Math 20E

August 7, 2013

Question 1 Given a path $\mathbf{c}(t)$ in \mathbb{R}^{n}, its derivative $\mathrm{c}^{\prime}(t)$ represents a tangent vector to the corresponding curve at all values of t where
A. the derivative $\mathbf{c}^{\prime}(t)$ exists.
B. the derivative $\mathbf{c}^{\prime}(t)$ is continuous.
${ }^{*}$ C. the derivative $\mathbf{c}^{\prime}(t)$ exists and is not zero.
D. $\mathbf{c}^{\prime}(t)$ is a unit vector.
E. both B and C.

Question 2 Given a function $f(x, y, z)$, the gradient of f at the point (a, b, c) is
A. $\mathbf{D} f(a, b, c)$, the derivative of f at (a, b, c).
B. A vector that is normal to the level surface $f(x, y, z)=f(a, b, c)$.
C. A vector that that points in the direction of greatest increase of $f(x, y, z)$ from (a, b, c).
D. both B and C.
${ }^{*}$ E. A, B and C.

