Math 20E

September 5, 2013

Question 1 Suppose F is a conservative vector field on \mathbb{R}^{3}. Then,
A. $\boldsymbol{\nabla} \cdot \mathbf{F}=k$ for some constant k.
B. $\int_{C} \mathbf{F} \cdot d \mathrm{~s}=0$ along every oriented simple closed curve C.
C. $\nabla \times F=0$
D. There is a scalar function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ for which $\mathbf{F}=\boldsymbol{\nabla} f$
*E. B, C and D

Question 2 Suppose \mathbf{F} is a C^{1} vector field on \mathbb{R}^{3}. Let H be the unit hemisphere given by $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$, let D be the unit disk given by $z=0$ with $x^{2}+y^{2} \leq 1$, and let $S=H \cup D$. Then,
A. $\partial H=\partial D$, including orientation when H and D are both oriented with the upward-pointing unit normal vector.
B. $\iint_{H}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{D}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}$.
C. $\iint_{S}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{H}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}+\iint_{D}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}$.
D. $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=0$.
*E. A, B and D

Question 3 The use of clickers in this course was
A. Very helpful for reviewing the important conceptual ideas of the subject.
B. An easy way to earn extra credit.
C. A fun way to start each class period.
D. The way the professor encouraged me to get to class on time.
E. A complete waste of time.

