Instructions

1. No calculators or other electronic devices are allowed during this exam.
2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write the Version of your exam at the top of the page on the front of your Blue Book.
5. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
6. Read each question carefully, and answer each question completely.
7. Show all of your work; no credit will be given for unsupported answers.
8. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
9. (8 points) Let A and B be the points of coordinates $A=(1,3,3), B=(2,1,2)$.
(a) Find the coordinates of the vector $\vec{u}=\overrightarrow{A B}$
(b) Let $\vec{v}=\vec{i}+\vec{j}-\vec{k}$. Find the coordinates of the point C such that $\overrightarrow{A C}=\vec{v}$.
(c) Are the vectors $\overrightarrow{A C}$ and $\overrightarrow{A B}$ orthogonal? Justify your answer.
(d) Find the coordinates of the vector $\vec{w}=\vec{u} \times \vec{v}$
10. (6 points) Let F be the function defined by $F(x, y)=e^{(x-1)^{2}+y}$.
(a) Compute algebraically the partial derivatives F_{x} and F_{y}.
(b) What is the equation of the plane tangent to F at the point $(1,0)$?
11. (6 points) A plane is traveling due north with an airspeed of $725 \mathrm{~km} / \mathrm{hr}$ while descending at a rate of $75 \mathrm{~km} / \mathrm{hr}$. There is a $60 \mathrm{~km} / \mathrm{hr}$ wind blowing from 30 degrees south of due west. What is the ground speed of the airplane?
12. (6 points) Let $f(x, y)=2 x^{2}+3 x y+5 y^{2}$. At the point $(-2,1)$:
(a) Find a unit vector \vec{u} so that the directional derivative $f_{\vec{u}}(-2,1)$ is maximum.
(b) Find a unit vector \vec{u} so that the directional derivative $f_{\vec{u}}(-2,1)$ is minimum.
(c) Find a unit vector \vec{u} so that the directional derivative $f_{\vec{u}}(-2,1)$ is zero.
