; t] :

Set q = 0 to obtain

er

hPn

i=l(�)+1 t
n�i
i
P�[X; 0; t] =

X
jIj=r

AI(x; t)P�[X �XI ; 0; t] =
X
jIj=r

AI(x; t)P�[XIc ; 0; t] :

Replacing t by t�1, and noting that

AI(x; t
�1) = t�(

n

2)AIc (x; t) ;

we derive that

er

hPn

i=l(�)+1 t
i�n
i
P�
�
X; 0; t�1

�
=

X
jIj=r

AI(x; t
�1)P�

�
XIc ; 0; t

�1
�

= t�(
n

2)
X
jIj=r

AIc (x; t)P�
�
XIc ; 0; t

�1
�
:

3:15

Replace I by Ic and then r by n� r to obtain

en�r

hPn
i=l(�)+1 t

i�n
i
P�
�
X; 0; t�1

�
= t�(

n

2)
X
jIj=r

AI(x; t)P�
�
XI ; 0; t

�1
�
: 3:16

Now the well known identities

ek

hPn�1
i=0 t

i
i

= t(
k

2)
�
n

k

�
t

and ek

hPn�1
i=0 t

�i
i

= t(
k

2)�k(n�1)
�
n

k

�
t

3:17

give

en�r

hPn

i=l(�)+1 t
i�n
i

= en�r

hPn�l(�)�1

i=0 t�i
i

= t(
n�r
2 )�(n�r)(n�l(�)�1)

�
n� l(�)

n� r

�
t

= t(
n�r
2 )�(n�r)(n�l(�)�1)

�
n� l(�)

r � l(�)

�
t

:

Substituting this into 3.16, we obtain

t(
n�r
2 )�(n�r)(n�l(�)�1)

�
n� l(�)

r � l(�)

�
t

P�
�
X; 0; t�1

�
= t�(

n

2)
X
jIj=r

AI(x; t)P�
�
XI ; 0; t

�1
�
;
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and collecting and simplifying the powers of t yields

X
jIj=r

AI (x; t)P�
�
XI ; 0; t

�1
�

= t(
n

2)+(
n�r
2 )�(n�r)(n�l(�)�1)

�
n� l(�)

r � l(�)

�
t

P�
�
X; 0; t�1

�

= t(
r

2)+(n�r)l(�)

�
n� l(�)

r � l(�)

�
t

P�
�
X; 0; t�1

�
;

as desired.

Remark 3.2

For sake of completeness, we should add that the identity in 3.15 is shown as follows.

AI(x; t
�1) = t�(

r

2)
Y

i2I;j 62I

t�1xi � xj

xi � xj

= t�(
r

2)�jIj�jI
cj
Y

i2I;j 62I

xi � txj

xi � xj

= t�(
r

2)�r(n�r)�(
n�r
2 )AIc(x; t)

= t�(
n

2)AIc (x; t)

As for the identities in 3.17 we note that in ek

hPn�1
i=0 t

i
i
, the coe�cient of tm is the number of

sequences 0 � i1 < � � � < ik � n � 1 with i1 + � � �+ ik = m. Let �j = ij � (j � 1). Then this is the

number of sequences 0 � �1 � �2 � � � � � �k � n�k with �1+ � � �+�k = m�
Pk

i=1(i�1) = m�
�
k
2

�
,

that is, the number of partitions of m0 = m �
�
k
2

�
into at most k parts, each of which is at most

n�k. It is well-known [15] (pp. 29{30, Prop. 1.3.19) that the coe�cient of tm
0

in
�
n
k

�
t
is the number

of partitions of m0 into at most k parts with sizes at most n� k; multiplying this by t(
k

2) yields the

�rst equation in 3.17.

The second equation in 3.17 follows from the �rst because the argument of ek in the second

is a fraction t�(n�1) of the argument in the �rst, and ek is homogeneous of degree k.

We are now ready to perform the sums needed to prove Theorem 3.1. We do this by

computing the action of +eCr on Schur functions, and then extend it to all symmetric functions by

linearity. The following result determines a generating function for this action.

Theorem 3.5

Let r � n. For all partitions � with l(�) � n,

X
�

+eCrS�[X]
��
[�]
S�[(1� t�1)Y ]

= t(
r

2)
X


Q

h
Y �

qt1�n

1�t�1
; 0; t�1

i
t(n�r)l()

�
n� l()

r � l()

�
t

P
�
Zn;�; 0; t

�1
�
:

3:18

Proof
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We may rewrite the sum on the left hand side of 3.18 in the formX
�

+eCrS�[X]
��
[�]
S�[(1� t�1)Y ] = +eCr


�
(1� t�1)XY

���
[�]

;

with the convention that the operator +eCr acts on 

�
(1� t�1)XY

�
as a symmetric function in the

x-variables. This given, by Lemma 3.2, we have (with Zn = Zn;�)

+eCrP
��
[�]

=
X

� :�=�2Vr

+c(r)��P [B�=�] =
X
jIj=r

+c
(r)
I P [ZI]

whenever n � r and l(�) � n. So we evaluate the summation using this alternate form.

+eCr

�
(1� t�1)XY

���
[�]

=
X
jIj=r

+c
(r)

I 

�
(1� t�1)ZIY

�

=
X
jIj=r

AI(Zn; t)

�
�qt1�nZI

�


�
(1� t�1)ZIY

�

=
X
jIj=r

AI(Zn; t)

h
(1� t�1)ZI

�
Y �

qt1�n

1�t�1

�i

Now we use the Hall-Littlewood Cauchy formula 

�
(1� t�1)XY

�
=
P

 Q [Y ; 0; 1=t]P[X; 0; 1=t]

with X replaced by ZI and Y replaced by Y �
qt1�n

1�t�1
; obtaining

+eCr

�
(1� t�1)XY

���
[�]

=
X
jIj=r

AI(Zn; t)
X


Q

h
Y �

qt1�n

1�t�1
; 0; t�1

i
P
�
ZI ; 0; t

�1
�

=
X


Q

h
Y �

qt1�n

1�t�1
; 0; t�1

i X
jIj=r

AI(Zn; t)P
�
ZI ; 0; t

�1
�
:

The identity in 3.14 gives

+eCr

�
(1� t�1)XY

���
[�]

=
X


Q

h
Y �

qt1�n

1�t�1
; 0; t�1

i
t(n�r)l()+(

r

2)
�
n � l()

r � l()

�
t

P
�
Zn; 0; t

�1
�
;

which is what we wanted to prove.

We are �nally in a position to give our

Proof of Theorem 3.1

We have

+eCr

�
(1� t�1)XY

���
[�]

= +eCr

X
�

S�[X]S�[(1� t�1)Y ]
��
[�]

=
X
�

+eCrS�[X]
��
[�]

� S�[(1� t�1)Y ] :

Comparing this with the expansion of +eCr

�
(1� t�1)XY

�
in 3.13, we see that we must expand

the Hall-Littlewood functions Q

h
Y �

qt1�n

1�t�1
; 0; t�1

i
in the basis

�
S�[(1� t�1)Y ]

	
. We �rst use the

transition matrix

Q�[X; 0; t] =
X
�

K��(t)S�[(1� t)X]
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given in [14] (p. 241), which also may be derived by setting q = 0 in I.3, and then we expand the

Schur function of a sum:

Q

h
Y �

qt1�n

1�t�1
; 0; t�1

i
=

X
� : j�j=jj

K� (t
�1)S�

h
(1� t�1)

�
Y �

qt1�n

1�t�1

�i

=
X

� : j�j=jj

K� (t
�1)S�

�
(1 � t�1)Y � qt1�n

�

=
X

� : j�j=jj

K� (t
�1)

X
���

S�
�
(1� t�1)Y

�
S�=�[�qt

1�n]

=
X

� : j�j=jj

K� (t
�1)

X
� : �=�2V

S�
�
(1� t�1)Y

�
(�qt1�n)j�=�j

because for the single letter qt1�n, the skew Schur function S�=�[�qt
1�n] = (�1)j�=�jS�0=�0 [qt

1�n] is

0 if �0=�0 is not a horizontal strip, and is (�qt1�n)j�=�j if it is a horizontal strip. Plug this into 3.18

and take the coe�cient of S�[(1� t�1)Y ] to obtain

+eCrS�
��
[�]

= t(
r

2)
X


X
� : �=�2V
j�j=jj

(�qt1�n)j�=�jK� (t
�1)t(n�r)l()

�
n� l()

r � l()

�
t

P
�
Zn;�; 0; t

�1
�
:

We now reduce this to a �nite sum. We may restrict the sum over  to l() � r because
�
n�l()

r�l()

�
t
= 0

when l() > r. We may restrict the sum over � to � that dominates , because K�;(t
�1) = 0 when

� does not dominate ; then l(�) � l() � r. Thus �=� is a vertical strip of length at most r, and

so there are only �nitely many � possible, each with only �nitely many  below it in the dominance

order.

+eCrS�
��
[�]

= t(
r

2)
X

� : �=�2V
l(�)�r

(�qt1�n)j�=�j
X

 : jj=j�j
l()�r

K� (t
�1)t(n�r)l()

�
n� l()

r � l()

�
t

P
�
Zn;�; 0; t

�1
�

We now eliminate n and turn this into a plethystic formula. All occurrences of n can

be reduced to occurrences of u = tn, as follows. Rewrite t1�n = t=u, t(n�r)l() = (ut�r)l(),

Zn;� = (1� q�1)X + 1�u
q(1�t)

at X = B�, and

�
n� l

r � l

�
t

=

r�lY
i=0

tn�l � ti

tr�l � ti
=

r�lY
i=0

ut�l � ti

tr�l � ti
:

The Zn substitution is valid when X = B� for all partitions � and all n � l(�), while the binomial

substitution is valid for all n � r. These substitutions give us a nonhomogeneous symmetric function

in X of degree at most j�j+ r that is also a Laurent polynomial in u, so we could write +eCrS�
��
[�]

=P
jij<M ai[B�]u

i for some M and some symmetric functions ai[X]. For any speci�c choice X = B�,

we may set u = tn for any n � l(�) without a�ecting the value of +eCrS�
��
[�]
. Since u may take on

in�nitely many di�erent values without a�ecting the evaluation of this Laurent polynomial, for each



Plethystic Formulas 49

i 6= 0 we must have ai[B�] = 0 for all �; thus, the functions ai[X] with i 6= 0 are identically 0 by

Theorem 2.7. So we may choose u = tr regardless of whether r � l(�) holds, and thus obtain that

+eCrS�
��
[�]

= t(
r

2)
X

� : �=�2V
l(�)�r

(�qt1�r)j�=�j
X

 : jj=j�j
l()�r

K� (t
�1)P

�
Zr;�; 0; t

�1
�

holds for all partitions �. By using 3.11, the right side is explicitly a plethystic formula in X, which

we may denote (e�rS�)[X]. By Theorem 2.7, it is the unique �nite degree symmetric function with

the property that (e�rS�)[B�] =
+eCrS�

��
[�]
.

We now manipulate it into a di�erent form. Plug in the transition matrix expressing the

Hall-Littlewood functions in terms of the Schur functions [14] (III.6 p. 239)

P
�
Zr; 0; t

�1
�

=
X

� : j�j=jj

K�1� (t
�1)S�[Zr]

to obtain

e�rS� = t(
r

2)
X

� : �=�2V
l(�)�r

(�qt1�r)j�=�j
X

 : l()�r
jj=j�j

K� (t
�1)

X
� : j�j=jj

K�1� (t
�1)S�[Zr]

= t(
r

2)
X

� : �=�2V
l(�)�r

(�qt1�r)j�=�j
X

� : j�j=j�j

S�[Zr]
X

 : l()�r
jj=j�j

K�(t
�1)K�1� (t

�1) ;

which establishes formula 3.7. To prove the last assertion in Theorem 3.1, we note that in the sum
+eCrS�

��
[�]
, the Schur function S� is evaluated at the r-letter alphabet B�=� , so if r < l(�), every

term of the sum is 0.

We are left with the �nal task of verifying our basic formula 3.12. In preparing for this, our

�rst step is to relate the +c
(r)
�� 's to the coe�cients +d

(r)
�� given by 2.38, namely

hr

h
X
1�t

i
~H�[X; q; t] =

X
�

+d(r)��
~H�[X; q; t] :

By taking the inner product of both sides with some particular ~H�, we obtainD
hr

h
X
1�t

i
~H� ; ~H�

E
�

= +d(r)��

D
~H� ; ~H�

E
�

on the one hand, and

=
D
~H� ;

+@(r) ~H�

E
�

=

*
~H� ;

X


+c(r)�
~H

+
�

= +c(r)��

D
~H� ; ~H�

E
�

on the other; using
D
~H� ; ~H�

E
�
= ~h�~h

0
�, we conclude

+c(r)�� = +d(r)�� �
~h�~h

0
�

~h�~h0�
: 3:19



Plethystic Formulas 50

Next plug in the value of +d
(r)
�� given by 2.39,

+c(r)�� =  0�=�(q; t
�1)

~h�(q; t)

~h�(q; t)
�
~h�(q; t)~h

0
�(q; t)

~h�(q; t)~h0�(q; t)
=  0�=�(q; t

�1) �
~h0�(q; t)

~h0�(q; t)
;

so that, by 1.21,

+c(r)�� = tn(�)�n(�) 0�=�(q; t
�1) �

h0�(q; t
�1)

h0�(q; t
�1)

: 3:20

We will also need the following auxiliary identity:

Lemma 3.3

(See [14], pp. 337{338.)

h0�(q; t) = 

h
�(1 � q�1)�1

�Pn
i=1

�
q�itn�i � 1

�
+
�
t�1 � 1

�P
1�i<j�n q

�i��j tj�i
�i

: 3:21

Proof

We have

h0�(q; t) =
Y
s2�

�
1� qa�(s)+1tl�(s)

�
= 


h
�
P

s2� q
a�(s)+1tl�(s)

i
: 3:22

We will evaluate

S = (1� q�1)
X
s2�

qa�(s)+1tl�(s) :

The columns of length j are those numbered �j+1 + 1; �j+1 + 2; : : : ; �j. The contribution to S of

the cells in row i that are in columns of length j, for each j � i, is

(1� q�1)(q�i��j+1 + � � �+ q�i��j+1)tj�i = (q�i��j+1 � q�i��j )tj�i ;

and there are no cells in row i in columns of length smaller than i. The total contribution of row i

to S is obtained by summing over j:

nX
j=i

�
q�i��j+1 � q�i��j

�
tj�i =

nX
j=i

q�i��j+1 tj�i �

nX
j=i

q�i��j tj�i

=

n+1X
j=i+1

q�i��j tj�1�i �

nX
j=i

q�i��j tj�i :

Separate out term j = n+ 1 in the �rst sum and j = i in the second:

= q�i��n+1 tn+1�1�i � q�i��iti�i +

nX
j=i+1

(q�i��j tj�1�i � q�i��j tj�i)

= q�i tn�i � 1 +
�
t�1 � 1

� nX
j=i+1

q�i��j tj�i :
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Finally, sum this over all i to obtain

S = (1 � q�1)
X
s2�

qa�(s)+1tl�(s) =

nX
i=1

�
q�itn�i � 1

�
+
�
t�1 � 1

� X
1�i<j�n

q�i��j tj�i :

Plug this into 3.22 to obtain 3.21.

We are now in position to give our

Proof of Theorem 3.4

We start with rewriting h0�(q; t
�1)=h0�(q; t

�1) using 3.21:

h0�(q; t
�1)

h0�(q; t
�1)

= 

h
�(1� q�1)�1

�Pn
i=1 (q

�i � q�i) ti�n + (t � 1)
P

1�i<j�n (q
�i��j � q�i��j ) ti�j

�i
:

Let I = I�=� and break this up according to which i; j are in I, using �i = �i if i 62 I or �i � 1 if

i 2 I. In the �rst sum, terms with i 62 I contribute nothing, and in the second sum, terms with i

and j both in I or both not in I contribute nothing.

= 


"
�
X
i2I

q�i � q�i�1

1� q�1
ti�n � (t� 1)

 X
i<j
i2I
j 62I

q�i��j � q�i�1��j

1� q�1
ti�j +

X
i<j
i62I
j2I

q�i��j � q�i��j+1

1� q�1
ti�j

!#

= 


"
�
X
i2I

q�iti�n � (t� 1)

 X
i<j
i2I
j 62I

q�i��j ti�j �
X
i<j
i62I
j2I

q�i��j+1ti�j

!#

= 

�
�
P

i2I q
�iti�n

�
�
Y
i2I
j 62I
i<j

1� q�i��j ti�j+1

1� q�i��j ti�j

Y
i62I
j2I
i<j

1� q�i��j ti�j

1� q�i��j ti�j+1
3:23

Now we rewrite 2.29 in terms of I and t�1 as

 0�=� =
Y
i62I
j2I
i<j

(1� q�i��j ti�j+1)(1� q�i��j ti�j�1)

(1� q�i��j ti�j)(1� q�i��j ti�j)
: 3:24

Plug 3.24 and 3.23 into 3.20, noting that the products with � cancel, to obtain

+c(r)�� = 

�
�
P

i2I q
�iti�n

�
� tn(�)�n(�)

Y
i62I
j2I
i<j

1� q�i��j ti�j�1

1� q�i��j ti�j
�
Y
i2I
j 62I
i<j

1� q�i��j ti�j+1

1� q�i��j ti�j
:

Express this in terms of zk = q�k�1tk�1:
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= 

�
�
P

i2I qt
1�nzi

�
� tn(�)�n(�)

Y
i62I
j2I
i<j

1� zi=(t zj)

1� zi=zj
�
Y
i2I
j 62I
i<j

1� t zi=zj

1� zi=zj

= 

�
�qt1�n

P
i2I zi

�
� tn(�)�n(�)

Y
i62I
j2I
i<j

t�1
Y
i62I
j2I
i<j

t zj � zi

zj � zi
�
Y
i2I
j 62I
i<j

t zi � zj

zi � zj
:

Swap i and j in the second product and then combine it with the third:

= 

�
�qt1�nZI

�
� tn(�)�n(�)

Y
i62I;j2I;i<j

t�1
Y

i2I;j 62I

t zi � zj

zi � zj

= 

�
�qt1�nZI

�
� tn(�)�n(�)

Y
i62I;j2I;i<j

t�1 � t�(
r

2)AI(Zn; t)

Finally, we obtain
+c(r)�� = 


�
�qt1�nZI

�
AI(Zn; t)t

n(�)�n(�)�(r2)�K ;

where K is the number of pairs (i; j) with i 62 I and j 2 I and 1 � i < j � n. However,

K =
X

i62I;j2I;i<j

1 =
X

j2I;i<j

1�
X

j2I;i2I;i<j

1 =
X
j2I

(j � 1) �

�
r

2

�

while

n(�)� n(�) =
X
j�1

(j � 1)(�j � �j) =
X
j2I

(j � 1)

so that n(�)� n(�)�
�
r
2

�
�K = 0. This completes the proof of Theorem 3.4.

A visual display of what we have shown in this section should be helpful at this point.

Lemma 3.1 3

Theorem 3.1
7 Theorem 3.4

Remark 3.1
3

Proof of Theorem 3.1
6

Theorem 3.2
8

Lemma 3.2 3

Theorem 3.3
9 Proposition 3.1

Remark 3.2
4

Lemma 3.3
1

Theorem I.3
10

Theorem 3.5
5

Proof of Theorem 3.4
2

In the diagram above we have arranged the results obtained into three columns. The order of

presentation may be obtained by reading from left to right and down each column. The logical
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sequence of implications which culminates with the proof of Theorem 3.1 and ultimately leads to

the proof of Theorem I.3 may be visualized by following the numbers in the small boxes.

4. Laurent nature of k(x; q; t) and polynomiality of ~K��(q; t) :

In this section we shall use the tools developed in sections 2 and 3 to establish the results

announced in the introduction. To begin with we should point out that our proof of Theorem 2.6,

in particular formula 2.60, shows that the operators � in I.14 and 2.56 are one and the same. Thus

Theorem I.2 is just another way of stating Theorem 2.6. Since we have seen in section 3 that

Theorem I.3 is a corollary of Theorem 3.1, the next result that remains to be shown is Theorem I.1.

Now we have seen in section 2 (formula 2.51) that the coe�cients ~K��(q; t) are relatively simple

linear combinations of the m-rational functions

Cp1Cp2 � � �Cpr 1 j[�] = h e�n�ke
�
p1
e�p2 � � �e

�
pr
; ~H� i� : 4:1

Thus we can obtain Theorem I.1 by deriving from the results of section 3 that all of these functions

are plethystic and that they are represented by symmetric polynomials with Laurent coe�cients.

Before we can proceed, we need to introduce some notation and make some preliminary

observations. For convenience let us set, for any symmetric polynomial P ,

P+[X] = P [ X
1�t

] :

Note that from the de�nition in 3.1 we get, for any  ` k and any � ` n � k

h e�n�kh
+
1
h+2 � � �h

+
r
; ~H� i� = h e�n�k ;

+@(1) +@(2) � � � +@(r ) ~H� i� :

Thus the same steps that gave us 2.50 and Theorem 3.2 yield us the identity

h e�n�kh
+
1
h+2 � � �h

+
r
; ~H� i� = +C1

+C2 � � �
+Cr 1 j[�] : 4:2

More precisely, we have the following auxiliary result.

Proposition 4.1

For any � ` k and any n � k, the m-rational function

h e�n�kh
+
�1
h+�2 � � �h

+
�r
; ~H� i� 4:3

is always plethystic and is uniquely represented by the polynomial

+��(x; q; t) = +��1
+��2 � � �

+��r 1 : 4:4

Moreover, +��(x; q; t) has a Schur function expansion of the form

+��(x; q; t) =
X
j�j�k

S�(x)
+a��(q; t) ; 4:5



Plethystic Formulas 54

with coe�cients +a� (q; t) Laurent polynomials in q and t.

Proof

The plethystic nature of these functions is an immediate consequence of 4.2. In fact, suc-

cessive applications of Theorem 3.2, yield that

h e�n�kh
+
�1
h+�2 � � �h

+
�r
; ~H� i� = +��

�
B�(q; t) ; q; t

�
( 8 � ` n � k ) : 4:6

This, together with Theorem 2.7, also implies that +�(x; q; t) is unique. The Laurent nature of

the +a��(q; t) follows from Theorem 3.3.

Lemma 4.1

For any given vector  = (1; 2; : : : ; r) of positive integers adding up to k we have the

expansion

e�1 (x)e
�
2
(x) � � �e�r (x) =

X
�`k

+h�(x) f�; (q; t) ; 4:7

where the coe�cients f�; (q; t) are rational functions of q and t whose denominator factors are all

of the form

(1� qi) ( with i � 1 ) 4:8

Proof

Expanding each of the factors in the left hand side of 4.7 by means of the the \dual" Cauchy

formula in 2.41, namely the identity

em
�

X
(1�t)(1�q)

�
=

X
�`m

h�
�
X
1�t

�
f�
�

1
1�q

�
we obtain 4.7 with the coe�cients f�;(q; t) products of of forgotten basis elements plethystically

evaluated at 1=(1� q). The statement concerning their denominators is easily derived by expanding

each f�(x) in terms the Schur and using one of the standard formulas giving S�
�

1
1�q

�
.

This places us in a position to derive the basic result of this paper.

Theorem 4.1

For a partition  = (1; 2; : : : ; r) ` k set

� (x; q; t) =
X
�`k

+��(x; q; t) f�; (q; t) ; 4:9

where the coe�cients f�;(q; t) are the same as those in 4.7. Then we necessarily have

h e�n�ke
�
1
e�2 � � �e

�
r
; ~H� i� = �

�
B�(q; t) ; q; t

�
( 8 � ` n � k ) ; 4:10

and (surprisingly) �(x; q; t) also has a Schur function expansion of the form

� (x; q; t) =
X
j�j�k

S�(x) a�(q; t) 4:11

with coe�cients a�(q; t) Laurent polynomials in q and t. Again, we should add that � (x; q; t) is

the unique polynomial satisfying 4.10.
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Proof

From 4.7 we derive that

h e�n�ke
�
1
e�2 � � �e

�
r
; ~H� i� =

X
�`k

h e�n�k
+h�(x) ; ~H� i� f�; (q; t) ;

and 4.6 yields that

h e�n�ke
�
1
e�2 � � �e

�
r
; ~H� i� =

X
�`k

+��

�
B�(q; t) ; q; t

�
f�; (q; t) : 4:12

This gives 4.10. Our proof would be complete if it wasn't for the fact that the coe�cients f�;(q; t)

have denominators. However, we are in a better position here than we where in section 2 where we

could not explain the disappearance of the denominators in the �nal expressions we obtained for �2

and �3. This is due to the fact that the factors in 4.8 involve only the variable q. To see how this

comes about, note that from the de�nition in I.15 we can see that the �-scalar product is symmetric

in q and t. The same is also true for all the polynomials e�m(x). Now, 4.10 with � replaced by �0

gives

�

�
B�0 (q; t) ; q; t

�
= h e�n�ke

�
1
e�2 � � �e

�
r
; ~H�0 i� :

However, the stated symmetries together with 1.55 yield that interchanging q and t results in the

identity

�

�
B�0 (t; q) ; t; q

�
= h e�n�ke

�
1
e�2 � � � e

�
r
; ~H� i�

and thus, using 4.10 again, we derive that

�

�
B�0 (t; q) ; t; q

�
= �

�
B�(q; t) ; q; t

�
: 4:13

Now, it is easily veri�ed that for any partition � we have B�0 (t; q) = B�(q; t) : Thus 4.13 may also

be written in the form

�

�
B�(q; t) ; t; q

�
= �

�
B�(q; t) ; q; t

�
:

Since this is to hold true for every � ` n � k, we are in a position to use Theorem 2.8 and reach the

�nal conclusion that

�

�
X; t; q

�
� �

�
X; q; t

�
:

This in particular implies that we must have

a�(q; t) = a�(t; q) 4:14

for all the coe�cients a�(q; t) occurring in 4.11.

Let us take assessment of what we have put together. On the one hand, computing�� from

4.9 and 4.4 we derive from Proposition 4.1 and Lemma 4.1 that each a�(q; t) may be expressed as

a rational function in q; t whose denominator has only factors of the form

1� qi (with i � 1 ) and tr ; qs (with r; s � 1 ) :
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On the other hand, interchanging q and t in this �rst expression and using 4.14 we obtain a second

expression which exhibits a�(q; t) as a a rational function in q; t whose denominator has only factors

of the form

1� ti (with i � 1 ) and qr ; ts (with r; s � 1 ) :

These two facts force us to the conclusion that the factors 1 � qi in the �rst expression and the

factors 1� ti in the second expression must disappear upon reducing these two expressions to their

normal form. This leaves powers of t and q as the only possible denominator factors and establishes

the Laurent nature of each coe�cient a�(q; t). Since the uniqueness part can again be obtained

from Theorem 2.8, our proof is now complete.

Let us now extend the de�nition of the polynomials � (x; q; t) to polynomials �p(x; q; t)

indexed by an arbitrary sequence of integers p = (p1; p2; : : : ; pr) by setting �p(x; q; t) = � (x; q; t)

if the non-vanishing components of p can be rearranged to a partition  and setting �p(x; q; t) �

0 otherwise. This given, we can derive the following �nal conclusions regarding the coe�cients
~K��(q; t).

Theorem 4.2

For a partition  = (1; 2; : : : ; r) ` k set

k (x; q; t) =
X

�2Sr+1

sign(�) �(1+�2�2 ; 2+�3�3 ; ::: ; r+�r+1�r�1) (x; q; t) : 4:15

Then for � = (n � k; 1; 2; : : : ; r) and n� k � 1 we have

~K��(q; t) = k
�
B�(q; t) ; q; t

�
( 8 � ` n � k + 1 ) : 4:16

Moreover, the polynomials k (x; q; t) have Schur function expansions of the form

k(x; q; t) =
X
j�j�k

S�(x) k�(q; t) 4:17

with k�(q; t) Laurent polynomials and symmetric in q and t. Finally, when we carry out the

plethystic evaluation in 4.16, we obtain an expression for ~K��(q;t) as a polynomial with integer

coe�cients with t-degree bounded by n(�) and q-degree bounded by n(�0)

Proof

The identity in 4.15 is an immediate consequence of 2.51 and our convention about the

polynomials �p. The Laurent nature and symmetry of the k�(q; t) follows from 4.15 and the

corresponding properties of the coe�cients a�(q; t) in 4.11. As for the remaining assertions we can

reason as follows. We have now two distinct ways to compute the ~K��(q; t). We can obtain them

by applying the crude algorithm sketched in the proof of Proposition 2.6 and derive that they can

be given a �rst rational expression with denominator factors all of the form

(qr � ts) ( with r + s � 1 ) :
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On the other hand we can use 4.16 and derive that they can be given a second rational expression

with denominator factors all of the form

qrts ( with r; s � 0 ) :

The equality of these two expressions forces the conclusion that the factors qr � ts in the �rst

expression and the factors qrts in the second must disappear when we bring those expressions to

their normal form. This proves the polynomiality of the ~K��(q; t). The degree bounds are forced by

the identity in 1.51. Indeed, by equating coe�cients of S� there we obtain the equality

~K��(q; t) = tn(�)qn(�
0) ~K�0�(1=q; 1=t)

which shows that whatever polynomial ~K�0�(q; t) might be, ~K��(q; t) itself being a polynomial must

be of degree at most n(�) in t and n(�0) in q. This completes our proof.

Corollary 4.1

The original Kostka-Macdonald coe�cients K��(q; t) are polynomials in q and t with integer

coe�cients, of degree at most n(�) in t and n(�0) in q.

Proof

For our present purposes, we may write the de�ning equality I.5 in the form

K��(q; t) = ~K��(q; 1=t) t
n(�) 4:18

and our assertions are easily seen to follow from what we have just �nished proving for the ~K��(q; t).

Remark 4.1

It might be good to have in one single place the succession of formulas which, together

with formula 4.15, constitute our algorithm for computing the polynomials k�(q; t). The list is as

follows.

(1) The de�nition of e�r in 3.7:

e�rS� = t(
r

2)
X

� : �=�2V
l(�)�r

(�qt1�r)j�=�j
X

� : j�j=j�j

S�

h
(1 � q�1)X + q�1[r]t

iX
 : jj=j�j
l()�r

K� (t
�1)K�1� (t

�1) :

(2) The de�nition of +�r in 3.9:

+�rS� =
X
���

(�1)j�jS�=� � e�rS�0 :
(3) Formula 4.4, giving +��:

+��(x; q; t) = +��1
+��2 � � �

+��r 1 :

(4) Finally formula 4.9, which gives us �(x; q; t):

�(x; q; t) =
X
�`k

+��(x; q; t) f�; (q; t) ;
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and formula 4.7, which gives us the coe�cients f�;(q; t):

e�1 (x)e
�
2
(x) � � �e�r (x) =

X
�`k

+h�(x) f�; (q; t) :

This algorithm has been implemented in MAPLE using Stembridge's \SF" package. The

code itself and tables of the 40 polynomials k needed to compute the ~K�� up to partitions of

n � 12 may be obtained via anonymous FTP from macaulay.ucsd.edu. To give an idea what

these polynomials look like, we have attached at the end of the paper, a table of 12 that allow

the computation of certain �nite families of ~K��. It may also be used to compute the polynomials

K��(q; t) by means of 4.18. This table, used in conjunction with the formula

~K��(q; t) = k(�2;�3;:::)[B�(q; t); q; t] = tn(�)qn(�
0)k(�0

2
;�0

3
;:::)0 [B�(1=q; 1=t); 1=q; 1=t] ;

is all that is needed to compute all the ~K��(q; t) up to n = 8. Recalling that we have set k [X; q; t] =P
� k�(q; t)S� [X], the Laurent polynomialk�(q; t) is given as a matrix, with rows i = 0;�1;�2; : : :

downward from the top and columns j = 0;�1;�2; : : : leftward from the right. The entry in row i,

column j, is the coe�cient of qitj . A negative coe�cient �m is denoted m.

We should mention that Theorem 2.2, and in particular the identity

X
�!�

c�� T
k
�=� =

1

(1 � t)(1� q)tkqk
hk+1[(1� t)(1� q)B� � 1] ; 4:19

were discovered within the probabilistic setting of the q; t-hook walk introduced in [10]. Although we

have essentially given here two di�erent proofs of 4.19, we believe that some aspects of the original

proof should be of interest. In fact, there are a number of interesting questions that arise in this

connection which should lead to further work. To proceed we need to state some of the identities

proved in [10].

First of all we recall that the q; t-hook walk de�ned in [10] is simply a weighted version

of the random walk discovered by Greene-Nijenhuis-Wilf [11]. Given � ` n, a sequence of random

variables Z1; Z2; : : : ; Zs; : : : is constructed where the value of each Zi is a cell of the diagram of �

and given that Zi = s then Zi+1 is randomly chosen to be one the other cells of the \hook" of s in

�. More precisely, if Zi+1 = s0 then s0 is directly EAST or directly NORTH of s. Moreover, if there

are i � 0 cells of � between s and s0 then the transition probability is given by

P [Zi+1 = s0jZi = s] =

8><
>:
qi

tl�(s)(1�q)

tl�(s)�qa�(s)
when s0 is EAST of s ,

ti
qa�(s)(t�1)

tl�(s)�qa�(s)
when s0 is NORTH of s .

The walk is started by choosing Z1 = s with probability

P [Z1 = s] =
tl
0
�
(s)qa

0
�
(s)

B�(q; t)
:
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The walk ends when it reaches one of the corners of �. We shall then write Zend = �=� (for a �!�)

when the walk ends at the cell we must remove from � to get �.

It is clear from the de�nition that a walk which starts at a cell s must end at a corner

�=� that is weakly NORTH-EAST of s. Recalling the de�nition of R�=� and C�=� made in the

introduction, we shall denote here by R�=�(s) and C�=�(s) respectively the collection of cells of

R�=� and C�=� that are strictly NORTH-EAST of s. We also let r[s] and c[s] denote the two cells of

R�=� [ f�=�g and C�=� [ f�=�g that are respectively directly NORTH and directly EAST of s. Of

course, unless the starting cell s is already one of the corners, at least one of R�=�(s) and C�=�(s)

will not be empty and one of r[s] and c[s] will not be �=�.

Now, it is shown in [10] (Theorem 2.2) that the conditional probability of the walk ending

at �=� when it starts at s may be computed from the following identity:

P
�
Zend = �=� j Z1 = s

�
= A(r[s]) B(c[s])

Y
r2R�=� (s)

~h0�(r)

~h0�(r)

Y
c2C�=� (s)

~h�(c)

~h�(c)
; 4:20

where the functions A(r), B(c) are de�ned by setting

A(r) =

8<
:
1 if r is a corner,

tl�(r)(1�q)

tl�(r)�qa�(r)
otherwise,

and B(c) =

8<
:
1 if c is a corner,

qa�(c)(t�1)

tl�(c)�qa�(c)
otherwise .

It is also shown in [10] (Theorem 2.3) that the coe�cients c��(q; t) may be expressed in the form

c��(q; t) =
X

s�=�=�

qa
0(s)tl

0(s) P
�
Zend = �=� j Z1 = s

�
; 4:21

where the symbol s�= �=� means that �=� is weakly NORTH-EAST of s.

In this vein, we can give a probabilistic interpretation to any of our sums

X
�!�

c��(q; t) f�(q; t) :

To be precise, (by a slight abuse of notation) we can set fZend = f�(q; t) when Zend = �=� and

consider it a random variable. This given, we can write

X
�!�

f�(q; t)P
�
Zend = �=� j Z1 = s

�
= E

�
fZend j Z1 = s

�
; (y)

and use 4.21 to obtain that

X
�!�

c��(q; t) f�(q; t) =
X
s2�

qa
0(s)tl

0(s) E
�
fZend j Z1 = s

�
: 4:22

(y) We read this as the \conditional expectation of fZend given that Z1 = s."
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Two particular cases of this formula are worth noting here. The �rst is obtained by setting f � 1.

This gives X
�!�

c��(q; t) =
X
s2�

qa
0(s)tl

0(s) = B�(q; t) ;

which yields a probabilistic proof of 2.7. The other case is when f� is taken to be the \Hilbert

series" F�(q; t). This permits us to rewrite the recursion I.13 in the form

F�(q; t) =
X
s2�

qa
0(s)tl

0(s) E
�
FZend(q; t) j Z1 = s

�
:

Now data obtained at the time of the writing of [10] revealed that the expression

E
�
FZend(q; t) j Z1 = s ] ; 4:23

computed using 4.20 and available tables of the F�(q; t), always yields a polynomial in q; t with

integer coe�cients. It was then conjectured there that this should be true in full generality. The

e�orts to prove this conjecture led to a close study of the expression in 4.20 and its rewriting in

terms of weights of corner cells of the partition �. More precisely, using the same notation as in

section 2, we can state the following result.

Theorem 4.3

If Ai; Ai+1; : : : ; Aj are the corners of � that are weakly NORTH-EAST of s, then for any

i � r � j we have

P [Zend = ArjZ1 = s] = t�iq�j
1

xr

Y
i�r0�j

(r0 6=r) 1

xr � xr0

Y
i�r0�j�1

(xr � ur0) : 4:24

Proof

Starting with 4.20 and carrying out cancellations and manipulations entirely analogous to

those carried out in the proof of 2.16, we obtain 4.24 without additional di�culties. We can omit

the details.

Recalling the de�nition of T�=� given at the start of section 2, and setting TZend = T�=�

when Zend = �=�, we derive from 4.24 the following analogue of 2.13.

Theorem 4.5

Under the same hypotheses as above, for any k � 1 we have

E[ T kZend jZ1 = s ] = t�iq�jhk�1[xi + xi+1 + � � �+ xj � ui � ui+1 � � � � � uj�1] 4:25

Proof

From 4.24 we get that

E[ T kZend jZ1 = s ] = t�iq�j
jX

r=i

xk�1r

Y
i�r0�j

(r0 6=r) 1

xr � xr0

Y
i�r0�j�1

(xr � ur0 )
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and 4.25 follows by equating coe�cients of tk�1 in the partial fraction expansion

Q
i�r�j�1(1� tur)Q
i�r�j(1� txr)

=

jX
r=i

Y
i�r0�j

(r0 6=r) 1

xr � xr0

Y
i�r0�j�1

(xr � ur0)
1

1� txr
:

Formula 4.25 has the following remarkable corollary:

Theorem 4.6

Suppose that f is plethystic Laurent and that f�(q; t) always evaluates to a polynomial with

integer coe�cients; then likewise for any s 2 �, the conditional expectation E[fZend j Z1 = s ] always

evaluates to a polynomial with integer coe�cients.

Proof

Let f be represented by the polynomial P [x; q; t] with Schur function expansion

P (x; q; t) =
X
j�j�d

c�(q; t) S�(x) :

Then for any �!� we can write

f�(q; t) = P [B�(q; t); q; t] = P [B� � T�=� ; q; t] =
X
j�j�d

c�(q; t) S�[B� � T�=� ]

=
X
j�j�d

c�(q; t)

dX
k=0

(�1)k T k�=�

� X
�=�2Vk

S�[B�]
�
:

We thus can write

E[fZend j Z1 = s ] =
X
j�j�d

c�(q; t)

dX
k=0

(�1)k E[ T kZend j Z1 = s ]
� X
�=�2Vk

S�[B�]
�
: 4:26

Since by hypothesis the coe�cients c�(q; t) are Laurent, we deduce from the polynomiality of the

right hand side of 4.25 that the expression in 4.26 has only denominator factors of the form tiqj.

On the other hand we can compute E[fZend j Z1 = s ] directly from the formula

E
�
fZend j Z1 = s

�
=

X
�!�

f�(q; t)P
�
Zend = �=� j Z1 = s

�
; 4:27

with the conditional probability P
�
Zend = �=� j Z1 = s

�
as given by 4.20. But now we can see, from

the form of 4.20 and the assumed polynomiality of f�(q; t), that the computation of E[fZend j Z1 = s ]

via this route yields a rational expression with denominator factors all of the form ti � qj. We can

thus conclude, as we have done many times before, that when the two rational expressions given

by 4.26 and 4.27 are reduced to normal form, all the denominators must necessarily cancel. This

completes our proof.
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Remark 4.2

Since, by de�nition, we have

F�(q; t) =
X
�

f� ~K��(q; t) ; 4:28

we see that one of the consequences of Theorem 4.2 is that F�(q; t) is a polynomial with integer

coe�cients. Moreover, 4.16 gives us that for each integer n, we can construct a polynomial �n(x; q; t)

whose Schur function expansion has Laurent coe�cients and is such that

F�(q; t) = �n[B�(q; t); q; t] ( 8 � ` n ) : 4:29

Thus we can apply Theorem 4.6 and conclude that the conditional expectation

E[ FZend(q; t) j Z1 = s ]

is always a polynomial with integer coe�cients. Thus what was observed in [10] from numerical

data does hold true in full generality.

We should mention that our data also shows that the polynomials E[FZend(q; t)jZ1 = s]

may have some negative coe�cients. Yet, the weighted sum

F�(q; t) =
X
s2�

qa
0(s)tl

0(s) E
�
FZend (q; t) j Z1 = s

�
4:30

always turns out to yield a polynomial with positive coe�cients, consistent with the Macdonald

conjecture that the K��(q; t) themselves have positive coe�cients. Another puzzling problem is to

understand how the recursion in 4.27 is related to the bigraded Sn-modules studied in [7]. Such an

understanding might suggest an approach to establishing the positive integrality of the polynomials

F�(q; t). In this connection we must point out that Theorem 2.6 and the recursion

F�(q; t) =
X
�!�

c��(q; t) F�(q; t)

yield that the polynomial �n(x; q; t) giving 4.29 may be computed from the formula

�n(x; q; t) = �n 1 :

As a last item, we wish to show that Theorem 4.3 does yield a q; t-hook walk proof of the

identity in 2.13. To carry this out we need some notation. Let Ai = (�i; �i) for i = 1; : : : ;m denote

the corners of � as before and let B�(i; j) denote the portion of the diagram of � de�ned by

B�(i; j) = f s 2 � : �i+1 < l0�(s) � �i ; �j�1 < a0�(s) � �j g :

It is easy to see that when s varies in B�(i; j) the corners of � that are weakly NORTH-EAST of s

remain constantly

Ai ; Ai+1 ; : : : ; Aj
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Let us then denote by sij the NORTH-EAST corner of B�(i; j); this is the cell with coleg �i and

coarm �j . Moreover set

B�(i; j; q; t) =
X

s2B�(i;j)

tl
0
�
(s)qa

0
�
(s) :

This given, we may rewrite 4.22, with f� replaced by T k�� , in the form

X
�!�

c��(q; t) T
k
�� =

mX
i=1

mX
j=i

B�(i; j; q; t) E
�
T kZend j Z1 = sij

�
: 4:31

Now, we can easily deduce from the geometry of a diagram � with corners A1; A2; : : : ; Am that

B�(i; j; q; t) = t�j+1+1q�i�1+1 (1 � t�j��j+1 )(1� q�i��i�1)

(1� t)(1� q)
=

(t�j+1 � t�j )(q�i�1 � q�i)

(1� 1=t)(1� 1=q)
:

Thus we can write

t�iq�jB�(i; j; q; t) =
(uj � xj)(ui�1 � xi)

(1� 1=t)(1� 1=q)
:

Substituting this and 4.25 into 4.31 gives

(1� 1=t)(1� 1=q)
X
�!�

c��(q; t) T
k
��

=

mX
i=1

mX
j=i

(uj � xj)(ui�1 � xi)hk�1[xi + � � �+ xj � ui � � � � � uj�1]

= hk+1[x1 + � � �xm � uo � � � �um] ;

where the last equality follows from standard symmetric function identities. Replacing x1+ � � �xm�

uo � � � �um by the right hand side of 2.15, we �nally obtain

X
�!�

c��(q; t) T
k
�� =

1

(1� 1
t
)(1 � 1

q
)
hk+1

h
(1� 1

t
)(1� 1

q
)B�(q; t)�

1
tq

i
;

which is another way of writing formula 2.13.

This completes the q; t-hook walk proof of Theorem 2.2.
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