Math 20E

August 27, 2014

Question 1 Given a simple domain D with C^1 boundary ∂D , the area of D is given by

$$\mathbf{A.} \ A(D) = \iint_D dx \, dy$$

B.
$$A(D) = -\int_{\partial D} y \, dx$$

C.
$$A(D) = \frac{1}{2} \int_{\partial D} x \, dy - y \, dx$$

- D. A and C
- *E. A, B and C

Question 2 Consider the following domain *D*:

- **A.** By Green's theorem, the area of *D* may be computed by evaluating $\frac{1}{2} \int_{\partial D} x \, dy y \, dx$.
- **B.** Green's theorem cannot be applied on D since D is not a simple region.
- **C.** The area of *D* could be measured by tracing ∂D with a planimeter.
- *D. A and C
- E. B and C

Question 3 Given a C^1 surface S parameterized by $\Phi: D \to S$, and given $\mathbf{F}(x, y, z)$ a continuous vector field defined on S. Then,

A. $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$, where **n** is the unit normal vector at each point of *S*.

- **B.** The unit normal vector **n** at each point of the parametrized surface Φ is given by $\mathbf{n} = \frac{\mathbf{T}_u \times \mathbf{T}_v}{||\mathbf{T}_u \times \mathbf{T}_v||}$
- **C.** The average value of the normal component of **F** on *S* is $\frac{1}{A(S)} \iint_{S} \mathbf{F} \cdot d\mathbf{S}$, where A(S) is the area of the surface *S*.
- D. A and B
- *E. A, B and C