
2-D Tucker is PPA complete
Preliminary version — Comments appreciated.

James Aisenberg∗

Dept. of Mathematics

Univ. of California, San Diego

La Jolla, CA 92093-0112, USA

jaisenberg@ucsd.edu

Maria Luisa Bonet†

Computer Science Department

Universidad Politécnica de Cataluña

Barcelona, Spain

bonet@cs.upc.edu

Sam Buss‡

Dept. of Mathematics

Univ. of California, San Diego

La Jolla, CA 92093-0112, USA

sbuss@ucsd.edu

October 4, 2015

Abstract

The 2-D Tucker search problem is shown to be PPA-hard under
many-one reductions; therefore it is complete for PPA. The same holds
for k-D Tucker for all k ≥ 2. This corrects a claim in the literature
that the Tucker search problem is in PPAD.

1 Introduction

PPA and PPAD are classes of total NP search problems introduced by Pa-
padimitriou [19]. The class PPA consists of the search problems reducible
to the parity principle for undirected graphs, whereas the class PPAD con-
sists of those reducible to the parity principle for directed graphs. The class
PPAD has many complete problems from diverse areas of mathematics:
Brouwer’s theorem and Sperner’s lemma in topology [19], Nash equilibria

∗Supported in part by NSF grants DMS-1101228 and CCF-1213151.
†Supported in part by grant TIN2013-48031-C4-1.
‡Supported in part by NSF grants DMS-1101228 and CCF-1213151, and Simons Foun-

dation award 306202.

1

in game theory [7, 5, 6], and others. As discussed by [19, 8], several natural
problems are known to be in PPA but not known to be in PPAD. One exam-
ple is the Smith theorem about Hamiltonian cycles in cubic graphs [20]. An-
other is the integer factoring problem [4, 15]. However, few natural problems
have been shown to be PPA-complete. By definition, the canonical prob-
lem Leaf is PPA-complete. For natural topological problems, it has been
shown that Sperner’s lemma and Tucker’s lemma on two-dimensional non-
orientable manifolds can be PPA-complete [14, 13, 8]. In addition, Deng et
al. [8] show they are PPA-complete in the Möbius band, in two-dimensional
projective space, and in the Klein bottle.

In this paper we show that the 2-D Tucker search problem is PPA-
complete. This is the usual Tucker search problem in Euclidean space as
defined by Papadimitriou [19]. This was erroneously claimed to be in PPAD
by [19]. That paper used an argument by Freund and Todd [12] (a similar
argument is given by [17]) to show that Tucker is in PPA; it was then
claimed that directionality techniques of Freund [10, 11] can put Tucker

into PPAD. This last part is incorrect, as is discussed more in Section 3.
However, the argument in [19] that Tucker is in PPA is correct; likewise,
the proofs that Sperner and Brouwer are PPAD-complete are also cor-
rect.

The 3-D Tucker search problem was shown in [19] to be hard for PPAD.
Subsequently, it was shown that 2-D Tucker is PPAD-hard [18]. This was
extended by [9] to show that k-D Tucker is PPAD-hard for all fixed k ≥ 2.
We improve these constructions to establish the following:

Theorem 1. 2-D Tucker is PPA-complete under many-one reductions.
The same holds for k-D Tucker for all k ≥ 2.

It follows that 2-D Tucker is in PPAD if and only if PPAD = PPA. In
the Type II (oracle) setting, it is known that PPAD 6= PPA [3]. However,
it is open whether these classes are equal in the non-relativized setting.

We write Borsuk–Ulam for the search problem associated with the
Bursuk–Ulam theorem. Since Borsuk–Ulam and Tucker are many-one
reducible to each other [17, 19], another consequence of Theorem 1 is:

Corollary 2. Borsuk–Ulam is PPA-complete.

The search problems Necklace Splitting and Discrete Ham Sand-

wich are known to be many-one reducible to Tucker [17, 19]. From this,
we know they are in PPA; it is now open whether they are in PPAD:

2

Open Question 3. Is Necklace Splitting in PPAD, or PPA-complete?
Is Discrete Ham Sandwich in PPAD, or PPA-complete? Are they PPAD-
hard?

The octahedral Tucker lemma is a special case of the Tucker lemma in
which the dimension k varies and the triangulation is the first barycentric
subdivision of the k-dimensional hypercube. Thus, the size of the triangu-
lation cannot be increased without also increasing the dimension (and the
number of available labels). For the precise statement of the octahedral
Tucker lemma, see [16, 21] or [1]. As a special case of Tucker, the Octa-

hedral Tucker search problem is known from [19] to be in PPA. This
leaves open the following (also asked by [18]):

Open Question 4. Is Octahedral Tucker PPA-complete? Is it in
PPAD? Is it PPAD-hard?

As already mentioned, it is open whether problems such as integer fac-
toring, or Smith’s theorem on cubic graphs give PPA-complete TFNP search
problems. Papadimitriou [19] and Grigni [14] mention the Smith problem
as a candidate for a PPA-complete problem that does not have a Turing
machine explicitly encoded in its input.

1.1 Definitions

We now briefly review the search problems discussed in this paper. We first
state the general form of Tucker’s lemma, and then give the “rectangular”
2-D version that we will actually work with. For more information about
Tucker’s lemma and triangulations, see [17]. Let Bk ⊂ R

k be the closed
k-dimensional ball, and Sk−1 be its boundary. A triangulation T of Bk is
antipodally symmetric if it is antipodally symmetric on the boundary —
that is, if each simplex σ ∈ T ∩ Sk−1 has the property that −σ ∈ T , where
the negation of a simplex is the negation of each of its vertices. The set
V (T) of vertices of T is the set of 0-simplices in T .

Theorem 5 (Tucker’s lemma). Let T be an antipodally symmetric trian-
gulation of Bk, and let λ : V (T) → {±1, . . . ,±k} be a function with the
property that if v ∈ Sk−1, then λ(v) = −λ(−v). Then there exists a 1-
simplex {v1, v2} in T with λ(v1) = −λ(v2).

To simplify our constructions, we will work with a rectangular 2-D ver-
sion of Tucker’s lemma, following Pálvölgyi [18]. For m a natural number,
define [m] = {1, . . . ,m}.

3

Definition 6. Let m ≥ 2. An instance of the 2-D Tucker search problem
is a function λ : [m]× [m] → {±1,±2} with the property that for 1 ≤ i, j ≤
m, λ(i, 1) = −λ(m−i+1,m) and λ(1, j) = −λ(m,m−j+1). A solution to
such an instance of 2-D Tucker is a pair of vertices (x1, y1), (x2, y2) with
|x1 − x2| ≤ 1 and |y1 − y2| ≤ 1 such that λ(x1, y1) = −λ(x2, y2). A solution
(x1, y1), (x2, y2) is called a complementary pair.

Two points (i, 1) and (m−i+1,m) are called antipodal. Likewise, (1, j)
and (m,m−j+1) are antipodal.

The m × m rectangular grid can be triangulated by the addition of
diagonals, so it is clear that the existence of a solution to the 2-D Tucker

search problem is guaranteed by Tucker’s lemma.

Definition 7. An instance of the Leaf search problem is an undirected
graph G where each node has degree at most 2, and there is a given (“stan-
dard”) leaf ℓ with degree 1. A solution to Leaf is any other node of G with
degree 1.

The class PPA is the set of total NP search problems reducible to Leaf

under polynomial time many-one reductions [19]. As is usual, we envision
2-D Tucker and Leaf as Type II search problems in the sense of [3]. This
means that instances of the search problems are exponentially big and are
given by oracles: For 2-D Tucker, the oracle specifies the values of the
function λ. For Leaf, the oracle specifies the neighbors of any given node.
In the Type II setting, it is known that PPAD is a proper subset of PPA.

2 Reduction from Leaf

We now show that 2-D Tucker is PPA-hard. Since 2-D Tucker is in
PPA, this suffices to establish Theorem 1.

Theorem 8. 2-D Tucker is PPA-hard under many-one reductions.

Proof. We give a reduction from Leaf. Let G be an instance of Leaf. We
will describe λ, a labeling of the m×m grid with labels {±1,±2}. We will
take m = 4 · 13 · |G|, where |G| is the number of nodes in G. Our task is to
define the values of λ(i, j) for (i, j) a point on the m×m rectangular grid.
The domain of λ will be referred to as the grid, and points (i, j) on the grid
will be called grid nodes.

The reduction is similar to constructions of Papadimitriou [19] and es-
pecially Pálvölgyi [18]. The vast majority of the grid will be labelled with

4

1’s (this is called the “environment”). The remainder of the grid will be
filled with “wires”: a wire consists of a strip of grid nodes of width three;
the central “conductor” has label -1 and “insulators” on either side have
labels ±2. Wires are always directional. When travelling in the forward
direction, the insulator on the left always has label 2, and the insulator on
the right always has label −2.

We generally avoid exposing the conductor to the environment, as this
would create complementary pairs between the conductor (-1) and the envi-
ronment (1). We will route the wire in such a way that regions corresponding
to solutions of G are the only wires exposed to the environment.

The grid is partitioned into 13 × 13 squares called tiles. A tile on the
boundary is called a boundary tile. Two boundary tiles are antipodal if one
of them contains some grid nodes antipodal to some grid nodes in the other.
Specifically, this happens when the right column (resp., top row) of nodes
in one tile are antipodal to the left column (resp., bottom row) of nodes in
the other tile. In this case, since λ must be antipodal, the λ values of the
nodes in the right column (resp., top row) of the first tile are the negations
of the λ values of the nodes in the left column (resp., bottow row) in reverse
order.

The schematic representation and its realization on the grid of a hori-
zontal wire are shown in Figure 1. In figures representing the grid, 1’s are
indicated with blank space. The tile for the horizontal wire in the opposite
direction can be obtained from the tile in Figure 1 by rotating 180◦, or al-
ternatively by reflecting about the horizontal axis. The tiles for the vertical
wires can be obtained by rotating the horizontal ones 90◦. Our tiles will
typically have the conductor meet the edge of the tile at row 7 or column 7.

Notice that two wires can be in adjacent tiles without creating a com-
plementary pair as long as they either are parallel or are joined head to
tail. However, wires joined head to head or tail to tail do create comple-
mentary pairs, because the insulator labelled 2 is adjacent to the insulator
labelled −2.

Recall that one node of G is given as the standard leaf ℓ, a degree 1
node. All other nodes x, y, . . . of G have degree ≤ 2; those of degree 1 are
solutions to G as an instance of Leaf. Each node of G other than ℓ is
assigned a region in the grid with two exposed edges: the inbound edge and
the outbound edge, as pictured in Figure 2(a). The idea for our construction
is that, when x has degree 2, the two exposed edges of x are wired to the
edges of the two neighbors of x. If x has degree 0, its inbound and outbound
edges are connected to each other. If x has only one neighbor, then one edge
of x is exposed to the environment, creating a complementary pair. This is

5

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13
1 1
2 2
3 3
4 4
5 5
6 2 2 2 2 2 2 2 2 2 2 2 2 2 6
7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 7
8 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 8
9 9
10 10
11 11
12 12
13 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Realization

Figure 1: A horizontal wire. (a) shows the schematic representation. (b)
shows its realization with values of the labelling λ. The center of the wire
has labels −1; the insulator labels 2 are on the left-hand side of the wire
as it is traversed in its forward direction. The blank space represents grid
nodes with label values of 1.

x

y

(a) Two nodes x and y

x

y

(b) Connection of outbound to inbound

Figure 2: Two nodes and their connection. (a) Each node of G is assigned
a region in the grid with an inbound edge and an outbound edge. (b) The
schematic representation of connecting the outbound edge of x to the in-
bound edge of y.

6

x

y

(a) Incorrect connection

x

y

⋆

⋆

(b) Correct connection

Figure 3: The outbound edge of x is connected to the outbound edge of y.
When the boundary is crossed, the wire direction is reversed. The two
locations in (b) marked with ⋆ are antipodal on the boundary.

the only way that a complementary pair is formed; thus any complementary
pair for λ corresponds to a solution to the instance G of Leaf.

Sometimes we are able to attach an outbound edge of a node x to an
inbound edge of a neighboring node y. This is pictured schematically in Fig-
ure 2(a). However, since G is undirected, we will sometimes need to connect
an outbound edge of x to an outbound edge of y. As shown in Figure 3(a),
this creates unwanted complementary pairs. We thus use instead the con-
struction shown in Figure 3(b). The outbound edge of x is routed “across
the boundary”, where it reverses direction (we shall see in Figure 5 how the
reversal works), and then continues on to meet the outbound edge of y. A
similar construction works to join an inbound edge of x to an inbound edge
of y.

The rest of the proof shows how to apply the ideas behind the schematic
representations shown in Figures 2(b) and 3(b) to define the labelling λ. For
this, we must describe how the boundary is labelled, how a wire can cross
the boundary and reverse direction, how two wires can cross each other in
the grid, and the global strategy for routing wires.

First, we consider how to label the boundary of the grid, while preserv-
ing the antipodal property of λ. The underlying construction is shown in
Figure 4; however it will need modification for wires that cross the boundary

7

(as in Figures 3(b), 5 and 7). The boundary is represented by a double line
in the figures. As shown in Figure 4, the outbound edge for the standard
leaf ℓ emerges out the lower-left corner of the grid. The standard leaf, being
of degree 1 in G, has only an outbound edge and no inbound edge.

Let’s describe the details of how a wire crosses the boundary and reverses
direction. For this, refer first to Figures 3(b) and 5. There is a wire pointing
to the right exiting the right boundary, and a wire pointing to the left exiting
the left boundary. Recall that blank space indicates label values 1; thus, by
examination, the antipodal property of λ holds on the boundary.

Figure 5 is “not-to-scale”. The wire exiting to the left in Figure 5 is
shown again inside its 13×13 tile in Figure 6. Note that it jogs downward two
rows. This is to maintain the convention that the conductor of a wire, which
is labelled −1, is in the middle row of its tile. The ⋆’s in Figure 5(b) mark
the middle rows of antipodal tiles, thus antipodal boundary points of the
grid. The left exiting wire, exiting from the antipodal tile, has label value 1
(not −1) on the middle row in the leftmost column. Figure 6 shows how
this is implemented inside a 13× 13 tile. The right column of Figure 6 has
−1 in its middle position, so as to correctly match up with the continuation
of the wire into the adjacent tile.

A similar construction allows wires to cross the boundary in the opposite
direction. This is shown in Figures 7 and 8.

Since we are routing wires in a two-dimensional grid, wires will need to
“cross each other”. For this, following [18], we use the “avoided crossing”
construction shown in Figure 9. We also need to let wires turn at right
angles; this is very simple and shown in Figure 10.

We will now describe the global layout of the grid. Fix a total order <
on the nodes of G, with the standard leaf ℓ as the least element. The nodes
are arranged vertically in the lower-left quadrant of the grid according to the
total order. Each inbound and outbound edge of each node has a horizontal
lane that extends to the right boundary. At the tile antipodal to where the
lane reaches the boundary, a new lane continues now in the upper half of the
grid. Each inbound and outbound edge also has a vertical lane that extends
from the top boundary to the bottom boundary. The layout of the grid for
a graph with three nodes is shown in Figure 11.

We will now describe how nodes are connected together. When x and y

are neighbors in G, we will connect one edge of x in the grid with one edge
of y in the grid. For this, we select either the outbound or inbound edge
of x and either the outbound or inbound edge of y. This works even though
G is undirected.

8

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1
2 -1 2 2 2 2 2 2 2 2 2 2
3 -1 2 1 3
4 -1 2 1 4
5 -1 2 1 5
6 -1 2 1 6
7 -1 2 2 1 7
8 -1 -1 -1 1 8
9 -2 -2 -2 1 9
10 1 1 1 1 1 1 1 1 1 1 10

1 2 3 4 5 6 7 8 9 10

(b) Realization (not to scale)

Figure 4: The boundary with no crossings

1. If x is a node in G with two neighbors y and z, with y < z, then the
outbound edge of x connects to y and the inbound edge of x connects
to z.

2. If x is a node with no neighbors, then the outbound edge of x connects
to the inbound edge of x.

3. If x is the standard leaf ℓ, then the outbound edge of x connects to its
one neighbor y. In this case, x has no inbound edge.

4. If x is a node that is not the standard leaf with only one neighbor y,
then the outbound edge of x connects to y, and the inbound edge of x
is exposed to the environment. This will create a complementary pair
at x’s inbound edge as desired.

Suppose that x and y are neighbors in G, with x < y. We will describe
how x and y are connected together:

1. If x’s outbound edge connects to y’s inbound edge, then we add a
wire that takes the following route: x’s outbound edge, x’s horizontal
outbound lane, x’s vertical outbound lane, y’s horizontal inbound lane,
and finally y’s inbound edge.

2. If y’s outbound edge connects to x’s inbound edge, then we add a
wire that takes the following route: y’s outbound edge, y’s horizontal
outbound lane, x’s vertical inbound lane, x’s horizontal inbound lane,
and finally x’s inbound edge.

9

⋆

⋆

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 -1 1
2 -1 2
3 -1 2 1 3
4 -1 2 1 4
5 -1 2 1 5
6 -1 2 1 6
7 2 2 -2 -2 -2 -2 -2 1 7

⋆ 8 -2 -1 -1 -1 -1 1 8
9 -2 -2 -2 -2 -2 -1 2 2 2 1 9
10 -1 -1 -1 -1 -1 -1 2 1 10
11 -1 2 2 2 2 2 2 1 11
12 -1 2 2 2 2 2 2 2 2 12
13 -1 2 -1 -1 -1 -1 -1 -1 -1 13 ⋆

14 -1 2 -2 -2 -2 -2 -2 -2 -2 14
15 -1 2 1 15
16 -1 2 1 16
17 -1 2 2 2 2 1 17
18 -1 -1 -1 -1 1 1 18
19 -2 -2 -2 -2 -2 1 19
20 1 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) Realization (not to scale)

Figure 5: A wire crossing the boundary for joining two outbound edges.

10

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13
1 -1 2 1
2 -1 2 2
3 -1 2 3
4 -1 2 4
5 -1 2 5
6 2 2 -2 -2 -2 -2 -2 -2 -2 -2 6
7 -2 -1 -1 -1 -1 -1 -1 -1 7
8 -2 -2 -2 -2 -2 -2 -1 2 2 2 2 2 2 8
9 -1 -1 -1 -1 -1 -1 -1 2 9
10 -1 2 2 2 2 2 2 2 10
11 -1 2 11
12 -1 2 12
13 -1 2 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Realization

Figure 6: Boundary Crossing

3. If x’s and y’s outbound edges connect together, then half of the route
is as follows: start at x’s outbound edge, continue along x’s horizon-
tal outbound edge to the boundary. The other half of the route is as
follows: start at y’s outbound edge, continue along y’s horizontal out-
bound lane to x’s vertical outbound lane. Follow x’s vertical outbound
lane up to x’s reflected outbound horizontal lane. Continue along x’s
reflected outbound horizontal lane to the boundary.

4. If x’s and y’s inbound edges are connected together, then one path
originates from the boundary at x’s horizontal inbound lane into x’s
inbound edge. The other path originates at the antipodal boundary
point, travels along x’s reflected horizontal inbound path to x’s ver-
tical inbound lane, down to y’s horizontal inbound lane, and into y’s
inbound edge.

If x is a node of G with no neighbors, then we must connect the outbound
edge of x to the inbound edge of x. This is done by the following route:
x’s outbound edge to x’s horizontal outbound lane, to x’s vertical outbound
lane, to x’s horizontal inbound lane, to x’s inbound edge.

The paths formed by the above procedure can cross each: if so, we use
the avoided crossing construction. By inspection, at most two paths can
intersect a given tile, and if so, they meet at right angles.

11

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 -1 1
2 -1 2
3 -1 2 1 3
4 -1 2 1 4
5 -1 2 2 2 2 2 2 2 2 1 5
6 -1 -1 -1 -1 -1 -1 -1 -1 2 1 6
7 -2 -2 -2 -2 -2 -2 -2 -1 2 2 2 1 7

⋆ 8 -2 -1 -1 -1 -1 1 8
9 2 2 -2 -2 -2 -2 -2 1 9
10 -1 2 1 10
11 -1 2 1 11
12 -1 2 -2 -2 -2 -2 -2 -2 -2 12
13 -1 2 -1 -1 -1 -1 -1 -1 -1 13 ⋆

14 -1 2 2 2 2 2 2 2 2 14
15 -1 2 1 15
16 -1 2 1 16
17 -1 2 2 2 2 1 17
18 -1 -1 -1 -1 1 1 18
19 -2 -2 -2 -2 -2 1 19
20 1 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) Realization (not to scale)

Figure 7: A wire crossing the boundary for joining two inbound edges.

12

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13
1 -1 2 1
2 -1 2 2
3 -1 2 3
4 -1 2 2 2 2 2 2 2 4
5 -1 -1 -1 -1 -1 -1 -1 2 5
6 -2 -2 -2 -2 -2 -2 -1 2 2 2 2 2 2 6
7 -2 -1 -1 -1 -1 -1 -1 -1 7
8 2 2 -2 -2 -2 -2 -2 -2 -2 -2 8
9 -1 2 9
10 -1 2 10
11 -1 2 11
12 -1 2 12
13 -1 2 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Realization

Figure 8: Boundary Crossing

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13
1 -2 -1 2 1
2 -2 -2 -2 -2 -2 -1 2 2
3 -2 -1 -1 -1 -1 -1 2 3
4 -2 -1 2 2 2 2 2 4
5 -2 -1 2 5
6 -2 -2 -1 2 -2 -2 -2 -2 6
7 -1 -1 -1 2 -2 -1 -1 -1 7
8 2 2 2 2 -2 -1 2 2 8
9 -2 -1 2 9
10 -2 -2 -2 -2 -2 -1 2 10
11 -2 -1 -1 -1 -1 -1 2 11
12 -2 -1 2 2 2 2 2 12
13 -2 -1 2 13

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Realization

Figure 9: An avoided crossing. This effectively allows wires to cross each
other.

13

(a) Schematic representation

1 2 3 4 5 6 7 8 9 10 11 12 13
1 1
2 2
3 3
4 4
5 5
6 2 2 2 2 2 2 2 2 6
7 2 -1 -1 -1 -1 -1 -1 -1 7
8 2 -1 -2 -2 -2 -2 -2 -2 8
9 2 -1 -2 9
10 2 -1 -2 10
11 2 -1 -2 11
12 2 -1 -2 12
13 2 -1 -2 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 10: A right angle

Claim 9. The only complementary pairs in the grid that are formed by the
above construction are at the inbound edge of a node x 6= ℓ of degree 1 in G.

Claim 9 is obvious by inspection of the construction. It follows that there
is a polynomial time method to find a degree 1 node x 6= ℓ in G, given the
location of a complementary pair for λ in the grid.

Claim 10. It is possible to decide in polynomial time which tile to place at
a given position in the grid using only constantly many oracle queries to G.

Claim 10 follows from the fact that a given tile can lie in at most two
“lanes”. To illustrate this, consider the following example. Consider a tile
that is at the intersection of x’s horizontal inbound lane, and y’s vertical
outbound lane. We query G about x’s neighbors which, say, are u1 < u2.
Thus the inbound edge of x connects to u2. We then query G about u2’s
neighbors in order to decide if x connects to u2 at u2’s inbound or outbound
edge. With this information, we can decide if the route taken on x’s hori-
zontal inbound lane passes through the tile, does not pass through this tile,
or turns at a right angle at the tile. We will similarly query G about y’s
two neighbors, say v1 < v2, and then query G about v1’s neighbors. This
is enough to determine what happens in the vertical lane. With all this
information, we can decide how to assign λ values for this tile, namely as
a blank tile, a horizontal wire, a vertical wire, a right angle, or an avoided
crossing. This is accomplished with only queries to only four nodes G.

This completes the proof of Theorem 8 and hence Theorem 1.

14

ℓout
ℓ

x

xin

xout

y

yin

yout

ℓ∗out

x∗
in

x∗out

y∗
in

y∗out

ℓout xin xout yin yout

Figure 11: Global layout of the grid.

15

3 Directionality in the proofs of Tucker’s lemma

Papadimitriou [19] gave a proof that Tucker is in PPA, and claimed that
a modification of the proof showed that Tucker is in PPAD. This section
discusses the problem with the latter claim. The arguments were based on
Freund [10, 11]. Those two papers define a notion of paths through the
simplicies of a triangulation, and show how to coherently orient such paths
using only information about the labelling λ in a local neighborhood. The
problem, however, is the oriented paths of Freund start and end at simplicies
on the boundary of the triangulation. The paths can be uniquely continued
across the boundary, but this reverses the orientation. The argument in [19]
that Tucker is in PPAD depended on joining these paths across boundaries
to form “long paths”. The change in orientation at the boundary means
there is no globally consistent orientation available. Therefore, the long
paths cannnot be treated as consistently directed, and the argument shows
only that Tucker is in PPA, not PPAD.

An example of the problem is demonstrated in Figure 12, which shows
two labellings λ on a triangulation. The two labellings differ only at the
vertex c. Also drawn is the long path starting from the origin that is fol-
lowed by the proof of Tucker’s lemma [17, 11]. Both long paths traverse
the adjacent triangles fgh and dgf ; however, the order in which the two
triangles are traversed is different in the two examples. The explanation for
why the order of these triangles flips between the two examples is that the
path crosses the boundary before arriving at the triangles in question in the
right instance, and the path does not cross the boundary before reaching
the triangles in the left instance.

Acknowledgements. We thank Christos Papadimitriou, Dömötör Pálvölgyi,
and Xiaotie Deng for comments on early drafts of this paper.

References

[1] James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crãciun, and
Gabriel Istrate. Short proofs of the Kneser-Lovász coloring principle.
Submitted for publication, journal version of [2], 2015.

[2] James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crãciun, and
Gabriel Istrate. Short proofs of the Kneser-Lovász coloring principle.
In Proc. 42th International Colloquium on Automata, Languages, and
Programming (ICALP’15), Lecture Notes in Computer Science 9135,
pages 44–55, 2015.

16

a
1

2b

2
c

d

2

e-1

f
-1

g

2-1

hi

-2

j
-2

k
-1

1
ℓ

2
m

2

1

1

a
1

2b

1
c

d

2

e-1

f
-1

g

2-1

hi

-2

j
-2

k
-1

1
ℓ

2
m

2

1

1

Figure 12: Two labellings of a triangulation that differ only at vertex c.
This change reverses the paths in Quadrants II and III.

[3] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and
Toniann Pitassi. The relative complexity of NP search problems. Jour-
nal of Computer and System Sciences, 57(1):3–19, 1998.

[4] Josh Buresh-Oppenheim. On the TFNP complexity of factoring. un-
published manuscript, www.cs.toronto.edu/ bureshop/factor.pdf, 2006.

[5] Xi Chen and Xiaotie Deng. Settling the complexity of two-player Nash
equilibrium. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06), pages 261–272, 2006.

[6] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity
of computing the two-player Nash equilibrium. Journal of the ACM,
56(3):Article 14, 2009.

[7] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadim-
itriou. The complexity of computing a Nash equilibrium. In Proceedings
of the Thirty-Eighth Annual ACM Symposium on Theory of Computing
(STOC’06), pages 71–78, 2006.

[8] Xiaotie Deng, Jack Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and
Zeying Xu. Understanding PPA-completeness. Technical Report
ECCC-TR15-120, Electronic Colloquium on Computational Complex-
ity, August 2015.

17

[9] Xiaotie Deng, Qi Qi, and Jie Zhang. Direction preserving zero point
computing and applications (extended abstract). In Internet and Net-
work Economics, 5th International Workshop (WINE), Lecture Notes
in Computer Science 5929. Springer, 2009.

[10] Robert M. Freund. Variable dimension complexes, part I: Basic theory.
Mathematics of Operations Research, 9(4):479–497, 1984.

[11] Robert M. Freund. Variable dimension complexes, part II: A unified
approach to some combinatorial lemmas in topology. Mathematics of
Operations Research, 9(4):498–509, 1984.

[12] Robert M. Freund and Michael J. Todd. A constructive proof of
Tucker’s combinatorial lemma. Journal of Combinotorial Theory, Se-
ries A, 30:321–325, 1981.

[13] Katalin Friedl, Gábor Ivanyos, Miklos Santha, and Yves F. Verhoeven.
Locally 2-dimensional Sperner problems complete for the Polynomial
Parity Argument classes. In Algorithms and Complexity, 6th Italian
Conference (CIAC), Lecture Notes in Computer Science 3998, pages
380–391. Springer, 2006.

[14] Michelangelo Grigni. A Sperner lemma complete for PPA. Information
Processing Letters, 77(5-6):255–259, 2001.

[15] Emil Jeřábek. Integer factoring and modular square roots. To appear
in Journal of Computer and System Sciences, 201?

[16] Jǐŕı Matoušek. A combinatorial proof of Kneser’s conjecture. Combi-
natorica, 24(1):163–170, 2004.

[17] Jǐŕı Matoušek. Using the Borsuk-Ulam Theorem: Lectures on Topologi-
cal Methods in Combinatorics and Geometry. Springer, second edition,
2008.

[18] Dömötör Pálvölgyi. 2D-Tucker is PPAD-complete. In Internet and Net-
work Economics, 5th International Workshop (WINE), Lecture Notes
in Computer Science 5929, pages 569–574. Springer, 2009.

[19] Christos H. Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. Journal of Computer and Sys-
tem Sciences, 48(3):498–532, 1994.

18

[20] Andrew G. Thomason. Hamiltonian cycles and uniquely edge colorable
graphs. Annals of Discrete Mathematics, 3:259–268, 1978.

[21] Günter M. Ziegler. Generalized Kneser coloring theorems with combi-
natorial proofs. Inventiones Mathematicae, 147(3):671–691, 2002.

19

