Math 20E

August 13, 2014

Question 1 In order for a transformation $T: R \rightarrow S$ to be a coordinate transformation that can be used to change variables in a double or triple integral, it should
A. be a one-to-one mapping mapping of R
B. map R onto S
C. both A and B
*D. both \mathbf{A} and \mathbf{B}, except that would be OK if it failed to be one-to-one on parts of the boundary of R
E. none of the above: "one-to-one" and "onto" have nothing to do with coordinate transformations.

Question 2 Given domains $D \subset \mathbb{R}^{2}$ and $S \subset \mathbb{R}^{2}$ and a one-to-one transformation $T: D \rightarrow S$ that maps D onto S. Then T can be used to change variables as follows:
A. $\iint_{S} f(x, y) d x d y=\iint_{D} f(T(u, v))|\operatorname{det}[\mathbf{D} T(u, v)]| d u d v$.
B. $\iint_{D} f(u, v) d u d v=\iint_{S} f(T(x, y))|\operatorname{det}[\mathbf{D} T(x, y)]| d x d y$.
C. $\iint_{D} f(u, v) d u d v=\iint_{S} f\left(T^{-1}(x, y)\right)\left|\operatorname{det}\left[\mathbf{D} T^{-1}(x, y)\right]\right| d x d y$.
D. Both \mathbf{A} and \mathbf{B}
*E. Both \mathbf{A} and \mathbf{C}

Question 3 The speed of an object is constant. The object's
*A. velocity and acceleration are perpendicular.
B. acceleration is zero.
C. velocity is constant.
D. both B and C.

