Math 20E

August 22, 2013

Question 1 The surface $x^{2}+y^{2}+z=1$ for $z \geq 0$ is parametrized by $\Phi: D \rightarrow \mathbb{R}^{3}$, where D is the unit disk $u^{2}+v^{2} \leq 1$ and $\Phi(u, v)=\left(u, v, 1-u^{2}-v^{2}\right)$. Then, $\mathbf{T}_{u} \times \mathbf{T}_{v}=(2 u, 2 v, 1)$ and
A. Φ is a one-to-one mapping of D onto $S=\Phi(D)$.
B. The parametrized surface Φ is regular at every point of S.
C. The surface S has a tangent plane at every point.
*D. A, B and C
E. none of the above

Question 2 The surface $x^{2}+y^{2}+z=1$ for $z \geq 0$ is parametrized by $\psi: R \rightarrow \mathbb{R}^{3}$, where R is the rectangle $[0,1] \times[0,2 \pi]$ and $\psi(u, v)=\left(u \cos (v), u \sin (v), 1-u^{2}\right)$. Then, $\mathbf{T}_{u} \times \mathbf{T}_{v}=u(2 u \cos (v), 2 u \sin (v), u)$ and
A. Ψ is a one-to-one mapping of R onto $S=\Psi(R)$.
B. The parametrized surface Ψ is regular at every point of S.
*C. The surface S has a tangent plane at every point.
D. A, B and C
E. none of the above

Question 3 The surface S given by $x^{2}+y^{2}+z=1$ for $z \geq 0$ is parametrized by $\Phi: D \rightarrow \mathbb{R}^{3}$, where D is the unit disk $u^{2}+v^{2} \leq 1$ and $\Phi(u, v)=\left(u, v, 1-u^{2}-v^{2}\right) . S$ is also parametrized by $\psi: R \rightarrow \mathbb{R}^{3}$, where R is the rectangle $[0,1] \times[0,2 \pi]$ and $\Psi(r, \theta)=\left(r \cos (\theta), r \sin (\theta), 1-r^{2}\right)$.
A. Φ is a one-to-one mapping of D onto $S=\Phi(D)$.
B. Ψ is a one-to-one mapping of R onto $S=\Psi(R)$.
C. $\Psi=\Phi \circ T$, where $T: R \rightarrow D$ is the polar coordinate transformation.
D. A, B and C
*E. A and C

