Math 20E

September 5, 2013

Question 1 Suppose F is a conservative vector field on $\mathbb{R}^3.$ Then,

- **A.** $\nabla \cdot \mathbf{F} = k$ for some constant k.
- **B.** $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$ along every oriented simple closed curve C.
- C. $\nabla \times \mathbf{F} = 0$
- **D.** There is a scalar function $f : \mathbb{R}^3 \to \mathbb{R}$ for which $\mathbf{F} = \boldsymbol{\nabla} f$
- *E. B, C and D

Question 2 Suppose F is a C^1 vector field on \mathbb{R}^3 . Let H be the unit hemisphere given by $x^2 + y^2 + z^2 = 1$ with $z \ge 0$, let D be the unit disk given by z = 0 with $x^2 + y^2 \le 1$, and let $S = H \cup D$. Then,

A. $\partial H = \partial D$, including orientation when H and D are both oriented with the upward-pointing unit normal vector.

B.
$$\iint_{H} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{D} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$

C.
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{H} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} + \iint_{D} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$

D.
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 0.$$

*E. A, B and D

Question 3 The use of clickers in this course was

- **A.** Very helpful for reviewing the important conceptual ideas of the subject.
- **B.** An easy way to earn extra credit.
- C. A fun way to start each class period.
- **D.** The way the professor encouraged me to get to class on time.
- E. A complete waste of time.