Math 20E

August 20, 2013

Question 1 Given a path $\mathbf{c}:[a,b]\to\mathbb{R}^n$. \mathbf{c} is regular at t_0 means

- **A.** the derivative $c'(t_0)$ exists.
- *B. the derivative $\mathbf{c}'(t_0)$ exists and is not zero.
- C. the image curve c([a,b]) has a tangent vector at $c(t_0)$.
- **D.** $\mathbf{c}'(t_0)$ is a unit vector.
- E. both B and C.

Question 2 Two paths $c_1:[0,2\pi]\to\mathbb{R}^3$ and $c_1:[0,2\pi]\to\mathbb{R}^3$ are given by

$$\mathbf{c}_1(t) = (\cos(t), \sin(t), t)$$

$$\mathbf{c}_2(t) = (\cos(2\pi - t), \sin(2\pi - t), 2\pi - t)$$

The lengths of the corresponding curves are

- *A. the same since the curves defined by the paths are the same.
- **B.** of opposite sign since the paths traverse the curves in opposite directions.
- **C.** cannot be computed because the antiderivative of $||\mathbf{c}_1'(t)||$ and $||\mathbf{c}_2'(t)||$ cannot be computed.
- D. both B and C
- E. none of the above

Question 3 Two paths $c_1:[0,2\pi]\to\mathbb{R}^3$ and $c_1:[0,2\pi]\to\mathbb{R}^3$ are given by

$$c_1(t) = (\cos(t), \sin(t), t)$$

$$c_2(t) = (\cos(2\pi - t), \sin(2\pi - t), 2\pi - t)$$

Let $\mathbf{F}(x,y,z)$ be any C^1 vector field. The value of the line integrals $\int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s}$ and $\int_{\mathbf{c}_2} \mathbf{F} \cdot d\mathbf{s}$ are

- **A.** the same since the curves defined by the paths are the same.
- *B. of opposite sign since the paths traverse the curves in opposite directions.
- **C.** cannot be computed because the antiderivative of $||\mathbf{c}'_1(t)||$ and $||\mathbf{c}'_2(t)||$ cannot be computed.
- D. both B and C
- E. none of the above