Math 20E

August 14, 2013

Question 1 The speed of an object is constant. The object's
*A. velocity and acceleration are perpendicular.
B. acceleration is zero.
C. velocity is constant.
D. both B and C.

Question 2 Given domains $D \subset \mathbb{R}^{2}$ and $S \subset \mathbb{R}^{2}$ and a one-to-one transformation $T: D \rightarrow S$ that maps D onto S. Then T can be used to change variables as follows:
A. $\iint_{S} f(x, y) d x d y=\iint_{D} f(T(u, v))|\operatorname{det}[\mathbf{D} T(u, v)]| d u d v$.
B. $\iint_{D} f(u, v) d u d v=\iint_{S} f(T(x, y))|\operatorname{det}[\mathbf{D} T(x, y)]| d x d y$.
C. $\iint_{D} f(u, v) d u d v=\iint_{S} f\left(T^{-1}(x, y)\right)\left|\operatorname{det}\left[\mathbf{D} T^{-1}(x, y)\right]\right| d x d y$.
D. Both \mathbf{A} and \mathbf{B}
*E. Both \mathbf{A} and \mathbf{C}

Question 3 Let $\frac{\partial(x, y)}{\partial(u, v)}$ be the Jacobian determinant of a coordinate transformation $T: R \rightarrow S$. Then,
A. $\frac{\partial(x, y)}{\partial(u, v)}$ measures the distortion of areas in R after being mapped to S by the transformation.
B. a small rectangle in R with area $\Delta u \Delta v$ is mapped to a small region in S with area $\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v$, approximately.
C. when $T(u, v)$ is a linear transformation, $\frac{\partial(x, y)}{\partial(u, v)}$ is constant.
*D. A, B and C
E. Neither A, B nor C: little can be said about $\frac{\partial(x, y)}{\partial(u, v)}$ with so little information available.

