Math 20E

September 2, 2014

Question 1 Given a simple domain D with C^1 boundary ∂D , the area of D is given by

$$\mathbf{A.} \ A(D) = \iint_D dx \, dy$$

B.
$$A(D) = -\int_{\partial D} y \, dx$$

C.
$$A(D) = \frac{1}{2} \int_{\partial D} x \, dy - y \, dx$$

- D. A and C
- *E. A, B and C

Question 2 Suppose **F** is a C^1 vector field on the unit sphere S in \mathbb{R}^3 . Then, $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$

- **A.** is 0
- **B.** is most easily computed by parametrizing *S* using spherical coordinates.
- C. is most easily computed by applying Stokes' theorem and computing $\int_{\partial S} \mathbf{F} \cdot d\mathbf{s}$
- **D.** cannot be computed using Stokes' theorem because the sphere S has no boundary curve ∂S
- *E. A and C: the line integral in C is 0 because the boundary curve ∂S is empty

Question 3 Suppose F is a C^1 vector field on \mathbb{R}^3 . Let H be the unit hemisphere given by $x^2 + y^2 + z^2 = 1$ with $z \ge 0$, let D be the unit disk given by z = 0 with $x^2 + y^2 \le 1$, and let $S = H \cup D$. Then,

A. $\partial H = \partial D$, including orientation when H and D are both oriented with the upward-pointing unit normal vector.

B.
$$\iint_{H} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{D} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$

C.
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{H} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} + \iint_{D} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$

D.
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 0.$$

*E. A, B and D