Math 20E

August 7, 2014

Question 1 If $D \subseteq \mathbb{R}^{2}$ is enclosed by continuous curves $y=\phi_{1}(x)$ and $y=\phi_{2}(x)$ with $\phi_{1}(x)<y<\phi_{2}(x)$ for $a \leq x \leq b$, with $c=\left[\phi_{1}\right]_{\text {min }}$ and $d=\left[\phi_{2}\right]_{\text {max }}$, then
A. $\iint_{D} f(x, y) d A=\iint_{R} f^{*}(x, y) d A$, where the rectangle $R=[a, b] \times[c, d]$ and
$f^{*}(x, y)=\left\{\begin{array}{ll}f(x, y) & \text { if }(x, y) \in D \\ 0 & \text { otherwise }\end{array}\right.$.
B. $\iint_{D} f(x, y) d A=\int_{x=a}^{b} \int_{y=\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$.
*C. Both \mathbf{A} and \mathbf{B}
D. Neither \mathbf{A} nor \mathbf{B}

Question 2 If $D \subseteq \mathbb{R}^{2}$ is y-simple, then

*A. $\iint_{D} f(x, y) d A=\int_{x=a}^{b} \int_{y=\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$ for some functions ϕ_{1}, ϕ_{2} and constants a, b.
B. $\iint_{D} f(x, y) d A=\int_{y=c}^{d} \int_{x=\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) d x d y$ for some functions ψ_{1}, ψ_{2} and constants c, d.
C. Both A and B
D. Neither A nor B

Question 3 If $D \subseteq \mathbb{R}^{2}$ is simple, then
A. $\iint_{D} f(x, y) d A=\int_{x=a}^{b} \int_{y=\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$ for some functions ϕ_{1}, ϕ_{2} and constants a, b.
B. $\iint_{D} f(x, y) d A=\int_{y=c}^{d} \int_{x=\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) d x d y$ for some functions ψ_{1}, ψ_{2} and constants c, d.
C. D is both x-simple and y-simple.
*D. A, B and C
E. Neither A, B nor C

