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1. Introduction

This paper discusses proofs of Lovász’s theorem about the chromatic number
of Kneser graphs and the proof complexity of propositional translations of the
Kneser-Lovász theorem. Our main results give a new proof of the Kneser-Lovász
theorem, which, for fixed parameter k, uses a simple counting argument instead
of the topological arguments used in prior proofs, for all but finitely many cases.
These arguments can be formalized in propositional logic to give polynomial size
extended Frege proofs and quasi-polynomial size Frege proofs.

The proof complexity of Frege and extended Frege systems was first studied
by Cook and Reckhow [13, 14] and Statman [29]. Frege systems (denoted F)
are sound and complete proof systems for propositional logic with a finite set
of schemes for axioms and inference rules. The typical example is a “textbook
style” propositional proof system using modus ponens as its only rule of infer-
ence. In fact, all Frege systems are equivalent to this system [14]. Extended
Frege systems (denoted eF) are Frege systems augmented with the extension
rule, which allows variables to abbreviate complex formulas. The reader unfa-
miliar with Frege systems can consult the surveys [5, 10, 11, 14, 22, 28] for more
information.

The size of a Frege or extended Frege proof is the number of symbols in the
proof. A proof system P1 simulates a proof system P2 if and only if there is a
polynomial p(n) such that, for any propositional formula ϕ, if ϕ has a P2-proof
of size n, then ϕ has a P1-proof of size ≤ p(n). Also, P1 quasi-polynomially
simulates P2 if and only if there is a k > 0 such that, if ϕ has a P2-proof of

size n then ϕ has a P1-proof of size 2(logn)k . It is trivial that extended Frege
systems simulate Frege systems.

It is generally conjectured that the extension rule can provide substantial
shortening of proof length, and therefore that Frege systems do not (quasi-
polynomially) simulate extended Frege systems. The intuition is that Frege
proofs are able to reason using Boolean formulas; whereas extended Frege proofs
can reason using Boolean circuits. (See [20] for a formalization of this intuition.)
Boolean formulas are conjectured to require exponential size to simulate Boolean
circuits. There is no known direct connection to proof complexity, but it is
generally conjectured by analogy that there is an exponential separation between
the sizes of Frege proofs and extended Frege proofs, and thus that Frege systems
do not (quasi-polynomially) simulate extended Frege systems.

Bonet, Buss, and Pitassi [5] systematically looked for combinatorial tautolo-
gies that could be candidates for exponentially separating proof sizes for Frege
and extended Frege systems. Surprisingly, they found only a small number.
The first candidates were based on linear algebra, including the Oddtown theo-
rem, the Graham–Pollack theorem, the Fisher Inequality, the Ray-Chaudhuri–
Wilson theorem, and the AB = I ⇒ BA = I tautology (the last was suggested
by S. Cook). The remaining candidate was Frankl’s theorem on the trace of
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sets. All of these principles were shown to have polynomial size extended Frege
proofs, but it was open whether they had polynomial size Frege proofs.

Hrubeš and Tzameret [18] recently showed that the five tautologies based
on linear algebra have quasi-polynomial size Frege proofs by showing that there
are quasi-polynomial size definitions of determinants whose properties can be
established by quasi-polynomial Frege proofs (as was conjectured by [5]). Sub-
sequently, Aisenberg, Bonet, and Buss [1] showed that Frankl’s theorem also has
quasi-polynomial size Frege proofs. With these results, none of the principles
considered by Bonet-Buss-Pitassi provide an exponential separation of Frege
and extended Frege systems.

An earlier combinatorial candidate was the pigeonhole principle, introduced
by Cook and Reckhow [14]. They showed this has polynomial size extended
Frege proofs. Buss [8] later showed this also has polynomial size Frege proofs.
Buss’s proof was based on “counting”, and showed that Frege proofs can use
polynomial size formulas (based on carry-save addition) to define sizes of sets,
and can reason about sizes effectively. Carry-save addition also allows Frege
systems to reason about integer multiplication and about adding vectors of in-
tegers. The ability of Frege proofs to “count” and to reason about sizes of sets
will be important for our Frege proofs of the Kneser-Lovász theorem. The count-
ing proofs were quite different than Cook and Reckhow’s inductive proofs of the
pigeonhole principle, so these were sometimes taken as evidence that Frege sys-
tems do not (quasi-polynomially) simulate Frege proofs. However, [6] recently
showed that Cook and Reckhow’s inductive proofs can be reformulated as quasi-
polynomial size Frege proofs.

Another class of candidates is based on consistency statements. We write
ConP(n) for the propositional statement expressing the condition that the proof
system P does not have a proof of p ∧ ¬p of size ≤ n. For “natural” systems P
(including Frege and extended Frege systems), the formula ConP(n) has size
polynomially bounded by n (e.g., [12, 9]). Propositional consistency statements
have been studied for first-order systems by Pudlák [26, 27] and Friedman [un-
published]. Pudlák showed that axiomatizable theories of arithmetic have poly-
nomial size (first-order) proofs of their partial consistency statements; Pudlák
and Friedman independently proved polynomial lower bounds as well. Cook [12]
showed that an extended Frege system has polynomial size proofs of its own par-
tial consistency statements ConeF (n). Buss [9] proved similarly that a Frege
system has polynomial size proofs of its partial consistency statements ConF (n).

It also follows from [9] that Frege systems (quasi-)polynomially simulate
extended Frege systems iff there are (quasi-)polynomial size Frege proofs of
ConeF (n). In addition, ConeF (n) is a “logical” principle not really a “com-
binatorial” principle.6 For these reasons, partial consistency statements such
as ConeF (n) do not serve as the kinds of candidates for separating Frege and
extended Frege system that we are seeking.

Other candidates for exponentially separating Frege and extended Frege sys-

6However, see Avigad [3] for a combinatorial version of ConeF (n).
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tems arose from the work of Ko lodziejczyk, Nguyen, and Thapen [21] in the
setting of bounded arithmetic [7]. These include various forms of the local im-
provement principles LI, LIlog and LLI. The results of [21] showed that the LI
principle is many-one complete for the NP search problems of V 1

2 ; it follows that
LI is equivalent to partial consistency statements for extended Frege systems.
Beckmann and Buss [4] subsequently proved that LIlog is provably equivalent
(in S1

2) to LI and that the linear local improvement principle LLI is provable
in U1

2 . The LLI principle thus has quasi-polynomial size Frege proofs. Combin-
ing the results of [4, 21] shows that LIlog and LLI are many-one complete for the
NP search problems of V 1

2 and U1
2 , respectively, and thus equivalent to partial

consistency statements for extended Frege and Frege systems, respectively.
Thus, apart from partial consistency statement, none of the above principles

serve as combinatorial candidates for showing that Frege systems do not quasi-
polynomially simulate extended Frege systems.

A new candidate based on the Kneser-Lovász theorem was recently proposed
by Istrate and Crãciun [19]. As defined below, the Kneser-Lovász theorem gives
a lower bound on the chromatic of the (n, k)-Kneser graphs. Istrate and Crãciun
showed that the k = 3 case of these tautologies have polynomial size extended
Frege proofs, but left open whether they have (quasi-)polynomial size Frege
proofs. However, the main results of the present paper show that, for any fixed
k ≥ 1, the Kneser-Lovász tautologies have quasi-polynomial size Frege proofs.
Thus these also do not give an exponential separation of Frege from extended
Frege systems.

With these last results, we have few remaining combinatorial candidates
for showing Frege systems do not quasi-polynomially simulate extended Frege
systems. One remaining candidate is tautologies based on the Rectangular Local
Improvement principles, RLIk, of Beckmann-Buss [4] for fixed k ≥ 2. The only
other combinatorial candidate we know of is introduced in Section 6 below. This
is the k = 1 case of the “truncated Tucker lemma”. Theorem 26 shows it has
polynomial size extended Frege proofs; however, we have been unable to show
that it has quasi-polynomial size Frege proofs.

The outline of the paper is as follows. First, in Section 2 we define the
(n, k)-Kneser graphs and state Lovász’s theorem about their chromatic num-
bers. Theorems 4 and 5 state our main results about Frege and extended Frege
proofs of that theorem. Section 3 gives an informal (“mathematical”) proof of
the Kneser-Lovász theorem using a new proof method based on a simple count-
ing argument. Prior proofs used, at least implicitly, a topological fixed-point
lemma. The most combinatorial proof is by Matoušek [24] and is inspired by
the octahedral Tucker lemma; see also Ziegler [30]. Our new proofs mostly avoid
topological arguments and use a counting argument instead. The counting ar-
guments are used to prove the existence of “star-shaped” color classes. These
counting arguments can be formalized with Frege proofs. For the Kneser-Lovász
theorem, the counting arguments reduce the general case to “small” instances of
size n ≤ 2k4. For fixed k, there are only finitely many small instances, and they
can be verified by exhaustive enumeration. As we shall see, this leads to polyno-
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mial size extended Frege proofs, and quasi-polynomial size Frege proofs for the
Kneser-Lovász principles. Sections 3.1 and 3.2 give two “mathematical” ver-
sions of the counting proofs, which will be formalized as extended Frege proofs
and Frege proofs (respectively). Section 3.3 is a short diversion and considers
whether there are colorings of the Kneser graphs with many non-star-shaped
color classes.

Section 4 discusses some of the details of formalizing the arguments in Sec-
tion 3 in the Frege and extended Frege systems, establishing our two main
theorems. We focus on expressing the concepts described in Section 3 in propo-
sitional logic, and we only sketch some of the details of how Frege systems can
prove properties of these concepts.

The proofs of the Kneser-Lovász theorem in Sections 3 and 4 reduce the
general case of the Kneser-Lovász theorem to finitely many base cases, which
are then handled by exhaustive enumeration. It would be interesting to give a
uniform proof that does not need to handle the base cases in this way. Moti-
vated by this, Section 5 defines new “truncated” forms of the Tucker lemma.
These truncated Tucker lemmas can be be expressed as families of polynomial
size propositional tautologies. The octahedral Tucker lemma, on the other hand,
can only be expressed by exponential size formulas. Matoušek showed that the
Kneser-Lovász theorem follows from the Tucker lemma. We refine this by show-
ing that the Tucker lemma implies the two truncated Tucker lemmas, the two
versions of the truncated Tucker lemma are equivalent, and that the truncated
Tucker lemmas imply the Kneser-Lovász theorem. Since the truncated Tucker
lemmas can be expressed as polynomial size tautologies, it is natural to ask
about their proof complexity in (extended) Frege systems. Section 6 proves
that the k = 1 cases of the truncated Tucker lemmas have polynomial size
extended Frege proofs. It is open whether these have (quasi-)polynomial size
Frege proofs. Thus, this is a candidate for separating the Frege and extended
Frege systems. Likewise, it is open whether the truncated Tucker lemmas for
k > 1 have subexponential size extended Frege proofs. It is tempting to try to
modify the combinatorial proof of the Tucker lemma by Freund and Todd [17]
(see also Matoušek [24]), but we have been unable to express this argument
with polynomial size extended Frege proofs. Freund and Todd’s argument uses
a version of the parity principle PPA [25]; indeed, Papadimitriou [25] notes that
the arguments of Freund [15, 16] show that the Tucker lemma can be proved
using a directed parity principle PPAD. The difficulty with translating these
arguments to extended Frege proofs is that they apply the parity principle on
exponentially large graphs.

2. The Kneser-Lovász Principle and Statement of the Main Theorems

The (n, k)-Kneser graph is defined to be the undirected graph whose vertices
are the k-subsets of {1, . . . , n}; there is an edge between two vertices iff those
vertices have empty intersection. The Kneser-Lovász theorem states that Kneser
graphs have a large chromatic number:
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Theorem 1 (Lovász [23]). Let n ≥ 2k > 1. The (n, k)-Kneser graph has no
coloring with n− 2k + 1 colors.

It is well-known that the (n, k)-Kneser graph has a coloring with n− 2k + 2
colors (see Section 3.3), so the bound n − 2k + 1 is optimal. For k = 1, the
Kneser-Lovász theorem is just the pigeonhole principle.

Istrate and Crãciun [19] noted that, for fixed values of k, the propositional
translations of the Kneser-Lovász theorem have polynomial size in n. They
presented proofs that can be formalized by polynomial size Frege proofs for
k = 2, and by polynomial size extended Frege proofs for k = 3. This left open
the possibility that the k = 3 case could exponentially separate the Frege and
extended Frege systems. It was also left open whether the k > 3 case of the
Kneser-Lovász theorem gave tautologies that require exponential size extended
Frege proofs. As discussed above, the present paper refutes these possibilities.
Theorems 4 and 5 summarize these results.

Let [n] be the set {1, . . . , n}; members of [n] are called nodes. We identify
(

n
k

)

with the set of k-subsets of [n], the vertices of the (n, k)-Kneser graph.

Definition 2. An m-coloring of the (n, k)-Kneser graph is a map c from
(

n
k

)

to [m], such that for S, T ∈
(

n
k

)

, if S ∩T = ∅, then c(S) 6= c(T ). If ℓ ∈ [m], then
the color class Pℓ is the set of vertices assigned the color ℓ by c.

The formulas Knesernk are the natural propositional translations of the state-
ment that there is no (n− 2k + 1)-coloring of the (n, k)-Kneser graph:

Definition 3. Let n ≥ 2k > 1, and m = n− 2k + 1. For S ∈
(

n
k

)

and i ∈ [m],
the propositional variable pS,i has the intended meaning that vertex S of the
Kneser graph is assigned the color i. The formula Knesernk is

∧

S∈(n

k)

∨

i∈[m]

pS,i →
∨

S,T∈(nk)
S∩T=∅

∨

i∈[m]

(pS,i ∧ pT,i) .

Theorem 4. For fixed parameter k ≥ 1, the propositional translations Knesernk
of the Kneser-Lovász theorem have polynomial size extended Frege proofs.

Theorem 5. For fixed parameter k ≥ 1, the propositional translations Knesernk
of the Kneser-Lovász theorem have quasi-polynomial size Frege proofs.

When both k and n are allowed to vary, it is open whether the Knesernk
tautologies have quasi-polynomial size (extended) Frege proofs, or equivalently,
have proofs with size quasi-polynomially bounded in terms of nk.

3. Mathematical Arguments

Section 3.1 gives the new proof of the Kneser-Lovász theorem; this is later
shown to be formalizable with polynomial size extended Frege proofs. Sec-
tion 3.2 gives a slightly more complicated but more efficient proof, later shown
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to be formalizable with quasi-polynomial size Frege proofs. The next definition
and lemma are crucial for Sections 3.1 and 3.2.

Any two vertices in a color class Pℓ have nonempty intersection. One way
this can happen is for the color class to be “star-shaped”:

Definition 6. A color class Pℓ is star-shaped if
⋂

Pℓ is nonempty. If Pℓ is
star-shaped, then any i ∈

⋂

Pℓ is called a central node of Pℓ.

The next lemma bounds the size of color classes that are not star-shaped. It
will be used in our proof of the Kneser-Lovász theorem to establish the existence
of star-shaped color classes. The idea is that non-star-shaped color classes are
too small to cover all

(

n
k

)

vertices.

Lemma 7. Let c be a coloring of
(

n
k

)

. If Pℓ is not star-shaped, then

|Pℓ| ≤ k2
(

n− 2

k − 2

)

.

Proof. Suppose Pℓ is not star-shaped. If Pℓ is empty, the claim is trivial. So
suppose Pℓ 6= ∅, and let S0 = {a1, . . . , ak} be some element of Pℓ. Since Pℓ is
not star-shaped, there must be sets S1, . . . , Sk ∈ Pℓ with ai /∈ Si for i = 1, . . . , k.

To specify an arbitrary element S of Pℓ, we do the following. Since S and
S0 have the same color, S ∩ S0 is nonempty. We first specify some ai ∈ S ∩ S0.
Likewise, S∩Si is nonempty; we second specify some b ∈ S∩Si. By construction,
ai 6= b, so S is fully specified by the k possible values for ai, the k possible values
for b, and the

(

n−2
k−2

)

possible values for the remaining members of S. Therefore,

|Pℓ| ≤ k2
(

n−2
k−2

)

.

3.1. Argument for Extended Frege Proofs

Let k > 1 be fixed. We prove the Kneser-Lovász theorem by induction
on n. The base cases for the induction are n = 2k, . . . , N(k) where N(k) is the
constant depending on k specified in Lemma 8. We shall show that N(k) is no
greater than k4. Since k is fixed, there are only finitely many base cases. Since
the Kneser-Lovász theorem is true, these base cases can all be proved by a fixed
Frege proof of finite size (depending on k). Therefore, in our proof below, we
only show the induction step.

Lemma 8. Fix k > 1. There is an N(k) so that, for n > N(k), any (n−2k+1)-
coloring of

(

n
k

)

has at least one star-shaped color class.

Proof. Suppose that a coloring c has no star-shaped color class. Since there are
n− 2k + 1 many color classes, Lemma 7 implies that

(n− 2k + 1) · k2
(

n− 2

k − 2

)

≥

(

n

k

)

. (1)

For fixed k, the left-hand side of (1) is Θ(nk−1) and the right-hand side is
Θ(nk). Thus, there exists an N(k) such that (1) fails for all n > N(k). Hence
for n > N(k), there must be at least one star-shaped color class.
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To obtain an upper bound on the value of N(k), note that (1) is equivalent
to

(n− 2k + 1)k3(k − 1) ≥ n(n− 1). (2)

Since 2k − 1 ≥ 1, (2) implies that (n − 1)k4 > n(n− 1) and thus that n < k4.
Thus, (1) will be false if n ≥ k4; so N(k) < k4.

We are now ready to give our first proof of the Kneser-Lovász theorem.

Proof of Theorem 1, except for base cases. Fix k > 1. By Lemma 8, there is
some N(k) such that for n > N(k), any (n − 2k + 1)-coloring c of

(

n
k

)

has
a star-shaped color class. As discussed above, the cases where n ≤ N(k) are
handled by exhaustive search and the truth of the Kneser-Lovász theorem. For
n > N(k), we prove Theorem 1 by infinite descent. In other words, we show
that if c is an (n − 2k + 1)-coloring of

(

n
k

)

, then there is some c′ that is an

((n− 1) − 2k + 1)-coloring of
(

n−1
k

)

.
By Lemma 8, the coloring c has some star-shaped color class Pℓ with central

node i. Without loss of generality, i = n and ℓ = n− 2k + 1. Let

c′ = c ↾
(

n−1
k

)

be the restriction of c to the domain
(

n−1
k

)

. This discards the central node n
of Pℓ, and thus all vertices with color ℓ. Therefore, c′ is an ((n − 1) − 2k + 1)-
coloring of

(

n−1
k

)

. This completes the proof.

3.2. Argument for Frege Proofs

We now give a second proof of the Kneser-Lovász theorem. The proof above
required n−N(k) rounds of infinite descent to transform a Kneser graph on n
nodes to one on N(k) nodes. Our second proof replaces this with only O(log n)
many rounds, and this efficiency will be key for formalizing this proof with
quasi-polynomial size Frege proofs in Section 4.2.

We refine Lemma 8 to show that for n sufficiently large, there are many (i.e.,
a constant fraction) star-shaped color classes. The idea is to combine the upper
bound of Lemma 7 on the size of non-star-shaped color classes with the trivial
upper bound of

(

n−1
k−1

)

on the size of star-shaped color classes.

Lemma 9. Fix k > 1 and 0 < β < 1. Then there exists an N(k, β) such that
for n > N(k, β), if c is an (n − 2k + 1)-coloring of

(

n
k

)

, then c has at least n
kβ

many star-shaped color classes.

Proof. The value of N(k, β) can be set equal to k3(k−β)
1−β . Let n > k3(k−β)

1−β , and

suppose c is an (n−2k+1)-coloring of
(

n
k

)

. Let α be the number of star-shaped
color classes of c. It is clear that an upper bound on the size of each star-shaped
color class is

(

n−1
k−1

)

. There are n−α−2k+1 many non-star-shaped classes, and

Lemma 7 bounds their size by k2
(

n−2
k−2

)

. This implies that

(

n− 1

k − 1

)

α + k2
(

n− 2

k − 2

)

(n− α− 2k + 1) ≥

(

n

k

)

. (3)
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Assume for a contradiction that α < n
kβ. Since n > k3(k−β)

1−β , 0 < β < 1, and

k ≥ 2, we have n− 1 > k3(k− 1) > k2(k− 1). Therefore,
(

n−1
k−1

)

> k2
(

n−2
k−2

)

, and
if α is replaced by the larger value n

kβ, the left hand side of (3) increases. Thus,

(

n− 1

k − 1

)

n

k
β + k2

(

n− 2

k − 2

)

(

n−
n

k
β − 2k + 1

)

>

(

n

k

)

.

Since
(

n−1
k−1

)

n
k =

(

n
k

)

and n− n
kβ − 2k + 1 = k−β

k n− 2k + 1,

k2
(

n− 2

k − 2

)

(k − β

k
n− 2k + 1

)

> (1 − β)

(

n

k

)

.

Expanding the binomial coefficients yields

k3(k − 1)
(k − β

k
n− 2k + 1

)

> (1 − β)n(n − 1).

We have k−β
k (n− 1) > k−β

k n− 2k + 1. Therefore,

k3(k − 1)
k − β

k
(n− 1) > (1 − β)n(n− 1).

Dividing by n− 1 gives k3(k − β) > (1 − β)n, contradicting n > k3(k−β)
1−β .

We now give our second proof of the Kneser-Lovász theorem.

Proof of Theorem 1, except for base cases. Fix k > 1. By Lemma 9 with β =
1/2, if n > N(k, 1/2) and c is an (n− 2k+ 1)-coloring of

(

n
k

)

, then c has at least
n/2k many star-shaped color classes. We prove the Kneser-Lovász theorem by
induction on n. The base cases are where 2k ≤ n ≤ N(k, 1/2), and there are
only finitely of these, so they can be exhaustively proven. For n > N(k, 1/2),
we structure the induction proof as an infinite descent. In other words, we show
that if c is an (n − 2k + 1)-coloring of

(

n
k

)

, then there is some c′ that is an

((n− n
2k )− 2k+ 1)-coloring of

(n− n

2k

k

)

. For simplicity of notation, we assume n
2k

is an integer. If this is not the case, we really mean to round up to the nearest
integer ⌈ n

2k ⌉.
By permuting the color classes and the nodes, we can assume w.l.o.g. that

the n
2k color classes Pℓ for ℓ = n− n

2k−2k+2, . . . , n−2k+1 are star-shaped, and
each such Pℓ has a central node in {n−(n/2k)+1, . . . , n}. That is, the last n

2k
many color classes are star-shaped, and they all have a central node among
the last n

2k nodes in [n]. We shall discard these n/2k many star-shaped color
classes, and the topmost n/2k many nodes. This discards the central nodes of
the discarded color classes, thereby removing all the vertices of the Kneser graph
which are assigned discarded color classes. (It is possible that some star-shaped
color classes share central nodes. We only need to be sure to discard at least
one central node for each color classes, and thus, in this case, additional nodes
can be discarded so that n/2k are discarded in all.)
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More formally, define c′ to be the coloring of
(

n−n/2k
k

)

which assigns the

same colors as c. The map c′ is a (2k−1
2k n− 2k + 1)-coloring of

(2k−1
2k n

k

)

, since

n− n
2k = 2k−1

2k n. This completes the proof of the induction step.

When formalizing the above argument with quasi-polynomial size Frege
proofs, it will be important to know how many iterations of the procedure
are required to reach the base cases, so let us calculate this.

After s iterations of this procedure, we have a ((2k−1
2k )sn− 2k + 1)-coloring

of

(

(2k−1
2k )sn

k

)

. We pick s large enough so that (2k−1
2k )sn is less than N(k, 1/2).

In other words, since k is constant,

s = log 2k

2k−1

( n

k3(2k − 1)

)

= O(log n)

will suffice, and only O(log n) many rounds of the procedure are required.

3.3. Optimal Colorings of Kneser Graphs

This section is a brief diversion motivated by the question of whether Lemma 9
about the number of non-star-shaped colors is optimal.

It is well-known that
(

n
k

)

has an (n − 2k + 2)-coloring [23]. A simple con-
struction of such a coloring, which we call c1, is given here for completeness as
follows. For S ∈

(

n
k

)

, define c1(S) by:

(1) If S 6⊆ [2k − 1], let c1(S) = max(S) − (2k − 2). Clearly 1 < c1(S) ≤
n− 2k + 2.

(2) If S ⊆ [2k − 1], let c1(S) = 1.

We claim that c1 defines a proper coloring. By construction, if c1(S) > 1, then
c1(S) + (2k − 2) ∈ S. Thus, if c1(S) = c1(S′) > 1, then S ∩ S′ 6= ∅ and S
and S′ are not joined by an edge in the Kneser graph. On the other hand, if
c1(S) = 1, then S contains k elements from the set [2k − 1]. Any two such
subsets have nonempty intersection, and therefore if c1(S) = c1(S′) = 1, then
again S ∩ S′ 6= ∅. Note that c1 contains n − 2k + 1 many star-shaped color
classes, and only one non-star-shaped color class.

In view of Lemma 9, it is interesting to ask whether it is possible to give
(n − 2k + 2)-colorings with fewer star-shaped color classes and more non-star-
shaped color classes. The next theorem gives the best construction we know.

Theorem 10. Let k ≥ 1 and n ≥ 3k + 3. There is an (n−2k+2) coloring ck−1

of
(

n
k

)

which has k − 1 many non-star-shaped color classes and only n− 3k + 3
many star-shaped color classes.

Proof. To construct ck−1, partition the set [n] into n − 2k + 2 many subsets
T1, . . . , Tn−2k+2 as follows. For i ≤ n−3k+3, Ti is chosen to be a singleton set,
say Ti = {n− i + 1}. The remaining k − 1 many Ti’s are subsets of size 3, say
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Ti = {j−2, j−1, j} where j = 3(i−(n−3k+3)). Since n = (n−3k+3)+3(k−1),
the sets Ti partition [n], and each Ti has cardinality either 1 or 3. For S a subset
of n of cardinality k, define the color ck−1(S) to equal the least i such that

|S ∩ Ti| >
1

2
|Ti|.

We claim there must exist such an i. If not, then S contains no members of
the singleton subsets Ti and at most one member of each of the subsets Ti of
size three. But there are only k − 1 many subsets of size three, contradicting
|S| = k.

It is easy to check that if ck−1(S) = ck−1(S′) then S ∩ S′ 6= ∅. Thus ck−1

is a coloring. Furthermore, ck−1 has k − 1 many non-star-shaped color classes
and n− 3k + 3 many star-shaped color classes.

Theorem 10 can be extended to show that when n < 3k + 3, there is a
n− 2k+ 2 coloring with no star-shaped color class. The proof construction uses
a similar idea, based on the fact that [n] can be partitioned into n−2k+2 many
subsets, each of odd cardinality ≥ 3. We leave the details to the reader.

Question 11. Do there exist (n− 2k+ 2)-colorings of the (n, k)-Kneser graphs
with more than k − 1 many non-star-shaped color classes?

4. Formalization in Propositional Logic

4.1. Polynomial Size Extended Frege Proofs

We sketch the formalization of the argument in Section 3.1 as a polynomial
size extended Frege proof, establishing Theorem 4. We concentrate on showing
how to express concepts such as “star-shaped color class” with polynomial size
propositional formulas. For expository reasons, we omit the straightforward
details of how (extended) Frege proofs can prove properties of these concepts.

Fix values for k and n with n > N(k). We describe an extended Frege proof
of Knesernk . We have variables pS,j (recall Definition 3), collectively denoted ~p .
The proof assumes Knesernk (~p ) is false, and proceeds by contradiction. The
main step is to define new variables ~p ′ with the extension rule and prove that
Knesern−1

k (~p ′) fails. This will be repeated until reaching a Kneser graph over
only N(k) nodes.

For this, let Star(i, ℓ) be a formula that is true when i ∈ [n] is a central node
of the color class Pℓ; namely,

Star(i, ℓ) :=
∧

S∈(n

k), i/∈S

¬pS,ℓ.

Note that Pℓ may have more than one central node. Conversely, a node i may
be a central node for more than one color class.

We use Star(ℓ) :=
∨

i Star(i, ℓ) to express that Pℓ is star-shaped.
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The extended Frege proof defines an instance of the Kneser-Lovász principle
Knesern−1

k by discarding one node and one color. The first star-shaped color
class Pℓ is discarded; accordingly, we let

DiscardColor(ℓ) := Star(ℓ) ∧
∧

ℓ′<ℓ

¬Star(ℓ′).

The node to be discarded is the least central node of the discarded Pℓ:

DiscardNode(i) :=
∨

ℓ

[

DiscardColor(ℓ) ∧ Star(i, ℓ) ∧
∧

i′<i

¬Star(i′, ℓ)
]

.

After discarding the node i and the color ℓ, the remaining nodes and colors are
renumbered to the ranges [n − 1] and [n − 2k], respectively. In particular, the
“new” color j (in the instance of Knesern−1

k ) corresponds to the “old” color j−ℓ

(in the instance of Knesernk ) where

j−ℓ =

{

j if j < ℓ

j + 1 if j ≥ ℓ.

And, if S = {i1, . . . , ik} ∈
(

n−1
k

)

is a “new” vertex (for the Knesern−1
k instance),

then it corresponds to the “old” vertex S−i ∈
(

n
k

)

(for the instance of Knesernk ),
where S−i = {i′1, i

′
2, . . . , i

′
k} with

i′t =

{

it if it < i

it + 1 if it ≥ i.

For each S ∈
(

n−1
k

)

and j ∈ [n−2k], the extended Frege proof uses the extension
rule to introduce a new variable p′S,j defined as follows

p′S,j ≡
∨

i,ℓ

(

DiscardNode(i) ∧ DiscardColor(ℓ) ∧ pS−i,j−ℓ

)

.

As seen in the definition by extension, p′S,j is defined by cases, one for each
possible pair i, ℓ of nodes and colors such that the node i is the least central node
of the Pℓ color class, where Pℓ is the first star-shaped color class. The extended
Frege proof then shows that ¬Knesernk (~p ) implies ¬Knesern−1

k (~p ′), i.e., that if
the variables pS,j define a coloring, then the variables p′S,j also define a coloring.
The first step for the extended Frege proof is to show that there is at least one
star-shaped color class, and then there is a unique ℓ such that DiscardColor(ℓ)
holds. In fact, we claim there are polynomial size Frege proofs of

∨

ℓ

DiscardColor(ℓ)

and
∧

ℓ1<ℓ2

(¬DiscardColor(ℓ1) ∨ ¬DiscardColor(ℓ2)) .
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These assertions are proved using the proof of Lemma 8, and the counting
techniques which can be formalized in Frege proofs. Note that we only need to
count numbers of vertices in

(

n
k

)

; hence, for fixed k, we are only counting sets
of polynomial size. Therefore, polynomial size Frege proofs can carry out the
proof of Lemma 8. For similar reasons, there are polynomial size Frege proofs
that there is a unique value i ∈ [n−2k+1] which satisfies DiscardNode(i).

For fixed values of ℓ and i, a polynomial size Frege proof now establishes

DiscardColor(ℓ) ∧ DiscardNode(i) ∧ Knesern−1
k (~p ′) → Knesernk (~p ).

This Frege proof argues as follows, assuming DiscardColor(ℓ) and DiscardNode(i)
and Knesern−1

k (~p ′). Since Knesern−1
k (~p ′) is true, either (a) its hypothesis is false

and we have
∧n−2k

j=1 ¬p′S,j for some S ∈
(

n
k

)

or (b) its conclusion is true and there

are S, T ∈
(

n
k

)

and j such that S ∩ T = ∅ and p′S,j and p′T,j . If (a) holds then

¬pS−i,j−ℓ for all j ∈ [n−2k] and this together with the fact that i /∈ S−i and i
and ℓ were discarded further implies that the hypothesis of Knesernk (~p) is false
so Knesernk (~p) is true. Likewise, if (b) holds, then using S−i and T−i and j−ℓ

shows that that the conclusion of Knesernk is true.
Putting all these arguments together gives the desired Frege proof of

¬Knesernk (~p ) → ¬Knesern−1
k (~p ′).

The extended Frege proof iterates this process of removing one node and one
color until it is shown that there is a coloring of

(

N(k)
k

)

. This is then refuted by
exhaustively considering all graphs with ≤ N(k) nodes.

4.2. Quasi-polynomial Size Frege Proofs

This section discusses some of the details of the formalization of the argument
in Section 3.2 as quasi-polynomial size Frege proofs, establishing Theorem 5.
First we will form an extended Frege proof, then modify it to become a Frege
proof. As before, the proof starts with the assumption that Knesernk (~p ) is false.
As we describe next, the extended Frege proof then introduces variables ~p ′

by extension so that Kneser
n−n/2k
k (~p ′) is false. This process will be repeated

O(log n) times. The final Frege proof is obtained by unwinding the definitions
by extension.

For a set X of formulas and t > 0, we now use the notation “|X | ≤ t” to
denote a formula that is true when the number of true formulas in X is less than
or equal to t. As already discussed, “|X | ≤ t” can be expressed by a formula
of size polynomially bounded by the total size of the formulas in X , using the
construction in [8]. “|X | = t” is defined similarly.

The formulas Star(i, ℓ) and Star(ℓ) are the same as in Section 4.1. A color ℓ
is now discarded if it is among the least n/2k star-shaped color classes.

DiscardColor(ℓ) := Star(ℓ) ∧ (|{Star(ℓ′) : ℓ′ ≤ ℓ}| ≤ n/2k)

The discarded nodes are the least central nodes of the discarded color classes.

DiscardNode(i) :=
∨

ℓ

[

DiscardColor(ℓ) ∧ Star(i, ℓ) ∧
∧

i′<i

¬Star(i′, ℓ)
]

.
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DiscardNode(i) will hold for at most n/2k many nodes i, since there are only
n/2k many discarded colors. We could modify the definition of DiscardNode
to discard exactly n/2k many nodes; however, this is not strictly necessary,
as the only use of DiscardNode is to define the predicate RenumNode(i′, i)
below, and that definition effectively discards exactly n/2k many nodes even if
DiscardNode(i) picks out fewer than n/2k many nodes to be discarded.

The remaining, non-discarded colors and nodes are renumbered to form an

instance of Kneser
n−n/2k
k . For this, the formula RenumNode(i′, i) is true when

the node i′ is the ith node that is not discarded; similarly RenumColor(j′, j) is
true when the color j′ is the jth color that is not discarded.

RenumNode(i′, i) := (|{¬DiscardNode(i′′) : i′′≤i′}| = i) ∧ ¬DiscardNode(i′)

RenumColor(j′, j) := (|{¬DiscardColor(j′′) : j′′≤j′}| = j) ∧ ¬DiscardColor(j′)

The predicate RenumNode(i′, i) defines a bijection between the sets [n−n/2k]
and the non-discarded nodes of [n]. Likewise, the predicate RenumColor(j′, j)
defines a bijection between [(n−n/2k)−2k+1] and the non-discarded colors.

For each S = {i1, . . . , ik} ∈
(

n−n/2k
k

)

and j ∈ [(n−n/2k)−2k+1], we define
by extension

p′S,j ≡
∨

i′
1
,...i′

k
,j′

(

k
∧

t=1

(RenumNode(i′t, it)) ∧ RenumColor(j′, j) ∧ p{i′
1
,...,i′

k
},j′

)

.

The Frege proof then argues that if the variables pS,j define a coloring, then

the variables p′S,j define a coloring, i.e., that ¬Knesernk (~p ) → ¬Kneser
n−n/2k
k (~p ′).

The first step for this is proving that there are at least n/2k star-shaped color
classes by formalizing the proofs of Lemmas 7 and 9. Those proofs were “count-
ing” arguments: they involved counting the number of members of

(

n
k

)

that are

contained in the color classes Pℓ. Since
(

n
k

)

< nk, there are only polynomially

many members of
(

n
k

)

. Likewise there are < n color classes. The proofs of

Lemmas 7 and 9 used binonomial coefficients
(

n′

k′

)

, but only with n′ ≤ n and
k′ ≤ k, thus the proofs only used counting for polynomial size sets. Therefore,
all these counting arguments can be carried out using polynomial size Frege
proofs with the techniques from [8]. From this, the fact that RenumNode(i′, i)
and RenumColor(j′, j) define bijections follows easily.

After that, it is straightforward to prove that, for each S ∈
(

n−n/2k
k

)

and
j ∈ [(n − n/2k) − 2k + 1], the variable p′S,j is well-defined. In addition, a
polynomial size Frege proof can prove that that if Knesernk (~p ) is false, then

Kneser
n−n/2k
k (~p ′) is false.

This is iterated O(log n) times until fewer than N(k, 1/2) nodes remain. The
proof concludes with a hard-coded proof that there are no such colorings of the
finitely many small Kneser graphs.

To form the quasi-polynomial size Frege proof, we unwind the definitions by
extension. Each definition by extension was polynomial size; they are nested to
a depth of O(log n). So the resulting Frege proof is quasi-polynomial size.
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5. The Tucker Lemma and the Truncated Tucker Lemmas

A natural question arising from the previous sections is the possibility of giv-
ing short uniform Frege proofs of the Kneser-Lovász theorem for fixed k, namely,
proofs that avoid handling finitely many base cases separately. A possible ap-
proach to this problem is formalizing the proof of Matoušek [24] in the Frege
system. A significant obstacle in carrying this out is that Matoušek’s proof goes
through the octahedral Tucker lemma, and, as will be discussed below, näıve
propositional translations of the octahedral Tucker lemma are exponential size.
To overcome this, we describe two miniaturizations of the octahedral Tucker
lemma, called the truncated Tucker lemmas. The truncated Tucker lemmas
have polynomial size propositional translations, and are strong enough to imply
the Kneser-Lovász theorem with polynomial size, constant depth Frege proofs.

Our definitions and proofs below borrow techniques and notation from Ma-
toušek [24].

Definition 12. Let n ≥ 1. The octahedral ball Bn is:

Bn := {(A,B) : A,B ⊆ [n] and A ∩B = ∅}.

Definition 13. Let n > 1. A mapping λ : Bn → {1,±2, . . . ,±n} is antipodal if
λ(∅, ∅) = 1, and for all other pairs (A,B) ∈ Bn, λ(A,B) = −λ(B,A).

Note that −1 is not in the range of λ, and (∅, ∅) is the only member of Bn that
is mapped to 1 by λ.

Definition 14. Two pairs (A1, B1) and (A2, B2) in Bn are complementary with
respect to an antipodal map λ on Bn if A1 ⊆ A2, B1 ⊆ B2 and λ(A1, B1) =
−λ(A2, B2).

Theorem 15 (Octahedral Tucker lemma). If λ : Bn → {1,±2, . . . ,±n} is
antipodal, then there are two elements in Bn that are complementary.

For a proof of Theorem 15, see [24].

Definition 16. Let 1 ≤ k ≤ n. The truncated octahedral ball Bn
≤k is:

Bn
≤k :=

{

(A,B) ∈ Bn : |A| ≤ k, |B| ≤ k}.

We write
(

n
≤k

)

for {A ⊆ [n] : |A| ≤ k}.

The octahedral Tucker lemma used the subset relation ⊆ on [n] to define
complementary. The truncated Tucker lemma uses an analogous partial order �
to define k-complementary. For A ⊆ [n], let A≤k denote the least k elements
of A. By convention, if |A| < k, then A≤k = A.

Definition 17. Let � be the partial order on sets in
(

n
≤k

)

defined by A � B iff

(A ∪B)≤k = B.
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Remark: Note that when n = k, Bn = Bn
≤k, and the � relation is identical to

the subset relation.

Lemma 18. The relation � is a partial order with ∅ its least element.

Proof. It is clearly reflexive. For anti-symmetry, A1 � A2 and A2 � A1 imply
that A1 = (A1 ∪A2)≤k = (A2 ∪A1)≤k = A2. For transitivity, suppose A1 � A2

and A2 � A3. Then (A1 ∪ A2)≤k = A2 and (A2 ∪ A3)≤k = A3. This implies
that

A3 = (A2∪A3)≤k = ((A1∪A2)≤k∪A3)≤k = (A1∪(A2∪A3)≤k)≤k = (A1∪A3)≤k.

Therefore A1 � A3. That ∅ is the least element is clear from the definition.

Definition 19. For (A1, B1) and (A2, B2) in Bn
≤k, write (A1, B1) � (A2, B2)

when A1 � A2, B1 � B2, and Ai ∩ Bj = ∅ for i, j ∈ {1, 2}. The pairs (A1, B1)
and (A2, B2) are k-complementary with respect to an antipodal map λ on Bn

k if
(A1, B1) � (A2, B2) and λ(A1, B1) = −λ(A2, B2).

We are ready to state the version of the truncated Tucker lemma for Bn
≤k.

Theorem 20 (Truncated Tucker lemma on Bn
≤k). Let n ≥ k ≥ 1. If λ :

Bn
≤k → {1,±2 . . . ,±n} is antipodal, then there are two elements in Bn

≤k that are
k-complementary.

When k = n, this is equivalent to the octahedral Tucker lemma. The trun-
cated Tucker lemma on Bn

≤k follows from the octahedral Tucker lemma:

Proof of Theorem 20 from Theorem 15. We argue by contradiction. Suppose
λ : Bn

≤k → {1,±2, . . . ,±n} is antipodal. We define λ′ : Bn → {1,±2, . . . ,±n}.
For (A,B) ∈ Bn, define λ′(A,B) = λ(A≤k, B≤k). The map λ′ is clearly
antipodal, so by Theorem 15, there are (A,B), (C,D) in Bn that are com-
plementary with respect to λ′. We claim that (A≤k, B≤k) and (C≤k, D≤k)
are k-complementary with respect to λ. By definition of λ′, λ(A≤k, B≤k) =
−λ(C≤k, D≤k), so it remains to show that (A≤k, B≤k) � (C≤k, D≤k). Since
C ∩D = ∅ and A ⊆ C and B ⊆ D, it follows that

C≤k ∩D≤k = A≤k ∩D≤k = A≤k ∩B≤k = B≤k ∩ C≤k = ∅.

Moreover, A ⊆ C implies that A≤k � C≤k. This is because

(A≤k ∪ C≤k)≤k = (A ∪ C)≤k = C≤k.

The same argument shows that B≤k � D≤k.

Definition 21. Let 1 < 2k ≤ n. The truncated octahedral ball Bn
k is:

Bn
k :=

{

(A,B) : A,B ∈

(

n

k

)

∪ {∅}, A ∩B = ∅, and (A,B) 6= (∅, ∅)
}

.
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The fact that (∅, ∅) is excluded from Bn
k is only a technical convenience. Corre-

sponding to this, the value “1” will now be omitted from the range of λ. We say
that λ : Bn

k → {±2k . . . ,±n} is antipodal provided that λ(A,B) = −λ(B,A) for
all (A,B) ∈ Bn

k .

Theorem 22 (Truncated Tucker lemma on Bn
k ). Let n ≥ 2k > 1. If λ :

Bn
k → {±2k . . . ,±n} is antipodal, then there are two elements in Bn

k that are
k-complementary.

Proof of Theorem 22 from Theorem 20. Suppose that λ : Bn
k → {±2k, . . . ,±n}

is antipodal; we must show it has k-complementary pairs. We extend λ to an
anitipodal λ′ : Bn

≤k → {1,±2, · · ·±n}. Let “≤” be any total order on
(

n
≤k

)

that

extends �. Let (A,B) ∈ Bn
≤k. The value of λ′(A,B) is defined by cases:

Case 1: If |A| < k and |B| < k, then define

λ′(A,B) =

{

1 + |A| + |B| if A ≤ B

−(1 + |A| + |B|) if B < A.

Case 2: If max{|A|, |B|} = k and min{|A|, |B|} < k, then define

λ′(A,B) =

{

λ(A, ∅) if |B| < k

λ(∅, B) if |A| < k.

Case 3: If |A| = |B| = k, then define λ′(A,B) = λ(A,B).

The map λ′ is clearly antipodal; hence by Theorem 20 there are (A1, B1) �
(A2, B2) that are k-complementary with respect to λ′, so λ′(A1, B1) = −λ′(A2, B2).
We prove this gives rise to k-complementary pairs for λ. The argument splits
into cases depending on how λ′ assigns values to (A1, B1) and (A2, B2).

Suppose that λ′(A1, B1) is assigned by case 1, then λ′(A2, B2) must also be
assigned by case 1, since case 1 only assigns values to {1,±2, . . . ,±(2k − 1)},
and cases 2 and 3 only assign values to {±2k, . . . ,±n}. Also, A1 � A2 and
B1 � B2 where at least one of these precedences is proper; this implies that
|A1| ≤ |A2| and |B1| ≤ |B2| where at least one of these inequalities must be
proper. Thus 1 + |A1| + |B1| < 1 + |A2| + |B2|, so λ′(A1, B1) and λ′(A2, B2)
differ in absolute value. This contradicts the fact that (A1, B1) and (A2, B2)
are k-complementary w.r.t. λ′. Thus it is impossible that both λ′(A1, B1) and
λ′(A2, B2) are assigned by case 1.

Suppose λ′(A1, B1) and λ′(A2, B2) are both assigned by case 2. Without
loss of generality |B1| < k, which implies |A1| = |A2| = k and |B2| < k. This
implies that λ(A1, ∅) = −λ(A2, ∅). But (A1, ∅) � (A2, ∅), so these form a k-
complementary pair for λ.

Suppose λ′(A1, B1) is assigned by case 2 and λ′(A2, B2) is assigned by case 3.
Without loss of generality |B1| < k. This implies that λ(A1, ∅) = −λ(A2, B2).
But (A1, ∅) � (A2, B2), so these form a k-complementary pair for λ.
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Suppose λ′(A1, B1) and λ′(A2, B2) are both assigned by case 3. Thus λ(A1, B1) =
−λ(A2, B2), so these form a k-complementary pair for λ.

Suppose λ′(A1, B1) is assigned by case 3 and λ′(A2, B2) is assigned by case 2.
This is impossible because |A1| = |B1| = k, and A1 � A2, B1 � B2, so |B1| =
|B2| = k.

For fixed parameter k, the two truncated Tucker lemmas have polynomial
size propositional translations. We will only describe the translation of the
truncated Tucker lemma on Bn

k . A similar translation works for the truncated
Tucker lemma on Bn

≤k. For each (A,B) ∈ Bn
k , and for each i ∈ {±2k, . . . ,±n},

let pA,B,i be a propositional variable with the intended meaning that pA,B,i is
true when λ(A,B) = i. The following formula Ant(~p ) states that the map is
total and antipodal:

∧

(A,B)∈Bn

k

∨

i∈{±2k,...,±n}

(pA,B,i ∧ pB,A,−i).

The following formula Comp(~p ) states that there exists two elements in Bn
k that

are k-complementary:

∨

(A1,B1),(A2,B2)∈Bn

k
,

(A1,B1)�(A2,B2)
i∈{±2k,...,±n}

(pA1,B1,i ∧ pA2,B2,−i) .

The truncated Tucker tautology Tuckernk is defined to be Ant(~p ) → Comp(~p ).
(We could add an additional hypothesis, that for each A,B there is at most
one i such that pA,B,i, but this is not needed for the Tucker tautologies to be
valid.) There are < n2k members (A,B) in Bn

k . Hence, for fixed k, there are
only polynomially many variables pA,B,i, and the truncated Tucker tautologies
have size polynomially bounded by n. On the other hand, the propositional
translation of the octahedral Tucker lemma requires an exponential number of
propositional variables in n, since the cardinality of Bn is exponential in n.

The proof of Theorem 22 from Theorem 20 can be readily translated into
polynomial size Frege proofs. That is, if propositional translations of the trun-
cated Tucker lemma on Bn

≤k are given as hypotheses, there are polynomial size
Frege proofs of the polynomial translations of the truncated Tucker lemma on
Bn
k . Section 5.1 will prove a converse: the truncated Tucker lemma on Bn

≤k

follows from the truncated Tucker lemma on Bn+2k−1
k by polynomial size Frege

proofs.
We next show that the Kneser-Lovász theorem (Theorem 1) follows from

the truncated Tucker lemma on Bn
k .

Proof of Theorem 1 from Theorem 22. Suppose for sake of contradiction that
c :
(

n
k

)

→ {2k, . . . , n} is an (n−2k+1)-coloring of
(

n
k

)

. Let ≤ be a total order on
(

n
k

)

∪ {∅} that refines the partial order �. Let (A,B) ∈ Bn
k . Define λ(A,B) as
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follows:

λ(A,B) =

{

c(A) if A > B

−c(B) if B > A

The map λ is clearly antipodal, so by Theorem 22, there is a pair (A1, B1) �
(A2, B2) ∈ Bn

k that is k-complementary. Since λ must assign (A1, B1) and
(A2, B2) opposite signs, it must be that either A1 < B1 ≤ B2 < A2 or B1 <
A1 ≤ A2 < B2. In the former case, c(B1) = c(A2) and in the latter case
c(A1) = c(B2). Since B1 ∩ A2 = A1 ∩ B2 = ∅, in either case we have a
contradiction.

The above proof of the Kneser-Lovász theorem from the truncated Tucker
lemma can be readily translated into polynomial size constant depth Frege
proofs.

Question 23. Do the propositional translations of the truncated Tucker lemma
have short (extended) Frege proofs?

5.1. Equivalence Between the Truncated Tucker Lemmas

Theorem 24. The truncated Tucker lemma on Bn
k implies the truncated Tucker

lemma on Bn−2k+1
≤k .

Proof. Let 1 < 2k ≤ n. Suppose that λ : Bn−2k+1
≤k → {1,±2, . . . ,±(n− 2k+ 1)}

is an antipodal map. By renaming the range elements, we can instead write
λ : Bn−2k+1

≤k → {1,±2k, . . . ,±(n− 1)}. We will define λ′ : Bn
k → {±2k, . . . ,±n}

as follows: For (A,B) ∈ Bn
k ,

λ′(A,B) =











λ(A∗, B∗) if A 6= ∅ and B 6= ∅

n if A = ∅

−n if B = ∅

where A∗ = {a ∈ A : a ≤ n − 2k + 1}. For (A,B) ∈ Bn
k , we clearly have

(A∗, B∗) ∈ Bn−2k+1
≤k . We also claim that λ′(A,B) is never equal to 1. To prove

this, suppose λ′(A,B) = 1. By the definition of λ′, both A and B are nonempty.
Thus λ(A∗, B∗) = 1 and consequently A∗ = B∗ = ∅. This means that A and B
are both subsets of {n−2k+2, . . . , n}, a set of cardinality 2k − 1. But this
contradicts A ∩B = ∅ and |A| = |B| = k.

The map λ′ is clearly antipodal by definition. By the truncated Tucker
lemma on Bn

k , there are pairs (A1, B1) � (A2, B2) ∈ Bn
k such that λ′(A1, B1) =

−λ′(A2, B2). We claim that λ(A1, B1) 6= n. Otherwise, λ(A2, B2) = −n, so
A1 = ∅ and B2 = ∅, and this contradicts (A1, B1) � (A2, B2). Similarly,
λ(A1, B1) 6= −n. It follows that all four sets A1, B1, A2, B2 are nonempty.
Therefore, by the choice of (A1, B1) and (A2, B2),

λ(A∗
1, B

∗
1) = −λ(A∗

2, B
∗
2).
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We now claim that (A∗
1, B

∗
1) � (A∗

2, B
∗
2). Since A1 ∩ B2 = ∅ and A2 ∩ B1 = ∅,

we have A∗
1 ∩B∗

2 = ∅ and A∗
2 ∩B∗

1 = ∅. Also, since A1 � A2,

(A1 ∪ A2)≤k = A2

From this we obtain

(A∗
1 ∪ A∗

2)≤k = ((A1 ∪ A2)≤k)∗ = A∗
2.

Thus A∗
1 � A∗

2. The same argument shows B∗
1 � B∗

2 . This establishes that
(A∗

1, B
∗
1 ) and (A∗

2, B
∗
2) are k-complementary with respect to λ.

Since the proofs of the equivalence of the two truncated Tucker lemmas can
be translated into polynomial size Frege proofs, we have established:

Corollary 25. The propositional translations of the truncated Tucker lemma
on Bn

k have (quasi-)polynomial size Frege proofs if and only if the same holds
for the truncated Tucker lemma on Bn

≤k.

6. Short eF Proofs of the Truncated Tucker Lemma, k = 1 Case

In this section we prove the k = 1 case of the truncated Tucker lemma. The
argument is readily formalizable as polynomial size extended Frege proofs. Note
that when k = 1 the two versions of the truncated Tucker lemma are equivalent.

Recall the partial order � of Definition 17. When k = 1, this partial order
is a total order where {i} � {j} iff i ≥ j. Thus,

∅ � {n} � {n− 1} � · · · � {2} � {1}

is a complete description of � on
(

n
1

)

.

Theorem 26. The k = 1 case of the truncated Tucker lemma, Tuckern1 , has
polynomial size extended Frege proofs.

The polynomial size extended Frege proofs of the k = 1 case of the truncated
Tucker lemma are formed by formalizing the argument of Lemma 27 below.

Lemma 27. Let λ : Bn
1 → {±2, . . . ,±n} be an antipodal map with no 1-

complementary pairs. Then there is an antipodal map λ′ : Bn−1
1 → {±2, . . . ,±(n−1)}

with no 1-complementary pairs.

Proof. Let λ : Bn
1 → {±2, . . . ,±n} be an antipodal map with no 1-complementary

pairs, and let ℓ = λ({n}, ∅). We will define an antipodal map λ′ : Bn−1
1 →

{±2, . . . ,±n} \ {±ℓ}. Let (A,B) ∈ Bn−1
1 . The value λ′(A,B) will be defined by

cases.

Case 1: If (A,B) ∈ Bn−1
1 with |A| = |B| = 1, then λ′(A,B) = λ(A,B).

Case 2: If (A, ∅) ∈ Bn−1
1 , then λ′(A, ∅) is defined by cases:
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Case 2a: If ℓ 6∈ {λ(X, ∅) : {n− 1} � X � A}, then define λ′(A, ∅) to be
λ(A, ∅).

Case 2b: If case 2a does not apply, then define λ′(A, ∅) to be λ(A, {n}).

Case 3: If (∅, B) ∈ Bn−1
1 , then λ′(∅, B) is defined to be −λ′(B, ∅), where λ′(B, ∅)

has already been defined by case 2.

The map λ′ is antipodal because λ is.

Claim 28. The map λ′ never maps to ℓ or −ℓ.

The argument splits into cases.

• Suppose (A,B) ∈ Bn−1
1 , with |A| = |B| = 1. Then λ′(A,B) = λ(A,B).

Since |A| = 1, {n} � A, and since B ∈
(

n−1
1

)

, it follows that {n} ∩ B =
∅. Additionally ∅ � B, and ∅ ∩ A = ∅. Therefore ({n}, ∅) � (A,B).
Since λ has no 1-complementary pairs, and λ({n}, ∅) = ℓ, it follows that
λ(A,B) 6= −ℓ. Therefore λ′(A,B) 6= −ℓ. Because λ′ is antipodal, this
also proves λ′(A,B) 6= ℓ.

• Suppose (A, ∅) ∈ Bn−1
1 , and λ′(A, ∅) is assigned by case 2a. For case

2a to apply, it must be that λ(A, ∅) 6= ℓ. Furthermore, λ({n}, ∅) = ℓ,
({n}, ∅) � (A, ∅), and the fact that λ has no 1-complementary pairs imply
that λ(A, ∅) 6= −ℓ. Therefore, λ′(A, ∅) = λ(A, ∅) 6= ±ℓ.

• Suppose (A, ∅) ∈ Bn−1
1 , and λ′(A, ∅) is assigned by case 2b. This implies

that there is some X ∈
(

n−1
1

)

with {n−1} � X � A such that λ(X, ∅) = ℓ.
Note that {n−1} � X implies that {n}∩X = ∅. Since (X, ∅) � (A, {n}), it
follows that λ(A, {n}) 6= −ℓ. Since λ(∅, {n}) = −ℓ and (∅, {n}) � (A, {n})
it follows that λ(A, {n}) 6= ℓ. Thus λ′(A, ∅) = λ(A, {n}) 6= ±ℓ.

• Suppose (∅, B) ∈ Bn−1
1 . Then λ′(∅, B) = −λ′(B, ∅), and we have shown

above that λ′(B, ∅) 6= ±ℓ.

This completes the proof of Claim 28.

Claim 29. The map λ′ has no 1-complementary pairs.

We show the contrapositive. The argument splits into cases.

• Suppose (A1, B1) � (A2, B2) ∈ Bn−1
1 with |A1| = |B1| = |A2| = |B2| = 1.

Then λ′(A1, B1) and λ′(A2, B2) both are assigned by case 1. Thus,

λ(A1, B1) = λ′(A1, B1) = −λ′(A2, B2) = −λ(A2, B2)

Therefore λ has a 1-complementary pair.

• Suppose (A1, ∅) � (A2, B2) ∈ Bn−1
1 , with λ′(A1, ∅) assigned by case 2a

and λ′(A2, B2) assigned by case 1. So λ(A1, ∅) = −λ(A2, B2). Thus λ has
a 1-complementary pair.
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• Suppose (A1, ∅) � (A2, B2) ∈ Bn−1
1 , with λ′(A1, ∅) assigned by case 2b

and λ′(A2, B2) assigned by case 1. So λ(A1, {n}) = −λ(A2, B2). Since
(A1, {n}) � (A2, B2), it follows that λ has a 1-complementary pair.

• Suppose (A1, ∅) � (A2, ∅) ∈ Bn−1
1 , with λ′(A1, ∅) and λ′(A2, ∅) both

assigned by case 2a. So then λ(A1, ∅) = −λ(A2, ∅), hence λ has a 1-
complementary pair.

• Suppose (A1, ∅) � (A2, ∅) ∈ Bn−1
1 , with λ′(A1, ∅) and λ′(A2, ∅) both as-

signed by case 2b. So then λ(A1, {n}) = −λ(A2, {n}), hence λ has a
1-complementary pair.

• Suppose (A1, ∅) � (A2, ∅) ∈ Bn−1
1 , with λ′(A1, ∅) assigned by case 2a and

λ′(A2, ∅) assigned by case 2b. Thus,

λ(A1, ∅) = λ′(A1, B1) = −λ′(A2, B2) = −λ(A2, {n})

and since (A1, ∅) � (A2, {n}), it follows that λ has a 1-complementary
pair.

• Suppose (A1, B1) � (A2, ∅) ∈ Bn−1
1 where |A1| = |B1| = 1. This impos-

sible, because B1 � ∅, and no set of cardinality 1 precedes the emptyset
under the partial order �.

• Suppose (A1, ∅) � (A2, ∅) ∈ Bn−1
1 , and λ′(A1, ∅) is assigned by case 2b

and λ′(A2, ∅) is assigned by case 2a. Then there exists an X ∈
(

n−1
1

)

such
that {n− 1} � X � A1 and λ(X, ∅) = ℓ. Since A1 � A2, it follows that
{n− 1} � X � A2. This implies that λ′(A2, ∅) is not assigned by case 2a,
so this case is impossible.

• Suppose (A1, ∅) � (∅, B2) ∈ Bn−1
1 . This is impossible, because A1 � ∅

implies that A1 = ∅, but (∅, ∅) /∈ Bn−1
1 .

• The remaining cases involving case 3 of the definition of λ′ follow from
above, using the fact that if (A1, B1) � (A2, B2) form a 1-complementary
pair, then (B1, A1) � (B2, A2) also form a 1-complementary pair.

This completes the proof of Claim 29. Claims 28 and 29 suffice to prove
Lemma 27.

We are now ready to sketch the proof of polynomial size extended Frege
proofs of Tuckern1 .

Proof of Theorem 26. To prove Tuckern1 (~p), where ~p is a set of propositional
variables encoding a map λ, we introduce by extension new variables ~p ′ to
encode λ′ as in Lemma 27. It is straightforward to see that the definition of
λ′ from λ can be carried out by polynomial size formulas. Furthermore, it is
straightforward to argue that there are polynomial size proofs of ¬Tuckern1 (~p ) →
¬Tuckern−1

1 (~p ′) by formalizing the argument of Lemma 27. This process is
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repeated, introducing new propositional variables each round, until the proof
reaches ¬Tucker21(~p ′′). From here, the proof concludes with a constant size
proof of Tucker21(~p ′′).
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