Math 20E

September 2, 2014

Question 1 Given a simple domain D with C^{1} boundary ∂D, the area of D is given by
A. $A(D)=\iint_{D} d x d y$
B. $A(D)=-\int_{\partial D} y d x$
C. $A(D)=\frac{1}{2} \int_{\partial D} x d y-y d x$
D. A and C
*E. A, B and C

Question 2 Suppose \mathbf{F} is a C^{1} vector field on the unit sphere S in \mathbb{R}^{3}. Then, $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$
A. is 0
B. is most easily computed by parametrizing S using spherical coordinates.
C. is most easily computed by applying Stokes' theorem and computing $\int_{\partial S} \mathbf{F} \cdot d \mathbf{s}$
D. cannot be computed using Stokes' theorem because the sphere S has no boundary curve ∂S
*E. A and C: the line integral in \mathbf{C} is 0 because the boundary curve ∂S is empty

Question 3 Suppose \mathbf{F} is a C^{1} vector field on \mathbb{R}^{3}. Let H be the unit hemisphere given by $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$, let D be the unit disk given by $z=0$ with $x^{2}+y^{2} \leq 1$, and let $S=H \cup D$. Then,
A. $\partial H=\partial D$, including orientation when H and D are both oriented with the upward-pointing unit normal vector.
B. $\iint_{H}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{D}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$.
C. $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{H}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}+\iint_{D}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}$.
D. $\iint_{S}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}=0$.
*E. A, B and D

