Instructions

1. You may use any type of calculator, but no other electronic devices during this exam.
2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
5. Read each question carefully, and answer each question completely.
6. Show all of your work; no credit will be given for unsupported answers.
7. (6 points) Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ -1 & \text { if } x \text { is irrational }\end{cases}
$$

(b) Find the upper integral $\overline{\int_{0}^{1}} f$.
(c) Is f integrable on $[0,1]$? If f is integrable, find $\int_{0}^{1} f$; if f is not integrable, explain why it is not.
2. (6 points) Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}0 & \text { if } x=0 \\ \sin \left(\frac{\pi}{x}\right) & \text { if } 0<x \leq 1\end{cases}$ Determine whether or not f is integrable on $[0,1]$ and justify your answer.
3. (8 points) Suppose that $g:[a, b] \rightarrow \mathbb{R}$ and $h:[a, b] \rightarrow \mathbb{R}$ are bounded functions with $g(x) \leq h(x)$ for all x in $[a, b]$.
(a) Show that $\underline{\int_{a}^{b} g} \leq \underline{\int_{a}^{b} h}$.
(b) Show that $\overline{\int_{a}^{b}} g \leq \overline{\int_{a}^{b}} h$.
(c) If $g:[a, b] \rightarrow \mathbb{R}$ and $h:[a, b] \rightarrow \mathbb{R}$ are also integrable, show that $\int_{a}^{b} g \leq \int_{a}^{b} h$.
4. (8 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\sin (x)$.
(a) Determine a formula for the $n^{\text {th }}$ Taylor polynomial $p_{n}(x)$ for $f(x)$ at $x_{0}=\frac{\pi}{2}$.
(b) Show that $\lim _{n \rightarrow \infty} p_{n}(x)=f(x)$; that is, show that $\lim _{n \rightarrow \infty}\left[f(x)-p_{n}(x)\right]=0$.
5. (8 points) For each index n, define $f_{n}(x)=x^{n}$ for $0 \leq x \leq 1$.
(a) Show that $\left\{f_{n}\right\}$ converges pointwise to

$$
f(x)= \begin{cases}0 & \text { if } 0 \leq x<1 \\ 1 & \text { if } x=1\end{cases}
$$

(b) Show that $\left\{f_{n}\right\}$ does not converge uniformly to $f(x)$.
6. (6 points) Let $\left\{f_{n}:[a, b] \rightarrow \mathbb{R}\right\}$ be a sequence of monotonically increasing functions that converge pointwise to a function $f:[a, b] \rightarrow \mathbb{R}$. Show that f is monotonically increasing on $[a, b]$.
7. (6 points) For each index n, let $f_{n}(x)=\sum_{k=0}^{n} c_{k} x^{k}$. Given $r>0$, suppose that $\left\{f_{n}\right\}$ converges on $(-r, r)$ to $f:(-r, r) \rightarrow \mathbb{R}$. Show that for every interval $[a, b]$ contained in $(-r, r), \int_{a}^{b} f=\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}\left(b^{k+1}-a^{k+1}\right)$. (Hint: Use the result that if $\left\{f_{n}\right\}$ is a sequence of integrable functions that converges uniformly on $[a, b]$ to a function f, then f is integrable and $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} f$.)
8. (8 points) For each index n, define $f_{n}(x)=\frac{1}{n} \tan ^{-1}\left(n^{2} x\right)$ for every real x.
(a) Show that $\left\{f_{n}\right\}$ converges uniformly to a function $f: \mathbb{R} \rightarrow \mathbb{R}$.
(b) Show that $f_{n}(x)$ is differentiable for every index n.
(c) Show that $\left\{f_{n}^{\prime}(0)\right\}$ is unbounded.

