Math 20E

August 14, 2013

 $Question \ 1$ The speed of an object is constant. The object's

- *A. velocity and acceleration are perpendicular.
- **B.** acceleration is zero.
- C. velocity is constant.
- D. both B and C.

Question 2 Given domains $D \subset \mathbb{R}^2$ and $S \subset \mathbb{R}^2$ and a one-to-one transformation $T: D \to S$ that maps D onto S. Then T can be used to change variables as follows:

A.
$$\iint_{S} f(x,y) \, dx \, dy = \iint_{D} f\left(T\left(u,v\right)\right) \left|\det\left[\mathbf{D}T\left(u,v\right)\right]\right| \, du \, dv.$$

B.
$$\iint_{D} f(u,v) \, du \, dv = \iint_{S} f\left(T\left(x,y\right)\right) \left|\det\left[\mathbf{D}T\left(x,y\right)\right]\right| \, dx \, dy.$$

C.
$$\iint_D f(u,v) \, du \, dv = \iint_S f\left(T^{-1}\left(x,y\right)\right) \left|\det\left[\mathbf{D}T^{-1}\left(x,y\right)\right]\right| \, dx \, dy.$$

- D. Both A and B
- *E. Both A and C

Question 3 Let $\frac{\partial(x,y)}{\partial(u,v)}$ be the Jacobian determinant of a coordinate transformation $T: R \to S$. Then,

- **A.** $\frac{\partial(x,y)}{\partial(u,v)}$ measures the distortion of areas in R after being mapped to S by the transformation.
- **B.** a small rectangle in R with area $\Delta u \Delta v$ is mapped to a small region in S with area $\left|\frac{\partial(x,y)}{\partial(u,v)}\right| \Delta u \Delta v$, approximately.
- **C.** when T(u, v) is a linear transformation, $\frac{\partial(x,y)}{\partial(u,v)}$ is constant.
- ***D. A**, **B** and **C**
- **E.** Neither **A**, **B** nor **C**: little can be said about $\frac{\partial(x,y)}{\partial(u,v)}$ with so little information available.