Math 10C Final Examination June 8, 2011 Version A

Instructions

- 1. No calculators or other electronic devices are allowed during this exam.
- 2. You may use one page of notes, but no books or other assistance during this exam.
- 3. Write your Name, PID, and Section on the front of your Blue Book.
- 4. Write the Version of your exam at the top of the page on the front of your Blue Book.
- 5. Write your solutions clearly in your Blue Book
 - (a) Carefully indicate the number and letter of each question and question part.
 - (b) Present your answers in the same order they appear in the exam.
 - (c) Start each question on a new side of a page.
- 6. Read each question carefully, and answer each question completely.
- 7. Show all of your work; no credit will be given for unsupported answers.
- 0. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- 1. (6 points) The company Colonel Electric has produced a new brand of light bulb. Suppose that x measures the number of hours elapsed before one of these light bulbs fails. The probability density function for x is given by

 $p(x) = 200e^{-cx}$ for $x \ge 0$ (and 0 otherwise)

where c is a constant.

- (a) What is the value of c?
- (b) What is the probability that a light bulb lasts for more than 50 hours?
- (c) What is the median value of the number of hours these light bulbs last?
- 2. (4 points) If $1 + x + x^2 + x^3 + \dots = 3$ and $a + ax + ax^2 = -9$, find x and a.
- 3. (4 points) Find the second order Taylor polynomial for $x \sin(x)$ near x = 0. Use this to approximate $0.1 \sin(0.1)$.
- 4. (6 points) Find the maximum and minimum values of the function f(x, y) = xy subject to the constraint $9x^2 + y^2 = 18$.
- 5. (6 points) Let $f(x, y) = x^3y + 12x^2 8y$.
 - (a) Find all the critical points of f.
 - (b) Classify each of the critical points of f as a local minimum, local maximum, or saddle point.
- 6. (6 points) Find an equation for the plane through the points (1, 1, 5), (1, -3, 1), and (6, 1, 1).

- 7. (4 points) Let $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}$ and $\overrightarrow{v} = 2\overrightarrow{i} \overrightarrow{j} + \overrightarrow{k}$.
 - (a) Compute $\overrightarrow{u} \cdot \overrightarrow{v}$, the dot product of \overrightarrow{u} and \overrightarrow{v} .
 - (b) Find the angle between \overrightarrow{u} and \overrightarrow{v} . You may express this angle as the inverse cosine (or arc cosine) of a number.
- 8. (6 points) A rectangular box without a top has a volume of $32cm^3$. Find the dimensions of the box having minimal surface area.
- 9. (6 points) Let f be a function whose contour diagram is given below.
 - (a) Find the coordinates (to the nearest 0.2) of the local maxima and local minima of the function f.
 - (b) The function f also has at least one saddle point. Find the coordinates (to the nearest 0.2) of the saddle point(s).

Figure 1: Contour diagram of the function f.