Math 10C Midterm Exam 2 May 17, 2011 ... Version A

Instructions

- 1. No calculators or other electronic devices are allowed during this exam.
- 2. You may use one page of notes, but no books or other assistance during this exam.
- 3. Write your Name, PID, and Section on the front of your Blue Book.
- 4. Write the Version of your exam at the top of the page on the front of your Blue Book.
- 5. Write your solutions clearly in your Blue Book
 - (a) Carefully indicate the number and letter of each question and question part.
 - (b) Present your answers in the same order they appear in the exam.
 - (c) Start each question on a new side of a page.
- 6. Read each question carefully, and answer each question completely.
- 7. Show all of your work; no credit will be given for unsupported answers.
- 0. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- 1. (8 points) Let A and B be the points of coordinates A = (1, 3, 3), B = (2, 1, 2).
 - (a) Find the coordinates of the vector $\vec{u} = \vec{AB}$
 - (b) Let $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}$. Find the coordinates of the point C such that $\overrightarrow{AC} = \overrightarrow{v}$.
 - (c) Are the vectors \overrightarrow{AC} and \overrightarrow{AB} orthogonal? Justify your answer.
 - (d) Find the coordinates of the vector $\overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{v}$
- 2. (6 points) Let F be the function defined by $F(x,y) = e^{(x-1)^2+y}$.
 - (a) Compute algebraically the partial derivatives F_x and F_y .
 - (b) What is the equation of the plane tangent to F at the point (1,0)?
- 3. (6 points) A plane is traveling due north with an airspeed of 725 km/hr while descending at a rate of 75 km/hr. There is a 60 km/hr wind blowing from 30 degrees south of due west. What is the ground speed of the airplane?
- 4. (6 points) Let $f(x,y) = 2x^2 + 3xy + 5y^2$. At the point (-2,1):
 - (a) Find a unit vector \vec{u} so that the directional derivative $f_{\vec{u}}(-2,1)$ is maximum.
 - (b) Find a unit vector \vec{u} so that the directional derivative $f_{\vec{u}}(-2,1)$ is minimum.
 - (c) Find a unit vector \vec{u} so that the directional derivative $f_{\vec{u}}(-2,1)$ is zero.